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Abstract: This paper presents an extension of the covering location problem as a hybrid covering
model that utilizes the set covering and maximal covering location problems. The developed model
is a multi-period model that considers strategic and tactical planning decisions. Hybrid covering
location problem (HCLP) determines the location of the capacitated facilities by using dynamic
set covering location problem as strategic decisions and assigns the constructive units of facilities
and allocates the demand points by using dynamic modular capacitated maximal covering location
problem as tactical decisions. One of the applications of the proposed model is locating first aid
centers in humanitarian logistic services that have been addressed by studying a threat case study
in Japan. In addition to validating the developed model, it has been compared to other possible
combined problems, and several randomly generated examples have been solved. The results of
the case study and model validation tests approve that the main hybrid developed model (HCLP)
is capable of providing better coverage percentage compared to conventional covering models and
other hybrid variants.

Keywords: covering location; multi-period; strategic and tactical planning; modular; maximal
covering; set covering

1. Introduction

The covering location problem seeks to find the location of facilities like fire stations or shelter
sites to cover the demand points within distance or time limits. It is one of the four major categories of
facility location problems that consist of two main problems as set covering location problem (SCLP)
and maximal covering location problem (MCLP) [1]. The most significant distinction of covering
location problems with other models is the coverage radius of facilities that the points inside the
coverage radius are potential to be covered, but the points out of the coverage radius cannot be covered.
Given the coverage radius in the form of travel time or distance, SCLP aims to provide coverage for
all points by finding the minimum number of facilities to be located. Covering all points is an ideal
objective that might not be compatible with all systems, because in most of the management systems,
the resources or budgetary limitations have to be taken into account. MCLP can be the appropriate
model for these conditions when the demands points covered by the predefined number of facilities
are maximized [2]. Both SCLP and MCLP have applications in the planning of both private and public
sector facilities that have attracted many scholars due to their computational challenges and various
real-world applications, such as locating emergency facilities in emergency humanitarian logistic
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services. During the five decades since the introduction of covering problems, many extensions of
SCLP and MCLP have been developed, such as: tour and path covering SCLP, SCLP covering games,
multi-coverage SCLP, generalized MCLP, gradual coverage MCLP, and hierarchical MCLP, in addition
to back-up coverage, stochastic and probabilistic, and implicit and explicit models for both SCLP and
MCLP. Interested readers can refer to [3–5] and [1] for reviews on covering facility location problems.

Extending the covering location models to a multi-period or dynamic structure is more common
for MCLP [6–8] rather than SCLP. The reason is that SCLP provides full allocation of demand points
from fixed located facilities, and there is no need to alter these locations in different time periods’
decisions unless the problem is studied in the presence of demand fluctuation [9] and expansion
possibilities for capacitated facilities. In dynamic MCLP, decision makers are interested in finding the
optimal way of locating a definite number of facilities in different periods. The application of dynamic
MCLP can be in locating emergency service centers in populated regions that on-road accidents may
happen, and the number of facilities to be located may fluctuate between different periods of time
because of daily traffic, the weather situation, etc. Moreover, each opened facility in the beginning of a
time period can be closed at the end of that time period in a dynamic MCLP.

Hierarchical facility location problems use “hierarchy” to describe the problem as the coordination
of location decisions for different type of facilities in multi-level systems [10]. For example, healthcare
systems are one of the most studied systems in the literature [11]. The number of levels in healthcare
facility systems varies such that, in a three-level example, there may exist demand points, local clinics,
hospitals, and regional hospitals as different levels of facilities. Modularity is almost a newer concept
that is utilized by the researchers to attain multi-level systems. In the field of location problems,
the modularity concept is used to represent different types of facilities [12] or may be applied in
arcs when there are different kinds of vehicles for transportation [13]. The main difference between
modular and hierarchical facility location problems is that modular facility location problems can have
more levels of facilities, because various types of modules, the number of them, and different sizes of
modules may create a diversity of multi-level facilities.

Both SCLP and MCLP have advantages and disadvantages regarding the coverage they provide
and the cost issues. SCLP guarantees full coverage but yields to a high cost of facility location. On the
other hand, the cost issues are controllable in MCLP, but all points cannot be covered. To benefit from
the advantages of SCLP and MCLP, in this study, the idea of hybridization of these two models in an
integrated model is addressed. The hybrid model is a multi-period model consist of strategic and
tactical planning decisions. Strategic planning decisions include the location of the capacitated facilities,
and tactical planning decisions include module assignment and demand points allocation. Figure 1
shows a schematic illustration of strategic and tactical decisions that are taken in each time period.
Strategic decisions reflect the long-term goals that are taken to retain the system more viable. Tactical
decisions are made to meet mid time goals that contribute to strategic decisions. Tactical decisions can
be taken to respond with a faster action compared to strategic decisions [14,15]. It is supposed that the
facilities are only the piece of land with basic infrastructures that would be located using SCLP that
cover all demand points in each strategic period in response to the fluctuating demands and capacitated
facilities. After determining the located sites as the facilities, in each tactical period, the limited number
of each module kind would be assigned to the facilities using modular MCLP to maximize the covered
demands. As mentioned above, one of the main features of the hierarchical or modular concept is that
the decisions of assignment can be made only for one time period, and the decisions can change for
the later periods. This feature allows having a different arrangement of modules in each facility and
in each tactical period in terms of module type, number, and size. Using this integrated framework,
trying to cover all demand points in the upcoming strategic periods, more facilities can also be located
as extension decisions as a response to the rising demand. As an integrated model, the objective of the
proposed model in this paper is to maximize the profit gained from the income of covering demand
points and the cost of locating facilities.
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Figure 1. Strategic and tactical decision differentiation in the proposed model.

Similar to covering location problems, one of the main applications of the hybrid covering model
is locating aid centers or evacuation sites in the humanitarian relief situation. The definition of the
facility in this study is similar to the one that is used in real management systems, i.e., public facilities
mainly with large yards, such as parks, schools, or parking lots [16] that can be utilized as an aid
center in most of the disasters because of their low vulnerability. These kinds of facilities are usually
equipped with essential needs such as water, electricity, etc. and are announced as shelter locations
beforehand to the residents. Different kinds of modules can be considered, such as ambulances, trucks,
helicopters, first aid units, food providing units, sleeping tents, shower rooms, etc. The importance of
modularization of resources and services becomes apparent when, in most of the disasters, the whole
area is exposed to be damaged, and if the facilities were located having full equipment, they might
be out of order due to the disaster itself. Modularization can also have a high impact on budget
management, as the modules can easily be dispatched to the other affected areas in the upcoming
future. The other application of hybrid covering location problem is in locating hospitals, distribution
centers, and integrated production planning and warehouse location problems [17].

The main contributions of this study are summarized as follows.

• In this paper, we try to benefit from the coverage concept of SCLP to locate the facilities (with the
aim of providing access to the facilities for all demand points) and MCLP to locate the service
providing units (with the aim of maximizing the coverage of demand nodes by the modules
respecting the limited number of modules) in an integrated model.

• The integrated model is capable of improving the service quality and exploiting the limited
number of modules in a better way compared to the non-integrated approach.

• Studying covering location problems in different decision levels as strategic and tactical decisions
is not conducted before in the literature.

• In spite of the modeling advantage of modularity in providing multi-level facilities, it has received
very limited attention in covering location problems. In this study, modular capacitated MCLP is
developed to assign the service providing units to the facilities.

• A threat case study as an application of the developed hybrid model is studied, and other variants
for possible hybridization models are presented and compared through numerical examples.

The remainder of the paper is categorized as follows. In Section 2, the literature review is presented.
A review of SCLP and MCLP is included in Section 3. The mathematical formulation of the problem is
presented in Section 4. In Section 5, the mathematical models of comparable models are discussed.
Section 6 contains an application of the models and a case study with the results of the numerical
examples. Finally, the paper is concluded in Section 7.

2. Literature Review

Toregas et al. [18] are the pioneers that developed the SCLP and solved the model by a linear
relaxation technique using cuts to generate integer solutions. They also analyzed their model related to
the p-median problem. Due to the difficulty in solving medium to large sizes of the SCLP, Murray and
Wei [19] presented a computational approach to remove errors in the solution of SCLP, especially for
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the cases that utilize geographical information systems in applications like emergency warning sirens.
The probabilistic SCLP was addressed by Borrás and Pastor [20], who investigated four possible models
for SCLP by considering the assumptions of dependency and independency. Moreover, a mixed integer
reformulation for probabilistic SCLP was developed by Saxena et al. [21], for which they presented
some approaches to reduce the constraints in the developed model and to have stronger formulations.
They evaluated their theoretical findings by conducting extensive instances.

A significant part of the literature of SCLP focuses on the application of SCLP in real-world
problems. Vianna [22] considered the application of the SCLP in the optimization of gas detectors in
process plants as a 0–1 integer programming model in order to calculate the best location and the
minimum number of gas detectors in a facility site. Another application of SCLP is to locate the traffic
counting stations that are used to monitor the traffic flow of transportation vehicles in highways.
This application was studied by Vieira et al. [23], with the objective of minimizing the total number of
stations to cover all origin and destination nodes of the network, for which they proposed a hybrid
algorithm based on exact, heuristic, and hybrid approaches that could solve an acceptable fraction
of instances to find the optimal solution. Furthermore, Park et al. [24] presented the flight plans for
unmanned aerial vehicles that can be very useful for rescue operations in disaster situations using
quadratic constraints. As the SCLP in the presence of quadratic constraints is a complex problem to
solve even for small size problems, the authors developed an approximation model that was solved by
a branch and price algorithm. The optimal number and locations of pharmaceutical warehouses is
another application of SCLP that was studied by Mokrini et al. [25]. They also conducted a sensitivity
analysis to show how different coverage distances can affect the number of warehouses and the
network configuration.

MCLP was presented by Church and ReVelle [26], and following their research, many researchers
tried to improve MCLP models and developed many extensions of it. Probabilistic MCLP was studied
by Corrêa et al. [27] and Pereira et al. [28]. A stochastic optimization model for a multi-service MCLP
was presented by Taymaz et al. [29] with the objective of maximizing the total expected weighted
coverage of the network. The authors integrated their model with a risk-averse approach in order to
reduce the losses that can be resulted from lack of coverage and then validated their model using a
real multi-disease case study in Africa. In addition, a robust formulation for MCLP with application
in disaster relief that minimizes the maximal regret over all possible combinations of values for the
columns benefit with the associated algorithms to solve the problem was presented by Coco et al. [30].

Doerner et al. [31] studied an MCLP in a real case study in Australia by having double-coverage.
In their model, all demands are ensured to be covered inside a coverage radius and a proportion of
demands to be covered inside a smaller radius. The maximum set k-covering problem is to choose k
columns out of total columns in such a way that the number of rows covered by the selected columns
is maximized. This problem was addressed by Lin et al. [32], focusing mainly on solving methods
of this complex extension of MCLP. Alizadeh and Nishi [33] developed a multi-period maximal hub
location model that allows the number of located hubs to be expanded in upcoming time periods when
the demands are increasing. As the authors have considered the customers’ preferences in choosing
the cheapest price for multiple carriers, their developed model is a bi-level model in a Stackelberg
game framework, who used dual based and Karush-Kuhn-Tucker based reformulations to achieve
single-level problem and solved the single level problem with a Benders decomposition-based method.

There are also many applications of MCLP in modeling real-life situations. Locating bicycle
sharing stations in this way that users take the bikes, use them, and then return the bikes at the same
or any other located stations were addressed by Muren et al. [34]. They considered a lower bound for
the workload of each station that could also lead to improved results quality. By the appearance of
rechargeable electric vehicles and addressing the need to build charging stations for these kinds of
vehicles, Dong et al. [35] formulated and solve the problem of locating vehicles charging stations using
MCLP and took into account the spatial information statistic of charging demand as a stochastic process.
Similar to the application studied by Park et al. [26], Chauhan et al. [36] studied the problem of assigning
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the drones used for carrying the delivery packages in commercial services. Chauhan et al. [36] used
MCLP to formulate their problem considering package weight, battery, and coverage constraints and
developed a heuristic method to solve the problem with sensitivity analysis of the problem parameters.
Furthermore, to locate ambulances in response to urban emergency requests, Kaveh and Mesgari [37]
used MCLP in combination with an improved biogeographical-based optimization method. To refine
the number of candidate locations for ambulance stations, they used geographic information system
and the analytical hierarchy process method and compared the results of their developed solving
procedure with similar methods. Nilsang et al. [38] studied the location of ambulance bases by
utilizing MCLP and the real-time information obtained from social media like Twitter. They studied the
reallocation of ambulances in response to demand fluctuation in a dynamic framework and validated
the model by applying it to the emergency medical services in Bangkok. The problem studied in this
paper has applications in locating facilities in disaster relief situations that will be specified in the
following sections.

One of the assumptions of the basic MCLP is the binary coverage, which supposes a demand point
to be covered completely if it is located within a critical distance or travel time of the facility, and if the
demand point is outside of the critical distance or travel time, it cannot be covered by the facilities.
Most of the researchers have found this assumption to be too restrictive, especially for the applications
in emergency systems like the current study. Berman et al. [39], Drezner et al. [40], and Karasakal
and Karasakal [41] are among those who studied the MCLP by modeling coverage as a gradual or
partial coverage which means the coverage provided to a demand point decreases gradually with the
increasing distance or travel time from a facility. Berman et al. [42] extended the gradual coverage
to the case that the coverage can be provided from multiple facilities with applications in cell phone
tower service providers. They tested several methods to solve the developed model, such as the greedy
heuristic method, tabu search, ascent heuristic, and tangent line approximation method. Locating
undesirable facilities like nuclear plants in the presence of gradual coverage was addressed by Khatami
and Salehipour [43]. As the objective of undesirable facilities is contrary to the common commercial
facilities, the model is called a minimal covering location problem that seeks to locate the facilities in
places that covers a minimum number of residents.

In the literature, on covering facility location models, some concepts have been studied for both
SCLP and MCLP. One of these concepts is the backup service that is addressed by Erdemir et al. [44],
who considered both air and ground ambulances to provide services for emergency request modeling
both SCLP and MCLP. Three coverage options were possible: only air ambulance, only ground
ambulance, or a teamwork in such a way that the ground ambulance carries the patient to a place that
can be reached by the air ambulance. Their model took into account the uncertainty in demands and
used a greedy heuristic to solve the problem of a case study in New Mexico State. The uncertainty in
response time and demands raising from an emergency situation was applied to SCLP and MCLP as
separate models by Zhang et al. [45]. They developed two models for MCLP and one model for SCLP
based on the fuzzy set theory. The service time in SCLP and the first variant of MCLP are considered
to be uncertain; in this way, that the membership of response time is less than the coverage radius was
set to be more than a specified value. On the other hand, the second variant of MCLP maximizes the
chance of an uncertain event, i.e., a chance of coverage to be larger than a predetermined coverage level.
To solve two variants of MCLP, the first variant can be reformulated as the second one for which they
have developed a method to solve it using a case study in Sichuan, China. To solve very large-scale
problems of partial SCLP and MCLP up to millions of demand points and obtaining an optimal
solution for this huge size of problems, Cordeau et al. [46] presented a Benders decomposition method.
The good performance of their method is due to the utilization of a Branch-and-Benders-cut algorithm.

Although some modeling ideas have been studied for both SCLP and MCLP, all of these studies
have considered SCLP and MCLP as separate models. To the best of our knowledge, there is no study
that has modeled SCLP and MCLP in an integrated model as the model developed in this paper. Table 1
reviews important models in the areas related to our study. Although there is no study combining
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SCLP and MCLP in one model, they are related to the model of this paper from at least one perspective.
The decision level (last column of the Table 1) of the models might be not specified directly in the
papers, but as the facility location problems generally belong to strategic decision levels, they have
been classified as strategic decision models. The last row of Table 1 illustrates the contribution of this
research compared to the literature.

Modularity is a strategy recognized by academia and industry and plays an important role in the
development of sustainable systems [47]. The modular location problem is one of the important research
streams of the current study, which is applied to facility location problems recently. For instance,
Addis et al. [48] tackled a particular location problem, where two sets of facilities have to be located in
which different devices can be installed at each site, providing different capacities with different costs.
Moreover, Correia and Melo [12] presented a multi-period facility location problem with modular
capacity adjustments and flexible demand fulfillment. In their research, customers were divided with
different sensitivity to delivery lead times. They also proposed two mixed integer linear programming
formulations and did an extensive numerical study on randomly generated data with different demand
patterns. Yin and Mu [49] assumed the ambulances as the modules of the emergency service facilities
and proposed two variants of the capacitated MCLP for fixed and unfixed number of facilities to be
located. They formulated their model as a static model and utilized the geographical information
system. Furthermore, Alizadeh and Nishi [50] developed the modular MCLP to locate the emergency
facilities by considering backup services for the request of demand points. The backup service can
be provided from other facilities in the coverage radius when the primary facility is busy providing
service for other emergency calls. The authors developed a heuristic method and a genetic algorithm
to solve the problems of large-scale problems.

Table 1. Related papers in the literature (classified based on modeling ideas).

Paper Model
S,M,H

Period
S,M

Coverage Type
B,G,C

Facility Type
S,M

Data Modeling
D,S,F,R

Capacity Constraint
C,N,M

Decision Levels
S,T,O

Toregas et al. [18] S S B S D N S
Rajagopalan et al. [9] S M B S D N S

Eiselt and Marianov [51] S S G S D N S
Berman et al. [52] S S G M D N S

Church and ReVelle [26] M S B S D N S
Bagherinejad et al. [53] M S G,C S D N S

Farahani et al. [54] M S B M D N S
Coco et al. [30] M S B S R N S

Yin and Mu [49] M S B M D C S
Berman et al. [42] M S G,C S D N S

Vatsa and Jayaswal [8] M M B S S C S
Alizadeh Nishi [50] M M G M D C S

Zhang et al. [45] M,S S B S F N S
Erdemir et al. [44] M,S S B M D N S
Proposed HCLP H M G M D C,M S,T

Model: S (set covering location problem or SCLP), M (maximal covering location problem or MCLP), and H (Hybrid).
Period: S (Single period) and M (Multi-period). Coverage Type: B (Binary), G (Gradual), and C (Cooperative).
Facility type: S (Single) and M (Multiple/Modular). Data Modeling: D (Deterministic), S (Stochastic), F (Fuzzy),
and R (Robust). Capacity Constraints: C (Capacitated), N (Noncapacitated), and M (Module capacity). Decision
level: S (Strategic), T (Tactical), and O (Operational).

The next sections provide more information about the mathematical formulations of basic SCLP
and MCLP and assumptions and definitions of the hybrid covering the location problem.

3. SCLP and MCLP

In this section, the mathematical formulations of SCLP and MCLP are firstly presented, because
these models will be utilized in the formulation of the hybrid covering location problem. After that,
the assumptions and formulation of the hybrid covering location problem will be presented in the
next section.

Set covering location problem (SCLP) and maximal covering location problem (MCLP) were
introduced in 1971 and 1974 by Toregas et al. [18] and Church and ReVelle [26], respectively. In the
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original set covering location problem, a facility can serve all demand points that are within a given
coverage distance from the facility. The problem is finding the minimum number of facilities to ensure
that all demand points can be served. In this model, there are no capacity constraints for the facilities.
The demand points are represented by the set of j ∈ J, and the possible locations of the facilities are
given by the set of i ∈ I. disi j is the distance between potential facility i and demand point j. Having
the coverage distance ρ, one can generate the possible facilities that can cover demand points in a
binary parameter σi j that gets the value 1 if disi j ≤ ρ and 0, otherwise. The decision variable χi is a
binary variable that is 1 if a facility is located in i and 0, otherwise. The mathematical model for original
SCLP is:

min
∑
i∈ I

χi (1)

∑
i∈ I
σi jχi ≥ 1

∀ j ∈ J
(2)

χi ∈ {0, 1}
∀ i ∈ I

The objective function (1) minimizes the number of located facilities, and the constraints (2)
implies that every demand point j needs to be served by at least one facility. If there is a budget or
resource limitation and one desires to locate ϕ predefined facilities with the objective of maximizing
the covered demand points, the problem is called the maximal covering location problem, for which,
in addition to the introduced variable for SCLP, another decision variable is needed. γ j is a binary
variable that is 1 if demand point j is covered and 0, otherwise. The mathematical model of MCLP is:

max
∑
j∈ J

γ j (3)

γ j ≤
∑
i∈ I
σi jχi

∀ j ∈ J
(4)

∑
i∈ I

χi = ϕ (5)

χi,γ j ∈ {0, 1}
∀ i ∈ I, j ∈ J

The objective function (3) maximizes the number of covered demands. Constraints (4) allow
each demand point to be covered only if there is a facility or more in the coverage distance from it.
Constraint (5) fixes the number of located facilities to be equal to ϕ. The covering concepts provided
with SCLP and MCLP would be utilized to formulate the hybrid covering location model that will be
outlined in the next section.

4. Hybrid Covering Location Problem Formulation

In this section, a mixed integer linear programming model for the hybrid covering location
problem (HCLP) is presented. The mathematical model integrates the coverage concept of capacitated
SCLP and modular MCLP as strategic and tactical planning decisions, respectively. The objective of
our model is to maximize the profit obtained from covering demand points and subtracting the cost
of facilities location. The constraints of the model are the full coverage of all points by the facilities
in a way that the total allocated demands to the facilities do not exceed the capacity of the facilities.
We suppose that, as a real fact, the number of demand points and their demands may increase during
the time horizon; then, the number of located facilities can expand to guaranty the full coverage of
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points. Other constraints of the model are the total number of each kind of assigned module to the
facilities, the capacity of each module, and not to provide coverage for each point more than its need.

Some of the most important decisions in the proposed model are as follows:

• Location, number, and establishment time of facilities is strategic periods during the
planning horizon.

• Type and number of each module assigned to the located facilities in tactical periods of each
strategic period during the planning horizon.

• Percentage of the allocate demand of points to the assigned modules in tactical periods of each
strategic period during the planning horizon.

The main assumptions to develop the model are as follows:

• The problem is studied in a multi-period framework. The total planning horizon is classified
into two types of periods as the strategic periods and tactical periods. Each strategic period is
composed of several tactical periods with different kinds of decisions to be made.

• The facilities are supposed to be a piece of land or site, equipped with some initial infrastructures.
The locations of these facilities are going to be decided only in strategic periods using the coverage
concept of SCLP to determine the minimum number of facilities to be located with the aim of
covering all demand points. Once a facility is opened in a strategic period, it cannot be closed
and should continue its operation in future periods. In addition, the facilities are supposed to be
capacitated, and the number of facilities can be expanded in response to the demand variation in
the upcoming strategic periods.

• We suppose that there are different kinds of service providing units, namely the modules of
facilities that are limited in terms of numbers and capacities. These modules can move to the
facilities and should be assigned to the facilities in tactical periods. The optimal decisions of the
module assignment to the facilities are supposed to obey the coverage concept provided with
multi-period modular MCLP. The arrangement of modules in facilities can be varied in different
tactical periods according to the points’ demand fluctuation in order to maximize the amount of
total covered demands.

• Each module comes in different sizes. It can be chosen from different sizes to increase the service
quality offered to demand points to overcome the service shortages or having idle units.

• The modules are portable, and they can be transferred among the facilities when there is more
request in another facility. The transferability is an important specification of modularity design
that yields to flexibility in the system and reduces costs. The portability of most modules helps to
provide a good level of service to demand points without having to provide more modules.

• It is supposed that covering the demand points by the modules obeys the gradual coverage
concept using a partial coverage function. In a gradual coverage function, the demand points
inside the full coverage radius can be covered completely, but by increasing the coverage radius,
the amount of coverage decreases and the points outside the partial coverage radius are supposed
not to be covered.

The notation for the model is as follows.

Indices:
i index of candidate facility locations;
j index of demand points;
l index of modules;
k index of sizes;
t index of strategic time periods;
τ index of tactical time periods;
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Sets:
I Set of candidate facility locations;
J Set of demand points;
L Set of modules;
K Set of sizes;
T Set of strategic time periods;
Tt Set of tactical time periods in strategic period t;
Parameters:
d jltτ Demand of point j for service of module l in strategic period t and tactical period τ.
ql Number of available modules for module l at each period.
disi j Distance between facility i and demand point j.
δt Maximum service distance at strategic period t.
gi j Coverage level provided by facility i to demand point j.

gi j =


1 i f disi j ≤ S

ξ(disi j) i f S ≤ disi j ≤ S′
0 i f disi j ≥ S′

ξ
(
disi j

)
Partial coverage function, where 0 < ξ

(
disi j

)
< 1.

S Full coverage distance.
S′ Partial coverage distance.
ei jt Binary parameter which is 1 if disi j ≤ δt, and 0, otherwise.
fi Cost of locating a facility at facility location i.
cl Capacity of each module l per each size.
olk The kth size for module l
hi Capacity of facility i.

a jltτ
Earned income from providing service of module l to demand point j in strategic period t and tactical
period τ.

Decision variables:
zit 1 if a facility is located at in strategic period t, 0 otherwise.
yilktτ 1 if the kth size of module l is assigned to facility i in strategic period t and tactical period τ, 0 otherwise.

xi jltτ
The percentage of demand point j allocated to the module l of facility i in strategic period t and tactical
period τ.

To locate the facilities by using the coverage concept of SCLP in different strategic periods, it is
supposed that d jl1τ ≤ d jl2τ ≤ . . . ≤ d jl|T|τ ∀ j, l, τ and δ1 ≥ δ2 ≥ . . . ≥ δ|T|. This assumption is mandatory
for modeling the problem, which implies that the demands are assumed to be increasing during the
time horizon and while the coverage radius is fixed or decreasing in response to the increasing demand.
We formulate the hybrid covering location problem (HCLP) as follows:

max
∑
i∈I

∑
j∈J

∑
l∈L

∑
t∈T

∑
τ∈Tt

a jltτgi jd jltτ xi jltτ −
∑
i∈I

∑
t∈T

fizit (6)

∑
i∈I

ei jtzit ≥ 1

∀ j ∈ J, t ∈ T
(7)

zit ≤ zit+1

∀i ∈ I, t ∈ T
(8)

∑
k∈K

yilktτ ≤ zit

∀i ∈ I, l ∈ L, t ∈ T, τ ∈ Tt
(9)

∑
k∈K

yilktτ ≤ zit

∀i ∈ I, l ∈ L, t ∈ T, τ ∈ Tt
(10)
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∑
i∈I

xi jltτ ≤ 1

∀ j ∈ J, l ∈ L, t ∈ T, τ ∈ Tt
(11)

∑
i∈I

∑
k∈K

olk yilktτ ≤ ql

∀l ∈ L, t ∈ T, τ ∈ Tt
(12)

∑
j∈J

d jltτ xi jltτ ≤
∑

k∈K
olk cl yilktτ

∀i ∈ I, l ∈ L, t ∈ T, τ ∈ Tt

(13)

∑
j∈J

∑
l∈L

d jltτ xi jltτ ≤ hi zit

∀i ∈ I, t ∈ T, τ ∈ Tt

(14)

zit, yilktτ ∈ {0, 1}, 0 ≤ xi jltτ ≤ 1
∀i ∈ I, j ∈ J, l ∈ L, k ∈ K, t ∈ T, τ ∈ Tt

(15)

The objective function (6) maximizes the profit that is the income gained from covering demand
points subtracting the cost of locating facilities. Constraints (7) are the well-known constraint of SCLP
that indicates all the points in each strategic period should be allocated to the facilities. Constraints (8)
state that if a facility is opened in a strategic period, it should continue its operation for the forthcoming
periods. Constraints (9) imply that modules can just be assigned to the open facilities, and in each
facility, only one size of each module is allowed, while constraints (10) imply the same concept for the
demand points in this way that the demand points can just be allocated to the assigned modules in
each tactical period of strategic periods. Constraints (11) indicate that the total percentage of coverage
provided for each demand point from all facilities should not exceed 1. Constraints (12) set the
total number of modules assigned to the facilities to be less than the available number of modules
i.e., ql. Constraints (13) and (14) are capacity constraints of the modules and facilities, respectively.
The left-hand side of the Constraints (13) calculates the total amount of allocated demands to each
module in each facility, and the right-hand side keeps the total capacity that the assigned module of
a specific size can provide. The left-hand side of the Constraints (14) calculates the total amount of
allocated demands to all assigned modules for each facility. This amount, which is the overall allocated
demands to each facility, should not exceed the capacity limit of the facility. Constraints (15) set the
variables of location and module assignment to be binary variables, while the variables of demand
allocation are set to be continuous.

5. Comparison with Other Models

There are other potential ways to combine SCLP and MCLP to shape the hybrid model. In the
developed model of HCLP, SCLP is used to locate the facilities as strategic decisions, and MCLP is
used to find the assignment of modules and demand allocation as tactical decisions. In the same way,
MCLP-MCLP may refer to the case that both strategic and tactical decisions are determined using
MCLP, SCLP-SCLP refers to the case where both strategic and tactical decisions are determined using
SCLP, and finally, MCLP-SCLP refers to the model that strategic decisions are taken using MCLP and
tactical decisions by using SCLP. These four models are comparable, because the solution variables are
the same in all four models (except the number of located facilities that can be obtained from SCLP).
Besides the same solution, the goal of covering problems, which is to cover more demand points,
can be extracted from all four models as the coverage percentage. In this section, the mathematical
model for each of these variants is developed, and in Section 7, the numerical examples are conducted
to evaluate these models in terms of the coverage they provide and efficiency (elapsed time). Figure 2
shows these different possible hybridization problem structures.
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5.1. MCLP-MCLP

If we assume that the facilities are located using MCLP having a predefined number of them and
the module assignment and demands allocation are modeled using MCLP, then the formulation of this
problem is different from HCLP. MCLP-MCLP locates the facilities utilizing MCLP, and the decisions
for module assignment and demand points allocation are determined by MCLP as well. In contrast
to the HCLP that gives the solution to both numbers and location of the facilities, the number of the
facilities in MCLP-MCLP is a parameter, and the problem only finds the optimal location of these
predefined number of facilities. In addition, while the goal of HCLP is to cover all demand points
by the facilities, this goal is not valid anymore in MCLP-MCLP, and it only seeks to maximize the
total covered demand points. The main difference of HCLP and MCLP-MCLP is the constraint (7)
that should be substituted by constraint (17) that implies the total number of located facilities in
each strategic period cannot exceed the number defined beforehand. As mentioned before, the main
motivation of using MCLP for locating facilities can be the budgetary limitations when the decision
makers can afford only to open a specific number of facilities and look for the optimal location of
these facilities with the aim of maximizing the demand points covered by them. In MCLP-MCLP,
both the number of facilities and modules are a given problem parameter, and the model has to find
the solution for their location and assignment. As a result, the objective of the MCLP-MCLP is just to
maximize the profit gained from covering demands i.e., the cost of facilities is no longer included in the
objective function. Thus, the difference between MCLP-MCLP and HCLP is in the objective function
and constraints (7), and the mathematical formulation of the MCLP-MCLP can be modified as follows:

max
∑
i∈I

∑
j∈J

∑
l∈L

∑
t∈T

∑
τ∈Tt

a jltτgi jd jltτxi jltτ (16)

∑
i∈I

zit ≤ pt

∀t ∈ T
(17)

(8)–(15).

where pt is the number of predefined facilities for each strategic period that is defined by the
decision-makers as a parameter. Note that having the number of located facilities depending on the
time periods is to keep the expansion capabilities of the model. Otherwise, it can be a fixed number for
all periods.

5.2. MCLP-SCLP

This model’s structure exploits the coverage concept of covering problems in a contrary format to
HCLP model. In MCLP-SCLP, it is supposed that facilities obey the coverage concept of MCLP having
specified numbers as strategic decisions, while the minimum number of modules has to be determined
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by SCLP in order to provide full coverage for each point from each module type as tactical decisions.
The mathematical model of MCLP-SCLP has a similar formulation to MCLP-MCLP for facility location
part, but the difference is in constraints (12) that should be replaced with constraints (19) that indicated
each module type should be assigned to the opened facilities in a way that can provide full coverage
for each demand point in each tactical period of strategic period. As a result, the objective of the
MCLP-SCLP maximizes the profit obtained from the income of covering demand points and the cost
of assigning the modules. The mathematical formulation of MCLP-SCLP is as follows:

max
∑
i∈I

∑
j∈J

∑
l∈L

∑
t∈T

∑
τ∈Tt

a jltτgi jd jltτxi jltτ −
∑
i∈I

∑
l∈L

∑
k∈K

∑
t∈T

∑
τ∈Tt

bilktτyilktτ (18)

∑
i∈I

∑
k∈K

e′i jyilktτ ≥ 1

∀ j ∈ J, l ∈ L, t ∈ T, τ ∈ Tt
(19)

(17), (8)–(11), (13)–(15).

where bilktτ is the cost of assigning the size k of module l to the facility i at tactical period τ of strategic
period t, and e′i j is the binary parameter, which is 1 if disi j ≤ S and 0, otherwise.

5.3. SCLP-SCLP

In SCLP-SCLP, both the facility location and modules assignment decisions are determined
using the coverage concept of SCLP in a way that we desire to provide the full coverage of points
from facilities in strategic periods and from each module type in tactical periods of strategic periods.
Among all models, the SCLP-SCLP model can be implied as the model that has no limitation on the
number of located facilities and modules, which is predicted to provide more equitable solutions.
In contrast to the objective function of other defined models, the objective of SCLP-SCLP minimizes the
cost of facility location and module assignment. To follow SCLP’s theoretical perspectives, the objective
function does not include the term for maximizing the coverage of the demands. The mathematical
formulation of the SCLP-SCLP model is as follows:

min
∑
i∈I

∑
t∈T

fizit +
∑
i∈I

∑
l∈L

∑
k∈K

∑
t∈T

∑
τ∈Tt

bilktτyilktτ (20)

(7)–(11), (13)–(15), (19).

6. Experimental Tests

6.1. Case Study: Application of HCLP in Humanitarian Logistic Services

According to the latest report of the Centre for Research on the Epidemiology of Disasters
(CRED) [55], “in 2019, at least 396 natural disasters were reported, killed 11,755 people, affected
95 million others and costing nearly 130 billion US dollars. Floods, storms and droughts accounted
for almost 99% of the total number of affected people”. More importantly, the report indicates
that “the number of events in 2019 was slightly over the average of the last 10 years”. The highest
priority in these kinds of situations is to help the survivors. Despite the unknown occurrence time
and the place of the natural disasters, emergency preparedness and response activities should be
conducted as pre-disaster and post-disaster actions. One of the applications of the proposed HCLP
model is locating aid centers and module assignment that can improve the impact of strategic and
tactical relief operations in humanitarian situations caused by disasters such as earthquakes, floods,
storms, wars, medical epidemic emergencies, and droughts. According to the Disaster Operations
Management (DOM) framework [56], disaster operations are usually categorized into four main phases
as mitigation, preparedness, response, and recovery, as shown in Figure 3. The application of HCLP
in the humanitarian facility location problem, in which the location of the capacitated aid centers
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is determined as a strategic decision, belongs to the preparedness activity phase. In the response
phase, the assignment of the service providing units to the located aid centers with the objective of
maximizing the covered demand of affected people is determined. From Figure 3, the decisions during
mitigation and preparedness activities can be regarded as strategic decisions, the decisions during
the response activity can be regarded as tactical decisions, and in the same way, the decisions during
recovery phase are assumed as operational decisions. The gray filled part illustrates the domain of
HCLP in humanitarian services, which includes the strategic and tactical decisions of preparedness
and response phases.
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From an economical point of view, siting relief facilities and equip them with whatever is
necessary to provide services for all affected areas after an unknown disaster is not efficient and may
be impossible. To overcome the uncertainty in time and place of the disasters and the scarcity of the
resources, the problem of this case study is to determine the location of relief facilities in some public
schoolyards, parks, parking lots, etc. with the aim of minimizing the number of facilities covering
all demand points inside the coverage radius. The decisions of locating facilities are determined as a
strategic preparedness activity before disasters happen, and when a disaster happens in any region,
the government or any responsible organization can dispatch the limited modules (trucks, helicopters,
medical services, mobile kitchens, shelter tents, etc.) to the located facilities to start service operations
there. When the modules fulfill their operations, they can be dispatched to be assigned to the other
facilities of other affected regions according to the demand requests. In this case study, it is supposed
that, in each strategic period, one of the areas in South-Central (R1), North-Central (R2), and the
Center (R3) of Japan are affected by a disaster requesting for services provided by the modules in
tactical periods. Each tactical period is equivalent to one month, and each strategic period is composed
of three tactical periods. The North-Central part (R2) can correspond to the Japan 2011 earthquake.
The number of 160 points matching the cities with more than 150,000 inhabitants according to census
results and the latest estimates [57] is considered as demand points and, also, as the potential locations
for locating facilities. There are four kinds of modules with four possible sizes, three strategic periods
each composed of three tactical periods. Parameters ql, cl, fi, and hi are generated randomly using
uniform distribution between (30 and 50), (200,000 and 300,000), (700,000 and 900,000), and (4,000,000
and 6,000,000), respectively. As mentioned in the assumptions of the model and as a real-life fact,
when a disaster hits a region, the modules dispatch to that area to provide service for demands
requests until the end of the tactical periods, and in the next strategic period, as the new disaster
occurs, they leave toward the newly affected area for the new mission. Therefore, in this case study,
the threat scenarios are designed in this way that firstly one disaster hits the South-Central (R1) in the
first strategic period; the second disaster occurs in the North-Central part (R2) in the second strategic
period, and in the third strategic period, it is the Central part (R3) that is affected by a disaster and
needs the modules assignment.
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Figure 4 shows the demand points in green color and the located facilities in blue in the last
strategic period. The arrows show the flow of the modules from previously affected areas to the
newly affected one to provide service. The blue circles have been used to demonstrate the affected
areas. According to the solution of the problem for these threats, the first area (R1) affected by the
disaster could cover 86.8% of the demands, the coverage for the second area (R2) was 99.6%, and in the
last affected area (R3), the coverage of demand points was 43.3% by the limited number of available
modules. Table 2 includes the results of this case study in the second row. The coverage percent is
calculated as: ∑

i, j,l,t,τ gi jd jltτxi jltτ∑
j,l,t,τ d jltτ
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Table 2. Computational results of case study and sensitivity analysis.

Problem Data Operating Facilities in R1, R2,
and R3 Coverage % MZ MY Obj Time

ql: U (30, 50)
cpl: U (200k, 300k)

fi: U (70k, 90k)
hi: U (4M, 6M)

R1: Amagasaki, Izumi,
Kakogawa, Kawanishi,

Kishiwada, Nara, Sakai, Suita,
Takatsuki, Wakayama, Yao.

R2: Aomori, Iwaki,
Morioka, Sendai.

R3: Atsugi, Funabashi, Hino,
Hitachinaka, Kawaguchi,

Maebashi, Nagareyama, Noda,
Odawara, Oyama, Saitama.

R1: 86.8%
R2: 99.6%
R3: 43.3%

51.6 33.9 256M 165
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Table 2. Cont.

Problem Data Operating Facilities in R1, R2,
and R3 Coverage % MZ MY Obj Time

ql: U (30, 50)
cpl: U (20k, 30k)
fi: U (70k, 90k)
hi: U (4M, 6M)

R1: Amagasaki, Kakogawa,
Kishiwada, Nara, Sakai,

Suita, Takatsuki.
R2: Aomori, Fukushima,

Hachinohe, Iwaki, Koriyama,
Morioka, Sendai.

R3: Atsugi, Funabashi, Hino,
Hitachinaka, Kawaguchi,

Maebashi, Odawara,
Oyama, Saitama.

R1: 8.6%
R2: 37.5%
R3: 4.3%

50.6 39.9 22M 71

ql: U (30, 50)
cpl: U (20k, 30k)
fi: U (100k, 150k)
hi: U (4M, 6M)

R1: Amagasaki, Izumi,
Kakogawa, Kishiwada, Nara,

Sakai, Suita, Takatsuki,
Wakayama, Yao.

R2: Aomori, Iwaki,
Morioka, Sendai.

R3: Atsugi, Funabashi, Hino,
Hitachinaka, Kawaguchi,
Maebashi, Nagareyama,

Odawara, Oyama, Saitama.

R1: 86.7%
R2: 99.6%
R3: 43.3%

51.3 33.9 250M 330

ql: U (30, 50)
cpl: U (20k, 30k)
fi: U (100k, 150k)
hi: U (4M, 6M)

R1: Akashi, Amagasaki,
Higashiosaka, Himeji,

Hirakata, Ibaraki, Itami, Izumi,
Kakogawa, Kawanishi,

Kishiwada, Kobe, Kyoto, Nara,
Neyagawa, Nishinomiya,

Okayama, Osaka, Otsu, Sakai,
Suita, Takarazuka, Takatsuki,

Toyonaka, Uji, Wakayama, Yao.
R2: Aomori, Fukushima,

Hachinohe, Iwaki, Koriyama,
Morioka, Sendai.

R3: Ageo, Atsugi, Chiba,
Chigasaki, Chofu, Fucho,

Fujisawa, Funabashi, Hachioji,
Hino, Hiratsuka, Hitachinaka,

Ichihara, Ichikawa, Isesaki,
Kamakura, Kashiwa, Kasukabe,

Kawagoe, Kawaguchi,
Kawasaki, Kodaira, Koshigaya,

Kuki, Kumagaya, Machida,
Maebashi, Matsudo, Mitaka,

Mito, Nagareyama, Narashino,
Niiza, Nishitokyo, Noda,
Odawara, Ota, Oyama,

Sagamihara, Saitama, Sakura,
Sayama, Soka, Tachikawa,

Takasaki,Tochigi,
Tokyo,Tsukuba, Urayasu,

Utsunomiya,Yachiyo.

R1: 39.5%
R2: 47.6%
R3: 33.9%

93 35.1 140M 1046
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The second column of Table 2 shows the operating facilities in each strategic period for R1, R2,
and R3. The columns “MZ” and “MY” contain the average number of located facilities and modules,
respectively. Columns “Obj” and “Time” include the objective value and elapsed time to solve the
problem. Other rows of Table 2 contain the results for some sensitivity analysis of capacity and cost
parameters. In the second solved problem, the capacities of the modules decreased, which resulted
in a significant coverage percentage for all regions and objective values. The number of located
facilities does not change so much, but the problem tries to provide more coverage by assigning more
modules. In the third problem, the effect of increasing the facility location cost was the main purpose.
The results show that the increase in facility location cost does not have that much effect on the coverage
percentage and assigned modules but the number of located facilities, and as a result, the objective
value decreases. In addition, the last solved problem investigates the effect of the decrease in facilities
capacity. According to the results, when the capacity of facilities decreases, more facilities are located,
but even this increase in the number of facilities cannot compensate for the reduction in the coverage
percentage. On the other hand, locating more facilities imposes costs, which is reflected in the objective
value reduction.

6.2. Numerical Results

In this section, some test problems were generated randomly with different sizes to examine the
performance of the developed HCLP model. For this purpose, the test problems were designed in two
main directions. In the first experiment, it is supposed that there are three regions affected by disasters
with two kinds of high and low demand scenarios in three strategic periods. In the second experiment,
there are four regions affected by the disasters with high and low demand scenarios in four strategic
periods. A schematic illustration of three regions and four regions test problems together with the
located facilities, and the module movement flow is depicted in Figure 5 for the case with 250 demand
points. In each kind of experiment, the dimensions of the test problems are augmented gradually.
Tables 3 and 4 contain the results of the test problems. The problems are solved using Generic Algebraic
Modelling System (GAMS) (CPLEX solver) software (24.1.2) on a PC with a 3.4-GHz Core i7-6700
CPU and 8 GB of RAM running Windows 10 (64 bit). It must be noted that all parameters of the test
problems are designed in a way that there would be no redundant constraints. The results for all test
problems approve that problems of low scenarios result in less objective values, but a higher percentage
of demands can be covered in the low scenario problems compared to the high demand scenario
problems. By increasing the size of the problems, the elapsed time also increases for both kinds of
problems in Tables 3 and 4. For the problem of the size 250 points of three regions, we conducted some
sensitivity analyses. As mentioned, the first two problems of low and high demands are the problems
that all the constraints are active. By increasing the capacity of facilities, in second and third problems,
the constraints of the facilities capacity become redundant, so that changing these parameters has no
more effect on the solutions. In the last problem, the capacities of the facilities are set to be active,
and the capacities of the modules are increased such that these changes yield to increase in objective
value and coverage percentage, though the difference is not much significant. Comparing the results
of the coverage percentage for two tables, it becomes clear that, for large-scale problems, the problems
of four regions could provide significantly better coverage. The reason for the difference in parameter
values in two kinds of problems (Tables 3 and 4) is to avoid having redundant constraints. GAMS was
able to solve the problems of 250 demand points. However, this size of the problem is not regarded as
a small size, because considering the modules and sizes and two kinds of time periods, the real size of
the problems are in the category of large-size problems.
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Figure 5. A schematic illustration of three-region and four-region test problems.

Table 3. Computational results of test problems for three regions’ experiments.

i=j Demand
Scenario t τ l k ql cpl hi fi Obj Coverage % Time

50
Low 3 2 2 2 U (4, 7) U (150, 250) U (500, 1000) U (400, 800) 3042.1 86% 4
High 3 2 2 2 U (4, 7) U (150, 250) U (500, 1000) U (400, 800) 4359.5 65% 3

100
Low 3 3 2 3 U (7, 10) U (200, 250) U (1000, 1500) U (400, 800) 17,251.2 84% 213
High 3 3 2 3 U (7, 10) U (200, 250) U (1000, 1500) U (400, 800) 21,936.2 62% 249

150
Low 3 3 3 3 U (10, 15) U (200, 250) U (1500, 2000) U (400, 800) 41,056.5 86% 1013
High 3 3 3 3 U (10, 15) U (200, 250) U (1500, 2000) U (400, 800) 50,697.4 62% 1073

200
Low 3 3 4 3 U (15, 20) U (300, 350) U (1000, 1500) U (400, 800) 25,134.5 30% 1029
High 3 3 4 3 U (15, 20) U (300, 350) U (1000, 1500) U (400, 800) 26,740 22% 1072

250

Low 3 4 4 3 U (20, 30) U (300, 350) U (1000, 1500) U (400, 800) 24,545.6 21.9% 2169
High 3 4 4 3 U (20, 30) U (300, 350) U (1000, 1500) U (400, 800) 27,159.4 14.1% 1479
Low 3 4 4 3 U (20, 30) U (300, 350) U (1500, 2000) U (400, 800) 28,235 24% 1203
High 3 4 4 3 U (20, 30) U (300, 350) U (1500, 2000) U (400, 800) 31,482.5 16% 1355
Low 3 4 4 3 U (20, 30) U (300, 350) U (2000, 3000) U (400, 800) 28,235 24% 1169
High 3 4 4 3 U (20, 30) U (300, 350) U (2000, 3000) U (400, 800) 31,482.5 16% 1399
Low 3 4 4 3 U (20, 30) U (350, 450) U (1000, 1500) U (400, 800) 25,744.6 22.6% 1343
High 3 4 4 3 U (20, 30) U (350, 450) U (1000, 1500) U (400, 800) 28,396 14.6% 1111

Table 4. Computational results of test problems for four regions’ experiments.

i=j Demand
Scenario t τ l k ql cpl hi fi Obj Coverage % Time

50
Low 4 2 2 2 U (4, 7) U (150, 250) U (400, 800) U (400, 800) 715.1 82% 6
High 4 2 2 2 U (4, 7) U (150, 250) U (400, 800) U (400, 800) 2660.9 76% 5

100
Low 4 3 2 3 U (7, 10) U (200, 250) U (1000, 1500) U (400, 800) 13,751.9 68% 82
High 4 3 2 3 U (7, 10) U (200, 250) U (1000, 1500) U (400, 800) 18,627.9 62% 126

150
Low 4 3 3 3 U (10, 15) U (200, 250) U (1500, 2000) U (400, 800) 49,496.5 83% 499
High 4 3 3 3 U (10, 15) U (200, 250) U (1500, 2000) U (400, 800) 60,916.8 76% 672

200
Low 4 3 4 3 U (15, 20) U (200, 250) U (1500, 2000) U (400, 800) 66,291.6 55% 1083
High 4 3 4 3 U (15, 20) U (200, 250) U (1500, 2000) U (400, 800) 77,956.4 46% 1076

250
Low 4 4 4 3 U (20, 30) U (300, 450) U (1500, 2000) U (400, 800) 63,323.5 52% 1115
High 4 4 4 3 U (20, 30) U (300, 450) U (1500, 2000) U (400, 800) 76,925 43% 1757

6.3. Model Validation and Comparison Results

To validate the developed model, two approaches are deployed. In the first approach, the solutions
of hybrid covering location problem will be compared with the results of the conventional separate
models for some of the test problems from Table 3. In order to do this, we compare the results of HCLP
with the problem in which the location of the facilities would be selected by SCLP separately using the
second term of the objective function (6) (minimizing the cost of facility location) subject to constraints
(7), (8), (11), and (14). The solutions of the located facilities are used and fixed in the second problem to
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assign the modules and allocate the demand points using the first term of the objective function (6)
(maximizing the total covered demands) subject to constraints (9)–(13).

The computational results are illustrated in Table 5, in which the columns under “Hybrid” and
“Con.” include the results of the hybrid covering location problem and the described conventional
procedure, respectively. Rows of “Obj” show the objective value of income minus fixed cost of facility
locations for both methods. Furthermore, the last row of Table 5 shows the results for the total number
of the assigned modules in all time periods out of the predefined amounts of available modules.
For example, the value 58/66 means that the problem used 58 modules out of 66 available modules.
The higher is this proportion, the problem used the available resources in a better way. The results
of this conducted comparison show that using the integrated location decisions of SCLP and MCLP
in a united model can improve the objective value, and this fact can be interpreted as the quality of
provided services. It is important to note that the less value of facility cost in the conventional approach
cannot be an advantage, as far as the total objective value is not better than hybrid approach, and these
values are calculated and included in the table to have the evaluation of cost differences in both
approaches. The results of Table 5 make it apparent that the hybrid approach has significant superiority
to the conventional approach regarding objective value, coverage percentage, and exploiting the
available modules.

Table 5. Computational results for comparing the performances of hybrid and conventional approaches.
The bold is necessary as it shows the performance of the better method.

50 High 100 High 150 High 200 High

Hybrid Con. Hybrid Con. Hybrid Con. Hybrid Con.

Obj 4359 1276 21,936 10,956 50,697 10,126 26,740 9689
Facility cost 5258 2470 5025 2559 11,230 2470 11,712 2409
Coverage % 65.7% 25.6% 61.9% 31% 62% 12.8% 22% 0.7%

Total modules 58/66 28/66 120/126 72/126 304/306 108/306 216/621 144/621

The same problems of the previous section in Tables 3 and 4 are solved for problems MCLP-MCLP,
MCLP-SCLP, and SCLP-SCLP. It is important to note that we have first solved HCLP and obtained the
total number of facilities that is determined to be opened and then used these numbers and run the
experiments for the problems that need to have the number of facilities to be located, i.e., MCLP-MCLP
and MCLP-SCLP.

To be able to compare the models, two criteria were investigated. The first one that is in alignment
with the optimization criteria as equity or fairness [58] that we interpret here as the percentage of
coverage provided for demand points calculated as the total amount of covered demand divided by
the total amount of demands, as explained earlier. The next investigated optimization criterion is the
efficiency of models as the elapsed time to obtain the results.

The columns under “Z” and “Y” contain the average number of facilities in all strategic periods
and the average number of the assigned modules in all tactical periods, respectively. Tables 6 and 7
contain the results of these evaluations. To complete the tables and solve the problems of MCLP-MCLP
and MCLP-SCLP, there was needed to have the number of facilities to be located. For this purpose,
firstly, the problem HCLP was solved, and its solutions of the located facilities in the last strategic
period (|T|) were used in MCLP-MCLP and MCLP-SCLP with two different values: one with the
higher number (to provide even more facilities) and the other one with the optimal solution of HCLP.
Solving problems for the values of p|T| smaller than the values in Tables 6 and 7 would not result
in better solutions. According to the results of the coverage percentage for HCLP, MCLP-MCLP,
and MCLP-SCLP, HCLP could provide the highest coverage percentage almost for all test problems,
with an optimum number of facilities. Only in three cases with the number of facilities more than
the optimal number, the coverage percentage was better (one case of MCLP-MCLP and two cases of
MCLP-SCLP). Notice that we excluded SCLP-SCLP from these comparisons, because we believe that
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the solution, which sets all the demand points to be a facility, is not a practical solution. Among the
three variants of MCLP-MCLP, MCLP-SCLP, and SCLP-SCLP, it was expected that SCLP-SCLP can
provide the best coverage, as it does not have any budgetary limitations. However, the results show
that this problem has a good performance neither for coverage nor the number of located facilities
and modules. The problem MCLP-SCLP has good performance for the only one size problem that it
could solve, and for the rest of the problems, it was either infeasible or no solution was found by the
solver. Among all three variants, MCLP-MCLP is the only problem that was successful in obtaining
solutions. Although the coverage percentage is not better than HCLP, it has an overall acceptable
performance. However, this problem was not able to solve larger problems, and the general-purpose
solver required higher computational effort. Concerning the optimization criteria mentioned above,
the results obtained from test problems show that, in terms of both equity (coverage percentage)
and efficiency (elapsed time), the problem HCLP outperforms other variants and can provide better
coverage in a reasonable time for different size of test problems.

Table 6. Computational results to compare different variants for three regions. HCLP: hybrid covering
location problem.

i = j Demand
Scenario

p|T|
HCLP MCLP−MCLP MCLP−SCLP SCLP−SCLP

% Z Y T % Z Y T % Z Y T % Z Y T

50
Low

3 86 3.3 4.3 6 79 3 3.8 2 82 3 5.5 4 0 3 4.6 0.8
4 - - - - 89 3.3 4.2 7 91 4 6 11

High 3 65 3.6 4.3 2 53 3 3.8 2 59 3 5.6 2 0 3 4.2 0.7
4 - - - - 61 3.3 4.3 4 74 4 7 11

100
Low

3 84 3.6 6.5 213 75 3 5.3 219 Inf 41 100 197 1006
4 - - - - 82 4 6 904 Inf

High 3 62 3.6 6.6 255 50 3 5.3 268 Inf 42 100 197 1006
4 - - - - 59 4 6.3 180 Inf - - - -

150
Low 8 86 8 10.7 10,013 RE NS 39 150 301 1015
High 7 62 7.6 11.2 10,473 RE NS 40 150 301 1019

200
Low 7 30 7 6 1064 RE NS 44 200 399 1051
High 7 22 7 6 1050 RE NS 44 200 399 1052

250
Low 22 22 22 5.3 1583 RE NS 40 250 499 1094
High 22 14 22 5.3 1505 RE NS 40 250 499 1103

Inf: infeasible; RE: resource exceeded; and NS: no solution.

Table 7. Computational results to compare different variants for four regions.

i = j Demand
Scenario

p|T|
HCLP MCLP−MCLP MCLP−SCLP SCLP−SCLP

% Z Y T % Z Y T % Z Y T % Z Y T

50
Low

4 82 4.5 5.2 6 82 3.5 4.7 10 NS 0 5 7.5 1
5 - - - - 89 4.5 5 8 76 5 8.1 3 - - - -

High 4 76 4.5 5.5 3 76 3.5 5.4 10 NS 0 5 7.25 2
5 - - - - 82 4.5 5 11 70 5 8.5 3 - - - -

100
Low

5 68 5.5 6.3 84 63 3.7 5.2 98 25 5 11.4 397 21 6 12.9 292
6 - - - - 68 4.5 6.3 100 27 6 11 584 - - - -

High 5 62 5.7 6.5 53 61 4.2 6.6 45 NS 30 7 15.8 485
6 - - - - 60 4.2 6.1 32 NS - - - -

150
Low

7 83 7.5 10 499 76 5.7 8.5 1020 NS 28 21.7 26.4 1023
8 - - - - 72 4.7 8.1 1015 NS - - - -

High 7 76 8 10.1 672 62 4.7 8.5 1025 NS 28 150 301 1029
8 - - - - 48 3.7 6.3 1022 22 8 24 1020 - - - -

200
Low 14 55 14 11.6 1083 RE NS 30 200 399 1062
High 14 46 14 11.7 1076 RE NS 31 200 399 1094

250
Low 21 52 21.7 15.1 1115 RE NS 27 250 500 1131
High 21 43 21.7 15.1 1757 RE NS RE

RE: resource exceeded and NS: no solution.
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The number of variables is the same in all variant problems, but the number of constraints is
different, which has an influence on the efficiency of the results. As the Constraints of (8)–(11), (13)–(15),
and (19) are the same in all problems, we name this set of constraints ∆, and our comparison takes into
account the rest of the constraints in each problem. The number of constraints and an example of the
problem with 50 demand points studied as the first problem in Table 3 is included in Table 8. In our
test problems, the number of modules and strategic and tactical periods do not take large values, but it
is the number of demand points that has a considerable impact by augmenting the size of problems.
Therefore, it can be concluded that SCLP-SCLP has the largest number of constraints, and the order
after SCLP-SCLP is MCLP-SCLP, HCLP, and MCLP-MCLP. However, the computational times of
problems and the fact that MCLP-MCLP/MCLP-SCLP exceeded resources/no solution results for most
of the test problems, the difference in the number of constraints does not have a significant impact on
the quality of the results or computational time.

Table 8. Comparing total number of constraints in HCLP, MCLP-MCLP, MCLP-SCLP, and SCLP-SCLP.

Problem Number of Constraints Example

HCLP ∆ + |J||T|+ |L||T||Tt| ∆ + 50× 3 + 2× 3× 2 = ∆ + 162
MCLP-MCLP ∆ + |T|+ |L||T||Tt| ∆ + 3 + 2× 3× 2 = ∆ + 15
MCLP-SCLP ∆ + |T|+ |J||L||T||Tt| ∆ + 3 + 50× 2× 3× 2 = ∆ + 603
SCLP-SCLP ∆ + |J||T|+ |J||L||T||Tt| ∆ + 50× 3 + 50× 2× 3× 2 = ∆ + 750

7. Conclusions

To address the facility location problem in a disaster relief situation, a novel model combining
the advantages of two major covering location problems was developed in this paper. The coverage
concept of two major covering location problems: set covering location problem and maximal covering
location problem was utilized to develop the model of the hybrid covering location problem. In the
developed HCLP, the location of the facilities was determined by using SCLP, and the limited number
of modules providing different services can be assigned to the facilities to provide services in tactical
periods. To investigate the capability of the developed hybrid covering location problem, an application
for it was introduced as locating aid centers in humanitarian relief services. A case study using real
data for demand points in Japan was used, together with some more randomly generated test problems.
The results of the studied problems showed that the developed mathematical model can obtain accurate
solutions compatible with the real situations and the assumptions of the model.

Furthermore, the other possible combinations of covering location problems were developed as
the variants of the main hybrid covering location problem. To evaluate the four developed models,
some test problems were generated and solved for all variants. The computational results approve
that the main developed hybrid model of this paper can outperform the other three variants in terms
of coverage percentage, solution quality, and feasibility of the solutions.

One important fact about the developed hybrid covering location problem in this paper is that it
can be solved with commercial solver (GAMS) for problems of an acceptable size of real-life situations,
which is an important specification for problems arising in disaster situations that need quick responses.
However, in most of the problems studied with other researches, the difficulty in solving the problems
to obtain the solutions is a barrier to be applicable in disaster situations. The main purpose of this
paper was to introduce the basic and original framework of the hybrid covering location problem,
while the problem developed in this paper can be used to be coupled with other decisions of the supply
chain, such as inventory management and vehicle routing. In addition, it can be studied as a two-stage
or multi-stage stochastic programming model that can be a future direction for research.
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13. Mikić, M.; Todosijević, R.; Urošević, D. Less is more: General variable neighborhood search for the capacitated
modular hub location problem. Comput. Oper. Res. 2019, 110, 101–115. [CrossRef]

14. Melo, M.T.; Nickel, S.; Saldanha-da-Gama, F. Facility location and supply chain management—A review.
Eur. J. Oper. Res. 2009, 196, 401–412. [CrossRef]

15. Bashiri, M.; Badri, H.; Talebi, J. A new approach to tactical and strategic planning in production–distribution
networks. Appl. Math. Model. 2012, 36, 1703–1717. [CrossRef]

16. Moreno, A.; Alem, D.; Ferreira, D.; Clark, A. An effective two-stage stochastic multi-trip location-
transportation model with social concerns in relief supply chains. Eur. J. Oper. Res. 2018, 269, 1050–1071.
[CrossRef]

17. Zhang, G.; Nishi, T.; Turner, S.D.O.; Oga, K.; Li, X. An integrated strategy for a production planning and
warehouse layout problem: Modeling and solution approaches. Omega 2017, 68, 85–94. [CrossRef]

18. Toregas, C.; Swain, R.; ReVelle, C.; Bergman, L. The location of emergency service facilities. Oper. Res. 1971,
19, 1363–1373. [CrossRef]

19. Murray, A.T.; Wei, R. A computational approach for eliminating error in the solution of the location set
covering problem. Eur. J. Oper. Res. 2013, 224, 52–64. [CrossRef]

20. Borrás, F.; Pastor, J.T. The ex-post evaluation of the minimum local reliability level: An enhanced probabilistic
location set covering model. Ann. Oper. Res. 2002, 111, 51–74. [CrossRef]

21. Saxena, A.; Goyal, V.; Lejeune, M.A. MIP reformulations of the probabilistic set covering problem.
Math. Program. 2010, 121, 1–31. [CrossRef]

22. Vianna, S.S.V. The set covering problem applied to optimisation of gas detectors in chemical process plants.
Comput. Chem. Eng. 2019, 121, 388–395. [CrossRef]

23. Vieira, B.S.; Ferrari, T.; Ribeiro, G.M.; Bahiense, L.; Filho, R.D.O.; Abramides, C.A.; Campos Júnior, N.F.R.
A progressive hybrid set covering based algorithm for the traffic counting location problem. Expert Syst. Appl.
2020, 160, 113641. [CrossRef]

http://dx.doi.org/10.1016/j.cie.2011.08.020
http://dx.doi.org/10.1016/j.scient.2011.11.008
http://dx.doi.org/10.1016/j.cor.2009.11.003
http://dx.doi.org/10.1007/s00186-011-0363-4
http://dx.doi.org/10.1016/j.mcm.2012.07.028
http://dx.doi.org/10.1016/j.ejor.2020.07.061
http://dx.doi.org/10.1016/j.cor.2006.04.003
http://dx.doi.org/10.1016/j.cor.2005.09.005
http://dx.doi.org/10.1016/S0377-2217(00)00314-3
http://dx.doi.org/10.1016/j.cie.2017.06.003
http://dx.doi.org/10.1016/j.cor.2019.05.020
http://dx.doi.org/10.1016/j.ejor.2008.05.007
http://dx.doi.org/10.1016/j.apm.2011.09.018
http://dx.doi.org/10.1016/j.ejor.2018.02.022
http://dx.doi.org/10.1016/j.omega.2016.06.005
http://dx.doi.org/10.1287/opre.19.6.1363
http://dx.doi.org/10.1016/j.ejor.2012.07.027
http://dx.doi.org/10.1023/A:1020941400807
http://dx.doi.org/10.1007/s10107-008-0224-y
http://dx.doi.org/10.1016/j.compchemeng.2018.11.008
http://dx.doi.org/10.1016/j.eswa.2020.113641


Appl. Sci. 2020, 10, 7110 22 of 23

24. Park, Y.; Nielsen, P.; Moon, I. Unmanned aerial vehicle set covering problem considering fixed-radius
coverage constraint. Comput. Oper. Res. 2020, 119, 104936. [CrossRef]

25. Mokrini, A.; Boulaksil, Y.; Berrado, A. Modelling facility location problems in emerging markets: The case of
the public healthcare sector in Morocco. Oper. Supply Chain Manag. Int. J. 2019, 12, 100–111. [CrossRef]

26. Church, R.L.; ReVelle, C.S. Theoretical and computational links between the p-median, location set-covering,
and the maximal covering location problem. Geogr. Anal. 1976, 8, 406–415. [CrossRef]

27. de Assis Corrêa, F.; Lorena, L.A.N.; Ribeiro, G.M. A decomposition approach for the probabilistic maximal
covering location-allocation problem. Comput. Oper. Res. 2009, 36, 2729–2739. [CrossRef]

28. Pereira, M.A.; Coelho, L.C.; Lorena, L.A.N.; De Souza, L.C. A hybrid method for the probabilistic maximal
covering location–allocation problem. Comput. Oper. Res. 2015, 57, 51–59. [CrossRef]

29. Taymaz, S.; Iyigun, C.; Bayindir, Z.P.; Dellaert, N.P. A healthcare facility location problem for a multi-disease,
multi-service environment under risk aversion. Socioecon. Plann. Sci. 2020, 71, 100755. [CrossRef]

30. Coco, A.A.; Santos, A.C.; Noronha, T.F. Formulation and algorithms for the robust maximal covering location
problem. Electron. Notes Discret. Math. 2018, 64, 145–154. [CrossRef]

31. Doerner, K.F.; Gutjahr, W.J.; Hartl, R.F.; Karall, M.; Reimann, M. Heuristic solution of an extended
double-coverage ambulance location problem for Austria. Cent. Eur. J. Oper. Res. 2005, 13, 325–340.

32. Lin, G.; Xu, H.; Chen, X.; Guan, J. An effective binary artificial bee colony algorithm for maximum set
k-covering problem. Expert Syst. Appl. 2020, 161, 113717. [CrossRef]

33. Alizadeh, R.; Nishi, T. Dynamic p+q maximal hub location problem for freight transportation planning with
rational markets. Adv. Mech. Eng. 2019, 11. [CrossRef]

34. Muren, L.H.; Mukhopadhyay, S.K.; Wu, J.; Zhou, L.; Du, Z. Balanced maximal covering location problem
and its application in bike-sharing. Int. J. Prod. Econ. 2020, 223, 107513. [CrossRef]

35. Dong, G.; Ma, J.; Wei, R.; Haycox, J. Electric vehicle charging point placement optimisation by exploiting
spatial statistics and maximal coverage location models. Transp. Res. Part D Transp. Environ. 2019, 67, 77–88.
[CrossRef]

36. Chauhan, D.; Unnikrishnan, A.; Figliozzi, M. Maximum coverage capacitated facility location problem with
range constrained drones. Transp. Res. Part C Emerg. Technol. 2019, 99, 1–18. [CrossRef]

37. Kaveh, M.; Mesgari, M.S. Improved biogeography-based optimization using migration process adjustment:
An approach for location-allocation of ambulances. Comput. Ind. Eng. 2019, 135, 800–813. [CrossRef]

38. Nilsang, S.; Yuangyai, C.; Cheng, C.Y.; Janjarassuk, U. Locating an ambulance base by using social media:
A case study in Bangkok. Ann. Oper. Res. 2019, 283, 497–516. [CrossRef]

39. Berman, O.; Krass, D.; Drezner, Z. The gradual covering decay location problem on a network. Eur. J.
Oper. Res. 2003, 151, 474–480. [CrossRef]

40. Drezner, Z.; Wesolowsky, G.O.; Drezner, T. The gradual covering problem. Nav. Res. Logist. 2004, 51, 841–855.
[CrossRef]

41. Karasakal, O.; Karasakal, E.K. A maximal covering location model in the presence of partial coverage.
Comput. Oper. Res. 2004, 31, 1515–1526. [CrossRef]

42. Berman, O.; Drezner, Z.; Krass, D. The multiple gradual cover location problem. J. Oper. Res. Soc. 2019, 70,
931–940. [CrossRef]

43. Khatami, M.; Salehipour, A. The gradual minimal covering location problem. Available SSRN 3522777 2020.
[CrossRef]

44. Erdemir, E.T.; Batta, R.; Rogerson, P.A.; Blatt, A.; Flanigan, M. Joint ground and air emergency medical
services coverage models: A greedy heuristic solution approach. Eur. J. Oper. Res. 2010, 207, 736–749.
[CrossRef]

45. Zhang, B.; Peng, J.; Li, S. Covering location problem of emergency service facilities in an uncertain
environment. Appl. Math. Model. 2017, 51, 429–447. [CrossRef]
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