
A Theory of Principles-Based Classification

By: Matjaž Konvalinka, Mark Penno and 
Jack Stecher

August 2020

Abstract

We study a firm’s decision to classify transactions as recurring or nonrecur-
ring in a setting with no fixed classification scheme, but with the following prin-
ciple: recurring transactions must be more persistent than nonrecurring ones. 
Under this principle, equilibrium firm behavior provides a new explanation for 
the observed relationship between income and classifications. Moreover, we 
find that market prices are more informative under principles-based classifi-
cations than they would be under a hypothetical, optimally chosen specific 
classification rule.
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1 Introduction

Recurring revenues and expenses affect firm value more than nonrecurring gains and losses

do. Yet neither US Generally Accepted Accounting Principles (GAAP) nor International

Financial Reporting Standards (IFRS) specify a fixed rule for classifying transactions as

recurring or nonrecurring. Our purpose is to demonstrate that a principles-based standard

makes income statement classifications useful to investors—in fact, more useful than an

optimal rules-based classification standard could be.

To elaborate, the principle we consider is that any transaction a firm classifies as nonrecur-

ring must be less persistent than any it classifies as recurring. Without definitive guidance,

each firm can satisfy this principle while picking its own threshold, and has incentive to do

so in a way that enables it to report positive items as recurring revenues and negative ones

as nonrecurring losses. We model investors as anticipating the firm’s incentives and reading

reports skeptically. In equilibrium, firms therefore choose their thresholds to maximize the

worst-case interpretation of their reports (for detailed exposition, see Milgrom and Roberts,

1986, Okuno-Fujiwara et al., 1990, Shin, 1994, 2003).

For firms with any reasonable number of transactions, equilibrium prices are more infor-

mative under a principles-based standard than they would be under an optimal rule. We

can say considerably more about the firm’s reports under a principles-based standard. We

provide a recursive equation that characterizes the amount of pooling that can occur under

a given report. This recursion is computationally feasible, with quadratic run-time com-

plexity. A similar recursion characterizes the number of collections of transactions that are

uniquely optimal under a given report. Together, these two characterizations provide upper

and lower bounds on a report’s informativeness. Related expressions enable us to measure

the opacity of a report, that is, the range of equilibrium firm values associated with the
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report.

The principle we consider, and the lack of definitive guidance, is consistent with prior theo-

retical models of rules versus principles (e.g., Caplan and Kirschenheiter, 2004, Gao et al.,

2020, who view a rule as a bright-line) and with long-established standard-setting practice.

An example of the latter is FASB (1985, CON6–24), which distinguishes between gains and

revenues as follows: “Revenues and gains are similar, and expenses and losses are similar, but

some differences are significant in conveying information about an enterprise’s performance.

Revenues and expenses result from an entity’s ongoing major or central operations. . . . In

contrast, gains and losses result from incidental or peripheral transactions.” Similar dis-

tinctions are not difficult to find; however, the Accounting Standards Codification (ASC)

Master Glossary does not give specific definitions of these terms, leaving classification as

a judgment call (see PricewaterhouseCoopers, 2019, p. 3-10 and the related discussion on

ASC 605 about gains versus revenues).

Asking auditors to impose more than this principles-based standard is likely infeasible,

though we discuss a hypothetical rules-based standard below. Senior audit partners in

Nelson et al.’s (2002) survey indicate that determining specific accounting treatments of

transactions is highly subjective, making auditors reluctant to overturn firm classification

decisions. McVay (2006) and Barua et al. (2010) provide similar arguments, stating that

auditors will not or cannot go as far as to impose an exact classification or specific threshold

on any possible transaction.

Our results shed light on the empirical relationship between classifications and income,

which has drawn considerable attention since being highlighted in McVay (2006) and in

follow-up literature (Fan et al., 2010, Fan and Liu, 2017, Fan et al., 2019, Cain et al., 2020),

picking up on earlier literature on negative special items and income (Gonedes, 1975, Ronen
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and Sadan, 1975, Barnea et al., 1976). Because firms use a principles-based standard to

signal, we would not expect classification decisions to be independent of income. Instead, in

all our examples and simulations, we find that firms classify more income-reducing items as

losses as their net income falls. Without considering the implications of a principles-based

standard, this pattern would be difficult to explain.

In addition to shedding light on our understanding of principles-based versus rules-based

standards, our results contribute to the literature on classification shifting, and more gen-

erally to the literature on non-GAAP reporting and on earnings management. Studies of

non-GAAP reporting include similar discussions. Bradshaw and Sloan (2002) and Doyle

et al. (2003) argue that non-GAAP earnings conceal information from the market by con-

flating what is transitory and what is persistent; Brown and Sivakumar (2003), Gu and

Chen (2004), and Ribeiro et al. (2019) argue instead that non-GAAP earnings inform the

market. Their discussion appears difficult to settle: as shown in Abarbanell and Lehavy

(2007), there is little difference in predicted behavior under either hypothesis.1

In the earnings management literature, Breuer and Windisch (2019), Hemmer and Labro

(2019), and Hiemann (2020) are similar in spirit to our paper. They focus on real actions

that affect the firm’s bottom line. In contrast, our setting focuses entirely on classification

decisions that do not affect net income.

The structure of the rest of this paper is as follows: Section 2 introduces the model. Section 3

shows preliminary results. Section 4 then provides our main results. We interpret these

and conclude in Section 5. All proofs are in an appendix.

1The Securities and Exchange Commission has expressed concern about whether a firm’s non-
GAAP earnings classification choices mislead or clarify (see Donelson et al., 2020).
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2 The Model

There are two players, a representative investor and a firm. The investor’s goal is to price

the firm at its expected net present value, given the firm’s financial report and a market

discount rate ρ ∈ (0, 1). The firm wants to maximize its share price. Both players are risk

neutral and have rational expectations.

The firm’s information consists of n ordered pairs, {(x1, α1), . . . , (xn, αn)}. Each xi corre-

sponds to a transaction, in the amount of 1 or −1, which the firm must include in a line

item on its income statement. The αi associated with xi is its present value factor, in the

form of an annuity due. That is, αi includes present period income, and therefore ranges

over [1, (1 + ρ)/ρ]. As our interest is in the firm’s choice of cutoff, we allow each αi to vary

continuously.

The representative investor does not know the realized {αi}ni=1, but views them as random

variables {α̃i}ni=1. We assume a commonly known uniform prior; that is, for i 6= j, α̃i is

independent of α̃j with a uniform marginal distribution:

(∀i ∈ {1, . . . , n}) α̃i ∼ U
[
1,

1 + ρ

ρ

]
(1)

The investor can infer the realized {xi}ni=1 from the firm’s income statement, so their prior

distribution is irrelevant unless it provides information about the present value factors. We

rule this out, and assume that each α̃i is independent of the transactions {x̃i}ni=1. We

therefore can allow any value for the probability that x̃i = 1.

The firm faces a classification problem. Specifically, it publicly releases an income statement

consisting of four line items: (recurring) revenues (R) and expenses (E), and (nonrecurring)

gains (G) and losses (L). It classifies each xi by aggregating it into exactly one of these four
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line items. In this way, the firm partitions its transactions into four general ledger accounts,

sums the transactions in each ledger account, and reports each of the four account totals

as the line items on its income statement.

An unmodeled authority, such as an auditor or regulator, restricts the firm’s classification

choice, according to the following reporting principle: the firm must select a unique cutoff

α̂ ∈ [1, (1 + ρ)/ρ] and report its line items as follows:

R = R(α̂) =
∑

{i|αi≥α̂}

{xi|xi > 0} E = E(α̂) =
∑

{i|αi≥α̂}

{−xi|xi < 0}

G = G(α̂) =
∑

{i|αi<α̂}

{xi|xi > 0} L = L(α̂) =
∑

{i|αi<α̂}

{−xi|xi < 0} (2)

The positive transactions are therefore recorded either as revenues or gains, the negative

ones as expenses or losses. We adopt the convention of reporting E and L as positive totals,

so that income is the difference between positive and negative transactions.

For convenience, we define the sum U of the firm’s income-increasing transactions and the

sum D of its income-reducing transactions as

U = R+G

D = E + L

It is easy to see that U and D do not depend on the firm’s chosen cutoff. We can write the

firm’s income as

π = U −D

and note that the investor can infer n = U + D. We denote the firm’s report by the
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quadruple (D,U,L,R).

The requirements in (2) serve two purposes. First, the firm’s reporting must be monotone

in persistence: if αi ≤ αj , the firm cannot treat xi as recurring and xj as nonrecurring. Any

transactions called recurring must be more persistent than any called nonrecurring. Second,

this monotonicity with respect to the present value factor αi is independent of whether xi

is positive or negative. What counts as recurring or nonrecurring does not change based on

whether an item increases or reduces income.

The investor observes the firm’s report, forms a conjecture αM about the firm’s cutoff, and

updates beliefs. We write the investor’s firm value v as

v(D,U,L,R;αM ) = E
[∑

α̃ixi|αM ;D,U,L,R
]

(3)

The firm anticipates the investor’s conjecture αM as an implicit function of its report, and

optimally chooses its cutoff α̂:

max
α̂∈

[
1, 1+ρ

ρ

]E [v(D,U,L(α̂), R(α̂);αM (D,U,L(α̂), R(α̂))] (4)

Figure 1 summarizes the timeline.

Nature chooses
transaction
values and
persistence

Firm classifies
transactions and
issues report

Investor
prices firm

Figure 1 – Timeline.
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3 Preliminary Results

3.1 Benchmark: optimal rules-based classification

We begin by considering an optimal rules-based standard. In the context of classification,

a rules-based standard is a bright-line cutoff αbl ∈ [1, (1+ρ)/ρ)], which a standard setter or

other authority imposes. Our focus is on an idealized rules-based standard, which is cost-

lessly and perfectly enforced. This is in contrast to prior work on enforcement issues, which

emphasizes the degree to which a firm might game a rule.2 We abstract from enforcement

issues to obtain the upper bound on the informativeness of a rules-based standard.

Accordingly, let αbl ∈ [1, (1 + ρ)/ρ] be a given bright-line cutoff. If this cutoff is perfectly

enforced, the firm’s problem (4) becomes degenerate. The mean squared pricing error

is

η(αbl) := E


[

n∑
i=1

α̃ix̃i − v(D,U,L(αbl), R(αbl);αbl)

]2 (5)

Proposition 1 shows that η(·) is minimized when the cutoff is set to the ex ante mean of

the α̃i.3

Proposition 1. The investor’s mean squared error η(·) is minimized at the prior mean of

the α̃i, i.e., at

α∗bl = E[α̃i] = 1 +
1

2ρ

2Dye (2002) discusses the shadow standard that a rule implements, adjusting for a firm’s response
to enforcement issues in the standard as written. Gao (2017) investigates the optimal choice of
standards, knowing that the firm can structure transactions or otherwise alter evidence. From
an empirical standpoint, see Dechow and Schrand (2004, p. 113) on concerns about transaction
structuring as a way around a rules-based standard.

3We follow Shin (2003) in having the investor minimize mean squared pricing error.
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At this cutoff, the mean squared error given the report is

η(α∗bl) =
n

48ρ2

It is clear that η(α∗bl) grows linearly in the number of transactions n. The reason is that,

for i 6= j, the most informative bright-line classification of α̃i is uninformative about α̃j .

The rule cannot overcome the independence of the {α̃i}ni=1.

3.2 Maximally informative principles-based standards

Next, we consider a principles-based classification standard. Given the firm’s choice of α̂, the

firm’s report (D,U,L,R) reveals that there are L negative transactions and U −R positive

ones below the cutoff α̂. In this way, the principles-based standard provides information on

the ordering of the realized {αi}ni=1.

For convenience, for i ∈ {1, . . . , n}, let

α̃(i) = ith order statistic on (α̃1, . . . , α̃n)

In other words, rank the present value factors from smallest to largest. Then α̃(i) is the

ith-smallest present value factor. Without loss of generality, the firm’s chosen cutoff α̂ can

be set to α̃(i) for some i ∈ {1, . . . , n}. Because each α̃i is an independent uniform draw

from [1, (1 + ρ)/ρ], it follows that (see Arnold et al., 2008)

E[α̃(i)] = 1 +
i

ρ(n+ 1)
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Let x(i) be the transaction with weight α̃(i). It is clear that the report (D,U,L,R) under

a principles-based standard reveals information about the x(i). A maximally informative

principles-based report would reveal all of the x(i). With this information, the investor’s

value of the firm is

vos =

n∑
i=1

E[α̃(i)]x(i)

= π +
1

ρ(n+ 1)

n∑
i=1

ix(i) (6)

The following shows cases in which the principles-based report is maximally informa-

tive:

Proposition 2. Suppose min{U,D} ≤ 1. Then there is a report (D,U,L,R) that is suffi-

cient for vos.

Given that the firm can, in some cases, fully reveal vos, we can compare the informative-

ness of prices under a principles-based standard to those under the optimal rules-based

standard:

Theorem 3. If a report (D,U,L,R) under a principles-based standard is maximally in-

formative, then the mean-squared error in the investor’s estimate of ṽ, conditional on the

report, is
n

6ρ2(n+ 1)
(7)

In this case, prices under a principles-based standard are (strictly) more informative than

prices under a rules-based standard if and only if the number of transactions n > 7 (respec-

tively n ≥ 7).
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Table 1 compares the mean-square error in the investor’s price under each regime, given

that the principles-based report is maximally informative (as in Proposition 2):

Table 1 – Pricing error under rules-based vs. principles-based standard

n Error: rules-based n/(48ρ2) Error: principles-based n/(6ρ2(n+ 1))
5 5/(48ρ2) 5/(36ρ2)
6 1/(8ρ2) 1/(7ρ2)
7 7/(48ρ2) 7/(48ρ2)
8 4/(24ρ2) 4/(27ρ2)
9 3/(16ρ2) 3/(20ρ2)
10 5/(24ρ2) 5/(33ρ2)

Comparison of price informativeness under a maximally informative rules-based ver-
sus a principles-based standard, given that the firm’s principles-based report is a
sufficient statistic for the sample order statistics. With more than 7 transactions,
the principles-based report is more informative.

4 Main Results

4.1 Message space adequacy of principles-based classification

Two aspects of the proof of Proposition 2 are worth mentioning. The first is that the

message space is large enough to give the firm distinct reports for each possible value of vos.

This property is necessary if pooling does not occur for purely mechanical reasons. The

second is that the firm can credibly signal its type. That is, given the firm’s value based on

its order statistics vos, there exists a report the firm can issue that no lower-valued firm can

also issue. We address the first aspect here and the next in the following subsection.

The following shows that the sufficiency of the message space generalizes to an arbitrary

number of transactions:
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Theorem 4. There are enough possible distinct principles-based reports (D,U,L,R) to

communicate every possible valuation based on the order statistics, i.e., every possible value

of vos. In particular, given U positive items and D negative ones, there are

U ·D + 1 possible values of vos, and

U ·D + 1 + n possible distinct principles-based reports.

Moreover, exactly n+1 distinct reports are consistent with vos under worst possible ordering.

The importance of Theorem 4 is that the restriction to a principles-based classification

scheme reduces the number of possible reports, but leaves enough to allow a distinct re-

port for each possible firm value. A firm with n transactions has n! possible orderings

of its present value factors.4 If the firm had complete discretion in how to classify the n

transactions, there would be 2n possible reports. Since n! ≥ 3n−2, the number of possible

orderings grows much faster than the number of possible reports. So it might appear that

the number of reports would in general be too small, i.e., that there would necessarily be

some pooling. Theorem 4 tells us that this is not correct, and the message space is always

sufficient.

The reason is that, although there are n present value factors, there are far fewer possible

values of vos. The theorem shows that the total number of distinct firm values is

(Total income-increasing transactions) · (Total income-reducing transactions) + 1

Similarly, the restriction to reports that satisfy the principles-based standard is also much

4As these come from an atomless continuous distribution, they are almost surely all distinct.
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smaller than 2n. The theorem shows this total is

(Total income-increasing transactions) · (Total income-reducing transactions) + n+ 1

In sum, the restriction to a single cutoff is much less constraining than it may appear. In

fact, there are n more reports available than possible values, although all of these can be

made by a firm of the lowest type. If we treat these as equivalent, Theorem 4 says that the

message space is exactly as large as necessary.

4.2 Strategic considerations

We now turn to strategic considerations in reporting under principles-based classifications,

that is, whether a firm can credibly reveal its type, given that the firm reports to a skeptical

investor with rational expectations (as is standard since Milgrom and Roberts, 1986). In

what follows, we characterize the degree to which the market’s skepticism disciplines the

firm’s reporting choice, adding to the report’s informativeness.

Proposition 2 shows that the firm can fully reveal its type if either U or D is at most

1. The following example shows that with U = D = 2, complete separation is no longer

attainable.

Example 1. Let U = D = 2. Suppose

x(1) = x(3) = −1 x(2) = x(4) = 1

Then

vos =
2

5ρ
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The firm can satisfy the principles-based standard if and only if it issues one of the following

reports:

(D,U,L,R) ∈ {(2, 2, 0, 2), (2, 2, 1, 2), (2, 2, 1, 1), (2, 2, 2, 1), (2, 2, 2, 0)}

If L = 0 or R = 0, then the report can be mimicked by a firm with transactions and present

value factors {(x′1, α′1) . . . , (x′4, α′4)} satisfying

x′(3) = x′(4) = −1 x′(1) = x′(2) = 1

which would have a lower value (v′os = −4/(5ρ)).

If L = R = 1, the report could be mimicked by a firm with

x′(2) = x′(4) = −1 x′(1) = x′(3) = 1

which has a lower value of v′os = −2/(5ρ).

If L = 2, R = 1, the report could be mimicked by a firm with

x′(2) = x′(3) = −1 x′(1) = x′(4) = 1

and if instead L = 1, R = 2, the report could be mimicked by a firm with

x′(1) = x′(4) = −1 x′(2) = x′(3) = 1

In both these cases, the value of the mimicking firm is 0.

As these cases are exhaustive, the firm has no report that separates it from a worse type.
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In light of Example 1, we investigate the amount of information the firm can reveal in

equilibrium. The following characterizes the firm’s reporting strategy:

Proposition 5. Let v(D,U,L,R) be the market’s most skeptical interpretation of the firm’s

report:

v(D,U,L,R) =

U−R∑
h=1

E[α̃(h)]−
U−R+L∑
i=U−R+1

E[α̃(i)]

+
U−R+D∑

j=U−R+L+1

E[α̃(j)]−
U+D∑

k=U−R+D+1

E[α̃(k)] (8)

The firm maximizes this interpretation if and only if the firm chooses its cutoff α̂ in (4) to

maximize

uf (α̂) := L(α̂) ·R(α̂) (9)

The intuition of v(·) is as follows: after receiving the principles-based report (D,U,L,R),

the investor knows that L negative transactions and U − R positive transactions are less

persistent than the firm’s cutoff. A skeptical interpretation is that the gains are less per-

sistent than the losses, i.e., that (x(1), . . . , x(U−R)) are all positive transactions, and the L

next-least persistent items, (x(U−R+1), . . . , x(U−R+L)), are all negative. Skepticism about

the transactions above the cutoff is similar: the R revenues are treated as less persistent

than the D − L expenses. This puts the least weight consistent with the report on the

positive transactions and the most consistent with the report on the negative ones.

Proposition 5 reduces the firm’s problem to maximizing the product of total nonrecurring

losses and total recurring revenues. Because uf (·) has this simple form, we are able to obtain

sharp bounds on price informativeness under a principles-based standard. For instance, in

Example 1, the firm maximizes its value if it chooses (L,R) ∈ {(1, 2), (2, 1)}. Among the
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firm’s feasible reports, these two produce the highest value of uf .

4.3 Price informativeness

Understanding price informativeness requires us to consider the investor’s problem. The

investor observes report (D,U,L,R) and prices the firm based on the number of persistence-

ordered transactions (x(1), . . . , x(n)) (where the investor infers n = U + D) for which the

report is consistent with the principle (2) and maximizes (9). The amount of uncertainty

the investor faces is determined by the variance in the order statistics value vos, given

by (7), and by the number of sequences with distinct values that the firm might have, given

the report.

To improve readability, we make a harmless change in notation: for each i ∈ {1, . . . , n}, let

yi := 2x(i)−1. This simplifies the subscripts and replaces all −1 values with 0, and is easily

seen to be invertible. Thus from here onward, unless it is necessary for interpretation,

we work with sequences of bits, understanding a 0 bit to be a transaction of value −1

and understanding bit strings to correspond to transactions ranked from least to most

persistent.

We first distinguish between the ordered transaction sequences that the firm could report as

(D,U,L,R) and those that the firm necessarily reports as (D,U,L,R). We say a sequence is

legal if the report is optional, and that the sequence is strictly legal if the report is uniquely

optimal:

Definition 1. Given nonnegative integers (D,U,L,R), a sequence y = (y1, . . . , yU+D) is

legal with respect to (D,U,L,R) if:

1. it contains U 1s and D 0s;
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2. for i = l + U −R, we have λi(y) = L and ri(y) = R;

3. for every j, 0 ≤ j ≤ U +D, we have λj(y)rj(y) ≤ LR.

A legal sequence is strictly legal if we have

3’ for every j, 0 ≤ j ≤ U +D, j 6= l + U −R, we have λj(y)rj(y) < LR.

In Example 1, the report (U,D,L,R) = (2, 2, 2, 1) has two legal sequences: (0, 1, 0, 1) and

(1, 0, 0, 1). The first could is also legal with respect to a different report, (2, 2, 1, 2), as

shown in the example. So the first is legal with respect to (2, 2, 2, 1) but not strictly legal;

the second sequence is strictly legal.

A slightly more complex example is as follows:

Example 2. Take D = U = 3, L = 1, R = 2. Among the 20 possible rearrangements of 3

1s and 3 0s, 12 satisfy λ2(y) = 1 and r2(y) = 2: 010011, 010101, 010110, 011001, 011010,

011100, 100011, 100101, 100110, 101001, 101010, and 101100. Of those, only 101100

and 101010 satisfy λj(y)rj(y) ≤ 2 for j = 0, . . . , 6, so they are the only legal sequences.

Furthermore, only 101100 is strictly legal.

To characterize the set of legal sequences and the number of legal sequences associated

with a report, we proceed as follows: denote by GL,R(U,D) (resp. G′L,R(U,D)) the set of all

legal (resp. strictly legal) sequences with respect to (U,D,L,R), and write gL,R(U,D) =

|GL,R(U,D)|, g′L,R(U,D) = |G′L,R(U,D)|. If L > D, L < 0, R > U or R < 0, we write

GL,R(U,D) = G′L,R(U,D) = ∅ and gL,R(U,D) = g′L,R(U,D) = 0.

Then we have the following theorem:
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Theorem 6. We have

gL,R(U,D) = γL,R(D) · γR,L(U),

where function γL,R satisfies the following recurrence:

γL,R(m) =



0 if m < l

1 if m = l

d(LR+1)/me∑
j=1

(−1)j−1
(
d(LR+ 1)/me

j

)
γL,R(m− j) otherwise

.

Similarly,

g′L,R(U,D) = γ′L,R(D) · γ′R,L(U),

where function γ′L,R satisfies the following recurrence:

γ′L,R(m) =



0 if m < l

1 if m = l

dLR/me∑
j=1

(−1)j−1
(
dLR/me

j

)
γ′L,R(m− j) otherwise

.

Theorem 6 allows for fast computation of gL,R(U,D) and g′L,R(U,D). For example, we can

compute γ5,8(12) = 1107, γ8,5(15) = 248, γ′5,8(12) = 927, γ′8,5(15) = 196 and therefore

g5,8(15, 12) = 274536 and g5,8(15, 12) = 181692.

We see from the theorem that the formulas for γ and γ′ allow for separately computing the

nonrecurring portion of the sequence and the recurring portion; that is, the portions above

and below the cutoff can be chosen independently. This is a consequence of the following
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lemma:

Lemma 7. For given U,D,L,R, we have (y1, . . . , yU+D) ∈ GL,R(U,D) if and only if

(y1, . . . , yL+U−R, 1, . . . , 1︸ ︷︷ ︸
R

) ∈ GL,R(U,L) & (0, . . . , 0︸ ︷︷ ︸
l

, yL+U−R+1, . . . , yU+D) ∈ GL,R(R,D).

Consequently,

gL,R(U,D) = gL,R(U,L) · gL,R(R,D).

The same statement holds for G′ and g′.

Finally, given that we can characterize the legal sequences associated with a report, we can

discuss the degree to which the report is opaque.

We first observe that the ratio of the number of strictly legal sequences to the number of

legal sequences appears to converge to one as D,U,L,R become large. In this sense, the

amount of pooling becomes small asymptotically.

To say more about the informativeness of a report, we define the opaqueness of a sequence

as follows: For a sequence y = (y1, . . . , yn) ∈ {0, 1}n, define

w(y) =
n∑
i=1

iwi,

i.e. w(a) is the sum of the positions of 1’s in a. Define the opaqueness

o(D,U,L,R) = max
y∈GL,R(U,D)

w(y)− min
y∈GL,R(U,D)

w(y).
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Theorem 8. We have

min
y∈GL,R(U,D)

w(y) = LR+

(
U + 1

2

)
and

o(D,U,L,R) =
R∑
i=1

min

(
D − l,

⌊
(i− 1)L

R− i+ 1

⌋)
+

L∑
i=1

min

(
U −R,

⌊
(i− 1)R

L− i+ 1

⌋)
.

Furthermore, the image of w on GL,R(U,D) is the entire interval

[LR+
(
U+1
2

)
, LR+

(
U+1
2

)
+ o(U,D,L,R)].

5 Discussion and conclusion

Classifications are designed to provide information to the end users of financial reports. It

may seem surprising that standard setters do not generally provide definitive guidance on

classifying transactions as recurring or transitory. We show, however, that a principles-

based classification scheme makes prices more informative than an optimally chosen rules-

based scheme.
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A Proofs

Proof of Proposition 1. By independence, it is enough to focus on the case where n = 1.

Let p ∈ (0, 1) be the probability that x̃ = 1. The cumulative distribution of the firm value

ṽ = x̃ · α̃ is easily verified to be

F (v) =


(1− p)[1 + ρ(v + 1)], v ∈

[
−1+ρ

ρ ,−1
]

1− p, v ∈ (−1, 1)

1− p+ pρ(v − 1), v ∈
[
1, 1+ρρ

] (10)

Given bright-line cutoff αbl, probability that x̃ is classified as recurring revenue R is

Pr(x̃ = 1 and α̃ ≥ αbl) = Pr

(
ṽ ∈

[
αbl,

1 + ρ

ρ

])
= 1− F (αbl) = p[1− ρ(αbl − 1)]

Similarly, the probability that x̃ is recorded as recurring expenses E is

Pr(x̃ = −1 and α̃ ≥ αbl) = Pr

(
ṽ ∈

[
−1 + ρ

ρ
,−αbl

])
= F (−αbl) = (1− p)[1− ρ(αbl − 1)]

In each of these cases, the investor’s squared error is identical. The investor’s estimate is

the midpoint of the interval, and the intervals are of the same length. The report reveals

whether x = 1 or x = −1, so the distribution of the firm value given the subinterval inherits

the uniform distribution from α̃. In sum, conditional on the transaction being classified

as recurring (whether as R or as E), the investor’s squared error is the variance in the
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subinterval, which equals (
1+ρ
ρ − αbl

)2
12

By an analogous argument, conditional on the transaction being classified as nonrecurring

(whether as G or as L), the investor’s squared error is

(αbl − 1)2

12

Therefore, the mean squared error is

η(αbl) = [1− ρ(αbl − 1)] ·

(
1+ρ
ρ − αbl

)2
12

+ ρ(αbl − 1) · (αbl − 1)2

12

= [1− ρ(αbl − 1)] ·

(
1+ρ
ρ − αbl

)2
12

+
(αbl − 1)3

12

Differentiating with respect to αbl and setting to zero gives a unique critical point at

α∗bl =
1 + 2ρ

2ρ
= 1 +

1

2ρ

The second derivative is easily checked to equal 1/2, so α∗bl is the unique global minimum.

Finally, the variance of a uniform draw over [1, 1 + 1/(2ρ)] (or over [1 + 1/(2ρ), 1 + 1/ρ]) is

1/(12(2ρ)2) = 1/(48ρ2). Over n independent draws, the total variance is n/(48ρ2).
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Proof of Proposition 2. Let D = 0, so that U = π = n. Then each x(i) = 1, and

vos = n+
1

ρ(n+ 1)

n∑
i=1

i

= n+
1

ρ(n+ 1)
· n(n+ 1)

2
= n+

n

2ρ

= n

(
1 + 2ρ

2ρ

)

Analogously, if U = 0, then

vos = −n
(

1 + 2ρ

2ρ

)
If U = 1, let k be the persistence ranking of the lone positive transaction, so that x(k) = 1

and, for i 6= k, x(i) = −1. Therefore, the firm can report

(D,U,L,R) = (D, 1, k − 1, 1)

The firm can issue this report only if the lone positive transaction is at least the kth-least

persistent item, so it cannot be mimicked by a firm with the same values of (D,U) with

a lower value of vos. Similarly, if the investor believes the firm reports according to this

strategy, then the firm cannot deviate and mimic a firm with a higher value of vos. Thus,

the investor knows that

vos = 1−D +
1

ρ(n+ 1)

− k−1∑
i=1

i+ k −
n∑

j=k+1

j


= 1−D +

1

ρ(n+ 1)

[
−

n∑
i=1

i+ 2k

]

= π − n

2ρ
+

2k

ρ(n+ 1)

25



The case of D = 1 is analogous.

Proof of Theorem 3. We begin by the following useful lemma on the distribution of the

α̃(i), which is a trivial modification of a standard result in the theory of order statistics (see

Arnold et al., 2008). We provide an elemantary proof here.

Lemma 9. For each i ∈ {1, . . . , n},

ρ(α̃(i) − 1) ∼ Beta(i, n− i+ 1)

Consequently,

E[α̃(i)] =
i

ρ(n+ 1)
+ 1

V ar[α̃(i)] =
i(n− i+ 1)

ρ2(n+ 1)2(n+ 2)

Proof of Lemma 9. For each i, α̃i ∼ U [1, (1 + ρ)/ρ], so

ρ(α̃i − 1) ∼ U [0, 1]

and ρ(α̃− 1)(i) = ρ(α̃(i)− 1), i.e., the order is the same as the ordering of the α̃(i). The pdf

f(i)(·) of the ith sample order statistic of n iid random variables with distribution F (·) and

density f(·) is

f(i)(t) =
n!

(i− 1)!(n− i)!
F i−1(t)[1− F (t)]n−if(t)

For a U [0, 1] variable, F (t) = t, 1 − F (t) = 1 − t, and f(t) = 1. Therefore, using Γ(k) =
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(k − 1)! for positive integer k,

f(i)(t) =
Γ(n+ 1)

Γ(i)Γ(n− i+ 1)
ti−1(1− t)n−i

which is the pdf of a Beta(i, n− i+ 1)-distributed random variable.

The mean and variance of a Beta(a, b)-distributed random variable are a/(a+b) and ab/[(a+

b)2(a+ b+ 1)]. Therefore,

E[ρ(α̃(i) − 1)] =
i

n+ 1
⇒ E[α̃(i)] = 1 +

i

ρ(n+ 1)

V ar[ρ(α̃(i) − 1] =
i(n− i+ 1)

ρ2(n+ 1)2(n+ 2)

�

From Lemma 9, the investor’s mean-squared error in estimating ṽ given a report that reveals

the order statistics is

n∑
i=1

i(n− i+ 1)

ρ2(n+ 1)2(n+ 2)
=

1

ρ2(n+ 1)2(n+ 2)

[
(n+ 1)

n∑
i=1

i−
n∑
i=1

i2

]

=
n(n+ 1)2/2− n(n+ 1)(2n+ 1)/6

ρ2(n+ 1)2(n+ 2)

=
n

6ρ2(n+ 1)
(11)

From Proposition 1, the investor’s mean-squared error in estimating ṽ from a fully revealed

bright-line classification standard is n/(48ρ2). This error is weakly greater than that of
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learning the order statistics (11) if and only if

n

48ρ2
≥ n

6ρ2(n+ 1)

⇔ n ≥ 7

Proof of Theorem 4. An immediate corollary of Lemma 9 is that, for i ∈ {1, . . . , n− 1},

E[α̃(i+1)]− E[α̃(i)] =
1

ρ(n+ 1)
,

i.e., the expected weights are evenly spaced. The number of possible values of the firm

is therefore equivalent to the number of possible ways to sum U integers chosen from

{1, . . . , n}, i.e., to determine the possible weighted sums of U positive items. This total

plus knowledge of U and n are sufficient for determining the sum of the negative items and

therefore of the firm’s present value.

The smallest possible sum of U integers from {1, . . . , n} is

U∑
i=1

i =
U(U + 1)

2

The largest possible sum of U integers from {1, . . . , n} is

n∑
i=n−U+1

i =
n∑
i=1

i−
n−U∑
j=i

j =
n(n+ 1)

2
− (n− U)(n− U + 1)

2

=
U(2n− U + 1)

2
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Because the integers in {1, . . . , n} are consecutive, any integer sum between the smallest

and largest possible sum is attainable. Therefore, the total number of possible sums is one

plus the difference between the largest and smallest possible sum. Noting that D = n−U ,

this total is (after some substitutions)

U ·D + 1

With a binary classification system, a total of U positive items can be split into two non-

negative subtotals, R and U − R, in U + 1 possible ways. Similarly, a total of D negative

items can be split into two nonnegative subtotals in D+ 1 ways. Therefore, the firm’s total

number of possible ways to classify U positive and D negative transactions is

(U + 1)(D + 1) = U ·D + n+ 1

Finally, among the U ·D+n+1 possible reports, the firm has U+1 with no recurring revenue

reported (i.e., with R set to 0) and D + 1 with all negative items reported as recurring.

Exactly one report is consistent with both, so the firm has n+1 possible classifications that

satisfy the principles-based standard if all income-increasing items are less persistent than

all income-reducing items.

Proof of Proposition 5. From (8),

v(D,U,L,R) =

U−R∑
h=1

E[α̃(h)]−
U−R+L∑
i=U−R+1

E[α̃(i)]

+

U−R+D∑
j=U−R+L+1

E[α̃(j)]−
U+D∑

k=U−R+D+1

E[α̃(k)]
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After repeated use of the identity that
∑m

i=j+1 i = (m(m + 1) − j(j + 1))/2, rearranging,

and substituting n = U +D and π = U −D, this reduces to

v(D,U,L,R) =

constant︷ ︸︸ ︷
π − n

2ρ
+
U(U + 1)

ρ(n+ 1)
+

2

ρ(n+ 1)︸ ︷︷ ︸
positive constant

LR

Thus, the investor’s most skeptical interpretation of the report (D,U,L,R) is strictly mono-

tone in LR. Maximizing this interpretation is therefore equivalent to maximizing the Cobb-

Douglas utility uf (α̂) given in (9).

Proof of Lemma 7. Write

y = (y1, . . . , yU+D), y′ = (y1, . . . , yL+U−R, 1, . . . , 1︸ ︷︷ ︸
R

), y′′ = (0, . . . , 0︸ ︷︷ ︸
L

, yL+U−R+1, . . . , yU+D).

Then λj(y)rj(y) > LR for j < L+U−R if and only if λj(y′)rj(y′) > LR, and λj(y)rj(y) >

LR for j > L+U −R if and only if λj−u+r(y′′)rj−U+R(y′′) > LR. The equivalence follows.

The proof for G′ and g′ is the same.

Proof of Theorem 6. Theorem 6 follows from Lemma 7 and the three additional lemmas.

First, define γL,R(m) = gL,R(R,m) and γ′L,R(m) = g′L,R(R,m). The following is obvious:

Lemma 10. For given (U,D,L,R), a sequence (y1, . . . , yU+D) is in GL,R(U,D) if and only

if (1−yU+D, . . . , 1−y1) is in GR,L(D,U). Consequently, gL,R(U,L) = gR,L(L,U) = γR,L(U)

and

gL,R(U,D) = γL,R(D) · γR,L(U).

The same statement holds for G′, g′, and γ′.
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It remains to prove the recursive formula for γL,R(m) and γ′L,R(m). It is clear that

γL,R(m) = γ′L,R(m) = 0 if m < L, and that γL,R(L) = γ′L,R(L) = L. The following

characterizes GL,R(R,m) and G′L,R(R,m).

Lemma 11. For given m,L,R, we have y = (y1, . . . , yR+m) ∈ GL,R(R,m) if and only if:

1. y1 = . . . = yL = 0;

2. there are exactly R 1’s in (yL+1, . . . , aR+m);

3. for i = 1, . . . , R, the number of 0’s in (yl+1, . . . , yr+m) before the i-th 1 is at most

(i− 1)L/(R− i+ 1).

A similar statement holds for G′L,R(R,m), with (3) replaced by

(3’) for i = 1, . . . , R, the number of 0’s in (yL+1, . . . , yR+m) before the i-th 1 is less than

(i− 1)L/(R− i+ 1).

Proof. First we introduce some notation: for integer `, let [`] := {1, . . . , `}. Assume first

that y ∈ GL,R(R,m). Then all 1’s have to be to the right of position L, so the first

two conditions are obvious. Furthermore, if i ∈ [R] and ji is the position of the i-th 1,

then rji−1(y) = R − i + 1 and λji−1(y)rji−1(y) ≤ LR = L(R − i + 1) + (i − 1)L, so

λji−1(y) ≤ L+ (i− 1)L/(R− i+ 1).

Conversely, suppose that the three conditions are satisfied. Clearly, there are m 0’s and R

1’s in y, and λL(y)rL(y) = LR. Again, denote by ji, i ∈ [R], the position of the i-th 1 in y,

and also write j0 = 0, jR+1 = R +m+ 1. Now take j ∈ [0, R +m], and pick (the unique)

i ∈ [R + 1] so that ji−1 ≤ j < ji. Then λj(y) ≤ λji(y) ≤ L + (i − 1)L/(R − i + 1) and
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rj(y) = R− i+ 1, so λj(y)rj(y) ≤ LR.

The proof for G′L,R(R,m) is analogous. �
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