
Electrochemical synthesis and functionalization of graphene 

materials for energy storage devices 

電気化学的手法によるグラフェンの作製と機能化および蓄

電デバイスへの適用 

 

 

 

 

September 2020 

 

Benoît Denis Louis Campéon 

 

 

 

 

 

 

 

 

 

 

The Graduate School of Natural Science and Technology 

(Doctor Course) 

Okayama University 



 



1 

 

GENERAL INTRODUCTION 

 

Greenhouse gas emissions has already led global warming to 1°C above the pre-industrial level. 

There is overwhelming evidence that this is resulting in profound consequences for ecosystems 

and people. To keep global warming to well below 2°C above pre-industrial levels we need 

unprecedented transitions in all aspect of the society including the energy. At this present-day, 

fossil fuel represents 85% of world total primary energy consumption making transition toward 

renewable energy one of the greatest challenges of our century. Most of renewable energies are by 

nature fluctuating and thus their democratization requires the development of fixed and mobile 

energy storage systems. Lithium-ion battery (LIBs) is now used in everything from mobile phones 

to laptops and electric vehicles. This lightweight, rechargeable and powerful system, rewarded in 

2019 by the Nobel Prize in Chemistry, holds great hope for tomorrow's ecofriendly society. Yet, 

current LIBs technology performances and costs are still far from being able to support the energy 

transition. For these reasons, the research of new electrode materials has become one of the hottest 

topics of this decade. In 2010, the Nobel Prize in physics rewarded the groundbreaking experiments 

regarding the two-dimensional material graphene. Graphene, which is an elementary sheet of 

graphite, consists of a periodic and two-dimensional arrangement of carbon atoms of monoatomic 

thickness with a honeycomb structure. It is the latest member of the family of carbon allotropes: 

diamond, graphite, C60 fullerenes and nanotubes. For the first time in 2004, a graphene sheet stable 

at room temperature was obtained via mechanical exfoliation of graphite by A. Geim and K. 

Novoselov. This experiment contradicted the theory that a graphene sheet was thermodynamically 

unstable. As this new material produced by mechanical exfoliation has remarkable and unique 

properties, they were awarded the Nobel Prize in physics in 2010. Since this discovery, graphene 

has been the material the most studied by the scientific community for its new and unique physical 

properties. Indeed, it has a high electric mobility greater than 2.105 cm2 V-1s-1, an anomalous 

quantum Hall effect, a modulated forbidden band (for the case of a graphene bilayer) and it is a 

transparent conductor since, in the optical region, it absorbs only 2.3% of the light. It also has good 

flexibility and excellent mechanical strength, and its thermal conductivity is ten times higher than 

that of copper. Due to its fascinating properties, graphene appears to be a very promising material 

for many technological applications. Its high electrical conductivity could be exploited in the 
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manufacture of future nano-electronic devices such as LIBs. Indeed since 1985, graphite is 

commonly found in commercial LIBs as anode material. In this context, the application of graphene 

as electrode material for LIBs holds great promises to change LIBs technology into a reliable 

solution for the energy transition. 

This thesis is divided into two sections, the first one summarizes the common knowledge 

concerning graphene properties, synthesis routes, and application toward LIBs, the second part 

details the experimental research conducted. 

The first section starts by introducing the various synthesis routes of graphene, from bottom-up to 

top-down. In parallel, a discussion about the simulated and the experimental graphene research is 

conducted revealing the room of improvement of current graphene experimental research. Finally, 

the research progress of graphene application as electrode material for LIBs is detailed. 

The second section presents the scientific advances achieved through this Ph.D.; the first part 

presents the results of electrochemical synthesis of GO, the second part shows the results of 

graphene synthesis from GO for LIBs application, and the final part presents the application of iron 

NPs as spacer for GO reduction unlocking superior SIBs performances. 

    Chapter 1 the general background, aims and objectives are given. 

    Chapter 2 presents a comprehensive literature review of graphene is given. The various 

graphene synthesis methods are introduced mechanical exfoliation, chemical vapor deposition, 

thermal decomposition of SiC, liquid exfoliation, chemical oxidation of graphite, and electro-

chemical. Then the functionalization of graphite, graphene, and graphene oxide are detailed and 

classified between covalent and non-covalent functionalization.  

Prior introducing the application of graphene for lithium-ion battery a working principle and 

historical research background of lithium-ion battery is given to understand in what way 

graphene is an attractive solution for next generation lithium-ion battery. Then, a list of strategy 

and research is given and organized between cathode and anode electrodes. 

    Chapter 3, the non-destructive, uniform, and scalable electrochemical functionalization and 

exfoliation of graphite is studied. This research investigates an original way to produce high 

quality graphene oxide. This electrochemical production revealed to be easy, fast eco-friendly, 

cheap, and scalable. The application of synthesized graphene oxide for water filtration, lithium-
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ion battery, and oxygen reduction reaction displayed similar to better results as compared with 

conventional chemical graphene oxide. 

    Chapter 4, graphene analogs preparation from GO by combine chemical and thermal reduction 

methods is presented. A list of their properties is given such as oxygen content, size, specific 

surface area, defect, and conductivity. Then the application of these graphene analogs for high 

rate performances LIBs is conducted and confronted with their properties. This research allows to 

draw an efficient graphene synthesis route for graphene-based lithium-ion battery half-cell and 

full-cell.   

    Chapter 5 presents the application of Iron nanoparticle templates for constructing 3D graphene 

frame-work with enhanced performance in sodium-ion batteries. In this research, we synthesis 

iron NPs on the surface of graphene oxide in order to avoid the restacking of its layers. After 

removal of iron NPs using acid, as prepared 3D graphene was applied to lithium ion and sodium 

ion batteries and demonstrated superior performances. 

    Chapter 6 presents the main conclusions. 

    Chapters 7 & 8 present the list of publication and the acknowledgement. 
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I. SYNTHESIS AND FUNCTIONALIZATION 

OF GRAPHENE AND ITS DERIVATIVES  

I.1. General (Graphite / Graphene)  

I.1.1. Graphite  

Graphite (Figure 1,2a) is the most stable form of pure carbon at room pressure and temperature, 

and Desmond J. et al. identified its structure in 1924.1 It is the most commonly found in the form 

of charcoal. Graphite is a mineral which has a lamellar structure spaced 3.35 Å apart and made up 

of a hexagonal network of carbon atoms arranged in a honeycomb structure. The bonds within the 

planes are covalent, while the inter-layer bonds are Van der Waals type (weak bonds), which makes 

graphite exfoliation relatively easy. Carbon has a tetravalent structure where, in its hexagonal 

structure, only three electrons are used to covalently bond with the three neighboring carbon atoms. 

Thus, the fourth valence electron forms weakly localized π bonds with its neighbors of the same 

plan. The latter electron can, therefore, participate in the electric conduction of graphite but mainly 

inside a plane. An isolated layer of graphite is called "graphene". Other fillers derived from graphite 

are marketed as expanded graphite and nano-platelets of graphite.  

 

Figure 1: (a) Graphene hexagonal structure of identical carbon atoms. The unit cell (shaded) containing two 

carbon atoms is shown along with standard unit cell vectors aG and bG. (b) Schematic of the in-plane σ bonds 

and the π orbitals perpendicular to the plane of the sheets. (c) Three common graphite structures with different 

graphene stacking arrangements. Reproduced with permission from 2. 
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Expanded graphite (EG) (Figure 2b) is a filler derived from graphite produced by the expansion of 

natural graphite. Its structure is always lamellar, but its specific surface is larger (ex: 28.4 m2 g-1, 

TIMREX®BNB90) than that of natural graphite (17 m² g-1) and its density apparent is lower (0.15 

g cm-3 against 2.25 g cm-3 for graphite) expanded graphite is parepared from graphite intercalated 

with alkali metals such as sodium (Na) and potassium (K) or acids such as sulfuric acid (H2SO4) 

and nitric acid (HNO3) followed by heat treatment (oven or microwave) at a temperature of 1050 °C 

for 15 secondes.3,4  

Graphite nanoplatelets (GNP)  (Figure 2c) represent a subtler form of natural graphite (~ 10 nm 

thick). GNP preparation is carried out either by thermal expansion of graphite interspersed with 

chloride trifluoride,5 or by microwave irradiation of graphite interspersed with sulfuric acid, 

followed by ultrasonic sprays or by a ball mill.6 It is possible to obtain GNP with a diameter 

between 1 and 15 μm, depending on the time of treatment with ultrasound.7 The diameter can be 

further reduced to 1 nm using a vibrating mill.8 GNP retains some oxygenated functions on the 

surface of its structure, which makes it slightly polar.  

 

Figure 2: (a) graphite, (b) expanded graphite. Reproduced with permission from 9. (c) Graphite 

nanoplatelets. Reproduced with permission from 5. 

I.1.2. Graphene  

Graphene nanosheets were first isolated in 2004 by Andre Geim and Konstantin Novoselov, who 

also managed to obtain a single experiment graphene layer from a micromechanical cleavage of 

graphite (‘’ scotch method tape '').10  

Graphene is presented as a perfect 2D material and arouses great interest in the scientific world for 

several years. Its exceptional properties can explain the expectations around this material (Figure 

3):  
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- it is made up of only one atom layer, of hexagonal mesh, whose thickness (on the order of 

the carbon atom) is 70 picometers, or one-millionth of a hair human.11  

- it is considered to be the thinnest and lightest material (0.77 mg m-2)  

- it is among the most resistant materials known to date because it has a Young close to ~ 

1000 GPa and a limit at rupture of 130 GPa.12  

- its modulus of elasticity is high on the order of ~ 0.25 TPa.13  

- it has a high thermal conductivity ~ 5,000 Wm K-1.14 For comparison, the thermal 

conductivity of copper is 400 W.m .K-1.  

- its theoretical specific surface is ~ 2,630 m2 g-1.15  

- It is impermeable to standard gases, including helium.16 

- its electrical conductivity is ~ 2,000,000 cm2 V-1S-1 or 200 Sm2 C-1.17 

- its melting point is higher than 3000 degrees Celsius.18  

 

Figure 3: (a) Mother of all graphitic forms. Reproduced with permission from 11.  AFM image of 

GO sheets on a cleaved mica surface. (b) 2D AFM image and (c) corresponding height profile. 

Reproduced with permission from 19. 
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I.2. Synthesis of graphene 

Currently, two main methods are used for the production of graphene to the scale of the individual 

sheet: the "Bottom-up" method (growth of the sheet supported on a substrate) and the "Top-Down" 

method (formation graphite) (Figure.I.3).20  

To obtain high-quality graphene three methods can be used. Among the most widely used 

techniques for obtaining graphene, mechanical exfoliation,10 chemical vapor deposition 

(CVD),21,22 growth of epitaxial on a SiC substrate.23 All these methods have demonstrated their 

superiority in terms of quality but still today remain un-scalable. On the other hand, recent progress 

of the chemical and electrochemical oxidation of graphite or carbon nanotubes and their 

consecutive reduction into graphene have indicated great hopes toward graphene 

democratization.24–26  

In this part, the synthesis of graphene via successive oxidation and reduction of graphite is 

discussed in detail, and other methods are briefly introduced. 

I.2.1. Obtaining graphene by mechanical exfoliation  

This method is based on the Top-Down approach, where graphene nanosheets can be produced by 

direct exfoliation of graphite or oxidized graphite. The so-called method of graphite scotch 

exfoliation or micromechanical cleavage of graphite constitutes the first experimental method that 

was used to produce nanosheets of graphene (Figure 4). 

 

Figure 4: Illustration of mechanical exfoliation of 2D materials using scotch tape. (a) Adhesive 

tape is pressed against a 2D crystal removing top layers(b). (c) The tape with crystals of layered 

material is pressed against a surface of choice. (d) Upon peeling few layers are deposited on the 

substrate surface. Reproduced with permission from 27. 
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Novoselov et al. made this discovery in 2004.10 This approach is advantageous in obtaining large 

nanosheets with excellent quality, but its meager yield makes it non suitable for industrial scaling.  

 

I.2.2. Synthesis of graphene by chemical vapor deposition (CVD) 

 This method (Figure 5) consists in producing the graphene layer by chemical vapor deposition 

(CVD) on a metal support. Different metals are used for this method, such as Cobalt (Co),28 

Platinum (Pt),29 Nickel (Ni),30, and Copper (Cu).31 The gas sources generally used for this type of 

deposit are hydrocarbons such as methane, acetylene, or ethylene, which decompose when brought 

into contact with the surface of metals to form layers of graphene.  

The advantage of this method is its low cost and its reproducibility. The specific surface of the 

graphene synthesized by this method is 2600 m² g-1, according to the literature, this value is higher 

than that of graphene synthesized by the mechanical exfoliation method. However, this specific 

surface depends on the size of the metallic film used, the temperature, and the pressure, which are 

critical elements for graphene growth.31  

 

Figure 5：Chemical Vapor Deposition reactor using methane and H2O gas environment and 

copper substrate. Reproduced with permission from32. 
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I.2.3. Synthesis of graphene by thermal decomposition of SiC (epitaxial growth)  

The third method of graphene synthesis described in the literature consists in heating the surface 

of a silicon carbide SiC substrate in an ultrahigh-vacuum frame (UHV) up to a temperature close 

to 1250 ° C to sublimate the silicon (Figure 6).23,33,34 This method is reproducible, and the Graphene 

growth can be tuned by adjusting the time and the temperature in the frame. Furthermore, graphene 

synthesized by this method is more homogeneous than that obtained by the CVD method: the SiC 

surface is entirely covered by graphene thanks to the multiple surface reconstructions, and the SiC 

substrate is insulating, so there is no need to transfer the graphene layers to another support. 

 

Figure 6: (a) Illustration of single layer graphene on SiC. (b) The structural model suggested for 

the new phase formed, having a hydrogen intercalated layer and bi-layer graphene after the 

hydrogenation process. Reproduced with permission from 35 (c) Graphene growth evolution . 

Reproduced with permission from 36. 

I.2.4. Exfoliation of graphite in solution  

However, the most promising route in terms of scalability is the exfoliation of graphite in the liquid 

phase to give graphene-like materials (Figure 7).37 This phenomenon relies on using particular 

solvents, such as N-methyl-pyrrolidone, whose surface energy is so well matched to that of 

graphene that exfoliation occurs freely. The use of intercalation agents and surfactants generally 

increases the inter-layer space in graphite. Surfactants play an essential role in the exfoliation and 

stabilization of graphene in polar solvents such as water.  
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Recently, Gao H. et al. prepared graphene via ultra-sound assisted exfoliation of graphite in 

supercritical CO2/H2O medium.38 In this system, the high impact force of supercritical fluids and 

superior penetration power of supercritical CO2 are combined with exfoliating natural graphite 

efficiently. Optimized conditions allow the exfoliation of 50 wt.% of stating graphite into a few 

layers graphene. 

 

Figure 7: Liquid phase exfoliation of LMs.(a) Graphite, (b) dispersion, (c) ultrasonication and (d) 

final dispersion after the ultracentrifugation process. Reproduced with permission from 39. 

I.2.5. Chemical functionalization of graphite and its derivatives  

I.2.5.1. Functionalization of graphite  

The high electrical conductivity of graphene is generally due to zero-overlap semimetal with 

electrons and holes as charge carriers. Also, graphene sheets are insoluble in organic solvents 

because they re-aggregate by π-π interactions between the sheets. The use of organic or inorganic 

molecules allowing the chemical functionalization of graphene is, therefore, the most used method 

for solving these problems.  

I.2.5.1.1. Non-covalent functionalization  

The principle of non-covalent functionalization of graphite is to maintain graphene π conjugate 

system. Therefore, it is based on π-π interactions, electrostatic forces and / or hydrophobic 

interactions between the surface of graphene sheets and a molecule. Molecules (aromatics, 

surfactants) or polymers can be adsorbed on the graphene surface, which produces electrostatic 

repulsive forces that keep the sheets separate and prevent their re-aggregation. A good example is 

a non-covalent functionalization by pyrene. Kim M. et al. used Disperse red 1 (DR1), which is a 

well-known commercially available photochromic molecule containing a pyrene group allowing 
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its non-covalent functionalization on the graphene surface (Figure 8).40 The authors were able to 

p-doped graphene and to switch the amount of holes concentration up 18% by changing the 

illumination from UV light to white light.  

 

Figure 8: Illustration of photoisomerization of DR1P on graphene. Reproduced with permission 

from 40. 

I.2.5.1.2. Covalent functionalization  

The chemical modification of the graphene surface is linked to the rehybridization of its sp2 carbon 

into sp3 carbon, which will disturb the electronic conjugation and, therefore, the electrical 

conductivity. This method is generally applied to enhance graphene solubility, interaction, 

activity… To prepare covalently functionalized graphene several strategies have already been 

applied, such as diazonium compounds,41–44 arynes, nitrenes,45 carbenes,46 Diels–Alder 

cycloaddition reactions,47 and azomethine ylides,48. However, the functionalization through these 

methods generally results in low degree of functionalization. 

I.2.5.2. Synthesis and functionalization of graphene oxide (GO)  

I.2.5.2.1. Oxidation of graphite  

GO formerly known as graphitic oxide or graphitic acid was prepared for the first time by Brodie 

et al. in 1859.49 Then in 1898 and 1958, Staudenmaier and Hummers et al. were interested in the 

oxidation of graphite using strong acids minerals and oxidizing agents such as KMnO4, KClO3, 
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and NaNO3 in the presence sulfuric acid (H2SO4) or mixed with nitric acid (HNO3). 
50,51. Graphite 

oxide consists of stacks of oxide sheets of graphene with an interlayer spacing between 6 and 10 Å 

depending on the number of molecules of H2O, which are present between the graphite planes after 

the oxidation process.52 The presence of hydroxyl (-OH), carbonyl (C = O) and epoxide (> O) 

groups on the surface of sheets and carboxylic acid groups (-COOH) on the edges of the sheets 

(according to models shown in Figure I.10) allow further chemical functionalization.53–59 Recently, 

Gao W. et al. studied the structure of GO using the NMR technique 13C, and they showed that the 

surface of GO contains ketone, lactol and tertiary alcohol in addition to the epoxy functions and 

hydroxyls (Figure 9).60 

 

Figure 9: GO structural model, taking into account the five- and six-membered lactol rings 

(blue), ester of a tertiary alcohol (purple), hydroxyl (black), epoxy (red) and ketone (green) 

functionalities. The relative ratios are likely to be 115 (hydroxyl and epoxy): 3 (lactol O–C–O): 

63 (graphitic sp2 carbon): 10 (lactol þ ester þ acid carbonyl): 9 (ketone carbonyl). Reproduced 

with permission from 60. 

 

Zeta potential measurements indicated that the suspensions obtained are electrostatically stabilized 

by negative charges, which can be generated by the carboxylic groups (-COOH) which are present 

on the edges of each oxidized graphene sheet.61,62Also, ultrasound treatment and centrifugation can 

can be used to fragment the GO sheets, which can lead to a reduction in their lateral dimensions up 

to a value between 0.1 and 1μm.63–66 GO is generally dispersed in water solution, but it is also 

possible to dispersed GO in several organic solutions. Paredes J. I. et al. have shown that GO could 

be dispersed in N,N-dimethylformamide, N-methyl-2-pyrrolidone, tetrahydrofuran, and ethylene 

glycol.67 In these solvents’ the sonication treatment was enough to produce single-layer GO 

expressing similar dispersion behavior as in water. The study also points out unsuitable solvents 
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for GO dispersion, such as ethanol, oxylene, acetone, methanol, propanol, and n-hexane (Figure 

10). 

 

Figure 10: Digital pictures of various GO dispersion. Reproduced with permission from 67. 

Besides, GO can be exfoliated in aprotic solvents by reactions with organic compounds such as 

octadecylamine. Li W. et al. prepared graphene functionalized with octadecylamine mixed with 

polystyrene composite.68 This material shows superior electrical conductivity compared to pure 

GO and polystyrene composite due to the improved dispersion and reduction of GO-ODA in 

comparison with GO. 

Mechanical and magnetic agitation are also other methods for exfoliating GO in oxidized graphene 

nanosheets, but these are lesser effective methods by comparison with the sonication method.  

I.2.5.2.2. Covalent functionalization of GO  

The chemical functionalization of GO by molecules and / or polymer chains leads to a modification 

of its properties. The covalent modification of GO can be classified into four categories: 

nucleophilic substitution, electrophilic additions, condensation reactions, and radical reactions.  

I.2.5.2.2.1. Nucleophilic substitution.  

The chemical modification of GO by nucleophilic addition is carried out by attacking a doublet of 

electrons (usually of an amine function) on the epoxide group, which leads to an opening of the 

cycle and the formation of a secondary amine and a function alcohol.69–72 Compared with other 
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methods, nucleophilic substitution occurs easily at room temperature and in aqueous medium, 

making this method attractive for the large-scale production of functionalized graphene.  

Bourlinos A.B. et al. investigated the modification of GO surface with primary amines, such as 

CnH2n+1NH2 (n = 2,3,8,12,18) (Figure 11).69 As result, the authors’ observed that for small primary 

amine (n = 2, 4, 8, 12), the functionalization could be complete after 20 hours of stirring at room 

temperature. Differently, longer primary amine (n = 18), the functionalization could only be 

completed after 90 hours of reflux. This difference of reactivity was ascribed to kinetics reasons.  

Additionally, XRD measurement showed that the interlayer distance of as functionalized GO 

increases with the size of the primary. Following this process, Compton O.C. et al. has prepared 

GO functionalized with hexylamine and reduced it under harsh hydrazine condition.70 This 

functionalization allows the authors’ to stabilize the stacked paper structure during the reduction, 

maintaining its well-ordered morphology and resulting in uniform conductivity and excellent 

mechanical properties. 

 

Figure 11. XRD of GO after treatment with ethylamine (a), butylamine (b), octylamine (c), and dodecylamine 

(d). The left part of the figure presents a simple model based on amination of the epoxide groups of GO as the 

main pathway for the insertion of the amine molecules in the interlayer zone of GO. The table presents the d001 

values as a function of number of carbon atoms (n). Reproduced with permission from 69. 
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In the same way, Wang Z. et al. prepared GO functionalized with ethylenediamine (EFG) and 

sonicated it in Na2S2O3 followed by the addition of hydrochloric acid under stirring.71 Obtained 

material (EFG-S) was applied as cathode for LIBs and demonstrate superior capacity, capability, 

and cyclability. A wide variety of amine has now already been applied onto GO, Xu L.Q. et al. 

applied dopamine onto GO (Figure 12).72 The results show that dopamine can, at the same time, 

functionalize GO and reduce it into reduced GO (rGO). The application of polydopamine showed 

the same results while allowing the immobilization of thiol- and amino-terminated poly(ethylene 

glycol) (PEG) on the surface of rGO in a “grafting-to” process. 

 

Figure 12: Schematic Illustration of the Preparation of rGO and functionalized rGO. Reproduced with 

permission from 72. 

I.2.5.2.2.2. Electrophilic substitution  

The electrophilic substitution with graphene consists of the displacement of a hydrogen atom by 

an electrophile. The modification of GO by an electrophilic addition reaction often involves the 

use of diazonium salts.42,73–76 Paulus G.L.C. et al. conduct comparative theoretical and 

experimental analyses of the diazonium reaction mechanism with graphene.75 The authors show 

that the graphene functionalization is mostly governed by kinetics and influenced by electron-hole 

puddles and ripples. Also, the results show that the degree of reactivity is improved when graphene 

is mono-layer rather than a few-layers, and when the edge to surface ratio is significant. Lomeda 

et al. functionalized graphene nanosheets using aryl diazonium salt having several functional 

groups.42 The authors also showed that the functionalization by aryl diazonium salt leads to GO 

oxygen content reduction from 32 at.% to 9 at.%.  As prepared functionalized GOs were showed 
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to be processable in various organic solvents. Similarly, Sinitskii A. et al. used 4-nitrobenzene 

diazonium tetrafluoroborate to functionalize graphene (Figure 13).73 This functionalization was 

shown to form an additional layer onto the graphene surface and to alter graphene electrical 

properties. Also, the results show that the functionalization process is easy and fast because 5 min 

of grafting at room temperature was sufficient to reach 60% of the maximum change in the 

electrical properties.  

 

Figure 13: Schematic of the chemical functionalization of GNR devices with 4-nitrophenyl groups. Electronic 

devices consisted of single graphene layer contacted with Pt source (S) and drain (D) electrodes. The devices 

were fabricated on a 200-nm-thick thermal SiO2 over heavily doped p-type Si that was used as a back gate (G). 

(b) Top-view SEM image of the device. (c) AFM image of a fragment of a typical single graphene layer 

reduced by annealing at 900 °C in Ar/H2 on the Si/SiO2 substrate. Reproduced with permission from 73. 

Gao W. et al apply diazonium functionalization to prepare a composite for water filtration 

application.74 Firstly, sand is coated with GO via simple hydrothermal treatment, then secondly 4-

aminothiophenol to functionalized GO surface. As prepared, demonstrate to absorbs 6-fold higher 

concentration heavy metals and dyes. Fang M. et al. combined diazonium addition onto graphene 

and atom transfer radical polymerization to link polystyrene chains onto graphene (Figure 14).76 

The prepared material is 1 wt.% graphene and 99 wt.% polystyrene and exhibits around 70% and 

57% increases in tensile strength and Young's modulus. 
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Figure 14. Synthesis route of polystyrene-functionalized graphene-nanosheets. Waiting permission from 76. 

I.2.5.2.2.3. Condensation reactions  

Condensation reactions are reactions between two functional groups resulting in a final functional 

group accompanied by the formation of a simple molecule (H2O, HCl…). The chemical 

modification of GO can be carried out from the function’s hydroxyls and carboxylic acid functions. 

Jia Z. et al. prepared covalently crosslinked graphene oxide (GO) membranes with adjustable inter-

layer distance by esterification reactions, using dicarboxylic acids, diols or polyols as the 

crosslinker and hydrochloric acid as the catalyst.77 Dicaboxylic acids were employed to crosslink 

the hydroxyl groups on the basal planes of the GO sheets, the increase of crosslinker length results 

in the increase of the interlayer distance, the improvement of the elastic moduli by 16-fold and the 

increase of the permeation fluxes. Diols or polyols were used to crosslink the carboxyl group from 

the GO edges, the results have shown that (-CH3) tends to increase the inter sheet distance and that 

(-OH) tends to increase the penetration of hydrate ions. Salavagione H.J. et al.  conduct the 

Polymeric Modification of Graphene through the esterification of carboxylic functional groups of 

GO and hydroxylic functional groups of poly(vinyl alcohol) (PVA).78 FTIR and TGA  results 

reveal that the covalent linkages between the graphitic laminates and the PVA are responsible for 

remarkably altering the crystallinity and thermal stability. Bao H. et al. prepared GO coated with 
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chitosan (GO-CS) through an easy amidation process through carboxylic.57 The authors evaluate 

and demonstrate that the GO-CS is an excellent nanocarrier for load and delivery of anti-cancer 

drugs and genes. Stankovitch S. et al. prepared several functionalized GO using several organic 

isocyanates (Figure 15).79 As synthesized GOs display excellent dispersibility in a polar aprotic 

solvent. The results suggest that the functionalization proceeds on the carboxyl and hydroxyl 

groups in GO via the formation of amides and carbamate esters, respectively. The degree of 

functionalization can be controlled via either the reactivity of the isocyanate or the reaction time.  
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Figure 15: (a) Proposed reactions during the isocyanate treatment of GO where organic isocyanates react with 

the hydroxyl (left oval) and carboxyl groups (right oval) of graphene oxide sheets to form carbamate and amide 

functionalities, respectively. (b) FT-IR spectra of GO and phenyl isocyanate-treated GO. Reproduced with 

permission from79. 
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I.2.5.2.2.4. Addition reactions  

In organic addition reactions two or more molecules are combined to form a larger molecule.80–83 

He H. et al. prepared functionalized GO (f-Gns) using Nitrene chemistry.80 This attractive but 

straightforward strategy allows the covalent functionalization of various functional moieties (e.g., 

hydroxyl, carboxyl, amino, bromine, long alkyl chain...) and polymers (e.g., poly(ethylene glycol), 

polystryene). The f-GNs morphology is maintained, remaining mainly mono-layers. Also, the 

analyses show that f-Gns has relatively good conductivity as compared with original GO, 1 × 102 

to 1 × 103 S m-1, while its oxygen functional groups exhibit superior thermal stability. Similarly, to 

this work, Vadukumpully S. et al. functionalize graphene using alkylazides and was applied to 

obtain a uniform distribution of gold nanoparticles.82 Hsiao M. et al. synthesized covalently 

functionalized graphene using residual oxygen-containing functional groups and POA2000 bearing 

one MA (abbreviated as MA-POA2000) (Figure 16).81 Generally, the functionalization of graphene 

with MA-POA2000 follow the free radical reaction which consists in the breaking the carbon 

double bonds of graphene surface to generate free reactive sites that bond with amino groups on 

MA-POA2000. Nevertheless, the residual epoxy functional groups of rGO help to proceed the 

functionalization through the ring-opening reaction, thus reducing the defect formation from MA-

POA2000 functionalization. Georgakilas V et al. functionalize graphene through the 1,3 dipolar 

cycloaddition of azomethine ylide.83 The results intend to explain that the reaction causes radical 

changes in the structure of the graphene. As prepared materials were shown to be dispersible in 

water and organic solvents. 
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Figure 16: The preparation of F-Graphene/MA-POA2000 and D-Graphene/MA-POA2000. Reproduced with 

permission from81. 

I.2.5.2.3. Graphene oxide reduction 

GO is of great interest not only as an intermediate product to form graphene, but also as a material 

on its own. GO differs from graphene in containing hydroxyl, epoxy, and carboxyl groups on the 

surface and more structural defects. The physicochemical properties of GO may vary depending 

on the degree of oxidation and disorder in the lattice. The oxygen-containing functional groups in 

GO provide many sites for the anchoring of electroactive materials to form GO-based composites. 

Reduction is often needed to rebuild the sp2 structure and achieve the excellent electrical properties 

since GO is insulating. GO can be reduced using a variety of methods, among which the most used 

are thermal annealing, microwave reduction, photo-reduction, hydrothermal reduction, electro-

chemical, and chemical reduction. 

I.2.5.2.3.1. Thermal annealing 

The thermal annealing consists in decomposing GO oxygen functional groups by elevating the 

temperature. In order to control the reduction of GO through thermal annealing temperature, 

heating time and rate, and atmosphere need to be carefully chosen.84–93 



 

29 

 

 

Figure 17: Atomistic model of the graphite oxide to graphene transition. (a, a‘) In this model linear epoxy cluster 

are formed. (b) Upon thermal heating epoxy decomposed into carbon dioxide. (c) Top view of the model (d) 

Expected AFM profile of curved GO. Reproduced with permission from 85. 

Initially, the synthesis of graphene nanosheets by the GO reduction method has been studied by 

Schniepp et al.(Figure 17).85 It is possible to obtain thermally reduced graphene nanosheets by 

rapid heating  

 

of the GO in an inert environment at high temperatures. Indeed, heating the GO to 1050 ° C for 30 

seconds in an inert environment causes exfoliation and reduction of GO. The exfoliation of GO 

occurs by the pressure generated by the CO2 gas emitted by the decomposition of carboxylic acid 

groups (COOH) and epoxides (I> O) located on the GO. This method advantage is that the 

exfoliation and reduction are done in one step, so this method allows graphene to be obtained 

without going through a step of prior dispersion of GO in organic solvents. 

The temperature is a crucial factor since oxygen functional groups of GO have different thermal 

stability. Indeed, epoxy, carboxylic, and hydroxy functional groups generally decompose from 

200 °C while carbonyl functional groups decompose for temperature above 1000 °C. Schniepp et 

al. found that if the temperature was less than 500 °C, the C/O ratio was no more than 7, while if 

the temperature reached 750 °C, the C/O ratio could be higher than 13.85 This intensification of 
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reduction with the temperature can be monitored by XPS measurement (Figure 18).86–88 As the 

reduction proceeds, the sp3 carbon is restored to sp2 carbon, consequently result in the improvement 

of the conductivity.89,90 Wang X. et al.  have reported that the conductivity improves to 49, 93, 383 

to 550 S cm-1, along with the temperature increasing from 550 °C, 700 °C, 900 °C to 1100 °C, 

respectively.91 

 

Figure 18: C1s XPS spectra: deconvoluted peaks with increasing reduction temperature. Reproduced with 

permission from 88. 

The annealing atmosphere is an important factor because at elevated temperature the oxygen 

etching is drastically increased. For these reasons, the thermal reduction of GO is generally 

conducted in a vacuum, and or inert or reducing agent. Becerril H.A. et al. work on the reduction 

of GO film and shown that he recovery procedure of GO into graphene was optimum when the 

temperature was elevated to 1100 °C for 3 hours at a pressure of <105 Torr.92 Under lower vacuum, 

the recovery treatment resulted in the GO film decomposition. Thus, when vacuum and or inert gas 

atmosphere are at use for GO annealing, such oxygen content needs to be adjusted. Another way 

to improve the reduction is to use a reducing atmosphere. In this direction, Vallés C. et al. prepared 

conductive paper through the thermal treatments at 700 °C under argon or hydrogen atmosphere at 

atmospheric pressure.93 Their results demonstrated that the reduction degree shifted from C/O = 
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1.2 to C/O = 28.6 for Ar and H2 atmosphere, respectively. Li X. et al. reported that the reduction 

of GO under ammonia at low temperature, 500°C, generates nitrogen-doped rGO having 10 at.% 

oxygen and 5 at.% nitrogen.87 

I.2.5.2.3.2. Microwave reduction 

The microwave method consists of sending microwaves through the GO that will agitate free 

electron, which leads to an increase in temperature and, finally, the decomposition of oxygen 

functional groups. This heating process is more homogeneous and faster than thermal annealing, 

which leads to fast oxygen removal and thus exfoliation of GO layers. Zhu Y. et al. used a 

conventional microwave oven to exfoliate and reduce GO (Figure 19).94 After 1 minute treatment, 

the material appears crumpled, few-layer thick, and electronically conductive. This martial was 

applied to the capacitor and displayed specific capacitance values as high as 191 F g-1 in KOH 

electrolyte. Voiry D. et al. investigated the effect of microwave on GO.95 The results show that 

using a conventional microwave oven, a pulse of only 1 second was sufficient to change a large 

size GO into pristine graphene expressing holes and electrons mobility >1000 cm2 V−1s−1 in field-

effect transistors.  



 

32 

 

 

Figure 19: Digital imagesof GO before (a) and after (b) microwave reatment. (c) Corresponding SEM image. 

(d) Corresponding TEM image and the corresponding electron diffraction pattern. (e) XPS C1s spectra of GO 

before and after microwave treatment. Reproduced with permission from 94. 

I.2.5.2.3.3. Photo-reduction 

The photo-reduction consists of using light to send photons on GO. When photons energy is 

superior or equal to GO band gap, electrons and holes are generated, resulting in the reduction of 

GO epoxy and hydroxyl functional groups into CO2 and H2O respectively.96–99 Mohnadoss M. et 

al. reduced GO dispersed in water using natural sunlight.96 Compared with GO reduced via 

chemical or hydrothermal treatment, sunlight reduced GO show higher oxygen content (C/O = 3.5), 

but similar electrical conductivity (166 S m-1). Matsumoto Y. et al. conducts the reduction of GO 

using UV irradiation under H2 or N2 at room temperature in dry and aqueous conditions. In both 

dry and aqueous environments, the reduction proceeds and results in high conductivity (Figure 

20).97 Taking advantage of photo-reduction micro size patterned reduction of GO was realized. 

Hang D. et al. applied photo-reduction on GO paper in order to prepare graphene actuators driven 

by humidity that mimic the cilia of the respiratory tract and tendril climber plant.99 
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Additionally, photo-reduction was also applied to a liquid environment. Gengler R.Y.Net al. 

demonstrate that the photo-reduction of GO in solvent is an ultra-fast indirect process.98 The study 

reveals that the ultraviolet light photoionized the solvent creating solvated electrons that transform 

GO into rGO. The explained mechanism further indicates that the photo reduction process is driven 

by the chemical potential of solvated electrons and not the heating effect.  

 

Figure 20: Photopatterning of GO nanosheets. (a) Illustration of the photopatterning and (b) SEM images of 

sample after photopatterning. Reproduced with permission from 97. 

I.2.5.2.3.3. hydrothermal reduction 

The hydrothermal reduction method is based on the same reduction mechanism as above thermal 

annealing but in solution. This method appears to be more eco-friendly, controllable, scalable. 

Zhou Y. et al. prepared graphene through hydrothermal treatment and demonstrate the formation 

of rGO solution stable in water (Figure 21).100 Also, the results indicate that this treatment as the 

ability to recover aromatic structures via repairing the post-reduction defects. Ahmad M.S. et al.  

applied a hydrothermal reduction method to GO in water using guanidine as a nitrogen source.101 
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The as-synthesized material is doped with pyrrolic nitrogen sites, which were demonstrated to 

catalyze hydrogenation reaction through a radical mechanism.  

 

Figure 21: Raman spectra of (a) GO before and after hydrothermal treatment at (b) 180 °C, (c) 150 °C, and (d) 

120 °C for 6 h, and (e) hydrazine-reduced GO. Reproduced with permission from 100 

I.2.5.2.3.4. electro-chemical reduction 

The electro-chemical reduction of graphene consists in using GO as a cathode, a counter electrode, 

and an electrolyte. By applying a potential, the oxygen functional groups of graphene are reduced. 

Most of the literatures draw this method as effective, controllable, green, but lacking in scalability 

since the current method is limited to film reduction. Shao Y. et al. synthesized rGO film via the 

electrochemical reduction of GO film deposited on glassy carbon electrode (Figure 22).102 As 

prepared material was applied for capacitor and showed superior capacitance than carbon 

nanotubes and chemical rGO. These superior performances were ascribed to remaining oxygen 

functional groups of electrochemically reduced GO (EGO). An advantage of electrochemical 

reduction is the possible electro-functionalization of GO as it is reduction proceed. Following this 

method, Wang Z. et al. used N-succinimidyl acrylate as electro-functionalization source to 

covalently bond glucose oxidase to GO.103 
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Figure 22: (a) Cyclic voltammograms of the electrochemical reduction of graphene oxide in 0.1 M Na2SO4 at 

50 mV s-1; (b) the specific capacitance changes with the reduction cycles, measured with cyclic voltammograms 

(0 to 0.9 V) at 20 mV s-1. Waiting permission from 102. 

I.2.5.2.3.5. Chemical reduction  

The chemical reduction of GO is carried out from a stable colloidal dispersion of GO or of 

functionalized GO. The method of chemical reduction of GO described in the literature generally 

involves the use of hydrazine or its derivatives, such as phenylhydrazine.104,105 Chemical reduction 

by hydrazine or its derivatives consists of reducing the oxygen groups present on the surface and 

on the edges of the GO, which produces general of graphene nanosheets without structural defects. 

Stankovich et al. proposed a mechanism for reducing epoxy functions by hydrazine.104 Hydrazine 

or its derivatives are reducing agents known for their effectiveness (Figure 23).104–106 However, 

despite its toxicity and its high cost, hydrazine is widely used in the industrial environment. Thus, 

in the literature, other experimental protocols are proposed to avoid its use. The chemical reduction 

of GO suspensions can therefore also be performed using different chemical reducing agents such 

as hydroquinone,107 sodium borohydride,108,109 sulfur compounds,110 Vitamin C,111,112 Iron,113 

sodium hydroxide,114,115 amino acids,112,116 alcohols,117 sugars,118 hydroiodic acid,119 and other 

powders of metal.120–122 
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Figure 23: A proposed reaction pathway for epoxide reduction with hydrazine. Reproduced with permission 

from 104. 

I.2.6. Synthesis of graphene and graphene oxide via electro-chemical treatment 

In recent years, the need for a cheap, fast, eco-friendly, and scalable graphene synthesis process 

has arisen because still nowadays, these requirements do not reach market requirements. A 

potential answer has been drawn within the electro-chemical technology.  

The electro-chemical method consists of using graphite as a working electrode, a counter electrode, 

and an electrolyte. In this method, the electrolyte composition directly determines the properties of 

obtained graphene; if the electrolyte has a neutral pH it leads to graphite exfoliation into graphene; 

on the other hand, if the electrolyte has a pH < 2 it leads to graphite exfoliation and oxidation into 

graphene oxide.  

I.2.6.1. Graphene electro-chemical synthesis   

The exfoliation of graphite into graphene is based on the intercalation of ionic species between 

graphite layers. The exfoliation rate can be controlled by the ion composition, size, and 

decomposition in gases. Liu N. et al have synthesized functionalized graphene using aqueous 1-

octyl-3-methyl-imidazolium hexafluorophosphate as the electrolyte. In this system, a cation is 

intercalated between graphene layers and then functionalized onto the graphene layer through the 

radical formation.123 A decade later, Parvez K. et al. used an aqueous solution of inorganic salts as 

an electrolyte, such as (NH4)2SO4, Na2SO4, K2SO4 (Figure 24).124 Compare to the previous system, 

here; the authors use SO4
2- anion as intercalative species. Once potential is applied, the anion 

intercalates between graphite layers and decomposes into gas. The interlayer gas formation leads 

to the exfoliation of graphite into graphene. This method allows the synthesis of a few layers 

graphene (>85%, ≤3 layers) having a large lateral size (up to 44 μm), a low oxidation degree (C/O 

= 17.2), and an excellent hole mobility 310 cm2 V-1 s-1. Exfoliation in these electrolytes leads to 

graphene with a high yield large lateral size low oxidation degree, and remarkable hole mobility. 

Further, highly conductive graphene films (11 Ω sq–1) are fabricated on an A4-size paper. 
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Figure 24: Schematic illustration of the mechanism of electrochemical exfoliation. Reproduced with permission 

from 124. 

I.2.6.2. Graphene oxide electro-chemical synthesis   

Electro-chemical graphene oxide (EGO) synthesis is generally conducted using H2SO4 as an 

electrolyte.24,125 In this system, the application of a potential intercalates wet HSO4- anion between 

graphite layers, then as the anodic electrocatalytic oxygen evolution reaction of water proceed, it 

leads to the formation *O, *OH, *OOH radical which functionalize the graphene’s surface. The 

difficulty of EGO dwells within the ability to maintain graphite connected to the electrode until the 

oxidation completion. Nevertheless, as the oxidation process gas from H2O and H2SO4 break the 

graphite framework interrupting the oxidation process. Thus recently Cao J. et al. followed by Pei 

S. et al. designed a two-step synthesis process, where the first step consists in the formation of a 

GIC by maintaining the graphite at about 2 V for 2 hours in high concentration H2SO4 electrolyte, 

then the second step consists in the oxidation and exfoliation of as prepared GIC in lower 

concentration H2SO4 electrolyte (Figure 25).24,125 Cao J. et al. work leads to a GO with a high yield 

(>70 wt %), good quality (>90%,  monolayers), and reasonable oxygen content (17.7 at. %).24 
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Figure 25: Synthesis of EGO by water electrochemical oxidation. (a) Schematic illustration of the synthesis 

process of EGO by water electrochemical oxidation. (b–d) Digital image of the raw material and the products 

obtained at each step. Digital image of EGO dispersion in water. Reproduced with permission from 125. 
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II. GRAPHENE LIBS APPLICATION 

II.1. Historical progress 

II.1.1. Battery 

The operating principle of a battery is relatively simple in its basic configuration (Figure 26). The 

cell consists of two electrodes, each connected to an electrical circuit and separated by an 

electrolyte capable of managing the charged species. Often the electrodes are physically separated 

by barrier materials that prevent the electrodes from making physical contact with each other to 

avoiding a short circuit in the battery. In discharge mode, when the battery plays a role in 

controlling the current, an oxidation process occurs at the negative electrode (anode), which 

initiates the movement of the electrons from the electrodes through the electric circuit. A reciprocal 

reduction process takes place at the positive electrode (cathode), which is supplied by electrons 

from the circuit. The cell voltage is highly dependent on the potential difference between the 

electrodes, and the overall process is spontaneous. For rechargeable (secondary) batteries, the 

process can be inverted by applying an external current proceeding an opposite redox reaction to 

the electrodes. This process depends on energy and is not spontaneous.  

 

Figure 26: Illustration of battery system. (a) discharging battery, (b) charging battery. 

The famous Voltaic pile, named after its inventor Alessandro Volta, consisted of alternating discs 

of two metals, zinc and copper, separated by a layer of corrugated cardboard or leather soaked in 
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NaCl aqueous electrolyte (Figure 27).126 Each pair of zinc and copper constitute a battery, and the 

pile was composed of about 20 of those batteries stacked together. In this system, the copper is the 

cathode while the zinc is the anode; thus, the former oxidized, and the second reduced. The as 

prepared pile was able to generate a potential as high as 1.1 V.127 Connecting the poles through the 

device; Volta was able to show how the resulting current produced a spark.  

 

Figure 27: Illustration of Volta experimental setup. Reproduced with permission from 126. 

The lead-acid batteries, still used as starter batteries in our cars, were studied in 1854 by Sinsteden 

W.J. and demonstrated by Plante G. from 1859 to 1860.128–130 The working principle of this device 

is the same as the voltaic pile, but it was the first to be rechargeable, named secondary battery. The 

secondary term comes from an earlier study by Gautherot N., wherein 1801; a secondary current 

was noticed when wires used in electrochemical experiments were disconnected.131 Lead-acid 

batteries are based on two lead electrodes. (PbO2) separated by an electrolyte containing sulfuric 

acid. During discharge, the lead electrode (anode) undergoes oxidation to produce electrons, 

protons, and lead sulfate (PbSO4), but at the cathode, lead oxide reduced to PbSO4. In this case, the 

cell has a potential of around 2 V, and a typical 12 V car battery consists of six cells connected in 

series. 
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Another essential step in battery development occurred in 1899 when Jungner W. described the 

first nickel-iron (Ni-Fe) and nickel-cadmium (Ni-Cd) batteries. These alkaline batteries were the 

predecessors of the nickel-metal hydride (Ni-MH) batteries after their marketing in 1989. 

II.1.2. Lithium 

During the 20th century, the limited energy density of electrical energy devices urges the 

development of a completely new strategy, selecting lithium as its corner stone. Discovered by 

Arfwedson J.A. in 1817 and named by him and Berzelius J.J., this metal was considered to have 

excellent properties for functioning as a battery element (Figure 2).132,133 Lithium with atomic 

number 3 is the lightest metal with a density of only 0.53 g cm-3. Besides, the low standard 

reduction potential (Li+ / Li vs. -3.05 V vs. SHE) makes it suitable for high-density high-voltage 

battery cells. However, the major drawback of lithium is that it is a relatively reactive metal that 

must be protected from water and air. Therefore, the initial research effort dedicated to preparing 

a dry electrochemical environment suitable for the application of lithium in a battery. 

The original electrochemical study on lithium were conducted by Lewis G.N. et al. in 1913,134 but 

it is only from the 70s that it became a hot topic. Its application necessitates the development of 

non-aqueous electrolytes, to keep lithium away from water and air. It was not an easy task, and 

factors such as inertia, melting point, redox stability, the solubility of ions and lithium salts, 

ion/electron transfer rates, and viscosities had to be taken into account. The study of the non-

aqueous electrolyte has initially been conducted by Harris W.S. during his doctoral course, under 

the supervision of Tobias C.C. in 1958.135 In this work, propylene carbonate arises as an excellent 

candidate for electrochemical applications based on alkali metals, including lithium halides. 

Forward to this work, the scientific community efforts continued to raise our understanding and 

established the knowledge being the basis of nowadays LIBs. In 1967, Y. Yao et al. studied the 

ionic conductivity in solids and showed that sodium ions could move through solids at the same 

rate as in molten salts.136 In 1969, Kummer J.T. et al. proposed to use this configuration in 

batteries.137 In 1967, Newman J. developed the theory of ion transfer in electrochemical cells.138  

II.1.3. Intercalation cathodes 

The second building bloc of the nowadays used LIBs is the development of reliable material for 

the cathode electrode since the anode electrode should serve as material for the anode electrode. 
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Pursuing the work done on ion conductivity in a solid, research efforts were conducted to find a 

material able to accommodate lithium-ions at a high rate with a high reduction potential. Designing 

such material is no easy;139 it requires the material to meet several points: 

1. To have an accessible electronic band-structure that allows significant and constant energy 

changes without intercalation throughout the stoichiometric range.  

2. To guest ions in a wide stoichiometric range with minimal structural change.  

3. To allow the high diffusion rate of alkaline ions in its structure.  

4. To be reversibly intercalated.  

5. To show good electronic conductivity.  

6. To be insoluble in the electrolyte and avoid the co-insertion of electrolyte components.  

7. To near ambient conditions. 

The type MX2 of metal chalcogenide became an attractive solution to meet all the requirements 

previously cited. In 1965, Rüdorff W. et al. showed the ability of TiS2 to host lithium.140 In this 

research, TiS2 treatment with lithium dispersed in ammonia allows the intercalation of lithium 

within the layered structure of TiS2 forming Li0.6TiS2. Following this work, in 1973 Rouxel J. et 

al. and in 1975 Whittingham M.S. et al. further study the chemical intercalation of LixTiS2 (with 0 

< x ≤ 1).141,142 Convince by these results, Whittingham M.S. later research focused on the electro-

chemical intercalation of MX2 type metal chalcogenide which leads to him to propose the first 

cathode electrode for LIBs in 1973, and 3 years later to present the first functional rechargeable 

LIBs.143–145  

 

This LIBs consisted of a LiTiS2 cathode electrode, a lithium metal anode electrode, and a LiPF6 

dispersed in propylene carbonate as the electrolyte (Figure 28). The experimental results show a 

working potential of 2.5 V, an initial current density of 10 mA cm-2, and a reversible intercalation 

behavior. Additionally, a practical battery was built and evaluated using TiS2 powder as a cathode 

electrode, lithium metal as an anode electrode, and LiClO4 dispersed in dimethoxyethane and 

tetrahydrofuran. The results show excellent cycling performance even after 1100 cycles. In the 

light of these encouraging results, Exxon company commercialized a battery made of TiS2 powder 

as a cathode electrode, lithium metal as an anode electrode, and C4H12BLi dispersed in dimethoxy-

ethane.146  
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Besides, the democratization of this LIBs system was interrupted due to safety risks. Indeed, the 

highly reactive lithium metal undergoes the progressive formation of lithium dendrite on its surface, 

which in the end, creates a short-circuit and a potential fire hazard. Since then, an alternative 

configuration, named rocking chair cells, have been investigated.147 In this configuration, the 

lithium-ions exchange between two hosts. In 1938, Rüdorff W. et al. showed its principle using 

two graphite electrodes to move back and forth HSO4
-.148 In the rocking chair configuration of 

LIBs, another electrode replaced lithium metal, thus avoiding safety hazard. At the time it is already 

well known that lithium-ion can intercalate graphite,149,150 with a woking potential relatively 

superior to lithium metal. However, the simultaneous insertion of the lithium-ions and electrolyte 

lead to the decomposition of the graphite. Therefore, additional scientific efforts had to be 

conducted. 

 

Figure 28: Illustration Lithium-ion battery system made of lithium metal as anode, LiPF6 in propylene carbonate 

as the electrolyte, and LiTiS2 as cathode. 

All the while anode was being developed, the discovery of new cathode materials lead LIBs 

technology to higher working potential allowing the use of higher working potential material. This 

improvement eases the application of higher working potential material, compared with lithium 

metal, as the anode electrode. Indeed, between 1979 and 1980, Goodenough et al. discovered that 

LixCoO2 was an excellent cathode material expressing about 4-5 V vs. Li+/Li working potential 

and a reversible intercalation behavior at 1 mA cm-2.151,152 
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II.1.4. Carbon based anodes 

The discovery of LiCoO2 cathode material enable the application of higher working potential anode 

material (vs. Li+/Li). As mentioned above, the application of graphite as anode was attractive but 

not possible since this last experience decomposition upon intercalation. Thus, other carbons-based 

anode electrode materials were investigated. In 1985, after having attempted to apply conducting 

polymer poly(acetylene)  and vapor-phase–grown carbon fibers, Yoshino A. et al. finally applied 

heat-treated petroleum coke as anode electrode material.153,154 This material, composed of a 

mixture of graphitic and non-graphitic domains, displays stable reversible intercalation behavior 

and a working potential of 0.5 V vs. Li+/Li. This excellent behavior was enabled by the protection 

of the graphitic domains by the surrounding non-graphitic domains.  

Having discover the first suitable anode electrode material for LIBs, Yoshino A. et al. built the first 

full-cell (without lithium metal) LIBs combining their anode electrode material with LiCoO2 

cathode electrode material and an electrolyte composed of LiClO4 in propylene carbonate (Figure 

29). To demonstrate the safety superiority of their LIBs, a series of experiment was conducted 

involving the dropping a metal object on the lithium-ion bettery.155 The results clearly show that 

the fire hazard is suppressed in by their anode electrode material. 

 

Figure 29: Illustration Lithium-ion battery system made of petroleum coke as anode, LiClO4 in propylene 

carbonate as the electrolyte, and LiCoO2 as cathode.  
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This scientific and industrial breakthrough lead to the commercialization of the first full-cell LIBs 

in 1991.156 This battery was composed of a LiCoO2 cathode, a heat-treated petroleum coke anode, 

and a LiPF6 in propylene carbonate electrolyte. This battery has a working potential of 4.1 V and 

an energy density of about 80 Wh kg-1. 

Around the same time, the works of Peled E. et al. 1979 and Fong R. et al. in 1990 introduce new 

electrolytes including ethylene carbonate which enable the application of graphite as anode for 

LIBs.157,158 This improvement is obtained through the decomposition of the electrolyte on the 

surface of graphite creating a protective layer, named solid electrolyte interface (SEI), which avoid 

the electrolyte penetration in the graphite and thus its decomposition. This discovery was quickly 

accepted and applied by the scientific and industrial communities, leading to the first 

commercialization of a graphite based full-cell LIBs raising its working potential to 4.2 V and its 

energy density to 160 Wh kg-1. 

II.2. Graphene LIBs application 

II.2.1. Introduction 

As mentioned previously, the electrical energy storage of LIBs is based on the reversible exchange 

of lithium-ions between the cathode and the anode host/active materials. As for now, the electrode 

mechanistic for lithium-ion storage can be categorized as intercalation, where lithium-ion is 

inserted into and removed from the solid host network, and as alloying, where the lithium 

lithiation/delithiation is shaped by the redox reaction of the electrode leading to change in the 

electrode crystalline structure and accompanied by the breaking and recombining chemical bonds. 

In Figure 30 an overview of the average discharge potentials and specific capacities for all types 

of electrodes is given. It concludes that the best material in terms of specific capacity is obtained 

by conversion electrode materials for both anode and cathode. Unfortunately, conversion materials 

suffer from relatively low electrical conductivity and mostly from high volume expansion caused 

by considerable mechanical stress, which leads to the disintegration of the active materials and to 

the SEI cracking through cycling. This drawback makes the cycle life of conversion materials 

limited. 
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Figure 30: Approximate range of average discharge potentials and specific capacity of some of the most 

common (a) intercalation-type cathodes (experimental), (b) conversion-type cathodes (theoretical), (c) 

conversion type anodes (experimental), and (d) an overview of the average discharge potentials and specific 

capacities for all types of electrodes. Reproduced with permission from 159. 

Graphene can be categorized as intercalation material, even if the graphene storage mechanism 

process through the absorption mechanism, since the graphene crystalline structure remains 

untouched when intercalation/de-intercalation proceed. Then, we can understand that the specific 

capacity of graphene would always be lower than other conversion materials, yet due to its 

carbonaceous nature and its unique morphology (two-dimensional structure, 1 nm thickness, micro 

to nanometer size) and properties (ultra-high electric conductivity, superior strength, and flexibility, 

active surface once oxidized), graphene can be directly used as anode or as cathode active material 

or used to prepare graphene active-composite for anode and cathode. For graphene active-

composites, the attached structures can be classified into six different models (Figure 31). In the 

encapsulation mode, the graphene material encapsulates the particles of electroactive material, 

while in the mixed model, the graphene material and the active material are mixed mechanically 

during the electrode preparation process. The particles of electroactive material can also be 

wrapped in graphene. The anchored model is the most widely reported, where the electroactive 
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nanoparticles are immobilized on the surface of the graphene material. Graphene materials can also 

be stacked with active materials to form a sandwich-type model or a layered model. 

 

Figure 31: (a) Illustration of the different structures of graphene composite electrode materials. (b) Lithium 

paths in carbon black- (left) and graphene- (right) based electrodes in the mixed structural model. Reproduced 

with permission from 160. 

 

II.2.2. Graphene as anode 

II.2.2.1. Graphene as active material 

Due to its unique properties, graphene has, in the last decade, received considerable attention for 

its application as active anode material. Indeed, even until now, general LIBs use graphite-based 

anode limiting the theoretical capacity performance of the anode to 372 mAh g-1. On the other hand, 

the theoretical capacity performance of graphene is 744 mAh g-1 based on the stoichiometry of 

Li2C6, because Li+ can adhere to both sides of the monolayer graphene sheet. 
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The most common way to prepare graphene for LIBs is through its oxidation into graphene oxide 

(GO) and its further reduction into (rGO). In general, the specific capacity for rGO based half-cell 

anode is between 500 mAh g-1 to 800 mAh g-1 at 372 mA g-1. 161–163 The performances of rGO can 

be tuned via modification of its specific surface area, oxygen content, and morphology. 

Added to this, can also be considered as graphene anode active material, the hetero-atom doped 

graphene such as Nitrogen, Boron, sulfur-doped graphene’s.164–166 The doping of heteroatoms into 

graphene has been found to improve the interaction between Li+ and the new graphene active site, 

while leading to superior electrical conductivity, and higher first cycle coulombic efficiency.  

II.2.2.2. Graphene composite as active material 

II.2.2.2.1 Insertion material graphene composite 

Lithium titanium oxide, Li4Ti5O12 (LTO), is one of the few anode insertion materials commercially 

available. This material inserts and extracts lithium without a noticeable change in its lattice 

dimension at a working potential of 1.5 V vs Li/Li+. Its theoretical capacity is of 175 mAh g-1, 

making it an excellent candidate for anode LIBs were stability and safety are more critical than 

energy density. Due to LTO low electronic conductivity (<10–13 S cm-1), carbon-based conductive 

materials are often applied to overcome this limitation, including graphene. Shi Y. et al. prepared 

LTO/rGO composite via simple mixing and heat treatment of LTO powder and rGO (Figure 32). 

167 The impedance shows a reduced charge transfer resistance from 54 to 36 Ω as the rGO is added. 

The capability evaluation shows the same trend with a capacity of 122 mAh g-1 instead of 92 mAh 

g-1 as rGO is introduced. The cyclability results show excellent behavior with a capacity maintained 

to 124 mAh g-1 after 300 cycles. Similarly, Zhu N. et al. demonstrate the same results in preparing 

LTO/graphene composite via the electrospun method.168 The specific capacity is improved from 

47 mAh g-1 to 110 mAh g-1 and retained a specific capacity of 101 after 1200 cycles. 
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Figure 32: (a) Schematic of the synthesis route of n-LTO and graphene (n-LTO/G) composite , (b) Specific rate 

capacity of the n-LTO and n-LTO/G. Reproduced with permission from 167. 

II.2.2.2.2 Alloying material graphene composite 

Having a look at Figure 30 help us to clearly understand that tomorrow LIBs technology will be 

based on alloying anode materials, such as Si, P, Ge, and Sn. Indeed, those materials hold the 

highest specific capacity, respectively 3579 mAh g-1, 2596 mAh g-1, 1384 mAh g-1, and 960 mAh 

g-1 after lithium itself. Nevertheless, the application of such materials is limited by their relatively 

low electric and ionic conductivity, as well as their significant volume expansion upon cycling, 

reducing their cyclability. 
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Silicon is among those candidates at the same time the most promising and the most challenging. 

Indeed, Si has the highest specific capacity and is the most available on earth. However, it has the 

lowest electrical and ionic conductivity, and the most massive volume expansion after lithiation 

(300%). To overcome these limitations, graphene has been used to create a conductive framework 

embedding Si material, able to accommodate its volume expansion. Xiang H. et al. prepared 

graphene/Si composite (Figure 33).169 First, GO, and silicon nanoparticles were mixed in a 2 to 1 

weight ratio, then the freeze-dried mixture was heated 600 °C to obtain the graphene/Si composite. 

The composite shows a working potential of 0.2 V vs Li/Li+. This composite shows a specific 

capacity of 1300 mAh g-1 at 300 mA g-1 and retains a specific capacity of 800 mAh g-1 after 30 

cycles. 

 

Figure 33: Specific capacity of silicon, SGE (graphene/silicon), SG2 (GO/silicon) at 300 mA g-1 based on 

silicon mass. Reproduced with permission from 169. 

II.2.3. Graphene as cathode 

II.2.3.1. Graphene as active material 

It is well known that oxygen functional groups such as carbonyl, carboxylic, and ester groups as 

the ability to reversibly store Li+ and that the large surface area of graphene materials possesses 

electrical double-layer capacitance (Figure 34).170,171 Ha et al. prepared a free-standing rGO film 

cathode by reducing GO at  650 °C. The prepared material shows a working potential of 3 V vs 

Li/Li+ and displays a specific capacity of 115 mAh g-1 at 137 mA g-1. Similarly, Wang et al. 

prepared rGO by reducing GO at 100 °C. As prepared rGO displays a specific capacity of 219 mAh 

g-1 at 100 mA g-1 and remains as high as 200 mAh g-1 after 60 cycles. Another way to think the 
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concept of graphene as the cathode is to consider the application of anion PF6
- instead of the cation 

Li+. Indeed, graphene can reversibly insert and extract PF6
- from 3 to 4.6 V vs Li/Li+. Aravindan et 

al. prepared rGO via thermal reduction of GO at 278 °C.172 As prepared material shows a working 

potential of 3.8 V vs Li/Li+ and displays a capacity of 58 mAh g-1 at 100 mA g-1 which remains as 

high as 44 mAh g-1 after 1000 cycles.  

 

Figure 34: Cathode performances of RGO15, RGO25, and RGO110 films at 0.137 A g–1. (a) Charge–discharge 

curves of RGO15, cyclability of (b) RGO15, (c) RGO25, and (d) RGO110. RGOX with X = C/O ratio. 

Reproduced with permission from 170. 

II.2.3.2. Graphene composite as active material 

II.2.3.2.1 Insertion material graphene composite 

Among all cathode insertion material presented in Figure 30, as mentioned in the above sections, 

LiCoO2 has received intense scientific effort since the early 1980s and lead to the first 

commercialized LIBs in 1991. This material has proven over the past decades to be a reliable choice 
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of cathode since it shows a relatively high theoretical specific capacity of 274 mAh g-1, a high 

theoretical volumetric capacity of 1363 mAh cm-1, a low self-discharge, a high discharge voltage 

3.8 V vs Li/Li+, and an excellent cycling performance. Two of LiCoO2 limitations are its low 

electronic conductivity and its relatively weak cyclability.  

Recently, Tang R. et al.  prepared LiCoO2/graphene composite by simply mixing LiCoO2 with 2 

wt% graphene in NMP (Figure 35).173 The composite shows similar capacity performance as the 

original LiCoO2 expressing 158 mAh g-1 at 0.1C. On the other hand, the composite shows superior 

rate capability, 110 mAh g-1 at 5C instead of 90 mAh g-1, as well as superior cyclability expressing 

a specific capacity of 145 mAh g-1 after 50 cycles at 1C while original displays a reduced specific 

capacity of 130 mAh g-1. 

 

Figure 35: LIBs evaluation of LiCoO2 with different conductive additives (0.5GN, 1GN, 2GN, 3SP). %. (a) 

Cycling performance at 1C, (b) rate performance, (c) charge/discharge profile at 1C in the 1st cycle; (d) 

Charge/discharge profile at 1C in the 50th cycle. GN = graphene nano-sheets, SP = Super-P, xGN with x = weight. 

Reproduced with permission from 173. 
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II.2.3.2.2 Alloying material graphene composite 

S, Se, Te, and I are cathodic alloying materials, as represented in Figure 30. Among these elements, 

the most intensively studied is S because of its high theoretical specific capacity, 1675 mAh g-1, 

low cost, and abundance in Earth’s crust. However, the application of S as cathode material is 

limited by its relatively mild working potential 2.4 V vs Li/Li+, low electronic conductivity, 

dissolution in the electrolyte, low vaporization temperature, and large volume expansion upon 

lithiation of about 80%.  

Wang H. et al. recently prepared sulfur particles poly(ethylene glycol) wrapped between carbon 

black coated GO layers using a simple mixing method in water solution (Figure 36).174 The LIBs 

results show that the addition of graphene improves both the capacity and cyclability expressing a 

specific capacity ∼ 520 mAh g-1 after 100 cycles at C/5, and excellent capability since the specific 

capacity remains unchanged at C/2. 
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Figure 36:  Electrochemical evaluation of graphene–sulfur composites. (a) 10th cycle charge and discharge 

voltage profiles of the graphene–sulfur composite with PEG coating. (b) Cycling performance of the same 

composite at rates of ∼C/5 and ∼C/2. (c) Cycling performance of PEG coated sulfur without graphene coating 

at the rate of ∼C/5. (d) Cycling performance of graphene coated sulfur without any surfactant PEG coating at 

the rate of ∼C/5. PEG = poly(ethylene glycol). Reproduced with permission from 174. 

 

 III. CONCLUSION 

In order to move toward a more sustainable society the development renewable energy grid and 

electric car are needed. LIBs technology has already demonstrated its application for mobile 

devices such as smartphone, laptop, electric car. However, current electrode materials hampered 

the development for higher energy and power density devices. Therefore, the development of new 

electrode materials is essential for tomorrow battery technology. The choice of new electrode 
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materials is required to combine higher performances at low cost and with excellent scalability and 

eco-friendliness. 

Graphene, as mentioned above, has showed promising results. However, it still presents several 

problems hindering its commercial application to batteries. The most promising synthesis method 

of graphene materials is now conduct through the electro-chemical oxidation of graphite into 

graphene oxide and graphene. However, at this moment none of the reported synthesis method 

have been showed to be scalable hindering its production; and the reduction step remain complex 

as the final product is strongly impacted by the choice of oxidation and reduction methods which 

create uncertainty for the final LIBs performances (Figure 37). 

To address those issues, the research of this thesis is devoted to find new graphene oxide synthesis 

methods and to clarify what reduction method is the most suitable to LIBs and SIBs. 

 

Figure 37: Illustration of promising methods and their limitation for graphene oxide synthesis and 

its reduction for high performance anode Batteries. 
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CHAPTER 2 

 

Non-destructive, Uniform, and Scalable 

Electrochemical Functionalization and 

Exfoliation of Graphite 

ABSTRACT: Exfoliation of graphite through functionalization is a promising technique to produce two-

dimensional (2D) nanocarbons on a large scale. Due to the high stability of graphite, a conventional 

functionalization of graphite has been performed in harsh conditions, such as in concentrated sulfuric 

acid. Therefore, environmental and safety have been problems for scaling up the operation. In contrast, 

the electrochemical functionalization of a graphite electrode has recently attracted considerable attention 

because it does not require oxidants or sulfuric acid. However, 2D carbons produced through the existing 

electrochemical method are generally lacking in quality, due to the non-uniform destruction of the 

intermediately functionalized graphite. This paper reports a method for the non-destructive 

functionalization of graphite using HBF4 diluted by water or methanol as an electrolyte. It is confirmed 

that the choice of solvents and electrochemical conditions enabled fine control over the functionalization 

degree and the type of functional groups on 2D carbons. Compared to chemically generated 2D carbons, 

the electrochemically generated 2D carbon exhibits similar or better physical and chemical properties 

when used in lithium-ion battery electrodes and water purification membranes. This electrochemical 

method is also applicable to a continuous flow system, thus promising the mass production of 2D carbons 

for future industrialization. 
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I. INTRODUCTION 

With their excellent properties, sustainability, and economic benefits, nanocarbon materials have 

gained wide attention. Among nanocarbons, graphene, a two-dimensional (2D) honeycomb lattice 

of sp2 carbon with single-atom thickness, became one of the most exciting research topics since its 

isolation and characterization by Geim and Novoselov in 2004.1 The unique properties of graphene 

include excellent electrical conductivity, 2–4 high flexibility,5 and large surface area.6 To exploit 

such properties in specific applications, however, it is necessary to improve the production methods 

of graphene (top-down approach1,7,8-12 and bottom-up approach13–15) and the modulation of its 

structure (atom doping,8,16,17 covalent functionalization,18,19 and non-covalent 

functionalization20,21). Current methods to prepare graphene all present several disadvantages in 

terms of e.g. scalability, cost, homogeneity, and structural controllability. These drawbacks have 

restricted the mass production and practical uses of graphene. 

In the last few years, the electrochemical method has become attractive for producing and 

functionalizing graphene as an easy, fast, safe, scalable, and green procedure.22–29 Two synthesis 

pathways have been considered: electrochemical intercalation-exfoliation22 and electrochemical 

intercalation-functionalization.30 The former one is based on gas generation between graphite 

layers through the intercalation and decomposition of the intercalant molecules. While less 

defective graphene is generated through this method, the production of single-layer graphene is 

difficult due to the uncontrollable gas generation and the destruction of graphite framework. The 

latter approach also uses intercalation to expand the interlayer distance, and afterwards the 

intercalant directly reacts with the graphite layers. The main characteristic of this method is that 

the sp2 honeycomb structure of graphene is converted into sp3 carbons before re-aggregation 

occurs. Also, the mode and degree of functionalization can be finely controlled by tuning the 

electrochemical conditions. Therefore, we focused on the electrochemical intercalation-

functionalization technique in this research to obtain homogeneous functionalized graphene 

(defective) while avoiding the destruction of the graphite framework.  

Generally, there is a competition between the intercalation and the decomposition of intercalant 

into gas, which destroys the graphite framework before its complete functionalization. 

Aryldiazonium salts are well-known electrochemically active reagents generating aryl radicals and 

N2 gas.31–34 They have been applied to the electrochemical intercalation-functionalization method, 
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but the inhomogeneous destruction of graphite still occurs to generate a multi-layered product.30 

To solve this problem, two-step electrochemical oxidations of graphite was investigated using 

H2SO4 electrolyte.27,28 The initial step consists of forming a homogeneous graphite intercalated 

compound (GIC) in highly concentrated H2SO4 electrolyte, and the second step consists of 

oxidation of GIC in low-concentration H2SO4 by active oxygen species generated from water. The 

material obtained through this method shows improved homogeneity, morphology, and oxidation 

degree. However, such a two-step reaction cannot be applied in a continuous system or on an 

industrial scale (which requires one-step and simple procedures). Inspired by this two-step method, 

we tried to find an optimum system that can separate the intercalation step and functionalization 

step in a one-pot procedure while suppressing gas generation that destroys the graphite framework. 

Herein, the one-pot electrochemical intercalation-functionalization of graphite was achieved 

using HBF4 diluted by water or methanol as an electrolyte. This results in the formation of 

electrochemical graphene oxide (EGO) with a yield >99% due to the limited gas generation, 

avoiding the destruction of the graphite framework, thus enabling uniform functionalization. More 

interestingly, our system showed two reaction modes: conventional electrolysis in the electrolyte 

(within the first 5 min of reaction) and reaction outside the electrolyte by capillary effect (after 5 

to 60 min depending on the length of the graphite electrode). After the electrochemical treatment, 

only simple washing, mixing, and sonication steps were necessary to purify and exfoliate the 

product to single-layer EGO. The EGOs prepared in water (EGOW) and methanol (EGOM) have 

49.0 wt% and 43.9 wt% oxygen, respectively, as determined by CHN elemental analysis. These 

values are similar to chemical graphene oxide prepared by improved Hummers’ method (CGO; 

50.2 wt% O),35 but larger than that prepared in a conventional aqueous H2SO4 system (EGOS; 28.5 

wt% O),28 suggesting uniform and complete oxidation in the HBF4 system. Despite the relatively 

high oxygen contents of EGOW and EGOM, their oxidation properties were weaker than those of 

CGO, with the respective conversion of benzyl alcohol to benzaldehyde being 41%, 25%, and 60%. 

Since the EGOs can be completely exfoliated to a single layer, we prepared them into a thin 

membrane for use in water purification, where up to 90% of methyl orange was removed. 

Thermally reduced graphene oxides (tEGOs and tCGO, respectively) were also shown to have high 

electrical conductivity of ~40000 S/m. Thus, the tEGOs were evaluated in the anode of lithium-ion 

batteries (LIBs) with a capacity of 195 mAh g-1 at 20C, which represents an improvement of 572% 

compared to that of the original graphite.  
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II.  RESULTS AND DISCUSSION 

I.1. EGO synthesis mechanistic study 

EGO synthesis was conducted using a graphite foil of 5 cm × 4 cm × 20 µm. A two-electrode 

system was employed using platinum wire as a cathode, graphite foil as an anode, and a solution 

of HBF4/water or HBF4/methanol as an electrolyte (Figure 1a). The electrochemical intercalation-

functionalization was conducted at a constant current density (180 mA cm-2) for 6 min with a cut-

off voltage of 14 V. During this process, the graphite foil became 400 times thicker (from 20 µm 

to 8 mm) without destruction (Figure 1b), which is different from previously reported EGOs. In 

the aqueous H2SO4 electrolyte system, however, destruction of graphite occurred.27,28 Afterward, 

the expanded EGO was collected by filtration and easily washed until the pH became 7. The 

neutralized product was then dispersed in water by sonication for 30 min to generate single-layer 

EGO. A spongy EGO was obtained by freeze-drying for 48 h. As prepared EGO contained a small 

Sample 

GO Hydrazine reduced Thermally reduced 

CGO EGOW-42% EGOM-20% hyCGO hyEGOW hyEGOM tCGO tEGOW tEGOM 

C (at.%) 63.4 69.6 68.1 84.4 89.6 79.9 90.7 90.9 91.6 

O (at.%) 34.8 28.4 29.4 15.6 10.4 20.1 9.3 9.1 8.4 

S (at.%) 1.8 - - - - - - - - 

F (at.%) - 2.0 2.5 - - - - - - 

Table 1. XPS atomic quantification. 
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amount of fluorine atoms which were derived from BF4
- decomposition and can be removed by 

general reduction procedure of GO, such as heating (Table 1).  

 

We next investigated the different phenomena during the electrochemical treatments in various 

electrolyte systems. The electrical potential drives the action of ionic species in the electrolyte, and 

therefore linear sweep voltammetry (LSV) was performed under the same conditions used for 

EGOW synthesis (electrolyte: 20% HBF4 and 80% water) and EGOM synthesis (electrolyte: 20% 

HBF4, 30% water, and 50% methanol), using a graphite foil as working electrode, a platinum wire 

as a counter electrode, and saturated calomel electrode (SCE) as reference electrode. For 

comparison, a conventional aqueous H2SO4 system (20% H2SO4 and 80% water) was also 

investigated by LSV in order to understand the difference between BF4
- and HSO4

- intercalant 

(Figure 2aiii). The measured LSV curve for EGOW (Figure 2ai) indicated four consecutive reaction 

steps: the electrolyte polarization from 0.3 to 1.6 V, the intercalation of  hydrated BF4
- at 1.7 V, the 

functionalization by active oxygen species generated from water electrolysis inside the graphite 

from 2.2 to 2.7 V, and the gas generation from 2.7 V. For EGOM (Figure 2aii), the polarization and 

intercalation potentials were the same as with EGOW, yet the functionalization potential range was 

widened to 2.0–3.0 V, suppressing the gas generation reaction till 3.0 V. In contrast, in the case of 

H2SO4 (Figure 2aiii), the LSV measurement showed only 3 consecutive reactions: the electrolyte 

polarization from 0.5 to 1.5 V, the intercalation of hydrated HSO4
- at 1.6 V, and the gas generation 

from 2.0 V. The absence of a clear signal for functionalization reaction reflects the fact that the 

decomposition of HSO4
- into SOx gas competes with its intercalation, which leads to the destruction 

of graphite framework before its complete oxidation. The different LSV results also correspond to 

the visible behavior. The graphite expanded in the HBF4 electrolyte system, while the H2SO4 

electrolyte system resulted in the exfoliation and destruction of the graphite framework (Figure 1b, 

video S1 and S2).  

To gain deeper insights into the electrochemical process, EGO formation was observed under an 

optical microscope using highly oriented pyrolytic graphite (HOPG) as an anode, platinum wire as 

a cathode, and an aqueous HBF4 solution as the electrolyte. As the intercalation proceeded, a 

rainbow-colored band moved successively, suggesting the progress of intercalation (Figure 2b, 

video S3 and S4), while the same experiment in aqueous H2SO4 resulted in a destructive reaction 

process. 
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Figure 1. Electrochemical synthesis of graphene oxide. (a) Schematic illustration of the EGO synthesis 

system, (b) visual change of graphite into (i) EGOW by HBF4/water, (ii) EGOM by HBF4/methanol, and (iii) 

EGOS by H2SO4/water. 

 

Figure 2. (a) LSV analysis under the synthesis conditions of (i) EGOW, (ii) EGOM, and (iii) EGOS. (b) Optical 

microscope observation during the electrochemical treatment of HOPG. 
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The intercalation process was confirmed by the X-ray diffraction (XRD) analysis of graphite foil 

electrochemically treated with aqueous HBF4 electrolyte, showing typical patterns of GIC (Figure 

3).25 In contrast, such GIC patterns were not observed when the H2SO4/water electrolyte was used. 

The HBF4 system allows EGO synthesis via non-destructive intercalation, which led to the 

unexpected phenomenon of graphite foil oxidation outside the electrolyte. Initially, intercalation 

and functionalization occurred from 0 to 5 min. The graphite in the electrolyte was quickly 

intercalated and consequently expanded (Figure 4, video S5). Finally, the expansion progressed to 

the top of the graphite foil that was outside the electrolyte. This phenomenon was derived from the 

capillary absorption of electrolyte by the graphite layers upon their intercalation and 

functionalization, and it was not observed in the H2SO4 electrolyte system.  

 

Figure 3. Graphite intercalated by HBF4 after 3 min at 0.7 A. 
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Figure 5. Optimization of the synthesis condition in terms of (a) reaction time, (b) current density, and (c) 

electrolyte concentration for EGOW. (d) Concentration dependence for EGOM. 

 

Figure 4. Electrochemical synthesis of EGOW: (a) pristine graphite foil before electrochemical treatment; 

(b) within 5 min of electrochemical treatment, only the part of graphite inside the electrolyte expanded and; 

(c) after 5 min, the part of graphite foil outside the electrolyte also expanded by capillary effect. 
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All these results demonstrate the superiority of BF4
-  over HSO4

- as an intercalatant owing to its 

superior stability allowing the graphite framework to be intercalated, functionalized without 

destruction. 

II.2. EGO synthesis optimization 

After understanding the plausible pathways of EGO synthesis, we next tried to optimize the 

electrochemical conditions to finely tune the EGO structure and properties. As clarified by the LSV 

analysis (Figure 5a), electrochemical reactions such as intercalation, functionalization, and gas 

generation can be controlled by the voltage and the amount of charge passed. To evaluate the 

functionalization degree of EGOs prepared under different electrochemical conditions, CHN 

elemental analysis was conducted for each sample to calculate the carbon/oxygen (C/O) mass 

ratios. For EGOW synthesis at constant current, the C/O mass ratio decreased from 2.85 to 1.46 

from 5 to 10 min, while extending the electrochemical treatment did not induce any further 

oxidation (Figure 5a). During the electrochemical reaction at constant current, the potential 

increased due to the loss of conductivity when the conductive sp2 was converted to the insulating 

sp3 carbon structure. After 10 min, the voltage increased drastically from 12 to 16 V to indicate 

completion of the functionalization, which is in good agreement with the C/O mass ratio. Therefore, 

Figure 6. XPS C1s analysis of chemical graphene oxide (CGO), Electrochemical graphene 

oxide in water (EGOW), Electrochemical graphene oxide in methanol (EGOM).  
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a cutoff voltage of 14 V can be used as an indicator of the functionalization degree. Next, the effect 

of current density was investigated. From 6 to 90 mA cm-2, the C/O mass ratio decreased from 6.14 

to 1.38. At a higher current density of > 180 mA cm-2, no clear improvement was observed while 

much heat was generated (Figure 5b), indicating that the graphite foil could not accommodate 

current densities higher than 180 mA cm-2. In order to speed up the production rate of EGOW with 

high efficiency, a current density of ca. 180 mA cm-2 is recommended. Considering the influence 

of HBF4 concentration, the best result was obtained for 42% HBF4 with a C/O mass ratio of 0.99 

(Figure 5c), which is almost the same as that of CGO (0.88). As the water content in the electrolyte 

increased, the C/O mass ratio also increased. This phenomenon can be explained by the lower 

amount of intercalated BF4- and more gas generation by water decomposition. A similar tendency 

was observed for EGOM (Figure 5d), in which the C/O mass ratio decreased as the concentration 

of HBF4 was increased. However, at 10% HBF4, the C/O mass ratio of EGOW was 1.82 while that 

of EGOM reached only 1.42, suggesting that methanol prevented the gas generation and the 

destruction of graphite foil to enable uniform and complete functionalization. 

The samples discussed in the following sections were prepared using the optimized conditions. 

For EGOW, 42% HBF4 and 58% water was the best electrolyte (the sample was labeled as EGOW-

42%), and for EGOM it was 20% HBF4, 30% water, and 50% methanol (the sample was labeled as 

EGOM-20%). Additionally, X-ray photoelectron spectroscopy (XPS) was used to clarify the atomic 

composition of the as-prepared sample surface (5 nm depth). The survey analysis revealed the C-

1s and O-1s peaks in all samples. In addition, a slight F-1s peak was observed for EGOs (Figure 6 

and Table 1). The oxygen contents of EGOW-42% and EGOM-20% were 34.2 wt% and 35.2 wt%, 

respectively, which are slightly lower than that of CGO (40.5 wt%); and the C/O mass ratios were 

of 1.8 and 1.7. These values are quite smaller than those of previously reported EGOs (C/O mass 

ratio = 3.5–5.7),27,36 indicating that our EGOs were deeply oxidized. 
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Figure7. Characterization of as-synthesized CGO, highly oxidized CGO (HCGO), EGOW, and EGOM using 

(a) XRD, (b) Lambert-Beer coefficient, (c) Raman, (d) FT-IR, (e) solid state 13C NMR, and (f) TGA 

techniques: temperature ramp (red dashed line). 
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II.3 EGOs characterization 

The XRD patterns of EGOW-42% and EGOM-20% (Figure 7a) were compared with that of CGO. 

We found a shift of the GO (002) diffraction peak depending on the prepara  tion conditions. While 

CGO and EGOM showed similar patterns, this peak in EGOW appeared at a higher angle. These 

XRD results indicate that the sheet distance of EGOW is smaller than those of EGOM and CGO, in 

good agreement with the nature and degree of its functionalization (to be described later). The UV-

Vis spectra of EGOW-42%, EGOM-20%, and CGO (Figure 8) have an absorption band centered at 

232 nm corresponding to the π-π* transitions of aromatic C=C bonds, as well as a shoulder at 298 

nm corresponding to the n–π* transitions of C=O bonds.37,38 In addition, a clear improvement in 

the absorbance was observed over the whole spectra for all EGOs, suggesting that these samples 

have a less disrupted conjugated electronic structure (CES).27 To further investigate the CES in our 

materials, the Lambert-Beer coefficient at 660 nm was estimated by monitoring the absorbance as 

a function of GO concentration.27,39 The absorbance divided by the cell length was plotted (Figure 

7b). All samples followed the Lambert-Beer Law, with extinction coefficients of 109.0, 586.5, 65.9, 

and 39.7 L g-1 m-1 for EGOW-42%, EGOM-20%, CGO, and highly oxidized CGO (HCGO), 

respectively.15 These results indicate that the CES is less disrupted in the EGOs than in CGOs, and 

EGOM-20% has a more continuous CES than EGOW-42%. Yet, the extinction coefficients of our 

samples remained beneath the standard values of pristine graphene structure (from ~2000 to ~6600 

L g-1 m-1).39 The formation of few-layers and defects was confirmed by Raman spectroscopy 

(Figure 7c). The starting graphite foil showed two intense peaks at 1578 and 2714 cm-1 that 

Figure 8. UV-Vis of GOs dispersion in water 
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correspond to the G band and the 2D band, respectively.40 After electrochemical treatment, a new 

peak appeared at 1360 cm-1 and was attributed to the D band, suggesting that the sp2 honeycomb 

structure of graphite was transformed to sp3 carbons by covalent functionalization and the 

formation of defects and disorders. An additional effect of the electrochemical treatment is the 

change in the 2D band to a low intensity and symmetric peak shape, indicating the formation of a 

few-layered graphene-like material.41 The intensity ratio between the D and G bands (ID/IG) was 

similar for EGOs and CGO at 1.1, indicating a similar level of defects despite their different 

oxidation methods.  

Next, we compared the functional groups formed on the graphene structures of EGOW-42%, 

EGOM-20%, and CGO. According to the Fourier-transform infrared spectroscopy (FT-IR) analysis 

(Figure 7d), EGOs and CGO showed similar spectral patterns, i.e., O-H stretching vibrations (3420 

cm-1), C=O stretching vibration (1720–1740 cm-1), C=C stretching vibration (1590–1620 cm-1), 

and C-O vibrations (1250–1000 cm-1).42 In addition, EGOM-20% contained characteristic bands of 

the methoxy group (2976, 1467, and 1056 cm-1).43 To support the FT-IR analysis and to understand 

the distribution of functional groups on the EGOs, XPS analysis was performed. As mentioned 

above, this analysis indicates the presence of C-1s, O-1s, and also F-1s. Deconvolution analysis of 

narrow-scan XPS data for the C-1s peak of EGOs confirms the presence of C-O (286.5 eV) and 

C=O and –COO- (289 eV) while suggesting the presence of C2F (288.5 eV). Additionally, the C-

1s region did not present any π to π* component (290.5 eV), indicating that only a limited 

conjugated structure existed in the EGOs after the uniform oxidation. Finally, the EGOs were 

analyzed by solid state 13C NMR (Figure 7e), which confirmed the presence of epoxy (60 ppm), 

hydroxyl (72 ppm), and carboxyl (168 ppm) functional groups. EGOM-20% also presented methyl 

(16 ppm), fluoride (85 ppm), and methoxy (60 ppm) groups.44,45 The chemical structure of EGOs 

determined by FT-IR and XPS is consistent with that by 13C NMR. 
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Figure 9. TGA-MS results. Gaseous species mainly formed from EGOW 

 

Figure 10. TGA-MS results. Gaseous species moderately formed from EGOW 
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Figure 11. TGA-MS results. Gaseous species mainly formed from EGOM 

 

Figure12. TGA-MS results. Gaseous species moderately formed from EGOM 
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The functional groups on GO can be removed via thermal treatment (Figure 7f).46 CGO generally 

discharges CO, CO2, and water at 130–200 °C, while the EGOs are expected to discharge other 

species derived from the HBF4 and methanol. From the thermogravimetric analysis-mass 

spectroscopy (TGA-MS) results, EGOW-42% discharged HF at 200 °C and 320 °C (Figure 9 and 

10) and EGOM-20% discharged HF and methane at 200 °C and 320 °C (Figure 11 and 12). These 

results support the introduction of fluorine into EGOW-42% and that of fluorine and methoxy 

groups into EGOM-20%.  

II.4. Morphological study 

To confirm the formation of single-layer structure in the EGOs, scanning electron microscopy 

(SEM) and atomic force microscopy (AFM) analyses were performed. For SEM measurement, the 

EGOs were deposited on a SiO2/Si substrate. The lateral size distribution obtained from more than 

100 EGO sheets was 0.45 ± 0.03 µm (0.04–1.78 µm) and 0.12 ± 0.01 µm (0.031–0.363 µm) for 

EGOW-42% and EGOM-20%, respectively (Figure 13a,b, Figure 14 and 15). For AFM analysis, 

EGO sheets were deposited on mica by spin-coating. The analysis of more than 100 EGO flakes 

gave a mean thickness of 1.36 and 1.27 nm, respectively, for EGOW-42% and EGOM-20%, 

confirming their monolayer nature (Figure 13c,d).47 The AFM analysis of EGOW-42% and EGOM-

20% also revealed that over 62% and 88% of the sheets were mono layers (<1.5 nm) and more than 

95% and 97% were monolayers to bilayers (~2 nm), respectively (Figure 16 and 17). In sum, the 

morphological analysis of EGOs by SEM and AFM revealed that the electrochemical methods 

using HBF4 produced highly homogeneous and few-layered GOs.  

The dispersibility of the as-prepared EGOs was evaluated and compared with that of CGO. 

Freeze-dried GOs were dispersed in water or methanol at a concentration of 0.33 mg ml-1. All GOs 

showed good dispersibility in water, and nematic liquid crystal behavior was maintained for at least 

two months (Figure 13e-g, Figure 18).48 In contrast, interestingly, only EGOM-20% remained 

dispersed in methanol after as long as one week, whereas EGOW-42% and CGO aggregated (Figure 

13h-j). This phenomenon might be induced by the high affinity between EGOM-20% and methanol. 

 

  



83 

 

 

Figure 13. SEM images of (a) EGOW and (b) EGOM, (c) AFM images of EGOW and (d) EGOM. Photographs 

of (e) CGO, (f) EGOW, and (g) EGOM dispersed in water after two months; and those of (h) CGO, (i) EGOW, 

and (j) EGOM dispersed in methanol after one week. 

 

Figure 14. Flake size histogram of more than 100 EGOW flakes 
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Figure 15. Flake size histogram of more than 100 EGOM flakes 

 

Figure 16. Flake thickness histogram of more than 100 EGOW flakes 
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Figure 18. The pictures were taken using simple flash light, 2 light poralizer filter, and a digital 

camera. The pictures were taken 10 second after the sample agitation. 0.33 mg ml-1 dispersion 

in water of (a) CGO, (b) EGOW, (c) EGOM, and in MeOH of (d) CGO, (e) EGOW, (f) EGOM. 

 

Figure 17. Flake thickness histogram of more than 100 EGOM flakes 
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The above characterization results revealed that the produced EGOs have similar morphology 

but different types of functional groups compared with those of CGO. CGO has been widely 

investigated for practical applications, and therefore we tested our EGOs for use in energy storage 

devices and membranes. In addition, the oxidative property of EGOs derived from their oxygenated 

functional groups was evaluated. 

II.5. Reduction of EGOs 

Two reduction methods were used chemical reduction and thermal reduction. The former one was 

performed by dispersing the as prepared GOs into water, adding 0.4 mL g-1 of hydrazine, and 

heating the solution for 2 h at 90 °C. The latter was performed in tube oven by keeping the 

temperature at 220 °C for 2 h followed by 600 °C for 1 h. Both materials were further dispersed in 

water, filtrated through membrane paper and finally pressed to form a palette. In Figure 19a,c, the 

Figure 19. Analysis after reduction process: a) XRD, b) XPS C1s, c) interlayer distance, d) XPS 

atomic quantification 
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XRD spectra of reduced GOs by hydrazine (hyGO) and by thermal reduction (tGO) show a shift 

to higher diffraction angle. This phenomenon due to the removal of functional groups on the surface 

of graphene is confirmed in Figure 19b,d by XPS analysis. Thus a correlation between the 

restacking and the reduction degree was observed.  

II.6. Electrical conductivity of the reduced EGOs 

The conductivity measurement was performed on thermally and chemically reduced EGOs palettes 

using a 4-probes measurement system. The results (Figure 20) shows the efficiency of the thermal 

reduction method over chemical reduction and its critical effect in the case of EGOM. Original 

conductivity of hyCGO and hyEGOW was relatively high 18900 S m-1 and 19200 S m-1, 

respectively. On the other hand, hyEGOM was only of 2800 S m-1. This significant difference is 

due to the original functional groups of EGOM and their strength over chemical reduction via 

hydrazine. The thermal reduction based on the TGA survey allows the decomposition of most 

functional groups present on CGO and EGOs samples. The results indicate the optimization and 

homogenization of the conductivity as high as 53600 S m-1, 55000 S m-1, and 31400 S m-1 for 

tCGO, tEGOW, and tEGOM respectively. These results confirm the strength of thermal reduction 

method and its advantage for electrical application. 

 

Figure 20. Conductivity measurement of GOs after hydrazine and thermal reduction 
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II.7. Evaluation and scalability of EGO 

II.7.1. Lithium ion battery evaluation 

For energy storage, the GO samples were engineered into electrodes and used as anode in LIBs. 

Based on their thermal behavior (Figure 7f), the EGOs and CGO were heated under N2 atmosphere 

at 650 °C to convert them to conductive graphene-like materials, and the thermally treated EGOW, 

EGOM, and CGO are termed tEGOW, EGOM, and tCGO, respectively (Figure 19 and 20). After 

assembling the coin cells, the LIB performance was evaluated in terms of capacity as a function of 

charging rate. In the results (Figure 21), tEGOW, tEGOM, and tCGO all showed similar performance 

exceeding that of graphite. At a charging rate of 372 mA g-1 (1C) the capacities were 495, 554, and 

513 mAh g-1; and these values were 163, 195, and 176 mAh g-1 at a charging rate of 7440 mA g-1 

(20C), respectively. Compared with graphite, tEGOM showed a capacity increase of 72% at 1C and 

572% at 20C. These results are good agreement with previously reported reduced GO used as active 

material for half-cell lithium ion battery (Table 2). 

 

 

 

Figure 21. LIBs capacity performance at different current rate (1C = 372 mAh g-1): Graphite 

(Black), tCGO (red), tEGOW(green), tEGOM(orange). Coulombic efficiency of tEGOW (blue). 
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Name Current density (mA g-1) Capacity (mAh g-1) Ref. 

Graphene nanosheets 

(hydrazine reduced GO) 
372 570 49 

S-Doped graphene 374 870 50 

Graphene-Like-

Graphite 
1C 225 51 

Bare graphene 500 400 52 

Iodine graphene 500 536 52 

tEGOM 372 554 This work 

Table 2. Reduced graphene oxide as active material for half-cell lithium ion battery 
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II.7.2. Water membrane filtration evaluation 

Next, to efficiently utilize the two-dimensional morphology of EGOs, they were prepared into 

thin membranes (Figure 22) and tested for excluding dye molecules (10 μg ml-1 of methyl orange 

under 0.1 ml min-1 flow at 35 Kgf cm-2). The membranes were prepared by few simple steps: first 

we dispersed the GOs powder into 0.1 mg ml-1 deionized water, followed by two centrifugations 

at 6000 rpm for 5 min to remove the possible deposit (few layers’ graphene oxide), then filtration 

of 6 ml of the as-prepared GO solution through polycarbonate membrane (PC), and finally drying 

for 1 day at room temperature. The obtained membranes showed the mirror-like shape and once 

exposed to white light diffraction was observed indicating the good alignment of EGO layers, 

Figure 22a and 22b. Before evaluation, the membranes were heated at 150°C to ensure good 

stability in water environment. The property of the GO membranes was characterized by 

combining SEM and XRD. Figure 22c indicates that the reduction results in mild restacking of 

the EGOM membranes which saturate from 10 min. Figure 22d-f shows that from 10 min heating 

Figure 22. The appearance of prepared membrane a) EGOW, b) EGOM. c) XRD of EGOM 

membrane heated at 150°C for (i) 1 min, (ii) 5 min, (iii) 10 min, (iv) 15 min, (v) 30 min. SEM 

image of EGOM membrane d) before heating treatment, e) 5 min heating treatment, and f) 10 

min heating treatment.  
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at 150°C, fractures are formed on the surface of EGOM membrane. In order to ensure good water 

stability and avoid cracks, the heating time was fixed at 5 min. 

 

 

Membranes prepared with EGOW-42% and EGOM-20% excluded 88% and 97% of the methyl 

orange molecules, respectively, which is comparable to the performance of the membrane based 

on CGO (Figure 23). 

II.7.3. Chemical reactivity of graphene oxide 

To measure the chemical reactivity derived from the functional groups, the oxidation properties 

of EGOs were investigated using the oxidation of benzyl alcohol to benzaldehyde as model 

reaction.15  

Figure 23. Evaluation of EGO in water filtration membrane: red (CGO), green (EGOW), orange 

(EGOM).  
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EGOW-42% and EGOM-20% promoted the reaction to achieve 41% and 25% yields, respectively, 

while CGO showed a yield of 60% (Figure 24), suggesting that the EGOs are less oxidative. The 

oxidative property of GO would be derived from the endoperoxide functional group, which was 

only detected in CGO and HCGO by solid state 13C NMR at 110 ppm (Figure 25). Considering the 

potential harm to humans, the less oxidative EGOs are preferred over CGO.  

 

Figure 25. Solid-state 13C NMR of CGO and HCGO  

Figure 24. Oxidative property of different GOs. 
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II.7.4. Scalability evaluation of EGO 

Motivated by such advantages, we further developed the mass synthesis of EGO by a continuous 

flow system (Figure 26). On the left side of Figure 26, a graphite foil roll of 25 m length and 4 cm 

width is placed. The graphite foil is carried by a metallic roll which is used to connect the graphite 

to the anode. The graphite progress from left to right going inside the electrolyte (HBF4). In the 

electrolyte, a cathode is soaked allowing to realize the electrochemical oxidation of the graphite 

foil. The oxidized graphite foil continues to progress to the right and is dragged out from the 

electrolyte.  Within one day, this prototype system was able to produce 32 g of EGOW-42%. 

 

 

III. CONCLUSION 

In summary, the electrochemical functionalization of graphite to GO was developed by using 

HBF4 as an electrolyte. The non-destructive nature of the intercalated species (BF4
-) results in the 

expansion of graphite while preventing the exfoliation and formation of un-oxidized graphite 

domain before functionalization, thus achieving a high 2D carbon formation ratio of >99%. 

Saturated HBF4 aqueous electrolyte and that diluted by methanol produced materials with similar 

morphology (66% and 88% monolayers) and oxygen content (28.4 at% and 29.4 at%, respectively). 

Figure 26. Continuous flow electrochemical treatment system developed using graphite sheet 

(left) to produce EGO (right). 
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Introduction of the methoxy functional group allowed the EGOM to be dispersed in organic 

solvents, thus extending its processability. Additionally, promising results were obtained in using 

the EGOs for energy storage and water filtration, thus guaranteeing their wide scope of application. 

Finally, this process was adapted to a flow system to enable continuous production using a simple 

home-made reactor. This research will contribute to enabling the fine-tuning the functional groups, 

functionalization degree, and large-scale production of 2D carbons in the future. 
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EXPERIMENTAL SECTION 

1. Materials 

HBF4, methanol, KMnO4, H2SO4, 30% aq. H2O2, hydrazine hydrate, were purchased from Wako 

Pure Chemical Industries, Ltd. Graphite foil was provided from KANEKA. All the chemicals were 

used directly without further purification. 

 

2. Characterization instrumentation 

Elemental analyses were performed by PERKINELMER 2400II. Freeze-dried of GO was 

performed by ADVANTEC DRZ350WC. XPS was measured by JPS-9030 with a pass energy of 

20 eV. The crystalline structure of samples was characterized by X-ray diffraction (XRD) using a 

PANalytical Co. X’ part PRO using Cu Kα radiation (= 1,541 Å) in the 2θ range of 5–75°. The 

operating tube current and voltage were 30 mA and 40 kV, respectively. The data was collected at 

the step size of 0.017° and the type of scan was continuous. The UV-Vis measurements were 

conducted on a JASCO V-670 spectrophotometer. The morphology was measured by transmission 

electron microscopy (TEM) JEOL JEM-2100F and atomic force microscopy (AFM) SHIMADZU 

SPM-9700HT, while the functional groups on the surface of prepared catalyst were recorded by 

Fourier transform infrared spectrometer (FT-IR SHIMADZU IR Tracer 100), the sample for FT-

IR were dried and mixed with KBr, and then pressed up to 1.3 mm-diameter pellets. The products 

were quantified by gas chromatography GC (Shimadzu GC-2014 equipped with flame ionized 

detector FID detector). Electrical conductivities were measured by using MITSUBISHI 

CHEMICAL ANALYTECH MCP-T610. The cyclic voltammograms of the second cycle were 

collected on Solartron 1287 electrochemical instrument at the scan rate 50 mV s-1. Raman spectra 

were measured by Horiba Jobin Yvon Inc. T-64000. The thermogravimetry analysis (TGA) was 

conducted on a RIGAKU TG 8121. 

Solid-state 13C NMR spectra were recorded using an NMR system (11.7 T magnet, DD2 

spectrometer; Agilent technology Inc.) at a magic angle spinning (MAS) speed of 10 kHz. A single 

pulse sequence with a 3.2 µs pulse and repetition time (10 s) was applied. The signal of TMS was 

applied to a reference at 0 ppm. Because a broad background 13C signal which stems from a spacer, 
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a top cover and a bottom drive tip in a MAS sample rotor was not negligible, we measured 13C 

spectra of not only the samples in sample rotors but also of blank (the sample rotors only). The net 

signal spectra were obtained by subtracting the blank spectra from the former spectra including 

sample and background signal. Each spectrum was obtained by accumulation over 5000 scans. 

 

3. Preparation of CGO 

Natural flake graphite (3.0 g) was stirred in 95% H2SO4 (75 mL). KMnO4 (9.0 g) was gradually 

added to the solution keeping the temperature <10 °C. The mixture was then stirred at 35 °C for 2 

h. The resulting mixture was diluted by water (75 mL) under vigorous stirring and cooling so that 

temperature does not exceed 50 °C. The suspension was further treated by 30% aq. H2O2 (7.5 mL). 

The resulting graphite oxide suspension was purified by centrifugation with water until 

neutralization, and freeze-dried. 

Highly oxidized chemical graphene oxide (HCGO) was produced by applying the same procedure 

as above replacing graphite by CGO.  

 

4. Preparation of GO samples for elemental analysis 

GO is hydrophilic, and adsorb ca. 10 wt% of water by exposing air. We dried GO under vacuum 

at 50 °C for three days, of which method is following a previous report.15,35 

 

5. Li-ion battery anode sheets preparation 

The working electrodes were made of active material (graphite and rGO), conductive material 

(acetylene black), and binder (Polyvinylidene fluoride) in a weight ratio of 7:2:1 by using N-

Methyl-2-pyrrolidone as a solvent and a copper foil as the current collector. In order to obtain the 

homogeneous active and conductive material powder, both materials were mixed in a distilled 

water-ethanol solution (v/v, 1/1). After mixing, the solution was filtered using Merck Millipore 

JAWP04700 filter. The powder was freeze and then freeze-dry under vacuum at 30 °C for 24 h. 

The dry powder was set into ball-milling for 30 min at 300 RPM to reduce the particle size. Then 

the powder was at first mixed with NMP to obtain a homogeneous slurry and then with the binder. 
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The slurry (active material, conductive material, binder) was spread on a copper foil using a Doctor 

blade (100 µm thickness). The sheet was dried under vacuum at room temperature for 24 h and in 

air at 120 °C for 20 min. Finally, sheets with a diameter of 15.95 mm were punched and pressed.  

 

6. Coin cells assembling 

The CR2032 coin cells were assembled in an argon-filled glove box using metallic lithium as 

the counter electrode with a Whatman 1823-257 as a separator and 70 µL electrolyte. The 

electrolyte was 1 M L-1 LiPF6 dissolved in a mixture of ethylene carbonate (EC), diethyl carbonate 

(DEC) (v/v, 3/7). 

 

7. Battery cycling 

The charge and discharge cycling tests were performed using a multi-channel battery tester (580 8 

channel Battery Cycler Scribner Associates Incorporated) with a voltage window of 0.01 V and 3 

V. Each cells were subject to discharge charge cycles at different current rates: 1C, 2C, 5C, 10C, 

20C, 50C, 100C, and 1C for stability. All currents have been calculated using 372 mAh g-1 as a 

theoretical specific capacity. 

 

8. Oxidation of benzyl alcohol 

Typically, 0.3 mmol of benzyl alcohol, 20 mg of GO, and 0.5 mL of dichloroethane were added to 

30 mL round bottom flask, and the mixture was heated at 60 °C under air. After 12 hours, the 

reaction mixture was cooled and analyzed by gas chromatography using decane as an internal 

standard. 
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CHAPTER 3 

Sophisticated rGO synthesis and 

pre-lithiation unlocking full-cell 

lithium-ion battery high-rate 

performances  

 

ABSTRACT: For the application to portable devices and storage of renewable energies, 

high-performance lithium-ion batteries are in great demand. To this end, the development 

of high-performance electrode materials has been actively investigated. However, even 

if new materials exhibit high performance in a simple evaluation, namely half-cell tests, 

it is often impossible to obtain satisfactory performance with an actual battery (full cell). 

In this study, the structure of graphene analogs is modified in various ways to change 

crystallinity, disorder, oxygen content, electrical conductivity, and specific surface area. 

These graphene analogs are evaluated as negative electrodes for lithium-ion batteries, and 

we found reduced graphene oxide prepared by combination of chemical reduction and 

thermal treatment was the optimum. In addition, a full cell is fabricated by combining it 

with LiCoO2 modified with BaTiO3 which is applicable to high-speed charge-discharge 

cathode material developed in our previous research. In general, pre-lithiation is 

performed for the anode when assembling full cells. In this study, we developed a "direct 

pre-lithiation" method in which the electrode and lithium foil were in direct contact before 

assembling a full cell, and created a lithium-ion battery with an output of 293 Wh kg-1 at 

8,658 W kg-1.  
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I. INTRODUCTION 

In the past few decades, tremendous efforts have been made to develop high-performance 

electrode materials. Materials with low working potentials, such as Si, Ge, and Sn, have 

been investigated as anode materials due to their high capacity.1–3 However, all of them 

lack in rate capability and stability induced by significant volume expansion.4 Carbon-

based materials, such as graphite and hard carbon, present even lower working 

potentials.5 Carbon-based materials show excellent stability due to their relatively limited 

volume expansion;6,7 however, compared to Si, Ge, and Sn, they have a lower capacity. 

The carbon-based materials also suffer from slow rate capability due to the slow 

intercalation process. In the recent years, graphene-based materials have emerged as a 

solution to improve both the capacity and capability performances of anode materials.8 

Amidst the high working potential materials, LiCoO2 became by far the most popular 

layered transition metal oxide for the cathode. It has a high theoretical capacity of 274 

mAh g-1 and limited self-discharge; in contrast, LiCoO2 typically has limited cyclability 

and poor high rate capability.9,10 To solve these problems, the deposition of Al2O3 layer 

via atomic layer deposition technic on LiCoO2 was generally applied improving both the 

cyclability and rate performances.11–13 We previously reported the stable and high rate 

capability cathode material composed of BaTiO3 decorated LiCoO2 (BTO-LCO) 

prepared by a simple sol-gel route.14,15 We experimentally proved the incorporated 

artificial dielectric layer promotes the Li migration at the triple-phase, namely BTO-

LCO-electrolyte, interface. 

In the past research, anode and cathode were often separately evaluated by assembling 

half-cell using Li foil as a counter electrode. But, the technological transfer from half-

cell to full-cell is limited in performances due to maladjusted choice of anode that lacks 

in stability, cyclability, and rate capability. Combined with our specially designed high 

rate performance cathode (BTO-LCO), graphene has the potential to solve those 

problems due to its flexibility limiting cracking during cycling, high capacity, excellent 

cyclability, and high rate capability;16–18 however, a clear guideline for the optimization 

of graphene structure for LIBs has not been provided.  

Herein, we design various graphene analogs as anode for LIBs by reducing graphene 

oxide (GO) using chemical, thermal, and microwave reduction methods. The graphene 

analogs are evaluated by half-cell using Li foil as a counter electrode, then by full-cell 
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using BTO-LCO cathode and graphene anode. The results demonstrate the successful 

technology transfer from high-performance cathode half-cells toward higher full-cell 

performance. 

II. RESULTS AND DISCUSSION 

II.1. Synthesis and characterization of anode 

materials 

The anode materials, graphene analogs, were synthesized from graphite, through its 

consecutive oxidation, exfoliation, and reduction. Oxidation and exfoliation of graphite 

were performed by our modified Hummers’ method to obtain 0.83 wt% graphene oxide 

(GO) dispersion in water.19 Then, the as-prepared materials were firstly chemically 

reduced using hydrazine (62.5  µL g-1 and 1 mL g-1), hydrazine scavenges oxygen 

functional groups and breakdown into N2H2 and H2O to produce reduced graphene oxide 

(rGO) with the oxygen content of 39 wt.% and 14 wt.%, termed as HrGO39 and HrGO14, 

respectively.19–23 Next, both HrGOs were further reduced by heating in a tube furnace or 

microwave reactor. In these thermal treatments, oxygen functional groups and graphene 

decomposes into CO and CO2 gases.24–26 In the tube furnace, the samples were heated 

under N2 from 0 to 300 °C in 3 hours, 300 to 1,000 °C in 35 minutes, and kept at 1,000 

°C for 3 hours; samples were named HrGOXT (X= 39 or 14). For microwave treatment, 

the samples were exposed to 750 W microwave under N2 for 5 seconds, reaching 1,000 

°C within 2 seconds; samples were named HrGOXMW (X= 39 or 14). In the case of 

HrGO39MW, microwave treatment results in fast and large CO and CO2 generation 

inducing an enormous pressure between graphene layers resulting in their exfoliation and 

in the increase of their pore size diameter (Table 1). 

Next, the structural analyses of graphene analogs were performed. X-ray diffraction 

(XRD) patterns (Figure 1a and 2) showed the homogeneous expansion of interlayer 

distance of graphite from 0.34 nm to 0.88 nm by oxidation (Figure 1ai and 2). A mild 

chemical reduction slightly narrowed the interlayer distance of HrGO39 to 0.79 nm 

(Figure 1aii), while substantial chemical reduction caused amorphization of HrGO14 

(Figure 1av). The thermal reduction at 1,000 °C for 3 hours provided similar amorphous 

material (Figure 1aiii and 1avi). After microwave treatment, peaks at 26 ° became 
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sharper, suggesting partial graphitization (Figure 1aiv and 1avii), while the intensity of 

HrGOXMW remains 60 times lower than the original graphite (Figure 2).  

Table 1: Effect of thermally induced CO and CO2, SSA, and conductivity of rGOs. 

  

Reducing method 

Hydrazine 62.5  µL g-1 Hydrazine 1 mL g-1 

 Tube furnace Microwave  Tube furnace Microwave 

Sample name HrGO39 HrGO39T HrGO39MW HrGO14 HrGO14T HrGO14MW 

Effect of thermally 

induced CO and CO2 
- 

rGO 

decomposition 

rGO 

exfoliation 
- Low Low 

Oxygen wt% 39.07 2.87 4.77 14.42 5.49 6.52 

SSA (m2 g-1) 88 93 532 217 422 333 

Pore diameter (nm) 3.5 5.2 26.5 6.8 6.7 7.4 

Pore Volume (cm3 g-1) 5.7 10-2 0.111 3.512 0.354 0.662 0.592 

Conductivity (S m-1) 7.7 10-2 5.6 103 4.0 102 2.1 103 4.4 103 1.7 103 
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 Figure 1: Characterization of (i) GO, (ii) HrGO39, (iii) HrGO39T, (iv) HrGO39MW, (v) HrGO14, (vi) 

HrGO14T, (vii) HrGO14MW. (a) XRD, (b) RAMAN spectroscopy, (c) XPS C1s narrow scan.  
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Raman spectra (Figure 1b and 3) were measured to confirm the degree of the defect 

(intensity ratio of D band and G band; ID/IG) and the formation of few-layer (shape of 2D 

band).27 Through the graphite oxidation into GO, the ID/IG  changes from 0.1 to 1.1, and 

its 2D band became symmetrical, indicating the formation of defects and few-layer 

material respectively. After reduction by hydrazine, the ID/IG values of HrGO39 and 

HrGO14 were 1.1 and 1.4, respectively, indicating the presence of large amounts of defect 

Figure 2: XRD spectra of (i) graphite and (ii) HrGO14MW. 

Figure 3: RAMAN spectra of graphite. 
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and disorder.19,27 After further reduction in tube furnace, both HrGO39T and HrGO14T 

showed an ID/IG value of 1.4. The microwave treatment of HrGOs did not affect to the 

ID/IG values of HrGO39MW and HrGO14MW. These results indicate the limited defect 

healing effects of these treatments.  

Morphological observation of rGOs was performed by SEM and TEM analyses (Figure 

4 and 5). Both analyses confirm the few-layer structures of all rGOs. Furthermore, in 

good agreement with our previous work,19 the formation of a wrinkled 2D structure was 

confirmed for HrGO39MW, HrGO14, HrGO14T, HrGO14MW, while HrGO39 preserved the 

flat 2D structure of GO.  
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Figure 4: SEM image of (a) HrGO39, (b) HrGO39T, (c) HrGO39MW, (d) HrGO14, (e) HrGO14T, (f) 

HrGO14MW. 

 



111 

 

 

 

  

Figure 5: TEM image of (a) HrGO39, (b) HrGO39T, (c) HrGO39MW, (d) HrGO14, (e) HrGO14T, (f) 

HrGO14MW. 
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Elemental analysis of as-prepared samples (Table 1 and 2) shows the formation of oxygen 

functional groups through oxidation; the oxygen content increased from 1.9 wt.% to 47.6 

wt.%.19 After chemical reduction, the oxygen content decrease reaching 39.1 wt.% and 

14.4 wt.% for HrGO39 and HrGO14, respectively. The microwave treatment resulted in 

4.8 wt.% and 6.5 wt.% for HrGO39MW and HrGO14MW, respectively, while the tube 

furnace treatment resulted in 2.9 wt.% and 5.5 wt.% for HrGO39T and HrGO14T 

respectively. The higher oxygen content HrGO was more efficiently reduced. We believe 

that the reduction was accelerated by CO originated from oxygen functional groups.24 

X-ray photoelectron spectroscopy (XPS) was conducted to identify oxygen functional 

groups (Figure 1ei and 6). The narrow C 1s spectra of GO showed the presence of C-OH 

(286.5 eV), C-O-C (287.1 eV), C=O (288.2 eV), and C(=O)O (289.2 eV) upon oxidation, 

and the removal of C-OH and C-O-C was observed upon reduction steps. As C=O groups 

remained nearly the same amount after reduction, its superior stability toward reduction 

methods was recognized.28 

Element (wt%) C  O H N S 

Graphite (XPS) 98.14 1.86 - - - 

GO 45.41 47.6 2.93 0.73 3.33 

HrGO39 57.20 39.07 2.07 0.66 (1.00) 

HrGO39T 96.228 2.87 (0.39) 0.51 - 

HrGO39MW 93.86 4.77 (0.58) 0.57 (0.22) 

HrGO14 80.85 14.42 (1.06) 3.17 (0.50) 

HrGO14T 91.88 5.49 (0.61) 1.89 (0.13) 

HrGO14MW 91.02 6.52 (0.53) 1.76 (0.17) 

Table 2: Elemental analysis of GO and rGOs. XPS analysis of graphite. The symbol “–“ indicates 

no signal detected, “()” indicates signal within error. 
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The electroconductivity was measured by a four-point probe method (Table 1). GO was 

not sufficiently conductive to be measured, but after mild and strong chemical reduc-

tions, the conductivity increased to 7.7×10-2 and 2.1×103 S m-1, respectively.  After tube 

furnace treatment, the conductivity increased up to 5.6×103 and 4.4×103 S m-1 for 

HrGO39T and HrGO14T, respectively. These results denote the correlation between the 

increase of the conductivity and the decrease of oxygen functional group of graphene. 

The microwave treatment also modified the conductivity to 4.0×102 and 1.7×103 S m-1 

for HrGO39MW and HrGO14MW, respectively, yet the values were lower than expected. 

This is caused by the morphology of HrGOXMW; the HrGOXMW are tough and sponge-

like structure, making it difficult to form pellets for electroconductivity measurement. 

Therefore, electron conductivity may be underestimated for HrGOXMW. 

Finally, the porous structure and the specific surface areas (SSA) of all samples were 

investigated by nitrogen isothermal absorption. The results are summarised in Table 1. 

The adsorption-desorption isotherm (Figure 7a,b) of all samples shows a type IV nitrogen 

adsorption with a capillary condensation step and a hysteresis loop between the 

adsorption and desorption, which correspond to a mesoporous material. The SSA was 

evaluated by Brunauer–Emmett–Teller (BET) method for all rGOs (Table 1). Chemically 

reduced rGOs displayed higher SSA as the hydrazine amount was increased, reaching 88 

m2 g-1 and 217 m2 g-1 for HrGO39 and HrGO14, respectively. These results suggest the 

presence of oxygen functional groups limits N2 to access interlayer spaces.29,30
 Initially, 

Figure 6: XPS C1s of graphite. 
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HrGO14 has an wrinkled 2D structure (Figure 4d and 5d), and mild oxygen content, 

expressing a mild SSA of 217 m2 g-1. The tube furnace treatment slowly removes the 

oxygen functional groups preserving the wrinkled 2D structure of HrGO14 (Figure 4e and 

5e) resulting in mild SSA improvement up to 422 m2 g-1. The microwave treatment 

removes, quickly and on a short period, the oxygen functional groups preserving the 

wrinkled 2D structure of HrGO14 (Figure 4f and 5fd) resulting in smaller SSA 

improvement compared with tube furnace method, reaching only 333 m2 g-1. 

 

Figure 7: Isothermal N2 absorption-desorption of (a) HrGO39s and (b) HrGO14s. Pore volume 

distribution of (c) HrGO39s and (d) HrGO14s. (i) HrGO39, (ii) HrGO39T, (iii) HrGO39MW, (iv) 

HrGO14, (v) HrGO14T, (vi) HrGO14MW. 

 

Initially, HrGO39 has a flat 2D structure (Figure 4a and 5b), and large oxygen content, 

expressing a small SSA of 88 m2 g-1. The tube furnace treatment slowly removes the 

oxygen functional groups preserving the flat 2D structure of HrGO39 (Figure 4b and 5b) 

resulting in small SSA improvement up to 93 m2 g-1. The microwave treatment 

explosively removes the large amount of oxygen functional groups of HrGO39 resulting 

in exfoliated wrinkled 2D structure (Figure 4c and 5c), and large SSA improvement up 
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to 532 m2 g-1. This last result indicates that in order to obtain a large SSA rGO needs to 

have both low oxygen content and a wrinkled 2D structure. The pore size distribution 

was evaluated by Barrett-Joyner-Halenda (BJH) method for all rGOs (Figure 7 and Table 

1). The results indicate that the chemical reduction can generate mesopores, reaching a 

pore volume of 0.057 and 0.354 cm3 g-1 for HrGO39 and HrGO14, respectively. The results 

for thermal reduction of those samples indicate the accentuation of the mesopore amount. 

For HrGO14, the reduction by furnace method is more effective than the microwave 

method, reaching 0.662 and 0.592 cm3 g-1 for HrGO14MW and HrGO14MW, respectively. 

For HrGO39, the reduction by microwave method is more effective than the furnace 

method, reaching a pore volume of 3.512 and 0.111 for HrGO39MW and HrGO39T, 

respectively. The drastic increase of pore volume for HrGO39MW is correlated with the 

formation of macropores resulting from the explosive gas formation during the reduction 

reaction. This change in the pore volumes leads to a pore size diameter of HrGO39MW to 

26.5 nm, where pore sizes of all other samples remained between 3 to 8 nm. These results 

indicate that the oxygen content of GO, the heating time, and heating speed should be 

chosen accordingly to optimize the pore volume distribution and the SSA by thermal 

treatment. Specifically, when oxygen content is low (14.4 wt.%), the heating time has 

more influence than heating speed, in contrast, when the oxygen content is high (39.1 

wt%), the heating speed has more influence than heating time. 

Taken together, precise control over rGO properties can be possible by simply designing 

the reduction routes. In other words, performing the same reduction on rGOs lead to 

different results when different oxygen content rGOs are used.  

II.2. LITHIUM-ION 

II.2.1. Half-cell study 

The characteristics and performances of anode materials were assessed by a constant 

charge-discharge test in half cell vs. Li+/Li. Based on the graphite’s theoretical capacity, 

the current rate was fixed as 1C = 372 mA g-1, and the voltage window was fixed between 

0.01 V and 3.0 V to realize complete discharge and charge of lithium into the carbon host. 
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Figure 8: Half-cell lithium ion battery results of (i) HrGO39, (ii) HrGO39T, (iii) HrGO39MW, (iv) 

HrGO14, (v) HrGO14T, (vi) HrGO14MW.  (a) galvanostatic charge discharge behavior, (b) and (c) 

rate capacity performances, (d) cycling performances and coulombic efficiency. 

 



117 

 

  

 

 

In Figure 8a, the charge-discharge behavior of HrGO14T is displayed. HrGO14T and other 

rGOs (Figure 9) show adsorption behavior. The difference in behavior transcribes the 

change from battery to capacitor behavior from graphite to rGOs through the oxidation-

reduction processes. The rate performance (Figure 8b and 8c) present the consecutive 

charge response for 5 cycles from 1C to 100C. It demonstrates that all samples, except 

HrGO39, have improved capacity compared to original graphite. This first difference 

highlights the improvement of capacity from graphite to rGOs as a result of lithium 

Figure 9: Charge discharge behavior of (a) HrGO39, (b) HrGO39T, (c) HrGO39MW, (d) HrGO14, (e) 

HrGO14T, (f) HrGO14MW. 
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storage on both sides of graphene layers and internal spaces. Thus, the results for rGOs 

present an improved capacity as the SSA increase, reaching the capacity of 507 and 629 

mAh g-1 at 1C for HrGO14T and HrGO39MW, respectively. At 20C, their capacity decreased 

to 186 and 281 mAh g-1 for HrGO14T and HrGO39MW. These results indicate the higher 

capacity and the superior rate capability of HrGO14T and HrGO39MW. The cyclability of 

HrGO14T and HrGO39MW were evaluated over 500 cycles at 5C (Figure 8d and Figure 10), 

expressing superior stability and excellent coulombic efficiency among all. The charge-

discharge cycling of as-prepared carbon materials showed three phases; at first, the 

capacity decreased until the 20 and 70 cycles, then increased until the 420th and 399th 

cycles, and finally decreased for HrGO14T and HrGO39MW respectively.  

 

 

Next, the potential was plotted against the differential capacity (Figure 11). The storage 

mechanism of lithium by graphene analogs can be divided from 0.01 V to 0.7 V and from 

0.7 V to 3.0 V between the lithium intercalation/deintercalation occurring in graphene 

inter-layer and the lithium adsorption/desorption and redox reactions occurring on the 

graphene surface, respectively. In Figure 12, the capacity evolution above and below 0.7 

V is presented. Bellow 0.7 V, all graphene samples expressed an increase and decrease 

in their deintercalation behavior, originating from graphene interlayer wetting with the 

electrolyte and the formation of the solid electrolyte interface (SEI) formation, 

respectively. The SEI is formed by the decomposition of the solvent and lithium salt into 

a protective layer between the active material and the electrolyte.31 The SEI hiders the 

Figure 10: Cyclability of half-cell LIBs of: (i) HrGO39, (ii) HrGO39T, (iii) HrGO39MW, (iv) 

HrGO14, (v) HrGO14T, (vi) HrGO14MW. 
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Figure 11: Differential capacity plot of half-cell LIBs of: (a) HrGO14, (b) HrGO14MW, (c) HrGO14T, 

(d) HrGO39, (e) HrGO39MW, (f) HrGO39T. 

diffusion of Li+ and isolates graphene from the electrode and the electrolyte leading to 

reduced performance. The SEI is mostly generated from the initial discharge process and 

is sensitive to graphene size, edge to basal plan ratio, pore size, and surface composition. 

Wetting electrode materials also leads to form SEI, and graphene volume change induces 

stress leading to the SEI crack and reformation.32 Above 0.7 V, all graphene samples 

showed three successive phases: 1) a decrease corresponding to the fading of oxygen 

redox reactions at 1.2 V, 1.8 V, and 2.5 V related to graphene carbonyl oxygen functional 

groups; 2) an increase corresponding to the wetting of graphene by the electrolyte 

resulting in an increased active surface; 3) a decrease originating from the continuous 

SEI formation isolating graphene from the electrode and the electrolyte. The maximum 

desorption capacity performances of graphene analogs are observed to correlate with their 

SSA (Figure 13). The HrGOs results indicate that chemical reduction improves both the 

deintercalation and desorption behaviors by removing oxygen functional groups from its 

interlayer and surface (Figure 11a,d,12a,d). Furthermore, compared with thermally 

reduced samples, chemically reduced HrGOs did not present 
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Figure 12: Capacity evolution above and below 0.7 V of half-cell LIBs of: (a) HrGO14, (b) HrGO14MW, 

(c) HrGO14T, (d) HrGO39, (e) HrGO39MW, (f) HrGO39T. 

any increase of capacity related to the Li+ desorption denoting the fasten of SEI formation 

from excess oxygen functional groups. For HrGO14, the tube furnace reduction method 

improved the intercalation and adsorption behavior, while the microwave method 

improved the intercalation behavior partially and only stabilized the adsorption behavior 

(Figure 11,12). Compared with HrGO14, HrGO14MW has similar wrinkled 2D structure 

(Figure 5d,e), superior SSA, from 217 mm2 g-1 to 333 m2 g-1
, and lower oxygen content, 

from 14 wt.% to 6.5 wt.%. This difference results in mild capacity increase and clear 

stability improvement, demonstrating that the capacity is related with the SSA and that 

large amount of oxygen tends to reduce graphene LIBs stability. Compared with 

HrGO14MW, HrGO14T has identical wrinkled 2D structure (Figure 5f), similar oxygen 

content, 5.5 wt.%, and larger SSA, 422 m2 g-1. This difference confirms that the capacity 

is correlating with the SSA and that small oxygen content difference has limited effect 

on graphene LIBs stability. 
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Figure 13: Maximum desorption capacity versus SSA of graphene analogs. 

Above chemical and morphological analysis of HrGO14x revealed the decrease of the 

oxygen content and the increase of SSA and micropore amount, which are responsible 

for the superior capacity performance of HrGO14T over HrGO14MW. For HrGO39, the tube 

furnace heating reduction method improved the intercalation and the adsorption behavior, 

while the microwave method improved the intercalation behavior and more drastically 

the adsorption behavior (Figure 11,12). Compared with HrGO39, HrGO39T has similar flat 

2D structure (Figure 5a,b) and SSA, from 88 mm2 g-1 to 93 m2 g-1
, and lower oxygen 

content, from 39 wt.% to 2.9 wt.%. This difference results in slight capacity performance 

and clear stability improvement, highlighting that large amount of oxygen tends to reduce 

graphene LIBs stability. Compared with HrGO39T, HrGO39MW has similar oxygen 

content, 4.8 wt.%, an original wrinkled 2D structure (Figure 5c), and a larger SSA, 532 

m2 g-1. This difference indicates that the capacity is drastically improve by the formation 

of a wrinkled 2D structure as it leads to superior SSA, and that small oxygen content 

difference has limited effect on graphene LIBs stability. According to the chemical and 

morphological analyses, superior performance of HrGO39MW is due to its low oxygen 

content, which reduce SEI formation, superior SSA, which increase intercalation and 

adsorption behaviors, and original macropores corresponding to 6 times more pore 

volume compared with HrGO14T, which is correlated with the drastic increase of the 

absorption capacity. Furthermore, among all samples, HrGO39MW expressed significant 

fluctuation in its capacity through cycling despite that it showed the highest capacity; this 

phenomenon would be related to the large pore volume and diameter of HrGO39MW, 
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which accelerates its wetting rate and SEI formation, leading to faster active surface 

increase and graphene isolation from the electrode and the electrolyte, respectively. 

These results indicate that in order to produce the best rGO for LIBs in terms of capacity, 

rate capability, and cyclability; rGO should be synthesized from GO at its highest oxygen 

level, the reduction steps should start with a fast temperature increase, to exfoliate 

graphene layers taking advantage of oxygen functional groups decomposition, and 

maintain this high temperature to remove residual oxygen functional groups. As obtained 

rGO will displayed high SSA, high conductivity, and low oxygen content, which 

respectively mainly influence rGO capacity, capability, and stability. 

II.2.2. Full-cell study 

Convinced by the above results, we decided to assemble a full-cell combining HrGO39MW, 

and our previously reported BTO-LCO as a cathode (Figure 14). We expected that both 

of these high rate capability materials hold great promises for high rate capability full-

cell LIBs system. In order to build a full-cell system, irreversible consumption of lithium 

upon cycling must be considered since the lithium amount is limited in the full-cell; in 

the case of a half-cell, excess lithium can be supplied from the counter Li electrode.32 The 

lithium consumption can be caused by (1) the SEI formation and (2) the additional SEI 

formation at the cracks upon charge/discharge cycle. As for cathode, BTO-LCO 

suppresses the formation of native SEI at a triple-phase junction, where the redox reaction 

actively occurs.14,15 However, carbon-based electrodes suffer from large irreversible 

lithium consumption upon the first lithiation process (Table 3). 

To overcome this problem, we investigated several pre-lithiation methods; chemical pre-

lithiation, electrochemical pre-lithiation, and direct contact pre-lithiation (DCPL).33–35 

Compared with chemical and electrochemical pre-lithiation DCPL is fast, easy, and 

scalable. For these reasons, DCPL was applied to our rGOs (Figure 15a). The DCPL was 

performed by pressing the anode and lithium foil in the presence of 1 M L-1 LiPF6 

dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) (v/v, 3/7).  

By using the LIPF6 electrolyte, we consider a flow of electron is created due to the 

difference of potential between the active anode material and the lithium foil.33–35 In order 

to control and optimize the DCPL, a time study was conducted (Figure 16). The results 

showed that as the DCPL time increases, more lithium is absorbed into the carbon 

electrode, decreasing its half-cell initial potential. The DCPL was continued until 

potential values were stabilized (state of charge (SOC) of 50%). 
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Sample name HrGO39 HrGO39T HrGO39MW HrGO14 HrGO14T HrGO14MW 

First discharge 

(mAh g-1) 
1472 1163 2191 1529 1791 1428 

First charge 

(mAh g-1) 
379 402 947 581 612 480 

Capacity loss 

(mAh g-1) 
1093 761 1244 948 1179 948 

Table 3: Charge discharge capacity of rGOs for the first cycle. 

 

Figure 14: Half-cell capacity response of BaTiO3 modified LiCoO2 lithium ion battery. 
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Figure 15: (a) illustration and digital images of DCPL treatment, (b) Ex-situ XRD of pre-lithiated 

graphite electrode. 
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In the case of graphite after only 15 min of DCPL, the potential stabilized at 100 mV, 

indicating complete pre-lithiation, while for HrGO39MW, the pre-lithiation required 2 

 

HrGO39MW 

No treatment Pre-lithiation 

First discharge 

(mAh g-1) 
1872 234 

First charge 

(mAh g-1) 
624 661 

Figure 16: Initial open circuit voltage of (i) graphite and (i) HrGO14T half-cell as pre-lithiation 

time increase. 

 

Table 4: Effects of pre-lithiation of HrGO14T charge discharge capacity during the first cycle. 
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hours to reach a stable value of 250 mV. The lithiation of the graphite electrode was 

visually recognizable; changing color from black to yellow was observed (Figure15a). 

The progress of lithiation was also confirmed by XRD; its original structure showed a 

peak at 26.3° while after DPCL it displayed a mixture of graphite interacted compound 

stage 1 at 23.9° and stage 2 at 25.1° (Figure 15b). The effect of DCPL on graphite or 

HrGO14T anode half-cells was evaluated, as a result, the initial irreversible capacity 

decreased (Table 4), and the SEI formation within 1.4 V to 1.0 V disappeared (Figure 

17), indicating the successful SEI formation by our DCPL treatment.  

In light of these positive results, full-cell was prepared by applying DCPL on anode mate-

rial prior assembly. Two full-cells were assembled composed of a BTO-LCO cathode 

and a HrGO39MW anode using a capacity ratio of anode to cathode (N/P ratio) of 1.1 and 

2.3, respectively named LC-rGO1.1 and LC-rGO2.3. The full-cells were evaluated at 

constant current at various current rate from 1C (1C = 160 mA g-1) to 100C.  

 

 

 

 

 

 

 

 

Figure 17: Half-cell lithium ion battery discharge behavior of 1st and 2nd cycle of: HrGO14MW (a) 

no treatment, (b) pre-lithiation. 
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The results (Figure 18a) show that both designs have similar capacity performances at 

1C and 2C showing a capacity of 154 mAh g-1. At higher current density LC-rGO2.3 

showed superior rate capability performance compared with LC-rGO1.1, at 20C LC-

rGO2.3 showed 88 mAh g-1 while LC-rGO1.1 showed 10 mAh g-1, corresponding to 56% 

Figure 18: Full-cell lithium ion battery results of LC-rGO  with N/P equal to (i) 1.1, (ii) 2.3. (a) 

Full-cell rate performances, (c) Full-cell cyclability at 1C, (c) full-cell galvanostatic charge 

discharge behavior, (d) Ragone plots of lithium metal oxide full-cell. 
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and 6% capacity retention once compared with the maximum capacity at 1C. 

Furthermore, stability study indicated that LC-rGO1.1 start fading after only 50 cycles 

(Figure 18bi), while LC-rGO2.3 remained stable even after 180 cycles (Figure 18bii). All 

these results demonstrate the higher capacity, rate capability, and stability of LC-rGO2.3 

over LC-rGO1.1. The poor stability and capability of lower N/P ratio LC-rGO might be 

due to the irreversible capacity consumption of rGO electrode from the LC electrode, as 

in this configuration rGO volume deformation upon lithium absorption and desorption 

lead to higer mechanical stress and SEI cracking.  Moreover, the charge-discharge 

behavior of LC-rGO2.3 full-cell showed excellent battery behavior similar to BTO-LCO 

half-cell, displaying a flat charge-discharge plateau at 3.7 V (Figure 18cii). Furthermore, 

LC-rGO2.3 showed similar to better capacity performances compared with BTO-LCO 

cathode half-cell; at 50C, the full-cell shows 42 mAh g-1 while the half-cell shows close 

to 0 mAh g-1 (Figure 14). These results demonstrate the superiority of our pre-lithiated 

rGO over lithium foil, opening the door for high rate performance LIBs. Compared with 

other recently reported LIBs full-cells (Figure 18d), our LC-rGO full-cell showed 

superior power and energy densities;36–41  LC-rGO2.3 delivered 604 Wh kg-1 at 432 W 

kg-1 and maintained 293 Wh kg-1 at 8,658 W kg-1 and 20 Wh kg-1 at 43,333 W kg-1.  

 

 

III. CONCLUSION 

In summary, the combination of chemical and thermal reduction process allows excellent 

control over rGO crystallinity, disorder, oxygen content, conductivity, and surface area. 

These differences are ascribed to the amount and speed of oxygen functional group 

decomposition. The application of as-prepared rGOs toward half-cell LIBs technology 

reveals that the control of such reduction methods and thus control over rGO properties 

is a key to unlock high capacity, high rate capability, high stability anode materials. 

Furthermore, optimized rGO applied toward full-cell LIBs using our original DCPL 

method allows perfect technology transfer from our previous high rate BTO-LCO 

cathode half-cell toward higher energy density and power density full-cell. 
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EXPERIMENTAL SECTION 

1. Materials 

HBF4, methanol, KMnO4, H2SO4, 30% aq. H2O2, hydrazine hydrate, were purchased 

from Wako Pure Chemical Industries, Ltd. Graphite foil was provided from KANEKA. 

All the chemicals were used directly without further purification. 

 

2. Characterization instrumentation 

Elemental analyses were performed by PERKINELMER 2400II. Freeze-dried of GO 

was performed by ADVANTEC DRZ350WC. XPS was measured by JPS-9030 with a 

pass energy of 20 eV. The crystalline structure of samples was characterized by X-ray 

diffr

Å) in the 2θ range of 5–75°. The operating tube current and voltage were 30 mA and 

40 kV, respectively. The data was collected at the step size of 0.017° and the type of scan 

was continuous. The UV-Vis measurements were conducted on a JASCO V-670 

spectrophotometer. The morphology was measured by transmission electron microscopy 

(TEM) JEOL JEM-2100F and atomic force microscopy (AFM) SHIMADZU SPM-

9700HT, while the functional groups on the surface of prepared catalyst were recorded 

by Fourier transform infrared spectrometer (FT-IR SHIMADZU IR Tracer 100), the 

sample for FT-IR were dried and mixed with KBr, and then pressed up to 1.3 mm-

diameter pellets. The products were quantified by gas chromatography GC (Shimadzu 

GC-2014 equipped with flame ionized detector FID detector). Electrical conductivities 

were measured by using MITSUBISHI CHEMICAL ANALYTECH MCP-T610. The 

cyclic voltammograms of the second cycle were collected on Solartron 1287 

electrochemical instrument at the scan rate 50 mV s-1. Raman spectra were measured by 

Horiba Jobin Yvon Inc. T-64000. The thermogravimetry analysis (TGA) was conducted 

on a RIGAKU TG 8121. 

Solid-state 13C NMR spectra were recorded using an NMR system (11.7 T magnet, DD2 

spectrometer; Agilent technology Inc.) at a magic angle spinning (MAS) speed of 10 kHz. 

A single pulse sequence with a 3.2 µs pulse and repetition time (10 s) was applied. The 

signal of TMS was applied to a reference at 0 ppm. Because a broad background 13C 

signal which stems from a spacer, a top cover and a bottom drive tip in a MAS sample 

rotor was not negligible, we measured 13C spectra of not only the samples in sample rotors 
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but also of blank (the sample rotors only). The net signal spectra were obtained by 

subtracting the blank spectra from the former spectra including sample and background 

signal. Each spectrum was obtained by accumulation over 5000 scans. 

 

3. Preparation of CGO 

Natural flake graphite (3.0 g) was stirred in 95% H2SO4 (75 mL). KMnO4 (9.0 g) was 

gradually added to the solution keeping the temperature <10 °C. The mixture was then 

stirred at 35 °C for 2 h. The resulting mixture was diluted by water (75 mL) under 

vigorous stirring and cooling so that temperature does not exceed 50 °C. The suspension 

was further treated by 30% aq. H2O2 (7.5 mL). The resulting graphite oxide suspension 

was purified by centrifugation with water until neutralization, and freeze-dried. 

Highly oxidized chemical graphene oxide (HCGO) was produced by applying the same 

procedure as above replacing graphite by CGO.  

 

4. Preparation of GO samples for elemental analysis 

GO is hydrophilic and adsorb ca. 10 wt% of water by exposing air. We dried GO 

under vacuum at 50 °C for three days, of which method is following a previous report.19,42 

 

5. Li-ion battery anode sheets preparation 

The working electrodes were made of active material (graphite and rGO), conductive 

material (acetylene black), and binder (Polyvinylidene fluoride) in a weight ratio of 7:2:1 

by using N-Methyl-2-pyrrolidone as a solvent and a copper foil as the current collector. 

In order to obtain the homogeneous active and conductive material powder, both 

materials were mixed in a distilled water-ethanol solution (v/v, 1/1). After mixing, the 

solution was filtered using Merck Millipore JAWP04700 filter. The powder was freeze 

and then freeze-dry under vacuum at 30 °C for 24 h. The dry powder was set into ball-

milling for 30 min at 300 RPM to reduce the particle size. Then the powder was at first 

mixed with NMP to obtain a homogeneous slurry and then with the binder. The slurry 

(active material, conductive material, binder) was spread on a copper foil using a Doctor 

blade (100 µm thickness). The sheet was dried under vacuum at room temperature for 24 

h and in air at 120 °C for 20 min. Finally, sheets with a diameter of 15.95 mm were 

punched and pressed.  
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6. Coin cells assembling 

The CR2032 coin cells were assembled in an argon-filled glove box using metallic 

lithium as the counter electrode with a Whatman 1823-257 as a separator and 70 µL 

electrolyte. The electrolyte was 1 M L-1 LiPF6 dissolved in a mixture of ethylene 

carbonate (EC), diethyl carbonate (DEC) (v/v, 3/7). 

 

7. Battery cycling 

The charge and discharge cycling tests were performed using a multi-channel battery 

tester (580 8 channel Battery Cycler Scribner Associates Incorporated) with a voltage 

window of 0.01 V and 3 V. Each cells were subject to discharge charge cycles at different 

current rates: 1C, 2C, 5C, 10C, 20C, 50C, 100C, and 1C for stability. All currents have 

been calculated using 372 mAh g-1 as a theoretical specific capacity. 

 

8. Oxidation of benzyl alcohol 

Typically, 0.3 mmol of benzyl alcohol, 20 mg of GO, and 0.5 mL of dichloroethane were 

added to 30 mL round bottom flask, and the mixture was heated at 60 °C under air. After 

12 hours, the reaction mixture was cooled and analyzed by gas chromatography using 

decane as an internal standard. 
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CHAPTER 4 

 

Iron nanoparticle templates for 

constructing 3D graphene frame-work 

with enhanced performance in sodium-

ion batteries 

ABSTRACT: This study examines the synthesis and electrochemical performance of three-

dimensional graphene for use as Li-ion batteries and Na-ion batteries. The in-situ formation of iron 

hydroxide nanoparticles (Fe(OH)x NPs) of various weights on the surface of graphene oxide, 

followed by thermal treatment at elevated temperature and washing using hydro-chloric acid, 

furnished 3D graphene. The characterization confirmed the prevention of stacking graphene layers 

by over 90% more than thermal treatment without Fe(OH)x. The electrochemical performance of 

the 3D graphene was evaluated as a counter electrode for lithium metal and sodium metal in a half-

cell configuration. This material showed good cycling ability with a charging capacity of 507 mAh 

g-1 at 372 mA g-1 in Li-ion battery and 252 mAh g-1 at 100 mA g-1 in Na-ion battery, which is 

1.4 and 1.9 times higher, respectively,  than the graphene prepared without Fe(OH)x tem-plates. 
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I. INTRODUCTION 
Among all rechargeable batteries, Li-ion batteries (LIBs) certainly improved our lives with their 

high energy density, tiny memory effect, and low self-discharge. Since the commercialization of 

LIBs in 1990, graphite electrode has been used as an anode material despite its small theoretical 

capacity of 372 mAh g-1.1 The small interlayer distance of graphite induces a limited storage space, 

as well as a narrow diffusion pathway for the Li ions, leading to its small electric capacity and low 

rate capability. Furthermore, the small distance between graphite layers hampers the utilization of 

Na ions, which are more abundant in resources than Li ions.2–6  Therefore, the aim of research in 

the area of rechargeable batteries is the development of high capacity electrodes with adequate 

space between graphene layers. 

To address these issues, graphene emerged as a candidate material to provide higher energy and 

power density LIBs and Na-ion batteries (SIBs). Indeed, it is considered that graphene can adsorb 

ions on both sides and defect sites.1,7  However, the aggregation and re-stacking lead to a much 

Figure 1. rGO synthesis: (a) GO, (b) GO-Fe(OH)0.5, (c) GO-Fe(OH)2.5, (d) rGO-FeO0.5, (e) rGO-FeO2.5, (f) G0.5, 

(g) G2.5. 



139 

 

smaller specific surface area than the theoretical value. As a result, the space and pathway for ion 

storage and mobility are reduced, leading to a small capacity and low rate capability. In the present 

work, we report a cost-effective and scalable approach to produce 3D graphene architectures, which 

are unstacked forms of reduced graphene oxide (rGO) with the aid of iron oxide nanoparticles 

(FeOx NPs) between graphene layers. Initially, GO, urea, and FeSO4·7H2O were mixed in water to 

form GO-Fe(OH)x. Then it was dried and thermally treated under N2 to form rGO-FeOx. Finally, 

iron was etched with aq. HCl to form 3D graphene. This research demonstrates that adjusting the 

ratio of FeSO4·7H2O and GO (Fe/GO), and the heating temperature enables the formation of 

excellent materials for LIBs, displaying 745 mAh g-1 at 372 mA g-1 instead of 525 mAh g-1, as well 

as for SIBs, expressing 362 mAh g-1 at 100 mA g-1 instead of 173 mAh g-1. This synthesis approach 

presents a promising route for the large-scale production of rGO as electrode materials for SIBs. 

II. RESULTS AND DISCUSSION 

The 3D graphene was prepared in four steps, as illustrated in Figure 1. For the first step, highly 

dispersible GO was prepared from graphite by our modified Hummers' method (Figure 1a).8,9 In 

the second step, iron hydroxide nanoparticles (Fe(OH)x NPs) were formed on the surface of the 

GO layer by heating the GO, FeSO4·7H2O, and urea in water at 90 °C for 2 hours (Figure 1b,c).10 

The formed GO-Fe(OH)x composite was collected by centrifugation, and then freeze dried. The 

obtained materials were termed GO-Fe(OH)x (x= 0.5, 1.0, 1.5, 2.5). In the third step, GO-Fe(OH)x 

was thermally treated under N2 atmosphere to form unstacked rGO and FeOx composite (rGO-

FeOx), where the GO reduction and FeOx NPs formation occurred simultaneously (Figure 1 d,e). 

The FeOx NPs worked as spacers to prevent the re-stacking of graphene sheets. The samples were 

prepared by introducing various iron amounts: 0 eq., 0.5 eq., 1 eq., 1.5 eq., and 2.5 eq. of the weight 

of GO, respectively. These were termed rGO and rGO-FeOx (x= 0.5, 1.0, 1.5, 2.5). The temperature 

of thermal treatment was investigated from 90 to 600 °C. In the last step, 3D graphene was obtained 

by washing FeOx NPs out with concentrated hydrochloric acid (Figure 1f, g). Obtained samples 

were termed Gx (x= 0.5, 1.0, 1.5, 2.5).  



140 

 

 

 

Iron NPs synthesis. As the role of iron NPs is the cornerstone of this strategy, its synthesis was 

initially optimized. The formation of Fe(OH)x NPs was investigated using NH3 or urea.10 In both 

approaches, Fe(OH)x was obtained by the reaction of iron ions with hydroxyl ions. In the former 

Figure 2. SEM images: (a) aggregated Fe(OH)x produced by NH3, (b) corresponding magnified image, (c) 

FeOx obtained by NH3 method, (d) needle like Fe(OH)x produced by urea, (e) corresponding magnified 

image, (f) FeOx obtained by urea method. 
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situation, dense Fe(OH)x particles were obtained (Figure 2a, b). In contrast, urea produced a fluffy 

Fe(OH)x composed of needle-like particles that were expected to widen the distance between 

graphene interlayers (Figure 2d, e). In the case of urea treatment, we noticed that the walls of the 

reactors were uniformly coated with the orange color of Fe(OH)x, suggesting the slow formation 

of Fe(OH)x translating the uniform formation of GO-Fe(OH). In contrast, in the case of NH3, 

nothing was formed on the walls. Therefore, we concluded that the Fe(OH)x was slowly formed, 

and uniform production of GO-Fe(OH)x was achieved when urea was used. X-ray diffraction 

(XRD) for the iron hydroxide compounds prepared by urea or NH3 showed completely different 

patterns: NH3 provided amorphous Fe(OH)x, while urea provided crystalline Fe(OH)x (Figure 3iii, 

iv), supporting the slow and uniform formation of Fe(OH)x by urea.  

After 600 °C thermal treatment under N2, Fe(OH)x prepared with both NH3 and urea turned into 

similar FeOx particles (Figure 2c, f). XRD analysis revealed Fe3O4 was mainly formed (Figure 3i, 

ii).11 A stronger intensity and sharper peak were observed on the sample prepared by the urea 

method, indicating its higher crystallinity.  

 

Figure 3. XRD patterns of (i) FeOx from Urea, (ii) FeOx from NH3, (iii) Fe(OH)x, (iv) Fe(OH)x, (v) simulation 

of Fe3O4. 
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Figure 4. (a) C 1s XPS of rGO-FeO1.0 composites prepared at various temperatures. (b) Atomic 

concentration ratio of rGO-Fe1.0  surface prepared by XPS. (c) XRD patterns of rGO-FeO1.0 composites 

prepared at various temperatures: (i) before heating, (ii) 120 °C, (iii) 200 °C, (iv) 300 °C, (v) 400 °C, (vi) 500 

°C, (vii) 600 °C. (d) XRD patterns of rGO-FeOX  composites prepared in various FeSO4·7H2O amounts: 

(*i) 0 eq., (*ii) 0.5 eq., (*iii) 1 eq.%, (*iv) 1.5 eq., (*v) 2.5 eq. (e) XRD patterns of effect of prevention of 

rGO re-stacking by various FeSO4·7H2O amounts, (f) TEM image of rGO-FeO1.5. 
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Based on the above investigations, we decided to use the urea method to synthesize GO-Fe(O)Hx 

composites for the following studies. 

Synthesis and characterization of rGO-FeOX. We investigated the structural change by thermal 

treatment from 90 to 600 °C for GO-Fe(OH)1.0. The chemical state and elemental composition were 

observed by X-ray photoelectron spectroscopy (XPS) (Figure 4a). The C 1s region of GO-Fe(OH)10 

could be separated into three waveforms, 284.5 eV, 286.6 eV, and 288.3 eV, which were considered 

C-C, C-O, and C=O, respectively.8,12,13 As the temperature increased, the intensity of C-O and C=O 

decreased.14 The oxygen, carbon, and iron atomic ratios were obtained by peak area quantification 

of XPS data (Figure 4b). Heating at higher than 500 °C produced an oxygen concentration below 

10%. Far lower Fe contents than expected were obtained in the XPS measurement for all the 

samples (Figure 4b) due to the features of XPS measurement (i.e., XPS can only provide surface 

information). This result suggests that iron particles are present inside the GO layers. To confirm 

this hypothesis, we used an argon ion beam to etch the surface systematically, and measured XPS 

accordingly (Figure 5). All the samples showed two peaks attributed to Fe 2p3/2 and Fe 2p1/2, 

respectively, which were split by spin-orbit interaction. The iron peaks were very weak in the 

Figure 5. Iron sandwiched between GO layers was confirmed by XPS, with etching of surface layer by layer by 

Argon ion beam.  
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spectrum for the measurement of the composite surface prior to etching, because surface iron 

species were washed off during the purification treatment. After etching, the peaks of Fe 2p3/2 and  
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Fe 2p1/2 suddenly became stronger, indicating that iron was located inside the layers of rGO. 

Furthermore, even after several etchings, the intensity of peaks became constant, demonstrating 

that the amount of iron particles contained inside the rGO interlayer was uniform. 

The structural change of rGO and the formation of FeOx were investigated at different temperatures 

by XRD (Figure 4c). It has been reported that GO shows a clear (002) diffraction peak at around 

2 = 12°, and it shifts at around 26° by reduction.13,15,16 As shown in Figure 4c, all the (002) peaks 

of rGO-FeO1.0 were weak and broad, suggesting the iron particles were well anchored between GO 

sheets. Treatment of GO-Fe(OH)1.0 at 90 °C (Figure 4ci) showed a small GO-like (002) diffraction 

at 2= 12°, meaning that the reduction of GO was not completed. Increasing the temperature to 

120 °C was enough to reduce the GO (002) peak (Figure 4cii). By a further temperature increase, 

the peak of graphite appeared and became sharper and closer to 26°,  suggesting the partial 

graphitization in rGO-FeO1.0 (Figure 4ciii-viii). In the following section, rGO-FeOx were prepared 

at 600 °C. 

 

 

To prevent the graphitization, the amount of iron was investigated. The degree of rGO stacking 

was investigated by XRD for rGO-FeOx with various iron contents treated at 600 °C (Figure 4d). 

Figure 6. SEM (upper) and TEM (lower) images of rGO and iron oxide nano-particles with various amount of 

iron prepared in 600◦C. (a) rGO-FeO0.5, (b) rGO-Fe1.0, (c) rGO-Fe1.5, (d) rGO-Fe2.5.  

Figure 7. (a) Atomic absorption of Fe from burned ashes of rGO with various iron amounts, (b) XRD 

patterns of GX prepared at various iron amounts: (i) 0 eq., (ii) 0.5 eq., (iii) 1 eq., (iv) 1.5 eq., (v) 2.5 eq.  
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By introducing only 0.5 eq. iron to the weight of GO, the (002) peak of rGO-FeO0.5 became smaller, 

about 18% of rGO without iron (Figure 4e). As the amount of iron was increased, the (002) peak 

weakened and almost disappeared with 2.5 eq. iron to the weight of GO, reaching only 3% of rGO 

without iron. These results support the hypothesis that the in-situ formation of Fe(OH)x NPs 

between GO sheets lowers the stacking of rGO sheets during thermal reduction. 

The morphology of rGO-FeOx was observed by scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM) (Figure 6 and 4f). SEM and TEM both confirmed the 

formation of FeOx NPs. More interestingly, larger numbers of particles were observed for TEM 

than SEM, suggesting that FeOx NPs were present inside the rGO layers since SEM can only detect 

the NPs on the surface. 

Removal of FeOx NPs from rGO-FeOX. Gx was synthesized by washing out FeOx from rGO-

FeOx using concentrated hydrochloric acid. After treatment, Gx could not be affected by a magnet. 

To confirm the remaining iron species, Gx was analyzed by atomic absorption spectroscopy (Figure 

7a). The result indicated that the amount of iron in G2.5 was below 0.3 mmol g-1. Interestingly, we 

observed that the amount of remaining iron decreased with the amount of iron originally present, 

indicating that it is more difficult to remove iron species from rGO-FeOx prepared from a smaller 

iron amount. We believe that low iron loading on GO led to the formation of iron species wrapped 

by graphene, which were inaccessible to hydrochloric acid, while graphene could not wrap iron 

species when its amount was high, enabling the access to hydrochloric acid. The stacking degree 

Figure 8. XRD of (i) rGO, (ii) G0.5, (iii) G1.0, (iv) G1.5, (v) G2.5. 
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of Gx was evaluated by XRD; the graphite (002) peak was reduced as the amount of iron increased 

(Figure 7b and Figure 8). With only 0.5 eq. FeSO4·7H2O, the stacking was lowered by 68%, and 

with 2.5 eq. the stacking was lowered by 92%, demonstrating that Gx preserved the unstacked 

nature of rGO-FeOx after the removal of FeOx NPs. 

LIBs and SIBs evaluation. The Li-ion and Na-ion storage capabilities of Gx were evaluated in a 

half-cell configuration using 2032-type coin cells. The electrodes were prepared using Gx as active 

materials and polyvinylidene fluoride as a binder without adding any conductive materials. A 

comparative study was conducted using rGO and Gx prepared with various iron contents by charge–

discharge cycle tests at a current rate ranging from 0.186 to 37.2 A g-1 and from 20 to 400 mA g-1
 

for LIBs and SIBs, respectively. 

For LIBs at 186 mA g-1, rGO expressed a specific capacity of 600 mAh g-1, while G0.5 had a 

specific capacity of 453 mAh g-1 (Figure 9a,b). The inferior performance of G0.5 reflects the 

formation of non-accessible space for Li ions. The specific capacity gradually increased with the 

increase of iron loading, reaching a maximum specific capacity of 750 mAh g-1 for G2.5. At 3.72 A 

g-1, the specific capacity of rGO decreased by 67%, reaching 200 mAh g-1 while the specific 

capacity of G2.5 decreased by 53% to 350 mAh g-1, denoting the superior capability of G2.5 for high-

rate LIB. After 45 cycles, at 372 mA g-1, the capacity stabilized, and the charging capacity was 362 

mAh g-1 for rGO and 507 mAh g-1 for G2.5. The increase of the specific capacity was correlated 

with the increased charge-discharge potential between 0.8 V and 2.8 V (Figure 9b).  

For the SIBs evaluation at 20 mA g-1, rGO, G0.5, and G1.0 expressed similar specific capacities of 

around 150 mAh g-1 (Figure 9b,c). The low amount of Fe NPs did not improve the active surface 

of Gx for large ions (Na+); therefore, there was no visible impact on the performance. In contrast, 

G1.5 and G2.5 showed increases of the specific capacity to 230 mAh g-1 and 297 mAh g-1, 

respectively. At 400 mA g-1, the specific capacity of rGO decreased by 55%, reaching 68 mAh g-

1, while the specific capacity of G2.5 decreased by 52% to 143 mAh g-1 denoting the superior 

capability of G2.5 for Na-ion batteries. After 30 cycles, the capacity stabilized, reaching a stable 

charge capacity performance at 100 mA g-1 of 130 mAh g-1 for rGO, while G2.5 reached 252 mAh 

g-1. The increase of charge specific capacity was correlated with the increased capacity between 

0.3 V and 2.2 V (Figure 9b), translating the improvement of Na+ absorption in unstacked graphene 

layers. 
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Figure 9. LIBs evaluation of Gx prepared with different iron content: (a) specific charge capacity at different 

current rate and coulombic efficiency, (b) 5th cycle charge behaviour at 372 mA g-1. SIBs evaluation of Gx 

prepared with different iron content: (c) specific charge capacity at different current rate and coulombic 

efficiency, (d) 5th cycle charge behaviour at 20 mA g-1. Samples: rGO (black circle), G0.5 (blue square), G1.0 

(green triangle), G1.5 (blue diamond), G2.5 (black round). 
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These results demonstrate that the un-stacking of graphene layers and formation of the graphene 

3D structure improve the overall capacitor behavior, enabling more linear charge behavior. 

Unlocking the full capacitor behavior of graphene leads to superior capacity performance.  

III. CONCLUSION 

In summary, we have designed a simple, cost-effective, and scalable method for the synthesis of 

3D graphene applying FeOx NPs as inter-layer spacers. The synthesis of iron NPs was investigated 

using FeSO4·7H2O as the iron source and urea or NH3 as the base. The results revealed that directly 

using NH3 formed aggregated and lower crystallinity NPs, while urea slowly decomposed into NH3 

led to the formation of iron NPs with a needle-like structure and superior crystallinity. Given these 

convincing results, the urea method was applied to GO aqueous dispersion, resulting in the 

formation of GO-Fe(OH)x. The reduction of GO at high temperature in N2 atmosphere led to the 

formation of rGO-FeOx, while lowering the staking level of graphene layers by FeOx NPs.  Then, 

iron NPs were removed using HCl to obtain 3D graphene, which preserved the unstacked nature 

of the original rGO-FeOx. In light of the positive result, the 3D graphene was applied to LIBs and 

SIBs, providing superior capacity and capability performances. The best results were obtained for 

G2.5 which displayed 590 mAh g-1 at 372 mA g-1
 for LIBs and 297 mAh g-1 at 20 mA g-1 for SIBs. 
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IV. EXPERIMENTAL SECTION 

Materials. KMnO4, H2SO4, 30% aq. H2O2, urea, were purchased from Wako Pure Chemical 

Industries, Ltd. HCl was purchased from nacalai tesque, INC. FeSO4·7H2O was purchased from 

KANTO CHEMICAL CO.,INC. All the chemicals were used directly without further purification. 

 

Characterization instrumentation and experimentation. Freeze-dried of GO was performed by 

ADVANTEC DRZ350WC. XPS was measured by JPS-9030 with a pass energy of 20 eV. The 

crystalline structure of samples was characterized by X-ray diffraction (XRD) using a PANalytical 

Co. X’ part PRO using Cu Kα radiation (l= 1,541 Å) in the 2θ range of 5–75°. The operating tube 

current and voltage were 30 mA and 40 kV, respectively. The data was collected at the step size of 

0.017° and the type of scan was continuous. The morphology was measured by transmission 

electron microscopy (TEM) JEOL JEM-2100F and atomic force microscopy (AFM) SHIMADZU 

SPM-9700HT. Heating treatment was conducted using a tube furnace KTF055N1 from KOYO 

THERMO SYSTEMS. 

 

Graphene oxide (GO) synthesis. GO was synthesized using our modified Hummers' method.8 

Natural flake graphite (3.0 g) was stirred in 95% H2SO4 (75 mL). KMnO4 (9.0 g) was gradually 

added to the solution keeping the temperature <10 °C. The mixture was then stirred at 35 °C for 2 

h. The resulting mixture was diluted by water (75 mL) under vigorous stirring and cooling so that 

temperature does not exceed 50 °C. The suspension was further treated by 30% aq. H2O2 (7.5 mL). 

The resulting suspension was purified by centrifugation with water until neutralization, and freeze-

dried. 

3D graphene (G) synthesis. In the first step, iron hydroxide was formed on the surface of the GO 

layer. In a 0.5 wt% GO aqueous dispersion, FeSO4·7H2O (0.5 to 2.5 weight equivalent of GO) and 

urea (1.1 weight equivalent of Fe2SO4·7H2O) were consecutively added and dispersed by 

sonication for 30 minutes. As prepared mixture was continuously stirred and heated at 90 °C for 2 

hours. The composite was collected by filtration or centrifugation, then freeze-dried. In the second 
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step, the thermal treatment (90 to 600 °C) was conducted under N2 atmosphere. The temperature 

was increase form R.T to 200 in 1 hour, from 200 to target temperature with 19 °C min-1, kept at 

the target temperature for 30 minutes. In the last step, 3D graphene was obtained by washing out 

FeOx particles with concentrated hydrochloric acid with the aid of sonication for 2 hours. 

LIB preparation and evaluation. The CR2032 coin cells were assembled in an Ar-filled glove 

box to evaluate the electrochemical performance of Gx samples as anode materials for lithium-ion 

batteries. The slurry was prepared by mixing Gx (90%) and of poly(vinylidene fluoride) binder 

(10%) in an N-methylpyrrolidone (NMP) as a solvent. The anode was produced by coating the 

slurry onto copper foil as flat film with a thickness of 0.1 mm by doctor blade. Thin Lithium foil 

(0.6 mm thick) was employed as the counter electrode and a glass microfiber was used as the 

separator. The electrolyte was 1 M lithium hexafluorophosphate (LiPF6), dissolved in 1/1 (V/V) 

ethylene carbonate (EC)/diethyl carbonate (DEC). The coin cells were tested in galvanostatic mode 

at various currents within a voltage range of 0.01 V to 3.0 V using a 580 Battery Test System (Toyo 

corporation).  

 

SIB preparation and evaluation. The CR2032 coin cells were assembled in an Ar-filled glove 

box to evaluate the electrochemical performance of Gx samples as anode materials for sodium-ion 

batteries. The slurry was prepared by mixing Gx (90%) and of poly(vinylidene fluoride) binder 

(10%) in an N-methylpyrrolidone (NMP) as a solvent. The anode was produced by coating the 

slurry onto copper foil as flat film with a thickness of 0.1 mm by doctor blade. Thin sodium foil 

(0.6 mm thick) was employed as the counter electrode and a glass microfiber was used as the 

separator. The electrolyte was 1 M sodium hexafluorophosphate (NaPF6), dissolved in 1/1 (V/V) 

ethylene carbonate (EC)/diethyl carbonate (DEC). The coin cells were tested in galvanostatic mode 

at various currents within a voltage range of 0.01 V to 3.0 V using a 580 Battery Test System (Toyo 

corporation).  
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CHAPTER 5 

 

CONCLUSION 
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In conclusion, this manuscript report the research conducted during my doctor course at Okayama 

University. This research has been guided with the intention to develop original methods for the 

synthesis and functionalization of carbon material for electrical application.  

In order to design original research projects, previous scientific literature concerning graphene 

synthesis and application toward LIBs were investigated and a brief summary has been given in 

the introduction chapter of this manuscript. Several problems were found hindering the 

commercialization of graphene-based LIBs, which were related to graphene synthesis: 

• Cost 

• Scalability 

• Toxicity 

• Quality uncertainty leading to hazardous LIBs results 

In the following chapters, several research projects were reported aiming to move toward the 

resolution of those issues: 

- Non-destructive, uniform, and scalable electrochemical functionalization and exfoliation 

of graphite 

- Sophisticated rGO synthesis and pre-lithiation unlocking full-cell lithium-ion battery 

high-rate performances 

- Iron nanoparticle templates for constructing 3D graphene frame-work with enhanced 

performance in sodium-ion batteries 
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Figure 1: Illustration of progressed realized for the synthesis of GO and its reduction in rGO for 

Battery technologies. 

The first project presented in chapter 2 shows a crucial innovation for the commercial 

democratization of graphene oxide synthesis. Usually graphene oxide is synthesized via chemical 

oxidation via the application of strong acid (H2SO4) and oxidant (KMnO4) which rise safety and 

scalability issues. In our research, we design an electrochemical method using HBF4 diluted in 

water (MeOH as well) allowing the safe, easy, and scalable synthesis of graphene oxide. The 

investigation of this electrochemical graphene oxide shows similar to superior properties and 
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performances (LIBs and water purification) compared with our chemical graphene oxide 

guaranteeing this synthesis efficiency. 

The second project presented in chapter 3 shows an important comparative study of reduced 

graphene oxide synthesis for its application toward full-cell LIBs. At this moment a myriad of 

synthesis methods for the production of reduced graphene oxide have been done but most 

comparative investigation of reduce graphene oxide synthesis focused on its anode half-cell 

performance only. In our research, reduced graphene oxide analogs were synthesized via a safe, 

fast, and scalable combined synthesis method. Their characterization and evaluation for anode half-

cell and full-cell LIBs indicates that the best synthesis method for LIBs application is obtained via 

strong chemical reduction followed by tube oven annealing at 1000 °C. Other investigated 

synthesis methods results in lower cyclability and require superior N/P ratio decreasing the overall 

LIBs energy density. The full-cell compose of LiCoO2@BaTiO3 cathode and optimized reduced 

graphene oxide anode shows high energy density and extremely high power density, 604 Wh kg-1 

at 432 W kg-1 and maintained 293 Wh kg-1 at 8,658 W kg-1 and 20 Wh kg-1 at 43,333 W kg-1. 

The third project presented in chapter 4 shows a simple and scalable method for the preparation of 

reduced graphene oxide for SIBs. The motivation for graphene application toward SIBs stands on 

its ability to absorb ion on both its sides, whereas graphite rigid and compact crystal structure is 

unable to accommodate and store large sodium ions. However, the synthesis of reduced graphene 

oxide often results in the partial restacking of its layers hindering sodium ions diffusion and 

absorption. In this research, we design a scalable method for the synthesis of un-stacked reduced 

graphene oxide via the consecutive in situ formation and etching of iron nano-particle template. 

The results demonstrate that graphene prepared via this method show superior SIBs behavior and 

performances. 

In my current research, I am engaged in several projects: 

- Synthesis of EGO in organic solvent. My first competed project show that water and 

methanol could be used to dilute HBF4 and that it results in GO with different 

functionalities. I am now investigating other organic solvent for EGO electrolyte to extend 

the functionalities and process ability of EGO. 

- Synthesis of graphene carbon nano tubes network. Based on my third completed work, I 

am now using in situ formed iron nano particles to grow carbon nano tubes between 
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graphene layers. Such 3 dimensional network will present tunable interlayer distance and 

structure and superior strength allowing its application for thick electrode coating. 

For my future research, I will focus on applying graphene as an additive for high energy density 

cathode materials. In the recent years, lithium excess cathode materials have arisen as a promising 

solution for higher energy density LIBs. However, this class of materials suffers from low 

conductivity and poor cyclability. I will embed lithium excess nano-particles with graphene to 

improve their conductivity, stability, and overall LIBs performances. 
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