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1. Introduction  

1.1. Classification of extracellular vesicles (EVs)  

Communications of cancer cells with each other or with 

neighboring cells or cells at distant sites are crucial for tumor 

proliferation and dissemination (Jakhar and Crasta 2019). 

Extracellular vesicles (EVs) are lipid bi-layered vesicles that are 

released from almost all cells under physiological and pathological 

conditions. EVs play a crucial role in intercellular communications at 

local and distant sites (Yáñez-Mó et al. 2015). These small vesicles 

carry various molecular cargo such as; nucleic acids (DNA, RNA), 

proteins, lipids, and metabolites that could be transferred into the 

recipient cells leading to genetic alterations and reprogramming of 

these cells (Raposo and Stoorvogel 2013; Colombo, Raposo, and 

Théry 2014; Yáñez-Mó et al. 2015; Eman A Taha, Ono, and Eguchi 

2019). 

According to the vesicle size, EVs are mainly classified into three 

categories; exosomes (50-200 nm), ectosomes are also known as 

microvesicles (MV) (100-500 nm), and apoptotic bodies (1-10 μm) 

(Andreola et al. 2002; Janowska-Wieczorek et al. 2005; Lawson et al. 

2016). In addition to this heterogenous population, other vesicles have 

been reported including., oncosomes (Al-Nedawi et al. 2008; Rak 

2013; Choi et al. 2019), large oncosomes (1-10 μm) (Di Vizio et al. 

2012; Vagner et al. 2018), matrix vesicles (Mebarek et al. 2013; Chen 

et al. 2016; Schmidt et al. 2016), migrasomes (50 nm to 3 μm) (Ma et 

al. 2015; Huang et al. 2019), exopheres (~4 μm), exomeres (~35 nm), 

and bacterial outer membrane vesicles (OMV) (Raposo and 
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Stoorvogel 2013; Kim et al. 2017; Van Niel, D’Angelo, and Raposo 

2018; Coelho et al. 2019).  

Notably, EVs are heterogeneous populations, so there is no 

unanimous consensus on the nomenclature of them. General terms 

such as “exosomes” and “microvesicles” have been broadly used. The 

International Society for Extracellular Vesicles (ISEV) proposed to 

use the term EVs in general to describe vesicles naturally released 

from the cells and surrounded by a lipid bilayer unless authors can 

establish specific markers of subcellular origin with a description 

based of physical characteristics, such as size (Théry et al. 2018). 

Thus, I will use the general term EVs, and classify it into small and 

large EVs based on the size of vesicles.  

1.2. Biogenesis and characteristics of EVs 

Exosomes are vesicles of endosomal origin. Their biogenesis 

starts with the inward budding of the cellular plasma membrane, 

internalization of extracellular ligands from the cell surface (e.g., 

growth factor receptors) or from the Golgi apparatus (e.g., MHC 

class-II molecules) forming early endosomes (Babst 2005; Trajkovic 

et al. 2008; Fader and Colombo 2009; Babst 2011; Colombo et al. 

2013; Jakhar and Crasta 2019; Eman A Taha, Ono, and Eguchi 2019). 

Early endosomes mature into late endosomes. After that, the 

endosomal membrane undergoes a second inward (intraluminal) 

budding to generate smaller vesicles within the late endosome lumen 

to form multivesicular bodies (MVBs), which are carrying various 

bioactive molecules such as proteins, lipids, and nucleic acids of the 

parent cell. Finally, MVBs either fuse with lysosomes to be degraded 

or fuse with the plasma membrane thereby releasing the intraluminal 
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vesicles, termed exosomes, into the extracellular space  (Figure 1 ) 

(Trajkovic et al. 2008; Fader and Colombo 2009; Babst 2011; 

Colombo et al. 2013; Jakhar and Crasta 2019; Eman A Taha, Ono, 

and Eguchi 2019). Once generated within the MVB, the release 

exosomes into the extracellular space are mediated by small transport 

GTPases molecules such as; Rab27A, Rab11, and Rab31, which can 

collaborate with SNARE (a soluble N-ethylmaleimide sensitive factor 

attachment protein receptor) proteins to fuse the MVB membrane 

with their target membrane (Bobrie et al. 2011). 

  

Figure 1. Schematic representation of exosome biogenesis and 

release (Jakhar and Crasta 2019).  

 

It is worth noting that the formation of exosomes within the 

MVBs occurs by the endosomal sorting complex required for 

transport (ESCRT)-dependent machinery and ESCRT-independent 

mechanisms. Four distinct ESCRT protein complexes have been 
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identified (ESCRT-0, -I, -II, and -III). The ESCRT-dependent 

biogenesis starts with the inward budding of the cell membrane with 

aid from ESCRT-0 to produce early endosomes. The other ESCRT 

complexes contributing to the packaging of exosome contents into 

late endosomes. Whereas, the ESCRT-independent biogenesis 

involves the packaging of proteins from the Golgi into exosomes 

within MVBs and discharged into the extracellular milieu in the 

absence of ESCRT machinery (Babst 2011; Jakhar and Crasta 2019).  

In general, EVs are characterized by their cup-shaped lipid 

bilayers structure under the electron microscope (Szatanek et al. 

2017). Despite the absence of specific protein markers to distinguish 

between the different subtypes of EVs, the protein profiles of MVs, 

exosomes, and apoptotic bodies are different due to their different 

routes of formation (F. T. Borges, Reis, and Schor 2013; Yáñez-Mó 

et al. 2015; Mikołaj P Zaborowski et al. 2015). For instance, the 

membrane of Exosome contains cholesterol, sphingomyelin, 

phosphatidylinositol, ceramide, and lipid rafts (Théry, Ostrowski, and 

Segura 2009; Ciardiello et al. 2016; Tamkovich, Tutanov, and 

Laktionov 2016).  

Besides, exosomes protein markers including tetraspanin family 

proteins (CD63, CD9, CD81, and CD82), members of ESCRT 

complex (TSG101, Alix), and heat shock proteins (HSP60, HSP70, 

HSPA5, CCT2, and HSP90) (Théry, Ostrowski, and Segura 2009; 

Simpson et al. 2009; Yoshioka et al. 2013; Fernanda T. Borges et al. 

2013; Yokoi, Yoshioka, and Ochiya 2015; Ciardiello et al. 2016; Ha, 

Yang, and Nadithe 2016). While, microvesicles membrane are 

enriched with cholesterol, diacylglycerol, and phosphatidylserine 

(Colombo, Raposo, and Théry 2014); and integrins, selectins, and 
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CD40 are the main protein markers for this category of EVs 

(Colombo, Raposo, and Théry 2014). 

 Furthermore, apoptotic bodies are distinguished from the other 

two major EV groups by the presence of fragmented DNA and cell 

organelles from their host cell (Mathivanan, Ji, and Simpson 2010; 

Akers et al. 2013; Boukouris and Mathivanan 2015). Moreover, 

apoptotic bodies have exposed phosphatidylserine on their 

membranes, and their major protein markers include histones, 

thrombospondin (TSP), and complement protein C3b (Théry et al. 

2001).  

1.3. EVs as modulators of the tumor microenvironment 

Tumor-derived EVs have been recently emerged as putative 

biological mediators in cancer (Rak and Guha 2012). EVs are highly 

specialized molecules in cellular communication, as they carry 

several oncogenic proteins, nucleic acids, and signaling molecules 

that can be transferred horizontally to the target cells and modulate 

the tumor microenvironment (TME) for supporting tumor growth, 

invasion, and metastasis (Higginbotham et al. 2011; Rak and Guha 

2012; Tovar-Camargo, Toden, and Goel 2016). The role of EVs in 

cancer progression and metastasis is described in detail below.  

The tumor microenvironment does not only consist of cancer 

cells but also a heterogeneous population of fibroblasts, endothelial 

cells, immune cells, cytokines, extracellular vesicles, and 

extracellular matrix, adipocytes, and vasculature (Balkwill, Capasso, 

and Hagemann 2012). The crosstalk between cancer cells and their 

surrounding environment plays a pivotal role in tumor development 

and progression (Balkwill, Capasso, and Hagemann 2012).  



                                                                                                                                        Introduction 

6 

 

 

Cancer-associated fibroblasts (CAFs) are one of the most important 

members within the TME that represent the largest proportion of 

stroma cells by secreting extracellular matrix components (Xing, 

Saidou, and Watabe 2010). CAFs can promote the tumor invasion and 

metastasis, via the secretion of many cytokines such as vascular 

endothelial growth factor A (VEGFA), C-X-C motif chemokine 12 

(CXCL12), Interleukin 6 (IL-6), as well as remodeling of the 

extracellular matrix (ECM) (Alkasalias et al. 2018).  

It was reported that ovarian cancer-derived EVs are capable of 

modulating fibroblast's behavior towards a CAF-like state. The 

secretome of these CAFs stimulates the surrounding cells to promote 

the proliferation, motility, and invasion of the tumor and endothelial 

cells (Giusti et al. 2018). Moreover, it has been shown that 

transforming growth factor-beta  TGF-β1-associated EVs secreted 

from prostate cancer can trigger the differentiation of fibroblast into a 

myofibroblast phenotype resembling stromal cells isolated from 

cancerous prostate tissue; promoting in vitro angiogenesis and 

accelerating in vivo tumor growth (Webber et al. 2015). 

Abdouh et al. demonstrated that colorectal cancer (CRC) -

derived EVs were able to induce the transformation of fibroblasts into 

colon carcinoma cells in vitro (Abdouh et al. 2019). They showed that 

fibroblasts treated with CRC-derived EVs mediated the transfer of 

DNA that was actively transcribed in the fibroblasts after the EVs 

exposure (Abdouh et al. 2019).  

The groups also observed that a definite set of miRNA molecules 

was transferred from the CRC-derived EVs to the fibroblasts; 

activating cell cycle progression and cell survival pathways. 
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Furthermore, the injection of CRC-derived EVs in the tail vein of 

NOD-SCID mice prompted malignant transformation and metastases 

in the lungs of the mice (Abdouh et al. 2019).  

1.4. Fluorescent labeling of EVs 

Several methods have been developed to monitor the biogenesis, 

transmission, distribution, and subcellular localization of EVs, such 

as lipid-based fluorescence labelings (Yoshimura et al. 2016; Namba 

et al. 2018), such as the transmembrane protein CD63 fused with a 

green fluorescent protein (GFP) and red fluorescent protein (RFP) 

(CD63-GFP/RFP fusion) (Piao, Kim, and Moon 2019; Mikołaj Piotr 

Zaborowski et al. 2019), and membrane lipid-binding palmitoylation 

signal-fused fluorescent proteins such as tandem dimer Tomato 

(tdTomato) or enhanced green fluorescence protein (EGFP) as I 

abbreviate as palmGFP (palmG) and palmtdTomato (palmT) (Lai et 

al. 2015). 

 Protein S-acylation is a lipid modification that enables the 

covalent attachment of long-chain palmitic fatty acids to thiol groups 

of cysteine residues through a thioester linkage (Xu 2011; Verpelli et 

al. 2012). This type of protein modification is commonly known as S-

palmitoylation (S-PALM) allows the association of proteins with 

cellular membranes (Triola, Waldmann, and Hedberg 2012). The 

fusion of the fluorescent proteins with palmitoylation sequence to the 

cell membranes, enabling the whole-cell labeling (Zuber, Strittmatter, 

and Fishman 1989; Zacharias et al. 2002). As EVs are derived from 

the plasma membrane (Raposo and Stoorvogel 2013), I assumed that 

tagging the plasma membrane with fluorescent proteins would enable 

the labeling of multiple EVs types.  



                                                                                                                                        Introduction 

8 

 

1.5. Structure of MMPs  

Metalloproteinases (MMPs) constitute a large family of zinc-

calcium dependent endopeptidases and they are considered as the 

main players in ECM remodeling (Berg, Barchuk, and Miksztowicz 

2019). Due to their ability to degrade numerous components of ECM, 

nucleus matrix, and non-ECM proteins, such as adhesion molecules, 

cytokines, protease inhibitors, and membrane receptors (Berg, 

Barchuk, and Miksztowicz 2019).  

MMPs play crucial roles in wound healing, angiogenesis, tissue 

remodeling, as well as in pathological processes, including wound 

healing (Nagaset and Woessner 1999; Ravanti and Kähäri 2000; Visse 

and Nagase 2003), inflammation (Y, H, and Jr 1987), and cancer 

(Coussens and Werb 1996; Curran and Murray 1999; Sternlicht and 

Werb 2001; Kessenbrock, Plaks, and Werb 2010). So far, the MMP 

family consists of about 28 members that share similarities in their 

structure, regulation, and function (Berg, Barchuk, and Miksztowicz 

2019).  

Based on structure and substrate specificity, MMPs can be further 

divided into six major subfamilies including collagenases, 

gelatinases, stromelysins, matrilysins, membrane-type MMPs, and 

other MMPs (Peng et al. 2012). All MMPs have three principal 

domains; (1) a pro-domain that functions as an intramolecular 

inhibitor to maintain the enzyme in an inactive state, (2) a catalytic 

domain that promotes the proteolytic activity, and (3) a hemopexin-

like repeat domain (PEX), which determines the substrate specificity 

(Figure 2) (Radisky and Radisky 2015).  
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Figure 2. The domain structure of MMPs. S, signal peptide; Pro, 

pro-peptide; CAT, catalytic domain; F, fibronectin type-II repeats; 

PEX, hemopexin domain; TM, transmembrane domain; GPI, 

glycophosphatidylinositol membrane anchor; C, cytoplasmic domain; 

CA, cysteine array; Ig, immunoglobulin-like domain. Adapted from 

(Radisky and Radisky 2015).  

 

The PEX domain is found in all MMPs except MMP-7 and 

MMP-26, thereby they are the smallest MMPs members that having 

only the pro-peptide and catalytic domains (Murphy et al. 1994; 

Steffensen, Wallon, and Overall 1995; Shipley et al. 1996; 

Mikhailova et al. 2012).  A more specialized domain including three 

fibronectin type II repeats, present in MMP-2 and MMP-9 and assist 

in recognizing elastin and denatured collagen as extracellular matrix 
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substrates (Murphy et al. 1994; Steffensen, Wallon, and Overall 1995; 

Shipley et al. 1996; Mikhailova et al. 2012).  

Additionally, while most MMPs are soluble extracellular 

proteins, MMPs-14, -15, -16, and -24 are type I membrane proteins 

that directly anchored through C-terminal transmembrane domains, 

MMP-17 and -25 is membrane localized via C-terminal 

glycophosphatidylinositol (GPI) anchors, and MMP-23 via an N-

terminal type II transmembrane domain (Rangaraju et al. 2010). 

Furthermore, MMP-23 possesses a unique cysteine array that 

modulates the ion channel activity and an adjacent immunoglobulin-

like domain, that similar to the PEX domain of other MMPs 

(Rangaraju et al. 2010).  This array mediates the protein-protein 

interactions involved in localization or substrate recognition 

(Rangaraju et al. 2010; Galea et al. 2014). 

1.6. Complex roles of MMPs in tumorigenesis 

The extracellular matrix serves as a niche for tumor cells to 

survive and proliferate. On the other hand, it acts as a barrier that 

suppresses the spreading of tumor cells. Degradation of ECM is one 

of the first steps in tumor invasion and metastasis (Lu et al. 2011; 

Venning, Wullkopf, and Erler 2015). ECM remodeling is tightly 

controlled to maintain tissue homeostasis, integrity, and functions. 

However, uncontrolled ECM dynamics causes deregulated cell 

proliferation, invasion, resistance to cell death, and can lead to the 

development of congenital defects and pathological diseases such as 

tissue fibrosis and cancer. Moreover, the ECM can act as a barrier 

against the immune cells or the anticancer drugs, e.g., blocking the 

penetration of immune cells into the tumor, or creating a high 

https://www.powerthesaurus.org/anchored
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interstitial fluid pressure (IFP) to prevent the drugs perfusion, thus 

facilitating cancer immune-escaping and chemoresistance (Lu et al. 

2011; Venning, Wullkopf, and Erler 2015).  

MMPs were found to promote cell invasion and motility by 

pericellular ECM degradation. For instance, the expression and 

activity MMP-2 and MMP-9 are strongly upregulated in human 

cancers and correlated with the tumor stage, metastasis, and poor 

prognosis (Lubbe et al. 2006). Besides, MT1-MMP, plays a crucial 

role in invasion and metastasis, by activating proMMP-2 and 

directing the cleavage of collagen types I, II, and III (Poincioux, 

Lizárraga, and Chavrier 2009). 

 Degradation of the ECM structures by MMPs not only breaks 

the barrier that prevents the metastatic spread of tumor cells but also 

produces bioactive molecules that foster tumor growth, proliferation, 

invasion, and metastasis. For example, cleavage of laminin-5 by 

MMP-2 and MT1-MMP generates epidermal growth factor EGF-like 

motifs containing fragments that trigger the epidermal growth factor 

receptor (EGFR) signaling and other larger fragments that engage the 

integrin signaling, thereby inducing the tumor cell migration 

(Koshikawa et al. 2005; Sadowski et al. 2005).  

Additionally, osteopontin cleavage by MMP-9 produces a 5-kDa 

fragment that facilitates tumor cell invasion (Takafuji et al. 2007). 

What is more, MMP-7 and MMP-9 have been shown to cleave 

insulin-like growth factor-binding protein (IGFBP), as a result, 

enhancing the insulin-like growth factor (IGF) bioavailability and 

activation of insulin-like growth factor receptor (IGFR) signaling 

(Mañes et al. 1999; 1997; Rorive et al. 2008). 
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Another study has reported that MT1-MMP cleaves heparin-

binding EGF-like growth factor (HB-EGF) and removes the 20 amino 

acids from the amino (NH2)-terminal region, that are necessary for 

heparin-binding. The truncated HB-EGF form was found to stimulate 

the EGFR/ERBB signaling (Rorive et al. 2008; Koshikawa et al. 

2010). Moreover, MT1-MMP degrades the protein-tyrosine kinase-7 

(PTK7), an inhibitor of cell invasion, thus stimulating cell invasion 

and migration (Golubkov et al. 2010).  

MMPs are capable of modulating cancer progression by 

promoting invasion, metastasis, and angiogenesis. Both tumor cells 

and neighboring stromal cells can secret MMPs which degrade the 

physical barriers and facilitate cancer cells angiogenesis as well as 

invasion and metastasis (Gialeli, Theocharis, and Karamanos 2011).  

Furthermore, MMPs support tumor growth and angiogenesis via 

increasing the availability of signaling molecules, such as growth 

factors and cytokines, by liberating them from the ECM (IGF, bFGF, 

and VEGF) or by increasing their shedding by from the cell surface 

(EGF, TGF‐α, HB‐EGF). Besides, MMPs induce angiogenic switch 

through the downregulation of angiogenic inhibitors and upregulation 

of angiogenic stimulators factors. Moreover, MMPs can modulate the 

cell-cell interactions and provoke the ECM through the processing of 

E‐cadherin and integrins, respectively, thereby, increasing cell 

migration (Figure 3) (Gialeli, Theocharis, and Karamanos 2011). 
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Figure 3. The Pivotal role of MMPs in cancer progression (Gialeli, 

Theocharis, and Karamanos 2011).  

 

1.7. MMPs in EVs  

Several studies have reported that several MMP family members 

were packaged in EVs from body fluids or various types of cell lines 

(Dolo et al. 1999; Taraboletti et al. 2002; Belhocine et al. 2010; 

Shimoda and Khokha 2013; Reiner et al. 2017; Okusha et al. 2020). 

For instance, prostate cancer-derived oncosomes were shown to 

contain bioactive MMP2, MMP9 molecules that are involved in local 

invasion, and correlated with tumor progression (Di Vizio et al. 2012). 

Another study revealed that vesicles shed from the cultured human 

umbilical vein endothelial cells are containing active 

and proenzyme forms of gelatinases, MMP-2 and MMP-9 as well as 

the MT1-MMP proenzyme that was located on the external side of 
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the vesicle membrane, all these proteases initiated the proteolysis 

necessary for tumor invasion and angiogenesis (Taraboletti et al. 

2002). Furthermore, MMP13-containing exosomes were found to 

facilitate the metastasis of nasopharyngeal cancer cells (an endemic 

type of head and neck cancer associated with a high rate of cervical 

lymph node metastasis) through the induction of EMT (You et al. 

2015).   

Also Hendrix et al. reported that Rab27b-mediated exocytic 

release of HSP90 exosomes from metastatic breast cancer cells can 

activate MMP2 resulting in the degradation of ECM components and 

release of growth factors, promotion of cancer cell invasion (Hendrix 

et al. 2010). Additionally, San-chez et al. have recently demonstrated 

that prostate cancer stem cells secreted exosomes that are enriched 

with miRNAs such as miR-100-5p, miR21-5p, and miR-139-5p. 

These exosomal miRNA increased the expression of MMP2, MMP9, 

MMP13, and RANKL, also enhanced the fibroblasts migration, 

thereby contributing to local invasion and pre-metastatic niche 

formation (Sánchez et al. 2016). 

Moreover, Hiratsuka et al. have shown that MMP9 induced by 

primary tumors in lung endothelial cells and macrophages 

significantly promoted the lung metastasis, the induction of MMP9 

was dependent on the tyrosine kinase VEGFR-1 (Hiratsuka et al. 

2002). Blocking of the MMP9 induction via deletion of either 

VEGFR-1TK or MMP9 markedly diminished the lung metastasis in 

mice models (Hiratsuka et al. 2002).  
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1.8. The two-dimensional and three- dimensional culture 

systems 

The two-dimensional (2D) cell culture system has been 

frequently used for cancer research and drug screening (Yoshii et al. 

2011). In conventional 2D culture systems, cells are cultured as 

monolayers on flat surfaces of plates which allow each cell to access 

the same amount of growth factors and nutrients present in the 

medium, resulting in homogenous growth and proliferation 

(Edmondson et al. 2014). Besides, the strong physical interaction 

present between cells and 2D culture substrates resulted in alteration 

in the tumor cell behaviors that differ from those of tumors growing 

in vivo (Yoshii et al. 2011). Thus, the 2D culture model fails to 

correctly mimic the proper tissue architecture and complex 

microenvironment in vivo (Lv et al. 2017).  

To overcome the limitations of the 2D culture system, a three-

dimensional (3D) cell culture model (aka a spheroid or organoid 

culture) have been developed to better mimic in vivo tissue 

microenvironments (Lv et al. 2017; Duval et al. 2017). The 3D culture 

model maintains the interactions between cells and their ECM, create 

gradient access of oxygen and nutrient, and buildup a combination of 

tissue-specific scaffolding cells (Griffith and Swartz 2006).  

Similar to human cancers, proliferating, quiescent, and dying 

cells are coexisting in normoxic, hypoxic, or necrotic zones within 

tumor organoids (Hirschhaeuser et al. 2010; Eguchi et al. 2018; 

Namba et al. 2018). Thus, the 3D tumor models reflect more closely 

the in vivo human tumors, which prompted us to define tumor 

organoids as “tumoroids”. Among several methodologies of tumoroid 

models, we have adopted gel-free tumoroid models cultured on 
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NanoCulture Plates (NCP) and ultra-low attachment (ULA) plates 

(Arai et al. 2016; Eguchi et al. 2018; Namba et al. 2018; Sogawa et 

al. 2019; 2020).  

A great advantage of the gel-free tumoroid model is the 

collectability of the secretome including EVs from their culture 

supernatants. NCP is a nanopatterned gel-free scaffold for 3D cell 

culture (Elsayed and Merkel 2014). The mogul field structure on 

NCPs restricts cells to sprawl on the base and enable tumor cells to 

migrate from a scaffold to another scaffold more actively than cells 

cultured on the 2D plate.  

The increased migration and lesser attachment of cancer cells on 

the NCPs enable tumor cells to form 3D tumoroids (Arai et al. 2016; 

Eguchi et al. 2018; Namba et al. 2018; Sogawa et al. 2019; 2020). 

ULA plates have been also useful for the collection of secretome 

including EVs. Cells do not rapidly migrate on ULA plates compared 

to NCPs. We have examined a few types of culture media such as 

serum-containing media versus serum-free stemness-enhancing 

media in combination with the 3D culture systems. In vitro culture of 

tumoroids in such a 3D nano-environment combined with a defined 

stem cell medium enabled the cells to grow slowly and form large 

organoids that expressed multiple stem cell markers and intercellular 

adhesion molecules (Eguchi et al. 2018; Namba et al. 2018). 
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2. Aim and objective 

Here, I explored (i) the tumorigenic role of MMP3 on the in vitro 

tumoroid formation under the 3D culture system and on their EVs 

integrity, (ii) whether MMP3-rich or MMP3-null EVs could alter 

tumoroid formation, and examined (iii) the EVs-mediated molecular 

transfer of MMP3 into the MMP3-KO tumoroids under the 3D culture 

system. 
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3. Materials and methods 

3.1. Cells 

A rapidly metastatic murine cancer cell line LuM1 (Sakata et al. 

1996; Namba et al. 2018; Sogawa et al. 2020) and MMP3-KO cells 

line (Okusha et al. 2020) were maintained in RPMI-1640 with 10% 

fetal bovine serum (FBS) and penicillin, streptomycin, and 

amphotericin B. MMP3-KO cells were established using the 

CRISPR/Cas9 system from the LuM1 cell line (Okusha et al. 2020). 

Briefly, Cas9 protein and guide RNA that targets Mmp3 exon 1 were 

co-transfected into LuM1 and stable MMP3-KO clones with frame-

shifting deletion were obtained.  

3.2. Tumoroid culture 

Tumoroids were formed in the 3D culture systems using 

NanoCulture Plate (NCP) (Medical & Biological Laboratories, 

Nagoya, Japan) or ultra-low attachment (ULA) culture plates/dishes 

(Greiner, Kremsmunster, Austria) within mTeSR1 stem-cell medium 

(Stemcell Technologies, Vancouver, Canada) or the above-mentioned 

serum-containing medium as described previously (Eguchi et al. 

2018; Namba et al. 2018; Sogawa et al. 2019; 2020).  

For quantification of tumoroids size and number, cells were 

seeded in a 96 well NCP for 14 days at a concentration of 5.0 x 103 

cells in 200 μL mTeSR1 or RPMI-1640 media with 10% FBS. 

Tumoroid maturation was monitored every day and photographed 

using the Floid cell imaging station (Thermo Fisher, Waltham, MA, 

USA) from day 1 until day 7 and a BZ-X microscope (Keyence, 

Osaka, Japan) starting from day 10 until the end of the experiment 
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day 14. The tumoroid size was measured using Image J software 

(NIH, Bethesda, MD, USA).  

3.3. 2D re-seeding assay 

Tumoroids were cultured in the 3D and stem-cell medium 

condition for 14 days and detached by trypsin/EDTA. The detached 

cells were re-seeded in a 24-well 2D culture plate at a concentration 

of 1.5 × 104 cells/well in RPMI-1640 with 10% FBS. The cell images 

were taken by using the Floid cell imaging station (Thermo Fisher, 

Waltham, MA, USA) on days 2, 4, 6, and 7 after the seeding.  

3.4. Preparation of EVs and conditioned media 

Tumoroid-derived EVs were used for tumoroid formation assays. 

Otherwise, 2D cultured cells-derived CM was used for 2D 

experiments. EVs were prepared from culture supernatants of 

tumoroids using a modified polymer-based precipitation method 

(Fujiwara et al. 2018; Ono et al. 2018; Eguchi et al. 2020). Briefly, 

cells were seeded on a 10-cm ULA dish at a density of 1.0 × 106 

cells/8 mL mTeSR1 medium and cultured for 6 days. The formed 

tumoroids were washed with PBS (-), and then further cultured in 

serum-free medium (4 mL per dish) for 2 days. Cell culture 

supernatant was collected and centrifuged at 2,000 × g for 30 min at 

4°C to remove detached cells. The supernatant was then centrifuged 

at 10,000 × g for 30 min at 4°C to remove cell debris. The supernatant 

(8 mL) was concentrated to less than 1 mL by using an Amicon Ultra-

15 Centrifugal Filter Devices for M.W. 100k (Merck Millipore, 

Burlington, MA). The concentrate was applied to the Total EVs 

Isolation System (Thermo Fisher, Waltham, MA, USA). The pass-
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through was concentrated using an ultrafiltration device for molecular 

weight 10 kD and used as a non-EV fraction. The EV fraction was 

suspended in 100 µL PBS (-) and used 3D-tumoroid-EVs. Protein 

concentration was measured using a micro BCA protein assay kit 

(Thermo Fisher, Waltham, MA, USA).  

For immunofluorescence in the 2D culture system, culture 

supernatants were collected from serum-free media of 2D-cultured 

donor cells during the exponential growth phase (70% confluence). 

The culture supernatants were centrifuged at 2,000 x g for 15 min to 

get rid of cells and debris, followed by diluting in a ratio 1:1 with a 

fresh culture medium. The CM was stored at -80°C. Recipient cells 

were treated with the CM for 48 h.  

3.5. Transmission electron microscopy 

As described previously (Eguchi et al. 2018; 2020), a 400-mesh 

copper grid coated with formvar/carbon films was hydrophilically 

treated. The EVs suspension (5-10 µL) was placed on Parafilm, and 

the grid was visualized at 5,000, 10,000, or 20,000 times 

magnification with an H-7650 transmission electron microscope 

(TEM) (Hitachi, Tokyo, Japan) at the Central Research Laboratory, 

Okayama University Medical School.  

3.6. Particle diameter distribution 

As described previously (Fujiwara et al. 2018; Eguchi et al. 2020), 40 

µL of EV fraction within PBS (-) was used. Particle diameters of the 

EV fractions in a range between 0 and 6,000 nano-diameters were 

analyzed in Zetasizer nano ZSP (Malvern Panalytical, Malvern, UK). 
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3.7. Western blotting 

Western blotting was performed as described (Ono et al. 2018; 

Eguchi et al. 2020). Cells were cultured for 6 days on a 6 well ULA 

plate at a density of 3.0 x 105 cells/3 mL mTeSR1 medium in a well. 

Cells were further cultured in serum-free media for 2 days. On day 8, 

the supernatants and tumoroids were collected, centrifuged at 2000 x 

g, 4˚C for 5 min. The supernatants were used for EV preparations as 

mentioned above.  

To prepare whole cell lysate (WCL), tumoroids were lysed in a 

RIPA buffer (1% NP-40, 0.1% SDS, and 0.5% deoxycholate, and 

EDTA-free protease inhibitor cocktail in PBS) using 25-gauge 

syringes. The cell lysate was incubated for 30 min on ice and then 

centrifuged at 12,000 g for 20 min at 4˚C. The preparation method of 

EV and non-EV fraction was described above. The supernatant was 

used as WCL. The same protein amounts for each lane were subjected 

to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE), followed by transfer to a polyvinylidene fluoride (PVDF) 

membrane using a semi-dry transfer system.  

The membranes were blocked in 5% skim milk in Tris-buffered 

saline containing 0.05% Tween 20 for 60 min at room temperature 

(RT) and then incubated overnight with rabbit monoclonal antibodies; 

anti-MMP3 (EP1186Y, ab52915, Abcam, Cambridge, UK) or anti-

CD9 (EPR2949, ab92726, Abcam, Cambridge, UK) or anti-CD63 

(EXOAB-CD63A-1, System Biosciences). For CD63, blocking was 

performed in 10% overnight and the primary antibody was reacted for 

2 days. The membranes were incubated with horseradish peroxidase 

(HRP)-conjugated secondary antibodies. For GAPDH, the HRP-

conjugated anti-GAPDH mouse monoclonal antibody (HRP-60004, 
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Proteintech, Rosemont, IL, USA) was used. For Actin, anti-Actin 

rabbit antibody (A2066, Sigma Aldrich, St. Louis, MO, USA) was 

utilized. Blots were visualized with the ECL substrate (Merck 

Millipore, Burlington, MA, USA). 

3.8. Coomassie blue staining (CBS) 

Protein samples (1 µg each) were loaded on the SDS-PAGE. 

After the electrophoresis run, the gel was stained with Coomassie 

Brilliant Blue R-250 solution (1610436, Bio-Rad, Hercules, CA, 

USA) for 30 min with gentle agitation followed by washing with the 

destaining solution (50% methanol, 10% glacial acetic acid) for 2 h 

until the background became less dark. 

3.9. EV-driven in vitro tumorigenesis  

MMP3-KO cells were seeded at 5.0 x 103 cells/200 μL mTeSR1 

medium in a well of 96-well NCP. After two days, EVs derived from 

3D-tumoroids (LuM1 or MMP3-KO) were added to MMP3-null 

tumoroids at a final concentration of 5 μg/mL. Then the plate was 

centrifuged at 1,800 × g for 1 h at 4˚C to increase the internalization 

of EVs into the tumoroids (Lai et al. 2015). The MMP3-KO tumoroids 

maturation was monitored over 14 days using a microscope FSX100 

(Olympus Life Science, Tokyo, Japan). Then tumoroid size was 

measured using Image J.  

3. 10. Palm fluorescent cells 

The lentiviral reporter constructs of CSCW-palmitoylation 

signal-tandem dimer Tomato (palmT) and CSCW-palmitoylation 

signal-EGFP (palmG) were kindly gifted from Dr. Charles P. Lai (Lai 
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et al. 2015). For virus production, HEK293T cells at 70-80% 

confluence were transfected with PalmT or PalmG constructs, 

psPAX2 packaging plasmid, and pMD2.G envelope plasmid using 

PEI max (Polysciences).  

LuM1 or MMP3-KO cells were infected by using the spinfection 

method with the viral solution. Infected/transduced stable cells were 

selected using puromycin. Isolation of single clones was carried out 

by limiting dilution method. We established palmtdTomato-expressed 

LuM1 cells (designated LuM1/palmT), palmGFP-expressed LuM1 

cells (designated LuM1/palmG), palmGFP-expressed MMP3-KO 

cells (designated MMP3-KO/palmT), and palmGFP-expressed 

MMP3-KO cells (designated MMP3-KO/palmG).To confirm 

fluorescent labeling, the palm fluorescent cells were seeded on a type 

I collagen-coated coverslip in a 24-well plate at a density of 1 × 104 

cells/well in a serum-containing culture media and cultured for 48 h. 

3.11. EVs exchange assay 

Two different colored fluorescent cells (LuM1/palmG and 

LuM1/palmT cells) were used as donor cells or recipient cells with 

each other in the 2D culture system. The donor cells were seeded at 1 

× 106 cells in a 60 cm dish and cultured overnight in a serum-

containing culture media. The grown cells of 70-80% confluence 

were washed twice with PBS, then the culture media was replaced 

with a serum-free medium and cultured for a further 2 days. The 

culture supernatant was collected and centrifuged at 2,000 × g for 15 

min at 4°C to remove detached cells and the supernatants were diluted 

in a ratio 1:1 with a fresh culture medium and used as CM. Recipient 

cells were seeded on a type I collagen-coated coverslip inserted in a 
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24-well plate at a density of 1 × 104 cells/well and cultured for 24 h in 

a serum-containing culture media. The recipient cells were treated by 

donor cells-derived CM for 48 h. For coculturing, recipient MMP3-

KO cells were seeded on coverslips. LuM1-donor cells (1 × 104 

cells/well) were seeded on a culture insert with a 0.45-μm pore 

(Greiner, Kremsmunster, Austria) in a 24 well plate. The insert with 

donor cells was placed on the well containing the recipient cells and 

cocultured for 48 h.  

3.12. 2D confocal laser-scanning microscopy  

Cells were fixed in 4% paraformaldehyde (PFA) for 10 min at 

RT and permeabilized with 0.5% Tween-20 for 10 min. For blocking 

the non-specific reaction of primary antibodies, cells were blocked in 

10% normal goat serum solution (Dako, Tokyo, Japan) for 30 min, 

then incubated overnight at 4℃ with rabbit anti-MMP3 antibody 

(EP1186Y, ab52915, Abcam, Cambridge, UK) or rabbit anti-CD9 

antibody (EPR2949, ab92726, Abcam, Cambridge, UK), for 

overnight at 4˚C and subsequently with a secondary antibody, goat 

anti-rabbit IgG Alexa Fluor 488 (A-11034, Thermo Fisher, Waltham, 

MA, USA) for 1 h at RT.  

As a negative control, the same protocol was performed without 

primary antibody staining. Washes after antibody reactions were done 

with PBS, three times for 3 min each, on a shaker at RT. The mounting 

and DNA staining was performed by using Immunoselect Antifading 

Mounting Medium DAPI (SCR-038448, Dianova, Germany). 

Fluorescent images were taken using a confocal laser scanning 

microscopy LSM780 (Carl Zeiss, Oberkochen, Germany) at Central 

Research Laboratory, Okayama University Medical School. 
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3.13. Immunofluorescence of tumoroids 

For tumoroid formation, cells were cultured for 6 days at a 

density of 3.0 x 105/3 mL mTeSR1 in a well of a 6-well ULA plate. 

Then tumoroids were treated with PBS, the 3D-tumoroid LuM1-EVs 

at a final concentration of 5 μg/mL or the 3D-tumoroid LuM1-CM 

(diluted 1:1 with fresh mTeSR1) for 24 h. Then the plate was 

centrifuged at 1,800 × g for 1 h at 4˚C to increase the internalization 

of EVs into the tumoroids (Lai et al. 2015). Tumoroids were washed 

with PBS and fixed in 4% PFA for 10 min.  

Tumoroids were additionally washed with PBS for 5 min 3 times 

and embedded in paraffin. Tumoroids sections (5 µm thickness) were 

deparaffinized and hydrated through xylenes and graded alcohol 

series. Antigen retrieval was performed by heating the specimens in 

Tris/EDTA buffer, pH 9.0 (Dako target retrieval solution 

S2367, DAKO, Carpenteria, CA) using a microwave for 3 min for 

CD9 or by autoclaving in 0.01M citrate buffer pH 6.0 (sodium citrate 

dihydrate, citric acid; Sigma Aldrich, USA) in a pressure cooker for 

8 min for MMP3 and Ki-67.  

Sections were treated with blocking solution (Dako) for 30 min 

at RT, then incubated with primary antibodies; rabbit anti-CD9 

(EPR2949, ab92726, Abcam, Cambridge, UK), rabbit anti-MMP3 

(EP1186Y, ab52915, Abcam, Cambridge, UK), or rat anti-Ki-67 

antibody (TEC-3, M7249, Dako); individually at 4°C overnight. 

Then, sections were subsequently stained with a secondary antibody 

goat anti-rabbit IgG, Alexa Fluor 488 (A-11034, Thermo Fisher, 

Waltham, MA, USA) for 1 h at RT. Then samples were 

counterstained with 1 mg/mL of DAPI (Dojindo Laboratories, 

Kumamoto, Japan). Fluorescent images were taken using a confocal 
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laser scanning microscopy LSM780 (Carl Zeiss, Oberkochen, 

Germany) at Central Research Laboratory, Okayama University 

Medical School.  

For IHC staining of Ki67, a biotinylated secondary antibody was 

applied for 30 min (Vector Lab, Burlingame, CA) and the color was 

developed with 3, 3’-diaminobenzidine (DAB) (Histofine DAB 

substrate; Nichirei, Tokyo, Japan). Then, samples were 

counterstained with Myer’s hematoxylin and images were taken using 

an optical microscope BX53 (Olympus).  

To calculate the Ki-67 labeling index (%), we counted 

approximately 100 Ki67-positive cells were counted in random five 

fields under the 40× objective. Areas with severe necrosis were 

avoided. The Ki-67 labeling index (%) was calculated by dividing the 

total Ki-67 positive cells by the total numbers of cells multiplied by 

100. The total tumoroid areas, as well as the area of necrotic regions, 

were measured using Image J. The percentage of necrosis was 

calculated by dividing the total necrotic area by the total tumoroid 

area. 

3.14. Hematoxylin and eosin staining 

For tumoroid formation, LuM1 or MMP3-KO cells were cultured 

for 8 days on 6 well ULA plates at a density of 3.0 x 105/3 mL 

mTeSR1/well. Then tumoroids were washed with PBS, fixed in 4% 

PFA for 10 min, and embedded in paraffin. Tumoroids sections (5 µm 

thickness) were deparaffinized in a series of xylene for 15 min, 

rehydrated in graded ethanol solutions, and washed well in distilled 

water. Then sections were incubated in Harris hematoxylin solution 

for 10 min and rinsed in tap water until the water was colorless. 
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Finally, after sequential treatment with hydrogen chloride and 80% 

ethanol solution, sections were incubated in eosin for 7 min.  

3.15. Tracing EV-uptake in vitro  

Ten micrograms of tumoroid-derived EVs were incubated with 0.25 

μM BODIPY TR Ceramide (Thermo Fisher, Waltham, MA, USA) for 

20 min at 37°C. Excessive BODIPY TR Ceramide was removed with 

Exosome Spin Columns (MW 3000) (Thermo Fisher, Waltham, MA, 

USA) (Namba et al. 2018). Cells were seeded at a concentration of 

5.0 x 103 cells/200 μL mTeSR1 in a well of 96-well NCP. The next 

day, EVs were added at a final concentration of 5 μg/mL. The EVs-

uptake was monitored over 24 h using the ArrayScan High Content 

Screening (HCS) system (Thermo Fisher, Waltham, MA, USA). The 

fluorescence intensity of each cell was determined using a filter set 

(485/594) for (GFP/ BODIPY TR). The average fluorescence 

intensity of the PBS treatment group at time point 0 h was evaluated 

as background and subtracted from raw values. 

3.16. Statistical analysis 

Statistical significance was calculated using GraphPad Prism and 

Microsoft Excel. The difference between the sets of data was analyzed 

using ANOVA Tukey’s multiple comparisons test and all data are 

expressed as the mean ± standard deviation unless otherwise 

indicated.  
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4. Results 

4.1. MMP3 knockout reduces the release of CD9 and CD63 within 

extracellular vesicles  

To explore the role of MMP3 on cellular communication in 

cancer, our research group has generated MMP3-KO cells by the 

CRISPR/Cas9 genome editing system from a rapidly metastatic 

murine cancer cell line LuM1 with a parental cancer cell line Colon26 

(aka CT26) (Okusha et al. 2020). The release of EV proteins from 

MMP3-KO-tumoroids tended to decrease compared to LuM1-

tumoroids (Figure 4A-D). However, there was no statistically 

significant difference in the protein concentration of the whole cell 

lysate (WCL) between LuM1 and MMP3-KO-tumoroids.   

MMP3 was markedly detected in the cellular, non-EV, and EV 

fractions of the LuM1, while the complete loss of MMP3 was 

confirmed in MMP3-knockout LuM1 cells, non-EV (including 

soluble proteins), and EV fractions (Figure 4E, top row; Figure S1A), 

suggesting a successful knockout of the Mmp3 gene.  

Next, I examined CD9 (a category-1 EV marker protein) 

expression pattern. Interestingly, the CD9 content was significantly 

down-regulated in both cellular and EV fractions of the MMP3-null 

cells compared to their counterpart (Figure 4E, second and third rows; 

Figure S1B). Moreover, CD63 was reduced in the EV fraction of the 

MMP3-null cells (Figure 4E, fourth and fifth rows; Figure S1C). 

Recently, we have shown that GAPDH and β-actin were released in 

the EV and non-EV soluble fractions upon membrane-damaging cell 

stress (Eguchi et al. 2020). Therefore, I examined the expression 
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levels of β-actin and GAPDH not only as a loading control but also to 

investigate whether they were released within EVs or non-EV soluble 

proteins. Our results revealed that both β-actin and GAPDH were 

detected in the EVs derived from both cell lines, but not in the non-

EV fractions (Figure 4E, bottom lane; Figure S1D, E; Figure S2A). 

Notably, β-actin levels were considered as a loading control for WCL 

and EV fractions, whereas GAPDH was not (Figure S1D, E). 

Furthermore, the SDS-polyacrylamide gel was stained with 

Coomassie brilliant blue (CBB) after the electrophoretic separation 

(Figure S2B). 

These findings demonstrate that MMP3 controls the secretion of 

CD9/CD63-contained EVs.  
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Figure 4. MMP3 knockout reduces the release of CD9 and 

CD63 within extracellular vesicles. Tumoroids were formed in 

10-cm ultra-low attachment (ULA) plates for 6 days. 

Extracellular vesicle (EV) and non-EV fractions were collected 

from the culture supernatants. (A, B) The total protein 

concentration in the (A) EV and (B) whole cell lysate (WCL) 

fractions of LuM1-tumoroids and MMP3-KO tumoroids. (C) 

Relative EV protein ratio comparing two cell lines. (D) EV 

protein concentration per the WCL proteins. ** p < 0.01; ns, not 

significant. (E) Western blotting showing MMP3, CD9, CD63, 

and β-actin in tumoroids, non-EV, and EV fractions. The 54-kD 



                                                                                                                                                  Results  

 

31 

 

 

bands indicate the full-length MMP3, the 47-kD bands represent 

the active form consists of the catalytic, hinge, and PEX domains, 

the 37-kD represents the catalytic domain, and the 25-kD shows 

the PEX domain of MMP3. The expression level of β-actin was 

examined as a loading control as well as to check if it was 

released from cells. The protein amounts loaded from WCL and 

EV fractions were 10 µg per lane, while 5 µg per lane was loaded 

from the non-EV fractions. The experiments were repeated twice. 

For full images of Western blotting, see Figure S1. 

 

4.2. MMP3 knockout impacts physical integrities of extracellular 

vesicles  

Further, I examined the morphology and size of EVs secreted 

from “tumoroids” by transmission electron microscopy (TEM) and 

Zetasizer, respectively. Both LuM1- and MMP3-KO tumoroids 

released two types of EVs small EVs (s-EVs) ranged approximately 

50-200 nm and large EVs (L-EVs) more broadly ranged between 200 

and 1000 nm (Figure 5A, B, Table 1). According to their size, the s-

EVs were supposed to be exosomes, while the L-EVs were supposed 

to be microvesicles. 

Meanwhile, crescent moon-like shaped and broken EVs were 

particularly seen in the MMP3-KO EV fraction released by MMP3-

KO tumoroids (Figure 5A, B). Additionally, I observed large 

aggregates (500-800 nm) of EVs derived from MMP3-KO compared 

to their counterparts (Figure 5C). 

Particle diameter distribution analysis using Zetasizer revealed 

that the size of both s-EVs (peaked at 84 nm) and L-EVs (peaked at 

465 nm) released from MMP3-KO tumoroids were smaller than those 

(peaked at 119 nm and 561 nm, respectively) of LuM1 tumoroids 
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(Figure 5D, E). The small particles detected at 5-10 nm in the LuM1-

EV fraction might be damaged membrane vesicles or lipoprotein 

particles e.g. HDL (5–12 nm) which have similar size ranges as EVs 

(Schumaker 1994).  

These findings demonstrate that MMP3 is important for 

maintaining the physical integrities of EVs, and the loss of MMP3 

resulted in disorganizing the EVs structures.  

Table 1. Comparison of particle size distributions between LuM1-

EVs and MMP3-KO-EVs. 

 

 

 

LuM1-EV MMP3-KO-EV 

Peak Diameter 

(nm) 

Intensity 

(%) 

Width 

(nm) 

Peak Diameter 

(nm) 

Intensity 

(%) 

Width 

(nm) 

1 561.4 48.6 164.9 1 464.9 76.6 155.3 

2 119.3 38.3 31.8 2 83.9 20.2 20.4 

3 8.0 6.8 1.53 3 5374 3.2 326.1 



                                                                                                                                                  Results  

 

33 

 

 

 

Figure 5. MMP3 knockout impacts the physical integrities of 

extracellular vesicles. (A-C) TEM images of EV fractions derived 

from the LuM1 and MMP3-KO tumoroids. at (A) low magnification, 

(B) high magnification, and of (C) aggregated EVs. s-EVs, small 

EVs; L-EVs, large EVs. Scale bars, 200 nm (in low magnification), 

and 100 nm (in high magnification). (D, E) Representative histograms 

showing the particle diameter distributions of EVs derived from (D) 

LuM1 tumoroids and (E) MMP3-KO tumoroids. The experiments 

were repeated twice. 

4.3 Loss of the Mmp3 gene reduces the in vitro tumorigenicity  

Next, I examined the consequences of Mmp3 loss on the in vitro 

tumoroid formation. The LuM1 and MMP3-KO cells were cultured 

in the 3D culture system either under serum-containing or mTeSR1 

stemness-enhancing conditions for 14 days. Larger tumoroids were 

formed in the stemness-enhancing medium compared to smaller 

tumoroids seen in the serum-containing medium (Figure 6A-G).                                   
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Figure 6. The loss of the Mmp3 gene reduces the in vitro 

tumorigenicity. Tumoroids were formed in the NanoCulture Plate 

(NCP)-based 3D culture with a serum-containing or stemness-

enhancing medium. (A) Representative images of the LuM1 and 

MMP3-KO tumoroids. The upper panel shows the experimental 

design. (B–G) Tumoroid size quantification on (B) day 3, (C) day 4, 

(D) day 5, (E) day 6, (F) day 7, and (G) day 14 of the tumoroid growth 

periods. N = 39 (LuM1 serum, MMP3-KO serum), n = 21 (LuM1 

stem, MMP3-KO stem). * p < 0.05, ** p < 0.01, *** p < 0.001, **** 

p < 0.0001; ns, not significant. The alternative graphs of Figure 3F, G 
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with tumoroid plotting larger than 100,000 μm2 are shown in Figure 

S3. The experiments were repeated twice.  

 

A highly significant difference in the tumoroid size between 

LuM1 and MMP3-null cells was observed under the stemness-

enhancing culture conditions from day 3 until day 14 (Figure 6A–G; 

Figure S3). The size of MMP3-null tumoroids was significantly 

smaller compared to LuM1 tumoroids (Figure 6B, G; Figure S3). 

Subsequently, I asked whether MMP3-KO and LuM1 cells were 

able to grow if they reseeded under the 2D culture conditions or not.  

I trypsinized tumoroids and reseeded under the 2D culture condition. 

Both cell types proliferated and reached confluency by day 7. More 

interestingly, LuM1 cells were able to grow into tumoroids even under 

the 2D culture condition, whereas MMP3-null cells were not (Figure 

7). 

These data suggest that the stemness-enhancing medium 

promotes the tumorigenic aggregation of tumor cells, whereas the 

serum-containing medium stimulates the cellular differentiation and 

decreasing the fusion of tumoroids. Besides, these findings indicate 

that loss of MMP3 has a great significance on inhibiting the tumoroid 

formation in vitro.  
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Figure 7. Representative images of re-cultured LuM1 and MMP3-

KO cells in 2D culture. Tumoroids on day 14 were trypsinized and 

re-cultured under the 2D culture condition in serum-containing media. 

Scale bars, 100 µm. The experiment was repeated twice. 

 

4.4. The addition of MMP3-rich EVs accelerated the in vitro 

tumorigenesis of MMP3-KO cells. 

I further investigated whether treating the MMP3-KO tumoroids 

with LuM1-EVs (MMP3-rich) or MMP3-KO-EVs (MMP3-null) 

would foster the in vitro tumorigenesis under the 3D culture system. 

A protocol has been shown that seeding the cells first followed by the 

addition of EVs two days later and centrifuging the plate improves the 

uptake of EVs into cells (Lai et al. 2015). As a pilot study, I examined 

this protocol to see the effect of three different concentrations (1.25, 

2.5, and 5 g/mL) of LuM1-EVs on the growth or cytotoxicity in 

MMP3-KO tumoroids. With this protocol, I found that the addition of 

5 g/mL of EVs significantly promoted the tumoroid growth 

compared to the lower concentrations of EVs (Figure S4). 
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I then found that the addition of LuM1-EVs tended to increase 

the size of tumoroids from the next day of the EVs addition to 12 days 

later, while the addition of MMP3-KO-EVs might not promote the 

tumoroid growth (Figure 8A). The growth of MMP3-KO tumoroids 

following the different treatments was monitored by plotting the 

average tumoroid size over the time following the different treatments 

(Figure 8B). The addition of LuM1-derived EVs fostered the 

tumoroids growth compared to the other two groups. 

 

Figure 8. The addition of MMP3-rich EVs accelerated the in vitro 

tumorigenesis of MMP3-KO cells. MMP3-KO tumoroids were 

treated with PBS, LuM1-EVs, or MMP3-KO-EVs at a final 

concentration of 5 g/mL in the NCP-based 3D culture with the 

stemness-enhancing medium. (A) Experimental scheme (top) and 

representative photomicrographs (bottom) of tumoroid maturation at 

the indicated timepoints. Scale bar, 100 µm. (B) A time plot graph 
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showing the average size of the MMP3-KO tumoroids following the 

different treatments over the indicated timepoints. See the next figure 

for statistical analysis.  

 

Notably, the addition of LuM1-EVs resulted in significant 

increases in the size of tumoroids from the next day of the EVs 

addition to 12 days later, while the addition of MMP3-KO-EVs did 

not have any impact on the tumoroid growth (Figure 9A, B). In 

parallel, the comparison of the top 20 tumoroid sizes in the three 

groups revealed that the addition of LuM1-derived EVs significantly 

potentiated the formation of enlarged tumoroids compared to the other 

treatments with MMP3-KO-EVs or PBS (Figure 9C, D).  

I thus found that that (i) MMP3-high, LuM1-derived EVs 

augmented the tumor growth in vitro, and (ii) the loss of MMP3 in 

EVs diminished the protumorigenic properties of the EVs. 
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Figure 9. Tumoroid size was altered by the addition of LuM1-EVs 

versus MMP3-KO-EVs. (A, B) Tumoroid size quantification of (A) 

all tumoroids and (B) tumoroids smaller than 80000 µm2 at the 

indicated time points of the tumoroid formation. Cell aggregates 

(>500 µm2) were considered to be tumoroids. (B) Tumoroids larger 

than 80000 µm2 were shown on the top of the graph. (C, D) Top 20 

tumoroids size quantification on (C) day 3 and (D) day 14.  * p < 0.05, 

** p < 0.01, *** p < 0.001, **** p < 0.0001; ns, not significant; n = 

54–130 (number of plots). The experiments were repeated twice. 
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4.5. Establishment of fluorescent-labeled LuM1 and MMP3-null 

cells  

It has been shown that EVs were derived from the plasma 

membrane (Colombo, Raposo, and Théry 2014) and could be labeled 

with palmitoylation signal-tagged fluorescent proteins (Lai et al. 

2015). To monitor the tumor EVs-uptake and exchange between cell 

populations, the plasma membrane of the LuM1 and MMP3-KO cells 

were labeled with palmitoylation signal-fused fluorescent reporters, 

namely palmG and palmT, thereby green and red labeled cells were 

established (Figure 10A, B). 

 In this EVs exchange assay, if the red/green recipient cells have 

taken up the green/red-EVs from donor cells, an increase in the 

green/red fluorescence signals should be observed, whereas, in non-

treated cells, no green/red fluorescence signals should be detected. 

Indeed, the green/red fluorescence was markedly detected in the cells 

treated with the CM of green/red cells, indicating that EVs were 

exchanged between the cells (Figure 10C, D).  

Additionally, I confirmed the EVs-mediated molecular transfer 

of MMP3 and CD9 under the 2D culture system by treating MMP3-

KO cells with LuM1-CM or by co-culturing with the MMP3 produced 

by the LuM1 cells in the transwell insert. Interestingly, MMP3 was 

restored and detected in the cytoplasmic and nuclear regions of 

MMP3-KO recipient cells after the addition of LuM1-CM or 

coculturing (Figure 10E).  

 

 



                                                                                                                                                  Results  

 

41 

 

 

The CD9 expression level was low in the MMP3-KO cells as 

shown in Figure 1. However, CD9 was significantly increased in the 

nuclear and cytoplasmic regions of MMP3-KO recipient cells after 

the addition of LuM1-CM or coculturing (Figure 10F). Mmp3 was 

deleted at the genome level, while Cd9 was not in the MMP3-KO 

cells. Therefore, as data interpretation, there were two possibilities 

including that (i) CD9 was transferred from LuM1-EVs to recipient 

cells and/or (ii) endogenous CD9 was induced in the recipient cells 

after the stimulation with LuM1-EVs. 

Collectively, these data prove the successful labeling and 

exchanging of EVs between cell populations. Next, I confirmed the 

exchange of EVs between the cells. Two different colored fluorescent 

cells LuM1/palmG (green) and LuM1/palmT (red) cells were treated 

with each other conditioned media  
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Figure 10. Establishment of fluorescent-labeled LuM1 and 

MMP3-KO cells. (A, B) Fluorescent labeled (A) LuM1 and (B) 

MMP3-KO cells. The stable cells were established by the transfection 

of expression constructs for palmT (red) and palmG (green) 

fluorescent proteins tagged with the palmitoylation signal. Images 

were taken using confocal laser scanning microscopy (CLSM). Non-

fluorescent LuM1 and MMP3-KO cells were used as negative 

controls. (C, D) Molecular transfer of (C) palmG- and (D) palmT-

labeled EVs from the conditioned medium (CM) of donor cells to 

recipient cells. (C) LuM1/palmT cells were treated with/without the 

CM of LuM1/palmG cells. (D) LuM1/palmG cells were treated 

with/without the CM of LuM1/palmT cells. (E, F) Immunostaining of 

(E) MMP3 and (F) CD9 in recipient MMP3-KO/palmT cells 

stimulated with PBS, LuM1-CM, or coculturing with LuM1 cells in 
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the Transwell system. DNA was stained with DAPI (blue). DIC, 

differential interference contrast. Scale bars, 20 µm. The experiments 

were repeated twice. (CM) collected under the 2D culture condition.  

4.6. Penetration of MMP3-rich EVs into organoids 

The bidirectional EVs-mediated transfer of cargo effectively 

influences the recipient phenotype to promote the development of an 

environment hospitable towards the cancer growth, invasion, and 

metastasis (Maacha et al. 2019). Moreover, the roles of EVs in the 

intercellular communication within the tumor microenvironment is 

increasingly acknowledged. Therefore, I examined whether MMP3 

enriched EVs and CM was transferred and penetrating MMP3-null 

recipient tumoroids by immunohistochemistry. MMP3 was well 

detected on the surface and inside of the recipient tumoroids after the 

addition of LuM1-EVs and LuM1-CM (data not shown) (E.A. Taha 

et al., n.d.).  

Additionally, MMP3-null tumoroids contained more space 

between cells and thus more fragile, while the addition of MMP3-rich, 

LuM1-EV, or –CM promoted the formation of solid tumoroids. To 

examine the molecular transfer and penetration of MMP3 into 

tumoroids, I next stained the recipient tumoroids by 

immunofluorescence (IF). To eliminate non-specific reaction, I 

confirmed the specificity of the anti-MMP3 antibody in the 

LuM1/palmT tumoroids (Figure S5).  

To examine molecular penetration and tissue localization of 

MMP3, I used the CLSM. MMP3 from LuM1-EVs and –CM was 

found to penetrate the MMP3-null tumoroids (Figure 11A). Notably, 

intracellular and intranuclear penetration of MMP3 in the recipient 
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tumoroids was seen after the addition of MMP3-rich, LuM1-EVs 

(Figure 11A, B). MMP3 transferred from EVs and CM were seen as 

speckles in cytoplasm and nuclei in the recipient MMP3-null 

tumoroids (Figure 11B). 

I have found that CD9 was decreased in MMP3-KO cells as 

shown in Figure 1 and Figure 7. Next, I examined whether CD9 could 

be altered in the CD9-low, MMP3-KO recipient tumoroids by adding 

LuM1-EVs or -CM. Indeed, CD9 was well stained in the recipient 

tumoroids, especially the parts close to the surface of tumoroids after 

the addition of the MMP3-rich CM or EVs (Figure 12A). Moreover, 

CD9 and endogenous palmT in the recipient tumoroids became 

abundantly expressed on the cell surface and well co-localized seen 

as honeycomb shape, suggesting that CD9 contributed to cell-cell 

adhesion in the recipient tumoroids (Figure 12B).  

These findings indicate that LuM1-derived EVs and CM 

enhanced the solidity of MMP3-null tumoroids, which were relatively 

fragile. Additionally, MMP3 carried by LuM1-EVs was highly 

penetrative and deeply transferred to the recipient MMP3-null 

tumoroids. The intranuclear transfer of MMP3 and the increase in 

CD9 could contribute to the increased solidity in the MMP3-KO 

tumoroids. 
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Figure 11. The EV-mediated deep transfer of MMP3 into 

tumoroids. MMP3-KO/palmT (red) tumoroids were treated with 

PBS, LuM1-CM, or LuM1-EVs for 24 h in the ULA-based 3D 

culture system. MMP3 (green) was stained by immunofluorescence. 

Nuclei were stained blue with DAPI. Images were taken by CLSM. 

(A) low and (B) high magnifications were shown. Scale bars; 100 µm 

(in low magnification images) and 10 µm (in high magnification 

images).   
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Figure 12. Treatment with LuM1-derived EVs and CM 

recovered CD9 in MMP3-null tumoroids. MMP3-KO/palmT (red) 

tumoroids were treated with PBS, LuM1-CM, or LuM1-EVs for 24 

h in the ULA-based 3D culture system. CD9 (green) was stained by 

immunofluorescence.  Nuclei were stained blue with DAPI. Images 

were taken by CLSM. (A) low and (B) high magnifications were 

shown. Scale bars; 100 µm (in low magnification images) and 10 µm 

(in high magnification images).  
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4.7. The knockout of the Mmp3 gene significantly decreased the 

transmissive potential of tumoroid-derived EVs 

We have developed a method to examine the EV transfer to 

tumoroids by labeling EVs with red-fluorescent sphingolipids 

(Namba et al. 2018). In the present study, I monitored whether LuM1 

tumoroid-derived or MMP3-KO tumoroid-derived heterogenous EVs 

(shown in Figure 4) were differently transferred to the MMP3-null 

tumoroids over 24 h.  

I found that the MMP3-null tumoroids rapidly internalized the 

MMP3-rich, LuM1-EVs at a highly significant rate compared to the 

MMP3-null EV from 4 h to 24 h post-EVs addition (Figure 13A, B). 

Furthermore, the EVs uptake by tumoroids was increased in a time-

dependent manner for 24 h (Figure 13B).  

To sum up, these findings indicate that MMP3-rich, LuM1 

tumoroid-derived EVs were highly transmissive and associated with 

tumoroids, while the loss of MMP3 in tumoroid-EVs reduced the 

transmissive and binding properties. These data also support our 

hypothesis that both endogenous and exogenous MMP3 play key 

roles in promoting the tumorigenesis, thereby MMP3-rich EVs were 

rapidly taken up by the MMP3-null tumoroids. 



                                                                                                                                                  Results  

 

48 

 

 

 

Figure 13. The Knockout of the MMP3 significantly decreased 

the transmissive potential of tumoroid-derived EVs. EVs were 

collected after 6 days from the culture supernatants of tumoroids that 

formed in ULA plates. EVs were fluorescently labeled with BODIPY 

TR Ceramide (red). The labeled EVs or PBS were added to the 

MMP3-KO/palmG (green) tumoroids at a concentration of 5 μg/mL 

in the NCP-based 3D culture with the stemness-enhancing medium. 

The uptake of EVs was monitored over 24 h using the high contents 

screening (HCS) system. (A) Time-course imaging of EV uptake 

(red) by MMP3-KO/palmG tumoroids (green) for 24 h. Scale bar, 

100 µm. (B) Red fluorescence intensities of transmitted EVs in 

MMP3-KO/palmG tumoroids. The average fluorescence intensity of 

the PBS treatment group at time point 0 h was evaluated as 
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background and subtracted from raw values. n=3, *P<0.05, 

**P<0.01, and #P<0.001 (LuM1-EVs versus MMP3-KO-EVs). 

 

4.8. MMP3-rich EVs and CM rescue the cell proliferation of 

MMP3-KO tumoroids 

In the course of the present study, I compared the morphological 

characteristics of the LuM1 tumoroids versus MMP3-KO tumoroids 

by histological (H&E) staining.  Five necrotic areas were observed in 

the MMP3-KO tumoroid, whereas only one small necrotic area was 

found in the LuM1 tumoroid (Figure 14A, B). The development of 

necrotic areas in the MMP3-KO tumoroid was at a higher percentage 

compared to the LuM1 tumoroid (15% versus 1% of the total area, 

respectively) (Figure 14A-C). The summed total and the percentage 

of necrotic areas were larger in the MMP3-KO tumoroids compared 

to their counterpart (Table 2).  

 

Table 2. Necrotic areas in the LuM1 tumoroid versus MMP3-KO 

tumoroid 

  LuM1 MMP3-KO 

Total tumoroid area (m2) 331701 64148 

Number of necrotic areas 1 5 

       Sum of necrotic areas 4807 9351 

Necrosis % 1 15 



                                                                                                                                                  Results  

 

50 

 

 

  

Figure 14. MMP3-knockout resulted in necrotic cell death in 

tumoroids. Tumoroids were cultured in the ULA-based 3D culture 

system with a stemness-enhancing medium for 8 days. (A, B) 

Hematoxylin and eosin (H&E) staining of (A) LuM1- and (B) MMP3-

KO tumoroids. Necrotic areas were enclosed with black color, while 

the total tumoroids area was enclosed with yellow color. Scale bars, 

50 µm. (C) The percentage of the necrotic areas in both tumoroids. 

 

Additionally, there was a significant reduction in the Ki-67 

expression, a marker of cell proliferation, in the MMP3-KO cells 

compared to their counterparts (Figure 15A, B). Following the 

addition of MMP3-rich CM and EVs, the recipient MMP3-KO 

tumoroid displayed a highly proliferative phenotype as judged by the 

highly significant increase in Ki-67 expression index (Figure 15A, B). 

These findings prove that MMP3 plays a crucial role in promoting 

cell proliferation in tumoroids and delaying the necrotic process. 
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Figure 15. MMP3 enriched-EVs and CM rescue the proliferation 

of MMP3-KO tumoroids. LuM1-tumoroids or MMP3-KO 

tumoroids were treated with PBS, LuM1-CM, or LuM1-EVs for 24 h, 

and then Ki-67 was immunostained. (A) Ki-67 immunostaining 

(brown) in the LuM1 and MMP3-KO tumoroids. Scale bars, 100 µm 

(in low magnification images), and 10 µm (in high magnification 

images). (B) Ki-67 labeling index (%).  n = 6, ** p < 0.01, *** p < 

0.001; ns, not significant. Experiments were repeated twice. 
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5. Discussion 

5.1. Summary 

MMP3 is a proteolytic enzyme, as well as a transcriptional factor 

that plays a crucial role in tumor progression (Eguchi et al. 2008; 

Okusha et al. 2018; 2020) However, the roles of MMP3 within EVs 

had not unveiled before our study. We recently generated MMP3-KO 

cells by CRISPR/Cas9 system (Okusha et al. 2020) and have analyzed 

their properties in EVs and tumorigenesis.  

In the current study, I found that MMP3 was abundantly detected 

in the high-metastatic cancer cells, their non-EV fluids, and EVs, 

although not in/from MMP3-KO cells. Thus, I newly explored (i) the 

oncogenic role of MMP3 on the in vitro tumoroid formation and on 

their EVs integrity under the 3D culture system, (ii) the tumorigenic 

potential of MMP3-rich versus MMP3-null EVs, and (iii) the EVs-

mediated molecular transfer of MMP3 into the MMP3-KO tumoroids 

under the 3D culture system (Figure. 16).  

5.2. Potential mechanism of how MMP3 promotes tumorigenesis  

Our study indicates that MMP3 contained in EVs promotes 

primary tumorigenesis and metastasis also called secondary 

tumorigenesis. Several studies have reported that several MMP family 

members were packaged in EVs from body fluids or various types of 

cell lines (Dolo et al. 1999; Taraboletti et al. 2002; Belhocine et al. 

2010; Shimoda and Khokha 2013; Reiner et al. 2017; Okusha et al. 

2018). Our current results are consistent with recent data that LuM1-  
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 Figure. 16  Graphical abstracts summarizing the role of MMP3 

on tumorigenesis in vitro.  (A) Illustrating the net results in the 

presence of MMP3  (B) absence of MMP3 protein. 
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EVs (defined as oncosomes) enriched with MMP3 were highly 

transmissive and protumorigenic in vitro and in vivo (Okusha et al. 

2020). MMP3 is one of the epithelial-to-mesenchymal transition 

(EMT) markers in cancer metastasis (Radisky and Radisky 2010), and 

it is well known that MMP3 makes cancer cells detached from solid 

mass and transferred to a distant region of the body (Okusha et al. 

2018). In the current study, I focused on the roles of MMP3 in EVs of 

cancer cell lines for evaluating its tumorigenic potential. 

 As a potential mechanism of the tumorigenesis, MMP3 in EVs 

can penetrate to recipient cells resulting in inducing transformation 

(normal to cancer cells). We have shown that MMP3 could penetrate 

cell nuclei and transactivate connective tissue growth factor gene 

[CTGF aka cell communication network factor 2 (CCN2)] by 

interacting with DNA and heterochromatin proteins (HP1/CBXs) 

(Eguchi et al. 2008; Okusha et al. 2018). Moreover, we recently 

showed that MMP3 contained within EVs penetrate recipient cells 

and their nuclei (Okusha et al. 2020).  

MMP3-rich EVs were able to transactivate the CCN2 gene 

promoter, while knockout of MMP3 from the EVs abolished this 

transactivating effect. The induction of CCN2 could be a key 

mechanism by which MMP3 induces transformation and tumor 

progression, as the stromal expression of CTGF promotes 

angiogenesis and prostate cancer tumorigenesis (F. Yang et al. 2005). 

Moreover, CCN2 modulates cell cycle progression through the 

upregulation of cyclin A (Kothapalli and Grotendorst 2000). Besides, 

CTGF is associated with oncogenic activities in glioblastoma by 

inducing the expression of the antiapoptotic proteins, Bcl-xl, 

surviving, and Flip (Yin et al. 2010). Thus, the protumorigenic effect 
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of MMP3 could be partially mediated by the induction of this multi-

functional factor, CTGF. 

Intranuclear MMP3 can also trans-activate HSP genes encoding 

cytoprotective factors, in collaboration with HP1/CBXs  (Eguchi et 

al. 2017). Thus, intranuclearly translocated MMP3 could regulate 

broader intranuclear proteins and genes, some of which could be 

involved in cellular transformation such as EMT. Our current data 

indicated that MMP3 might also regulate CD9 and CD63 at 

transcriptional or post-transcriptional levels. The transactivating role 

of MMP3-EVs on the CCN2 gene was strictly mediated by a cis-

element called TRENDIC (Okusha et al. 2020). Therefore, it would 

be important to verify which gene promoters contain TRENDIC-like 

motifs that are directly bound by MMP3. Some target genes regulated 

by MMP3 may involve cellular transformation. 

Moreover, intranuclearly penetrating MMP3 could initiate 

cellular transformation by cleaving particular intranuclear proteins. It 

has become clear that the function of MMPs was not only restricted 

to degrade or inactivate matrix proteins and that proteolysis by MMPs 

can modulate or even increase functions of substrate proteins (Nelson 

et al. 2000).  

Simultaneously, EV-associated MMP3 could activate 

extracellular transforming signals such as TGFβ by cleaving their pro-

forms or inhibitory factors. Activities of many proteins are positively 

regulated by MMP proteolysis including CCN2/CTGF (Hashimoto et 

al. 2002; Kaasbøll et al. 2018; Okusha et al. 2020), insulin growth 

factor binding proteins (IGFBPs) heparin-binding epidermal growth 

factor (HB-EGF) (Suzuki et al. 1997), fibroblast growth factor 

receptor 1 (FGFR1) (Levi et al. 1996), interleukin-1beta (IL-1β) (Ito 



                                                                                                                                             Discussion  

 56 

et al. 1996), and tumor necrosis factor-alpha (TNF-α) (Haro et al. 

2000). Such proteins activated by MMPs strengthen our in vitro 

findings that MMP3 can foster tumor development by modulating the 

activities of many signaling pathways and their receptors. Our 

research group is currently investigating such mechanisms of 

transformation induced by MMP3.  

5.3. Potential role of MMP3 in cryoprotection 

Our data suggest that MMP3 contained in EVs plays a 

cytoprotective role in tumors. Knockout of MMP3 markedly 

increased necrotic area in tumors thereby inhibited tumor growth. The 

addition of MMP3-rich EVs rescued tumor growth by increasing 

proliferating cells. Therefore, it is conceivable that MMP3 has 

cytoprotective and stimulates cell proliferation in tumors. Such 

cytoprotective and proliferative roles of MMP3 could be mediated by 

downstream factors such as HSPs and CTGF/CCN2 (Eguchi et al. 

2008; 2017). We showed that intranuclear MMP3 can trans-activate 

HSP genes encoding cytoprotective factors, in collaboration with 

HP1/CBXs (Eguchi et al. 2017). Besides, CCN2 modulates cell cycle 

progression through the upregulation of cyclin A (Kothapalli and 

Grotendorst 2000).  

Indeed, the MMP3-null tumoroid size was significantly smaller 

than their parental counterpart. Besides, the necrotic onset was 

occurring at a higher rate in the MMP3-null tumoroid compared to the 

LuM1 tumoroids. Necrosis is an accidental death of cells that are 

induced in response to extreme physiological conditions, such as 

hypoxia, toxin exposure, ischemia, reactive oxygen species exposure, 

nutrient deprivation, and extreme temperature changes (Walker et al. 
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1988; Nicotera, Leist, and Manzo 1999). Indeed, inside 

tumoroids/tumors are hypoxic and deprived of nutrients (Eguchi et al. 

2018; Namba et al. 2018; Yoshida et al. 2019), although some 

cytoprotective factors could protect cells against necrotic cell death. 

Morphologically, necrotic cell death is characterized by swelling of 

the cellular organelles, a process of oncosis (also called ischemic cell 

death), and early plasma membrane rupture leading to loss of 

intracellular content (Parhamifar et al. 2014). The cell death observed 

in tumoroids in the current study fit the morphological criteria of 

necrosis.  

Our data also indicated that MMP3 is a regulator for the physical 

and biological characteristics of EVs. Tetraspanins CD9 and CD63, 

category-1 EV markers, were downregulated in MMP3-null EVs 

compared to their counterparts (Figure 1E, F), suggesting that MMP3-

knockout reduced the endogenous production or stability and 

subsequent release of CD9/CD63-contained EVs. It has been known 

that tetraspanins, CD326/EpCAM (these are category-1 EV markers), 

and the tight junction protein claudin-7 partners associate with each 

other for cell-cell adhesion and apoptosis resistance (Naour 2008). 

Moreover, tetraspanin interaction with another tetraspanin and 

integrins often depended on palmitoylation (Charrin et al. 2002; X. 

Yang et al. 2004). Therefore, MMP3-KO-triggered loss of CD9 and 

CD63 could reduce the cell-cell and EV-cell adhesions required for 

tumoroid integrity.  
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5.4. Release of L-EVs and s-EVs from 3D tumoroids 

The morphological visualization of EVs showed abnormal 

disorganized shapes of EVs such as, crescent moon-like and broken 

EVs that were associated with the Mmp3 loss. These data indicated 

that MMP3 is necessary for maintaining the stability of structural 

proteins required for the integrity of EVs.  

Besides, we distinguished two subpopulations of 3D tumoroid-

derived EVs, namely s-EVs (50-200 nm) and L-EVs (200-1000 nm). 

It is worth noting that, under the 2D culture system both LuM1 and 

MMP3-KO cells secreted homogeneous intact s-EVs (50-300 nm 

diameter) (Okusha et al. 2020). This inconsistency is due to our 

current study was performed under the 3D culture system which is 

completely different from the 2D culture system. Thus, intra-

tumoral hypoxia developed under the 3D culture model may be 

stimulated the production of L-EVs. The release of both s-EVs and L-

EVs might be a signature characteristic of the 3D tumoroids, a model 

resembling of tumors in vivo.  

It has been reported that adipocytes secreted L-EVs containing 

cytoskeletal proteins and molecular chaperones, whereas s-EVs were 

shown to contain ECM proteins (Durcin et al. 2017). Moreover, the 

proteomic analysis of s- and L-EVs derived from a colorectal cancer 

cell line revealed that s-EVs were enriched with proteins associated 

with cell-matrix adhesion and cell-cell junctions (Jimenez et al. 2019). 

Similarly, s-EVs from fibrosarcoma cells showed similar enrichment 

for adhesion proteins (Jimenez et al. 2019). Likewise, one of our 

recent studies has demonstrated that the prostate cancer (PC-3) cells 

release two types of vesicles, s-EVs (30-200 nm) under a non-heated 
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condition, L-EVs (200-500 nm) and membrane-damaged EVs which 

were associated with HSP90α expression (Eguchi et al. 2020). 

Notably, both membrane-damaged EVs and L-EVs were co-released 

upon the heat shock stress, suggesting that vesicular membranes were 

damaged by the stress (Eguchi et al. 2020). Thus, the two different 

EVs populations may play distinct biological roles in the recipient 

cells. Our research group is currently challenging to separate the s- 

and L-EVs from the tumoroids and distinguish their properties.  

5.5. Fluorescent labeling of EVs 

 To monitor the transmission and uptake of EVs between cells, I 

used two systems (i) PalmGFP and PalmtdTomato (Figure 10) or (ii) 

BODIPY TR ceramide labeled EVs (Figure 13). By utilizing the first 

system, I detected a robust fluorescent signal of donor-derived EVs in 

recipient cells, indicating that the bidirectional exchange of EVs 

between the cells.  

Of note, PalmGFP and PalmtdTomato EV labeling strategy were 

designed to visualize and track multiple EV subtypes. Furthermore, 

by using these reporters, 0.22- and 0.8-μm sized EV populations, as 

well as sucrose density gradient with EV-marker proteins (such as 

Alix) were observed (Lai et al. 2015). Through the second EVs 

monitoring system, I tracked the uptake rate of MMP3-rich versus 

MMP3-null EVs for 24 h. An increase in BODIPY TR ceramide/EVs 

signal was noticed as early as 3 h post-EVs exposure period, and the 

increase continued until reached the saturation level after 24 h (Figure 

13).  

Thus, both fluorescent-EV monitoring systems were useful for 

monitoring the EV exchange. It has been shown that uptake of EVs 
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occurred via multiple routes, such as the direct fusion between EVs 

and the plasma membrane (Parolini et al. 2009), as well as EV 

internalization through lipid raft-, clathrin- and caveolae-dependent 

endocytosis, macropinocytosis, and phagocytosis (Morelli et al. 2004; 

Feng et al. 2010; Escrevente et al. 2011; Fitzner et al. 2011; Nanbo et 

al. 2013; Svensson et al. 2013). However, it is unclear which 

mechanism(s) is employed in different cell types under various 

conditions.  

5.6. Inter MMPs regulation 

Besides, EV-derived MMPs could promote proteolysis in 

recipient cells leading to tumor progression. Wang et al. indicated that 

EVs derived from adipocytes promoted lung cancer metastasis via 

transferring MMP3 that resulted in increasing the MMP9 activity in 

lung cancer cells (Wang et al. 2017). It has been shown that one MMP 

can activate another MMP including other members of MMPs. 

Therefore, the high expression of active MMP3 and/or MMP9 could 

activate other MMPs.  

Indeed, I have shown that both MMP3 and MMP9 were 

expressed at high levels in LuM1 cells and proved their important role 

in tumor progression (Okusha et al. 2018). Nevertheless, the loss of 

MMP3 was crucial to reduce tumor and EV development. Our data 

indicate that exogenous MMP3 can be positioned at a higher level in 

the protease cascade that promotes tumor progression in the recipient 

cells. 
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6. Conclusion 

Our study demonstrated that the loss-of-function of MMP3 

significantly decreased the 3D-tumoroids formation in vitro, reduced 

tetraspanins (CD9 and CD63) in EVs and, resulted in destabilizing the 

EVs structural integrity. Moreover, I proved the successful labeling, 

exchanging of EVs between cells, and established a bidirectional EV 

transfer assay system. I confirmed the EVs-mediated molecular 

transfer of MMP3 into the MMP3-KO tumoroids under the 3D culture 

system. Also, I found that the addition of MMP3-enriched EVs 

(defined as oncosomes) fostered the tumorigenicity and increased the 

proliferation of MMP3-null cells. Thus MMP3-enriched oncosomes 

are highly transmissive and protumorigenic. 
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7. Supplementary Figures 

 

 

 
 

Figure S1. Full images of Western blotting of (A) MMP3, (B) CD9, 

(C) CD63, (D) β-actin, and (E) GAPDH, supporting Figure 1. Images 

from long and short exposure times are shown. The protein amount 

loaded from WCL and EV fractions was 10 µg per lane, while 5 µg 

per lane was loaded from the non-EV fractions.   
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Figure S2. Images of (A) GAPDH Western blotting and (B) CBB 

staining of the SDS-PAGE. The amount of protein sample loaded for 

the CBB staining was 1µg per each lane. 
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Figure S3. Column scatters plotting of the size of LuM1 

tumoroids versus MMP3-KO tumoroids cultured for (A) 7 days 

or (B) 14 days in serum-containing or stemness media, 

supporting Figure 3.  Data were represented as mean ± SD, n = 

3, ** p < 0.01, **** p < 0.0001; ns, not significant. 
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Figure S4. Evaluation of the effect of three different 

concentrations of LuM1-EVs on the MMP3-KO tumoroids 

growth. MMP3-KO tumoroids were treated with LuM1-EVs at a 

concentration of 1.25, 2.5, 5 µg/mL in the NCP-based 3D culture with 

the stemness-enhancing medium. Scale bar, 100 µm. (B, C) Tumoroid 

size quantification on (B) day 3 and (C) day 5 of the tumoroid 

formation periods. Data were represented as mean ± SD, n = 3, *** p 

< 0.001; ns, not significant. 
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Figure S5. The specificity of the MMP3 antibody. (A, B) MMP3 

expression (green) in (A) positive (B) and negative controls; 

LuM1/palmT tumoroids were stained with or without the MMP3 

antibody, then stained with the secondary AF488 antibody. Nuclei 

were stained blue with DAPI. Images were taken by CLSM. w/o Ab; 

without antibody Scale bar 100 µm. 
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