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Abstract

We study the design of public information structures that max-
imize the probability of selecting a Pareto dominant equilibrium in 
symmetric (2 × 2) coordination games. Because the need to coordi-nate 
exposes players to strategic risk, we treat the designer as able to 
implement an equilibrium only if the players believe it is also risk 
dominant. The designer’s task is therefore to pool the set of states in 
which the desired equilibrium is risk dominant with the largest possible 
set in which it is not, while keeping the desired equilibrium risk dominant 
in expectation. We provide a simple characterization of the optimal 
signal structure which holds under general conditions. We extend the 
analysis to related problems, and show that our intu-ition is robust, 
suggesting that our approach provides a promising way forward for a large 
class of problems in constrained information design.
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1 Introduction

Information is useful for coordination, because it gives players a way to cor-

relate their strategies. But it is well known that information can also sab-

otage coordination, if it leads players to select an undesirable equilibrium.

Common examples are bank runs and investor panics (Kaplan, 2006; Qu,

2013; Vives, 2014; de Oliveira Cavalcanti and Monteiro, 2016), self-fulfilling

sovereign debt crises (Cole and Kehoe, 2000), and currency attacks (Morris

and Shin, 1998). We are interested in characterizing information structures

that maximize the chance of selecting a desirable equilibrium in common

interest coordination games of imperfect information.

Our focus on common-interest games ensures that the equilibria are Pareto

ranked, so that there is universal agreement on which equilibrium is desir-

able. However, this unanimity does not determine which equilibrium the

players select. Rather than basing their strategies solely on Pareto domi-

nance, players might also consider how sensitive their payoffs are to other

players’ decisions. A common selection criterion that incorporates strate-

gic risk is risk dominance (Harsanyi and Selten, 1988), which we describe

in detail below. This criterion has solid theoretical foundations (Crawford,

1991; Carlsson and van Damme, 1993; Morris and Shin, 2002, 2003) and is

on balance supported experimentally (van Huyck et al., 1990; Schmidt et al.,

2003; Cabrales et al., 2007; Anctil et al., 2010).1

Whether the Pareto dominant equilibrium is also risk dominant depends

on the expected payoffs. Changing the information available to the play-

ers, therefore, can modify the ex ante probability that the Pareto dominant

equilibrium is also risk dominant, and hence likely to be selected.

Thus, we consider the problem of a social planner, called a designer,

who is interested in implementing the Pareto dominant equilibrium and who

decides ex ante about the information that players will receive about their

1Even in experiments that do not fully support risk dominance, such as Heinemann
et al. (2009), participant decisions appear to focus on strategic risk.
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payoffs. The information the players receive implicitly comes with the de-

signer’s recommendation of which equilibrium to play.

This problem differs from the standard information design problem, in

which the players are willing to implement any equilibrium the designer

recommends. In a setting with Pareto ranked equilibria, the designer in

a standard problem simply suggests the Pareto dominant equilibrium, and

the players comply, so the designer is unconstrained. At the opposite end

of the spectrum, Goldstein and Huang (2016), Inostroza and Pavan (2020),

and Mathevet et al. (2020) consider an information designer who faces ad-

versarial players, who choose the equilibrium the designer likes least. In

their setting, the designer is maximally constrained. It is easy, however, to

imagine situations in which the players are neither perfectly obedient nor un-

compromisingly rebellious. The designer chooses an information structure to

maximize the probability that her recommended equilibrium is Pareto dom-

inant, subject to the constraint that the recommendation must also be risk

dominant.

We find that there is an elegant, natural solution to the designer’s prob-

lem: she pools the states on which the Pareto dominant equilibrium is also

risk dominant with those states on which the Pareto dominant equilibrium

is not risk dominant, but close. In particular, she finds a constant tolerance

level, and pools all states in which the Pareto dominant equilibrium does not

violate risk dominance by more than this tolerance. She chooses the toler-

ance level so that, conditional on her recommending the Pareto dominant

equilibrium, the players know it is weakly risk dominant in expectation.

To elaborate, consider a symmetric common interest game with two equi-

libria. Let z(ω) be the state-contingent payoff to each player in the Pareto

dominant equilibrium, and let x(ω) be the corresponding payoff in the alter-

native equilibrium. Suppose that, for some α > 1, the Pareto dominant equi-

librium is also risk dominant if and only if z(ω) is at least αx. We show that

the solution to the designer’s problem is to reveal whether z(ω) ≥ αx(ω)− k

2



for some constant k > 0 that does not depend on ω. If this inequality holds,

the designer recommends the Pareto dominant equilibrium. In this case, ei-

ther the Pareto dominant equilibrium is risk dominant, or, if not, perturbing

z by adding at most k to it would make it so. The designer chooses k to be

as large as possible, but must keep the expectation of z at least αx, condi-

tional on the recommendation to play the Pareto dominant equilibrium. The

optimal tolerance level k depends on the prior distribution of states, but the

fact that the tolerance is a constant does not.

Having established this result, we turn our attention to several extensions.

For example, we consider robustness to changing the designer’s objective.

Instead of maximizing the probability of implementing the Pareto dominant

equilibrium, a designer might be concerned with maximizing the players’

expected payoffs. This objective would be natural in the case where one of

the players is assigned the role of the designer.

As we show, this modified problem also has a simple characterization: the

designer optimally chooses a scaling factor, rather than a constant tolerance.

If the designer recommends the Pareto dominant equilibrium, the players

know that the recommendation is either risk dominant or, if not, at most

some fixed percentage away.

The ways in which we establish these results are similar, and would apply

equally well to a large collection of objectives. The method for finding the

optimal information design has natural interpretations in hypothesis testing

and consumer theory, giving a remarkably easy and intuitive approach to

constrained information design.

The structure of the rest of this paper is as follows. Section 2 presents

our model. Section 3 shows a simple example that illustrates the solution to

the designer’s problem. Section 4 gives the main results. Section 5 addresses

robustness issues. Section 6 concludes. Proofs are in an appendix.
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2 The Model

There are three actors in the model, a designer (she) and two players (both

he) of a symmetric (2× 2) game of imperfect information. Label the players

as {1, 2}. All parties have rational expectations.

Players move simultaneously. Each player’s action set is {L,R}. Let si

be the action of player i ∈ {1, 2}.
The payoffs in the game depend on an unknown state. Let (Ω,F , ψ) be

a probability space with a common prior ψ, and let

Ω
r-

`
- R+

be two F -measurable random variables. Where no confusion can arise, we

write ψ(ω) rather than ψ({ω}).
Given the state ω ∈ Ω and the action profile (s1, s2) ∈ {L,R}2, the payoff

to player i is

ui(si, sj;ω) =


`(ω), if si = L

r(ω), if si = sj = R

0, if si = R, sj = L

(1)

Assume that r(·) weakly statewise dominates `(·). As we show below, this

assumption is not strictly necessary, and we make it purely for convenience.

The players are expected utility maximizers who make their decisions at

an interim stage, after observing a public signal but before learning the state.

There are two pure strategy equilibria, (R,R) and (L,L), in which (R,R) is

Pareto dominant, but choosing R involves strategic risk.2 See Figure 1.

The strategic risk may induce the players to coordinate on the Pareto

dominated equilibrium (L,L). The examples in Figure 2 illustrate. In both

examples, the (R,R) equilibrium is Pareto dominant, giving each player a

2There is a mixed strategy equilibrium, but it is uninteresting. It is never risk dominant,
and it is always Pareto-dominated, so we do not mention it further.
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Figure 1: Payoff matrix of the (2×2) game

payoff of 10. In the example on the left, each player receives 9 in the (L,L)

equilibrium; in the one on the right, each player receives 1 in (L,L).
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Figure 2: Example payoffs

Each player evaluates strategic risk in terms of the losses he would incur

from playing a strategy that does not match the equilibrium the other player

tries to select, known as the player’s deviation loss. In the example on the left

of Figure 2, a player who deviates from the (R,R) equilibrium by choosing L

receives 9 utils instead of 10, so his deviation loss is 1. In the example on the

right, deviating from (R,R) to play L means that the player receives 1 instead

of 10, a deviation loss of 9. Harsanyi and Selten (1988) define an equilibrium

as (weakly) risk dominant if the product of the deviation losses is (weakly)

greater than the product of the deviation losses of any other equilibrium.

The idea is that the risk of deviating from an equilibrium increases in the
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amount the players stand to lose from deviating. In the example on the left

of Figure 2, the (L,L) equilibrium is risk dominant but Pareto dominated.

In the example on the right, the (R,R) equilibrium is both Pareto dominant

and risk dominant.

We assume that the players are willing to select an equilibrium only if it

is weakly risk dominant. In our setting, the symmetry of the game makes the

risk dominance criterion simple. From Figure 1, the loss in expected utility

to each player from deviating from the (R,R) equilibrium is E[r] − E[`].

Similarly, the expected utility loss to each player from deviating from the

(L,L) equilibrium is E[`]. Because the game is symmetric, the players face

the same deviation losses, so the Pareto-dominant equilibrium is weakly risk

dominant if and only if

E[r] ≥ 2E[`] (2)

The designer’s objective is to maximize the probability that the players select

the Pareto-dominant equilibrium. Her payoff is

uD(s1, s2) =

1, if s1 = s2 = R

0, otherwise
(3)

This is standard in the literature on information design and on Bayesian

persuasion (see Kamenica and Gentzkow, 2011; Kolotilin et al., 2017; Berge-

mann and Morris, 2019; Taneva, 2019; Inostroza and Pavan, 2020; Mathevet

et al., 2020). Intuitively, the designer cares only about Pareto efficiency.

Without the assumption that r statewise dominates `, (3) would not corre-

spond to an intrinsic preference for Pareto optima, but instead would reflect

a private gain from the (R,R) equilibrium (for example, see the accounting

and corporate finance settings of Göx and Wagenhofer, 2009; Carvajal et al.,

2018). We discuss this and alternative objectives in Section 5.

Before the players make their decisions and before the state is known, the

designer partitions Ω into three subsets, say G0, G1, and B. As Bergemann
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and Morris (2019) point out, it suffices for the designer to limit herself to two

possible messages, say g or b. She will recommend one of two equilibrium

strategy profiles, either (R,R) or (L,L), so her message needs to convey only

which equilibrium she advises the players to select. She sends message g for

sure if ω ∈ G0, optimally randomizes between g and b if ω ∈ G1, and sends

message b if ω ∈ B. She can confine attention to public signals due to the

strategic complementarities and symmetric information; see Bergemann and

Morris (2019, p. 60). We refer to {g, b} as her signal structure.

The players observe the public signal g or b and then make their deci-

sions. The partition and the designer’s recommended strategy are common

knowledge. We summarize the sequence of events in Figure 3.

designer
chooses

(G0, G1, B)

nature
draws
ω ∈ Ω

public
signal g or
b revealed

players
choose

strategies;
payoffs are

realized

Figure 3: Timeline

3 Illustration

To see how the designer solves her problem, consider the three-state example

shown in Table 1.

Table 1: Payoffs and probabilities in the three-state example

ω1 ω2 ω3

r(ωi) 9 4 3
`(ωi) 5.5 0 2

Prob(ωi) = ψi 0.5 0.2 0.3
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In the equilibrium (R,R), each player receives 9 in state ω1, 4 in ω2, and

3 in ω3. Without any further information, the expected payoff to each player

in the (R,R) equilibrium is 6.2. In the (L,L) equilibrium, the payoffs are 5.5

in ω1, 0 in ω2, and 2 in ω3, or 3.35 in expectation. Since 6.2 < 2 · 3.35 = 6.7,

the (L,L) equilibrium is strictly risk dominant.

If the designer provides no information on the state, the players would,

therefore, select the Pareto dominated equilibrium (L,L). An easy improve-

ment would be to disclose the state. Equivalently, she could let G0 =

{ω2}, G1 = ∅, and B = {ω1, ω3}, telling the players whether, conditional

on the state, (R,R) is risk dominant. Coordination is successful with prob-

ability 0.2, and each player’s expected payoff increases by 4 · 0.2 = 0.8. This

design strategy is suboptimal, but a step in the right direction.

To find the designer’s optimal strategy, we imagine her as a consumer,

who wants to obtain as much of Ω as she can. The amount of Ω she consumes

corresponds to the set of states in G0 plus her randomization probability

weighted set of states in G1. In this way, we equate her consumption with

the probability of recommending (R,R).

If the designer can access an external randomization device, she could

include state ω in her consumption set with a probability q between 0 and

ψ(ω). Viewing the designer as a consumer, we imagine that ψ(ω) is the

amount of ω available to her. The quantity q she purchases of ω is restricted

to [0, ψ(ω)].

The cost to the consumer of q units of the state-ω commodity is [2`(ω)−
r(ω)] · q, the amount that consuming q moves the expected payoff condi-

tional on g toward or below the risk dominance constraint. So we think

of p(ω) := 2`(ω)− r(ω) as the price of the state-ω commodity. Some states

may have a negative price, such as ω2 in the example. These states constitute

her endowment because (R,R) is risk dominant. Therefore, the consumer’s
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problem in an n-state world is

max
q1,...,qn

U(q1, . . . , qn) =
n∑

i=1

qi (4)

subject to

n∑
i=1

piqi ≤ 0 (budget constraint) (5)

(∀i ∈ {1, . . . , n}) qi ≤ ψi (capacity) (6)

(∀i ∈ {1, . . . , n}) qi ≥ 0 (nonnegativity) (7)

The consumer’s marginal utility of qi is constant and equal across all i ∈
{1, . . . , n}, because she does not care how she increases the probability of

reporting g, only that the overall probability of coordinating on the Pareto

dominant equilibrium is as large as possible. We discuss other objectives

below.

We solve the consumer’s problem in steps, using the familiar approach

from linear programming. First, she consumes to full capacity all states

with negative prices. In the three-state example of Table 1, p2 = 2`(ω2) −
r(ω2) = −4, so she consumes q∗2 = ψ2 = 0.2. This creates slack in her budget

constraint (5), which we state above in the form of a self-financing constraint.

Similarly, if there are states with a zero price, she would consume those to

capacity.

Next, among the states with positive prices, she considers the ratio of the

marginal utility of each qi to its price. In the example,

MU1

p1
=

1

2
<

1

1
=
MU3

p3

Therefore, she always gets more marginal utility from a marginal expenditure

on q3 than from a marginal expenditure on q1. She consumes q3 until either
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her capacity constraint or her budget constraint binds. If she consumes q3

to full capacity, her self-financing condition (5) is

p2ψ2 + p3ψ3 = −4 · 0.2 + 1 · 0.3 = −0.5 < 0 (8)

so she has resources left in her budget. The only commodity left is q1, and

as it has positive marginal utility, she consumes it until she exhausts either

its capacity or her budget.

We have already seen that she cannot exhaust capacity on q1. Doing

so would make G0 = Ω, i.e., the designer would provide no information.

However, we saw above that, with no information, the (L,L) equilibrium is

risk dominant. Instead, she spends the rest of her budget on q1. From (5)

and (8),

p1q
∗
1 − 0.5 = 0

so that

q∗1 =
0.5

p1
= 0.25

The designer’s optimal information system works as follows: the designer

flips a fair coin. If the coin lands Tails and the state is ω1, she reports b.

In all other cases, she reports g. In this way, she purchases half of the 0.5

probability mass in state ω1 and all of the probability mass in states {ω2, ω3}.
The maximized probability of coordination on (R,R) is 0.75, compared with

the 0.2 she would achieve by fully disclosing the state. The expected payoff

to each player increases from 4.15 if she fully discloses the state to 5.325.

Stepping back, we can interpret the solution to the designer’s problem

in terms of a linear boundary. She includes in G0 any state ω with r(ω) >

2`(ω) − 2, in this case, states ω2 and ω3. For state ω1, she has exactly

r(ω) = 2`(ω)− 2. In this state, she randomizes, i.e., ω1 ∈ G1. The intercept

of −2 is specific to the payoffs and the distribution of states, but as we show

in the next section, the slope of 2 is generic.

In sum, the designer solves her problem of constrained information design
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using familiar tools from introductory micro. She views each state ω as a

commodity, and ranks any two states by comparing their marginal utility

to price ratios. Therefore, there are two possibilities. If each state has a

different marginal utility to price ratio, the designer randomizes on at most

one state, consuming all others either to their full capacity or not at all, as

in this example. Otherwise, any two states on the boundary must have the

same marginal utility to price ratio. This elementary intuition is the key to

the general problem.

4 Results and Interpretation

Return now to our general setting. The designer’s objective is to choose a

signal structure {g, b} to maximize the probability that, conditional on receiv-

ing signal g, the (R,R) equilibrium is weakly risk dominant in expectation.

Theorem 1 gives the solution.

Theorem 1. The designer maximizes the probability of coordination on the

risk dominant equilibrium (R,R) by choosing g as follows: If E[r] ≥ 2E[`],

then G0 = Ω and she always reports g. If ψ({ω ∈ Ω|r(ω) > 2`(ω)}) = 0,

then G0 = {ω ∈ Ω|r(ω) ≥ 2`(ω)} and G1 = ∅.

Otherwise, let K = {y ∈ R|E[r−2`|r−2` ≥ −y] ≥ 0}, and let k = supK.

Let G0 = {ω ∈ Ω|r(ω) > 2`(ω)−k}, and let G1 = {ω ∈ Ω|r(ω) = 2`(ω)−k}.
If k ∈ K, the designer’s randomization probability is degenerate, i.e.,

she reports g with probability 1 on G1. Otherwise, she reports g with some

probability γ < 1 on G1, so that E[r − 2`|g] = 0.

The fact that the boundary r = 2` − k is affine with a slope of 2 is

independent of the prior ψ. Only the intercept −k depends on ψ.

Remark 4.1. The proof of Theorem 1 uses the fact that the designer’s problem

is to choose a set of maximal measure subject to a constraint; the solution

applies the Neyman-Pearson Lemma. The relationship between the Neyman-
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Pearson Lemma and consumer theory, along with the extensions to allow for

randomizing, are discussed in Kadane (1968, p. 160).

Once we see that the key to the designer’s problem is the familiar argu-

ment of comparing marginal utility to price ratios, the solution is easy to

find. As in Section 3, the price of reporting g in state ω is the amount that

doing so reduces E[r−2`|g]. Because the designer receives constant marginal

utility from any increase in the probability of reporting g, the solution to her

problem has the simple boundary condition

∂U/∂ω

p(ω)
=
∂U/∂ω′

p(ω′)
⇔ 1

2r(ω)− `(ω)
=

1

2`(ω′)− r(ω′)
(9)

Therefore, if ω, ω′ ∈ G1, it must be the case that

r(ω)− r(ω′)
`(ω)− `(ω′)

= 2,

that is, r is affine in ` with a slope of 2. Figure 4 illustrates.

In the figure, the support of (r, `) is [a, b]2. Because r statewise dominates

`, the set of possible ex post values of r and ` is the right triangle with the

45°-line as its hypotenuse. The set of states in which (R,R) is risk dominant

is shown as a dotted right triangle, on and above the r = 2` line. This region

combined with the interior of the dark gray trapezoid bounded on the right

by the r = 2` − k line defines the set G0. The r = 2` − k line defines G1.

The designer chooses the intercept (0,−k) so that (E[`|g],E[r|g]) lies on the

r = 2` line. The light gray irregular quadrilateral defines the set B.

It is straightforward to evaluate other constrained information design

problems using the same approach. In the next section, we do just that,

considering modifications to the problem and to the designer’s objective.
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Figure 4: The designer’s optimal disclosure region shifts the weak risk dom-
inance line r = 2` rightward to r = 2`− k with an r-intercept (0,−k).

5 Extensions

To develop more general intuition on constrained information design, we

modify our problem in several ways. We begin by generalizing the players’

payoffs (1). Next, we relax the assumption that r statewise dominates `.

Lastly, we alter the designer’s objective.
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5.1 Extension 1: Modified payoffs to the players

To start, consider the following generalization of the players’ payoffs:

ui(si, sj;ω) =



`(ω), if si = sj = L

r(ω), if si = sj = R

ε(ω), if si = R, sj = L

`(ω) + δ(ω), if si = L, sj = R

(10)

Assume that in each ω ∈ Ω, 0 ≤ ε(ω) < `(ω) < r(ω) and δ(ω) < r(ω)− `(ω).

Then (L,L) and (R,R) are equilibria and (R,R) is Pareto dominant.

Proposition 1 says that if δ and ε are affine functions of ` and r, the weak

risk dominance line is still given by r as an affine function of `.

Proposition 1. For some constants c1, c2, c3, d1, d2, d3 ∈ R, suppose δ(ω) =

c1`(ω) + c2r(ω) + c3, and ε(ω) = d1`(ω) + d2r(ω) + d3, and that c2 − d2 < 1.

Then (R,R) is weakly risk dominant if and only if

r(ω) ≥ 2 + c1 − d1
1− c2 + d2

`(ω) +
c3 − d3

1− c2 + d2

In particular, the weak risk dominance line is affine, and if δ and ε are

constant, then the slope of the weak risk dominance line remains 2.

Intuitively, the hypothesis of Proposition 1 says that the off-equilibrium

payoffs can include a lump-sum amount, such as what the players can guar-

antee for themselves, and potentially some scaled amounts of each of the

equilibrium payoffs.

A consequence of Proposition 1 is that if the off-equilibrium payoffs are

affine in ` and r, then Theorem 1 is essentially unchanged. The boundary

again has the same slope the same as the weak risk dominance line.
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5.2 Extension 2: State-dependent Pareto dominant equi-

librium

We now return to our assumption that the payoffs to the players are as in

(1), and instead drop the assumption that r statewise dominates `.

It is natural to wonder whether the designer would ever report g for any

state ω for which `(ω) > r(ω). If the designer intrinsically prefers having

the players coordinate on a Pareto dominant equilibrium, then she gains

nothing from reporting g in state ω. Her preferences would therefore not

be represented by (3), because her interest in getting the players to select

r is purely instrumental. Her utility would instead be higher if a Pareto

dominant equilibrium is selected, regardless of whether it is (R,R) or (L,L).

If, however, the designer intrinsically prefers (R,R) to (L,L), then her

utility is as in (3). For instance, a borrower facing a liquidity shock may want

her creditors to roll their short-term debts over. She intrinsically prefers to

stay in business, even if she is insolvent. Her utility is (3) even though (R,R)

may be Pareto dominated in some states.

Indeed, the designer may find it in her interest to report g for some

states in which (R,R) is Pareto dominated. However, including such states

is expensive, unless `(ω) and r(ω) are relatively small. See Figure 5.

Proposition 2 conveys this idea.

Proposition 2. Let ω1, ω2 ∈ Ω be two states in which r(ω1) > `(ω1) and

r(ω2) < `(ω2). Let r1 = r(ω1), r2 = r(ω2), `1 = `(ω1), and `2 = `(ω2). The

following are necessary for ω2 ∈ G0 ∪G1 and ω1 ∈ B:

1. 2`2 − r2 ≤ 2`1 − r1, and

2. r2 < `2 < `1 < r1.

That is, the payoffs in state ω2 must be small compared with those in ω1.

Strictness of the first inequality in Proposition 2 is not enough for suffi-

ciency, because the designer might report g or b on both ω1 and ω2. However,
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Figure 5: If there is positive probability that r(ω) < `(ω), the optimal infor-
mation design is unchanged. The designer might report g in inefficient states
where both r and ` are small (the dark gray obtuse triangle below the 45°
line).

if the first inequality is strict, then ω1 ∈ G0 ∪ G1 only if ω2 ∈ G0. Nothing

changes in the proof of Theorem 1, so the result still holds.

5.3 Extension 3: Modified designer objective

As a final extension, we consider an alternative to the designer’s objective.

Rather than maximizing the probability that the players select the Pareto

dominant equilibrium, the designer might be interested in maximizing the

players’ expected payoffs. As we shall see, this problem also has an easy
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solution, with the designer’s disclosure set as a linear boundary.

To develop some insight, return to the discrete setting of Section 3. The

designer’s constraints remain (5)–(7). Her objective is now

max
q1,...,qn

U(q1, . . . , qn) =
n∑

i=1

qi (ri − `i) (11)

rather than (4). Her marginal utility from adding qi of state ωi into G0 ∪G1

is the marginal increment in the players’ expected payoffs, ri − `i.
The designer starts this problem the way our designer in Section 3 does,

consuming all states with nonpositive prices to capacity. In the example of

Table 1, she begins by consuming ω2 to its full capacity of ψ2 = 0.2. Her

self-financing constraint says that she has spent −0.8, and therefore does not

bind.

As before, she next ranks the states by their marginal utility to price

ratio. For arbitrary state ω ∈ Ω, this ratio is

∂U/∂ω

p(ω)
=

r(ω)− `(ω)

2`(ω)− r(ω)

From the example in Table 1, the designer’s marginal utility to price ratio is

4.5/2 = 2.25 for state ω1 and 1 for state ω3. So she consumes ω1 next. Her

self-financing constraint binds if

p1q1 + p2q2 = 0

⇔ 2q1 = 0.8⇔ q∗1 = 0.4

This is less than the full capacity of ψ1 = 0.5, so the designer stops here. She

sets G0 = {ω2} and G1 = {ω1}, setting randomization probability γ∗ = 4/5.

The probability of coordination on the efficient equilibrium is 0.6 in this

case, compared with the 0.75 probability that Section 3 shows is attainable.

However, the expected payoff is 5.55, compared with 5.325 above.
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For the general case, we observe the boundary ends up as a change in the

slope of the weak risk dominance line, rather than a change in the intercept.

See Figure 6.

r

`

a

a

b

b

2a

r
=
`

r
=

2`

r
=
α
`

Report g

Figure 6: The designer maximizes the expected payoff to the players setting
G1 = {ω ∈ Ω|r(ω) = α`(ω)} for some α ∈ (1, 2).

We state this precisely in Proposition 3. For the proposition, we restrict

attention to the case in which ψ is atomless, as extensions to general cases

are similar to Theorem 1.

Proposition 3. The designer maximizes the players’ expected payoffs as

follows: if E[r] ≥ 2E[`], then set G0 = Ω. If ψ({ω ∈ Ω|r(ω) > 2`(ω)}) = 0,

then set G0 = {ω ∈ Ω|r(ω) ≥ 2`(ω)} and G1 = ∅. Otherwise, for some

α ∈ (1, 2), set G0 = {ω ∈ Ω|r(ω) > α`(ω)} and G1 = {ω ∈ Ω|r(ω) = α`(ω)}.
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The slope α is chosen to make E[r|g] = 2E[`|g].

In the discrete example, the designer optimally chooses α = 18/11.

6 Conclusion

An information designer cannot always take for granted that the receivers

of her signal will follow her advice. Our main focus is on a setting in which

the players and the designer all prefer the same equilibrium, but may fail to

coordinate due to strategic risk.

Our solution has an elegant, linear form, based on intuition from intro-

ductory microeconomics. Once we observe that our problem is isomorphic

to familiar problems from consumer theory, we are able to tackle other con-

strained information design problems.

A Proofs

Proof of Theorem 1. If the prior expectations satisfy E[r] ≥ 2E[`], then

(R,R) is ex ante risk dominant. The designer therefore optimally picks an

uninformative signal. Although any babbling equilibrium would be equiva-

lent, we adopt the convention that G0 = Ω, i.e., that she announces g. At

the opposite extreme, if (R,R) is weakly risk dominated with probability 1,

then the designer cannot improve on full transparency, i.e., revealing whether

(R,R) is weakly risk dominant for sure.

If neither of these conditions hold, then there is an interior solution to

the designer’s problem

max
G∈F

∫
ω∈G

dψ(ω) (12)

s.t.

∫
ω∈G

[2`(ω)− r(ω)] dψ(ω) ≤ 0 (13)
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By the Neyman-Pearson Lemma, the solution has the properties that, for

some c > 0,

ω ∈ G if 2`(ω)− r(ω) < c

ω 6∈ G if 2`(ω)− r(ω) > c, and

E[r − 2`|ω ∈ G] = 0

Rearranging, it follows that G0 (the set of states that are in G with probabil-

ity 1) is {ω ∈ Ω|r(ω) > 2`(ω)− c} and that B = {ω ∈ Ω|r(ω) < 2`(ω)− c}.
The designer can randomize only on the boundary set {ω ∈ Ω|r(ω) =

2`(ω)− c}, and by the conclusion of the Neyman-Pearson Lemma, she does

so in order to make the risk dominance constraint bind. It remains to show

that c = k and that she randomizes if and only if k 6∈ K.

If c > k, then E[2` − r|2` − r ≤ c] > 0, violating the constraint (13). If

c < k, then either the probability that 2`− r ∈ (c, k) is 0, in which case we

can replace c with k, or the designer is not maximizing her objective in (12).

It follows that we can always take c = k.

If k ∈ K, then E[2`− r|2`− r ≤ k] ≤ 0, so the designer can report g on

all of the boundary G1. Otherwise, E[2`− r|2`− k ≤ k] > 0, so the designer

must report g on k with some probability γ strictly less than one in order to

make the constraint (13) bind.

Proof of Proposition 1. The loss due to deviating from the (L,L) equilibrium

is `−ε. The loss due to deviating from the (R,R) equilibrium is r−`−δ. By

the symmetry of the game, the (R,R) equilibrium is weakly risk dominant if
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and only if

r ≥ 2`+ δ − ε

= 2`+ c1`+ c2r + c3 − d1`− d2r − d3
⇒ (1− c2 + d2)r ≥ (2 + c1 − d1)`+ c3 − d3

r ≥ 2 + c1 − d1
1− c2 + d2

`+
c3 − d3

1− c1 + d1

as desired. If δ and ε are state-independent, then c1 = d1 = c2 = d2 = 0,

giving the slope of 2.

Proof of Proposition 2. The first condition comes from the associated con-

sumer’s problem: each state has the same marginal utility, so if the designer,

viewed as a consumer, includes ω2 and does not include ω1, then ω2 must be

no more expensive, i.e., 2`2 − r2 ≤ 2`1 − r1.
To get the second condition, rewrite the first one as follows:

2`2 − r2 ≤ 2`1 − r1
⇒ `2 + (`2 − r2) < `1 + (`1 − r1)

By hypothesis, the term in parentheses on the left-hand side is positive, and

the term in parentheses on the right-hand side is negative. Therefore,

`2 < `1

as desired.

Proof of Proposition 3. As in the proof of Theorem 1, the corner cases of

nondisclosure (G0 = Ω) and full disclosure (G0 = {ω ∈ Ω|r(ω) ≥ 2`(ω)} and G1 =

∅) are immediate.
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Otherwise, the designer’s problem is

max
G∈F

∫
ω∈G

[r(ω)− `(ω)]dψ(ω)

subject to (13). We can again apply the Neyman-Pearson Lemma, obtaining

for some d > 0,

ω ∈ G if
r(ω)− `(ω)

2`(ω)− r(ω)
< d

ω 6∈ G if
r(ω)− `(ω)

2`(ω)− r(ω)
> d, and

E[r − 2`|ω ∈ G] = 0

with d chosen to make the constraint bind. Rearranging, the boundary con-

dition for ω ∈ G1 is

r(ω)− `(ω) = c[2`(ω)− 2r(ω)] ⇔ r(ω)− 2c+ 1

c+ 1
`(ω)

Letting α = (2c+1)/(c+1) and noting that c > 0, we see that 1 < α < 2.
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