
A Study of Informative Test Code Approach for Code
Writing Problem in Java Programming Learning

Assistant System

September, 2020

Ei Ei Mon

Graduate School of
Natural Science and Technology

(Doctor’s Course)
Okayama University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/358960634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation submitted to
Graduate School of Natural Science and Technology

of
Okayama University

for
partial fulfillment of the requirements

for the degree of
Doctor of Philosophy.

Written under the supervision of

Professor Nobuo Funabiki

and co-supervised by
Professor Satoshi Denno

and
Professor Yasuyuki Nogami

Okayama University, September 2020.

ToWhom ItMay Concern

We hereby certify that this is a typical copy of the original doctor thesis of
Ms. Ei Ei Mon

Signature of Seal of

the Supervisor

Graduate School of

Prof. Nobuo Funabiki Natural Science and Technology

Abstract

Nowadays, the objected oriented programming language Java has been widely used in various
practical applications in societies due to the high reliability, portability, and scalability. Therefore,
there have been strong demands from industries for Java programming educations. To advance
them, we have studied a Java Programming Learning Assistant System (JPLAS). To allow the
use of JPLAS in various environments, both the Web-based online version and the desktop-based
offline version have been implemented for JPLAS.

JPLAS has several types of problems to cover a variety of students at different learning lev-
els. Among them, the code writing problem asks a student to write a source code to satisfy the
specification of a given assignment. The correctness of the student answer is evaluated through
the software test with the test-driven development (TDD) method on an open source framework
Junit using the test code. The test code can describe the detailed information for the source code
implementation, which can help a student to write a complex code. Thus, we have studied this
informative test code approach. As the first contribution of the thesis, we present the informative
test code generation to help a teacher preparing the test code for the code writing problem. At the
early stage of the Java programming study, a student should master how to write a source code that
contains the standard input/output with exception handling. Thus, the proposed method focuses
on generating an informative test code using the test code template and the reference source code
containing the procedure of the standard input/output with exception handling.

As the second contribution of the thesis, we present the informative test code approach for Java
collections framework (JCF). A student should master how to write a source code using JCF that is
a strong and useful architecture to store or control a group of objects. JCF covers wrapper classes
such as Integer, Long, or Double. It can enlarge or shrink the size automatically when an object is
added or removed. In this thesis, informative test codes for List, Set, and Map are generated and
evaluated as the most useful interfaces in JCF.

As the third contribution of the thesis, we implement one teacher service function in Desktop-
version Java Programming Learning Assistant System (D-JPLAS) to summarize the student an-
swers that have been submitted in text files without database or any server and to analyze them for
assessing their performances and giving feedbacks to them. To offer JPLAS study environments
without the Internet, D-JPLAS has been developed.

In future works, I will continue studying informative test codes for other Java programming
topics and implement another teacher service function to detect illegal copies in student answers
for D-JPLAS.

i

Acknowledgements

It is my great pleasure to thank those people who have supported and encouraged me throughout
this Ph.D. study in Okayama University, Japan. It would not be possible to complete this thesis
without their helps. I want to say many things, but I can hardly find the proper words. Therefore, I
will just say that you are the greatest blessing in my life.

I owe my deepest gratitude to my supervisor, Professor Nobuo Funabiki, who has supported
me throughout my thesis with his patience and knowledge. I am greatly indebted to him, whose
encouragements, advices, and supports from the beginning to the end enabled me to proceed this
study, not only in scientific issues but also in life. He gave me wonderful advices, comments,
and guidance when formulating problems, implementing codes, conducting experiments, writing
papers, and presenting them. Thanks for making me who I am today.

I am deeply grateful to my co-supervisors, Professor Satoshi Denno and Professor Yasuyuki
Nogami, for their continuous supports, guidance, mindful suggestions, and proofreading of this
work.

I wish to express my sincere gratitude to Associate Professor Minoru Kuribayashi for his valu-
able suggestions during my research and for the future. I also want to express my gratitude to the
course teachers during my Ph.D. study for enlightening me with wonderful knowledge.

I would like to acknowledge the Ministry of Education, Culture, Sports, Science, and Technol-
ogy of Japan (MEXT) for financially supporting my Ph.D. study, and the Ministry of Education,
Myanmar, and Technological University (Monywa), Myanmar, for giving this precious opportunity
to study in Japan.

I would like to thank my friends and colleagues who helped me in this study, including Dr.
Khin Khin Zaw, Dr. Nobuo Ishihara, Ms. Su Sandy Wint, Mr. Hein Htet, Mr. MuneneKWENGA
Ismael, Ms. Htoo Htoo Sandy Kyaw, Ms. Soe Thandar Aung, Mr. RAHMAN Md.Mahbubur and
all the FUNABIKI Lab’s members. Thank you for your supports at my tough time during this
study and thank you for sharing the thoughts and experiences with me.

Finally, I am eternally grateful to my beloved family and teachers, who always encourage
and support me throughout my life. Your supports and understanding gave me the strength and
inspirations to overcome any difficulty in my life.

ii

List of Publications

Journal Paper
1. E. E. Mon, N. Funabiki, R. Kusaka, K. K. Zaw, and W.-C. Kao, “ A test code genera-

tion method for coding standard input/output with exception handling in Java programming
learning assistant system,” Adv. in Sci., Tech, and Eng. Sys. J., (ASTESJ), vol. 3, no. 1, pp.
30-37, Jan. 2018.

2. E. E. Mon, N. Funabiki, M. Kuribayashi, and W.-C. Kao, “ An informative test code ap-
proach in code writing problem for Java collections framework in Java Programming Learn-
ing Assistant System,” J. of Software, vol. 14, no. 5, pp. 200-208, May 2019.

International Conference Paper

3. N. Funabiki, K. K. Zaw, E. E. Mon, and W.-C. Kao, “ An improved informative test code
approach for code writing problem in Java programming learning assistant system,” Proc.
6th Int. Conf. on Emerging Internet, Data and Web Tech. (EIDWT-2018), pp. 687-698,
Mar. 15 - 17, 2018.

4. K. K. Zaw, N. Funabiki, E. E. Mon, and W.-C. Kao, “ An informative test code approach for
studying three object-oriented programming concepts by code writing problem in Java pro-
gramming learning assistant system,” Proc. 7th IEEE Global Conf. on Consumer Electronics
(GCCE2018), pp. 592-596, Oct. 2018.

Other Papers

5. E. E. Mon, N. Funabiki, and K. K. Zaw, “ Generations of informative test codes for study-
ing encapsulation, inheritance, and polymorphism in Java programming learning assistant
system,” JSiSE Student Conf. in Chugoku, pp. 229-230, Mar. 2018.

6. E. E. Mon, N. Funabiki, and M. Kuribayashi, “ An informative test code approach to study-
ing collections framework by code writing problems in Java programming learning assistant
system,” 2018 IEEE Hiroshima Section Stu. Sym. (HISS2018), pp. 73-76, Nov. 2018.

7. E. E. Mon, N. Funabiki, S. S. Wint, and M. Kuribayashi, “ Implementation of student answer
analyzing function for desktop-version Java programming learning assistant system,” IEICE
General Conf., BS-4-34, pp. S74-S75, Mar. 2019.

iii

8. E. E. Mon, S. S. Wint, N. Funabiki and M. Kuribayashi, “ Extension of student answer ana-
lyzing function to five problem types in desktop-version java programming learning assistant
system,” Proc. of FIT-2019, pp.309-310, Sept. 2019.

iv

List of Figures

2.1 Server platform for JPLAS. 4

4.1 Hierarchy of exception classes in Java. 20

6.1 Usage flow of Desktop-version JPLAS. 36
6.2 Example answer file for EFP. 37
6.3 Example answer file for CWP. 38
6.4 Answer result of each student for each problem. 39
6.5 Success rate for each EFP. 40
6.6 Student result summary. 40

v

List of Tables

5.1 Comparison of metric values for JCF . 34

vi

List of Codes

3.1 Input data file for BFS . 10
3.2 Output data file for BFS . 11
3.3 Informative test code for BFS . 11
3.4 Simple test code for BFS . 14

vii

Contents

Abstract i

Acknowledgements ii

List of Publications iii

List of Figures v

List of Tables vi

List of Codes vii

1 Introduction 1
1.1 Background . 1
1.2 Contributions . 2
1.3 Contents of This Dissertation . 3

2 Review of JPLAS 4
2.1 Overview of JPLAS . 4

2.1.1 Server Platform . 4
2.1.2 Software Architecture . 4
2.1.3 Problem Types . 5

2.2 Code Writing Problem . 5
2.3 Test-driven Development Method . 6

2.3.1 Outline of TDD Method . 6
2.3.2 JUnit . 6
2.3.3 Test Code . 6
2.3.4 Features in TDD Method . 7

2.4 User Service Functions . 7
2.4.1 Teacher Service Functions . 8
2.4.2 Student Service Functions . 8

2.5 Desktop-version JPLAS . 8
2.6 Summary . 8

3 Review of Informative Test Code Approach in Code Writing Problem 9
3.1 Informative Test Code Approach in Code Writing Problem 9

3.1.1 Concept of Informative Test Code . 9
3.1.2 Assignment Generation with Informative Test Code 9

viii

3.1.3 Example Assignment Generation for BFS Algorithm 10
3.1.3.1 Input Data File . 10
3.1.3.2 Model Source Code . 10
3.1.3.3 Expected Output Data File . 11
3.1.3.4 Informative Test Code . 11
3.1.3.5 Informative Test Code Example 11
3.1.3.6 Simple Test Code Example . 14

3.2 Eclipse Metrics Plugin . 15
3.2.1 Software Metrics . 15
3.2.2 Eclipse Metrics Plugin . 16
3.2.3 Adopted Seven Metrics . 16

3.3 Summary . 17

4 Application to Standard Input/output with Exception Handling 18
4.1 Introduction . 18
4.2 Standard Stream . 19

4.2.1 Standard Input Stream (stdin) . 19
4.2.2 Standard Output Stream (stdout) . 19
4.2.3 Standard Error Stream (stderr) . 19

4.3 Exception Handling . 19
4.3.1 What is Exception Handling . 19
4.3.2 Hierarchy of Java Exception Classes . 20
4.3.3 Types of Exceptions . 20

4.4 Informative Test Code Generation . 21
4.4.1 Scope of Source Code under Test . 21
4.4.2 Requirements in Test Code . 21
4.4.3 Solutions for Requirements . 21
4.4.4 Conditions of Source Code . 22
4.4.5 Test Code Template . 23
4.4.6 Test Code Generation Procedure . 24
4.4.7 Generated Test Code Example . 24

4.5 Evaluation . 25
4.5.1 Test Code Generation Results . 25
4.5.2 Source Code Writing Results . 26

4.5.2.1 Problem #1 . 26
4.5.2.2 Problem #2 . 27
4.5.2.3 Problem #3 . 27
4.5.2.4 Summary of Student Applications 27

4.6 Summary . 27

5 Application to Java Collection Framework 28
5.1 Introduction . 28
5.2 Informative Test Code Approach for Java Collections Framework 29

5.2.1 Review of Java Collections Framework 29
5.2.2 Overview of Informative Test Code for JCF 29
5.2.3 Informative Test Code for List . 29
5.2.4 Informative Test Code for Set . 31

ix

5.2.5 Informative Test Code for Map . 32
5.2.6 Evaluation . 33

5.3 Summary . 34

6 Student Answer Analyzing Function for Desktop-version JPLAS 35
6.1 Introduction . 35
6.2 Desktop-version Java Programming Learning Assistant System (D-JPLAS) 35

6.2.1 Problem Types in D-JPLAS . 36
6.3 Student Answer Analyzing Function . 37

6.3.1 Input Data . 37
6.3.2 Output Data . 38
6.3.3 Student Result Interfaces . 39

6.4 Summary . 39

7 Related Works 41

8 Conclusion 45

References 47

x

Chapter 1

Introduction

1.1 Background
In 1995, the objected oriented programming language Java was first released with the Java Runtime
Environment (JRE) from Sun Microsystems [1]. The JRE consists of the Java Virtual Machine
(JVM), Java platform core classes, and supporting Java platform libraries. The JRE is the runtime
portion of a Java code on a Web browser, where the Java plug-in software is a component of the
JRE. The JRE allows applets written in Java to run on various Web browsers. Moreover, it allows
programmers to create new classes that share some of the attributes of existing classes. Besides,
they can use the same method name with different number of parameters and different data types.

Nowadays, Java has been widely used in various practical applications like web applications,
desktop applications, mobile applications, scientific applications, enterprise applications in soci-
eties due to the high reliability, portability, and scalability. Therefore, the strong demands for Java
programming education have appeared from IT industries and professional schools. Correspond-
ingly, a plenty of universities and professional schools are currently offering Java programming
courses to meet these challenges. A typical Java programming course consists of grammar instruc-
tions in the class and programming exercises in computer operations.

To enhance Java programming education, we have developed a Java Programming Learning
Assistant System (JPLAS) [2] which provides teacher service functions and student service func-
tions. JPLAS inspires students by offering sophisticated learning environments via quick responses
to their answers for self-studies. At the same time, it supports teachers by reducing loads of eval-
uating the codes.

To allow the use of JPLAS in various environments, both the Web-based online version and
the desktop-based offline version have been implemented for JPLAS. The online JPLAS adopts
Ubuntu for the operating system, Tomcat for the Web application server, JSP for the application
programs with HTML, and MySQL for the database for handling the problem descriptions and the
students’ data. The user can access to JPLAS through a Web browser. Since the online JPLAS
may not be suitable for students in poor Internet access environments, the offline JPLAS called
the Desktop-version JPLAS (D-JPLAS) has been implemented without using the online database
and the Web server [3]. In D-JPLAS, the assignment files and the answer text files can be shared
between the teacher and the students using USB memories, a file server or email.

JPLAS has several types of exercise problems to cover a variety of students at different learning
levels, such as code understanding problem (CUP), value trace problem (VTP), element fill-in-
blank problem (EFP), code completion problem (CCP), code correction problem (CRP), statement
fill-in-blank problem (SFP), and code writing problem (CWP). In Java programming studies using

1

JPLAS, a student is expected to solve the exercises along this order of problem types.
Among them, the code writing problem (CWP) asks a student to write a source code to satisfy

the specification of a given assignment. In JPLAS, a teacher first registers a Java programming
assignment with the problem statement, the model source code, and the test code. Then, a student
writes a source code by reading the statement and the test code. The correctness of the student
answer code is marked through the software test using the test code on an open source framework
JUnit [4]. This software test approach is called the test-driven development (TDD) method [5]. A
student can keep modifying the code until completing the correct one.

We have observed that the test code can describe the detailed information on the code imple-
mentation, such as access modifiers, class names, variable names, method names, parameter types,
and return data types. They can help a student to write a complex code. Thus, we have studied this
informative test code approach for the code writing problem. Previously, we confirmed the effec-
tiveness of this approach in studying the three fundamental object-oriented programming concepts
in Java programming, namely, encapsulation, polymorphism, and inheritance.

1.2 Contributions
This thesis presents studies of the informative test code approach for the code writing problem in
two important Java programming topics for novice students, namely, standard input/output with
exception handling and Java collections framework (JCF). It also presents the implementation of
Desktop-version Java Programming Learning Assistant System (D-JPLAS).

The first contribution of the thesis is the informative test code generation method for standard
input/output with exception handling. This method can help a teacher preparing complex test codes
required for this topic study. At the early stage of the Java programming study, a student should
master how to write source codes containing standard inputs and standard outputs, where the
handling of exceptions must be studied together.

The proposed method generates the informative test code from the test code template and the
model source code through the following steps: 1) a test code template is provided by our proposal,
2) a set of standard inputs to be tested are made by a teacher, 3) by running the model code with
each input, the corresponding standard output is extracted, and 4) this pair of the standard input
and the standard output are embedded into the test code template. By repeating steps 3) and 4)
for every testing standard input, the test code can be completed. To run the source code using the
test code on JUnit, it introduces the classes to handle the standard input/output functions as the
memory access functions [6].

For evaluations, we applied the proposal to 97 source codes in Java programming textbooks
and Web sites that contain the standard input/output, and found that any generated test code could
correctly verify the corresponding source code, except for one code using a random generator.
Then, we generated the test codes from three source codes using the proposal, and asked five
students who are currently studying Java programming to solve the CWP instances using them.
The results showed that all the students completed the codes that can pass the test code, although
the use of exception handling functions was sometimes insufficient or incorrect.

The second contribution of the thesis is the application of the informative test code approach
to Java collections framework (JCF). JCF is a library of providing a strong and useful architecture
for storing and manipulating a group of objects. List, Set, and Map are the most useful interfaces
in JCF. JCF can cover wrapper classes such as Integer, Long, or Double, and can enlarge or shrink
the size automatically when an object is added or removed.

2

Therefore, a student should master how to write source codes using JCF. For evaluations, we
generated five informative test codes for JCF, and asked 19 students from Japan, Myanmar, China,
and Indonesia to solve the CWP instances using them. We also calculated the software metrics to
confirm the quality of their codes. The results showed that all of them successfully completed the
source codes.

The third contribution of the thesis is the implementation of Desktop-version Java Program-
ming Learning Assistant System (D-JPLAS). To offer JPLAS study environments even without the
Internet, D-JPLAS provides both the teacher service functions and the student service functions in
JPLAS. Here, we implemented one teacher service function that summarizes the student answers
submitted in text files and analyzes them for assessing their performances and giving feedbacks to
them.

1.3 Contents of This Dissertation
The remaining part of this thesis is organized as follows: Chapter 2 reviews the Java Programming
Learning Assistant System (JPLAS), where we discuss the sever platform, the software architec-
ture, the problem types, the user service functions, and the Desktop-version JPLAS. Chapter 3
reviews the informative test code approach for the code writing problem including the concepts
and examples and introduce the software metrics to evaluate the quality of generated source codes
of students. Chapter 4 presents the informative test code generation method for the code writing
problem that asks implementing a source code containing the standard input/output with excep-
tion handling. Chapter 5 presents the informative test code approach for studying Java Collections
Framework (JCF). Chapter 6 presents the implementation of the student answer analyzing function
in D-JPLAS. Chapter 7 presents previous works related to this thesis. Finally, Chapter 8 concludes
this thesis with some future works.

3

Chapter 2

Review of JPLAS

In this chapter, we review the Java Programming Learning Assistant System (JPLAS).

2.1 Overview of JPLAS
First, we overview the system architecture, implemented problem types, and user service functions
in JPLAS.

2.1.1 Server Platform
Originally, JPLAS has been implemented as a Web application system. Figure 2.1 illustrates the
software platform for the server [7]. Here, Ubuntu-Linux is adopted for the operating system,
Tomcat is used as the Web server to run JSP source codes, and MySQL is adopted as the database
for managing the data in JPLAS. JSP is a script language that can embed Java codes within HTML
codes. Tomcat returns the dynamically generated Web page to the client. The current system is
running on VMware for the portability.

Figure 2.1: Server platform for JPLAS.

2.1.2 Software Architecture
The software architecture of JPLAS closely follows the MVC model as the common architecture for
Web application systems. It basically uses Java for the model (M), HTML/CSS/JavaScript for the

4

view (V), and JSP for the controller (C). Here, it is emphasized that Servlet is not used in this case
to avoid the possible redundancy that could happen between Java codes and Servlet codes where
the same functions may be implemented. A design pattern called responsibility chain is adopted to
handle marking functions of the student answers, and the specific functions for the database access
are implemented such that the controller does not handle them. In the view, the user interface is
dynamically controlled with Ajax, to reduce the number of JSP files.

2.1.3 Problem Types
JPLAS has several types of problems to accommodate a variety of students at different learning
levels. Among them, the element fill-in-blank problem (EFP) requires students to fill in correct
elements in the blanks in a given Java code [8]. The value trace problem (VTP) requires students to
answer the actual values of important variables in the code [9]. The statement fill-in-blank problem
(SFP) makes students write whole statements that are blank in the code [10]. The code writing
problem (CWP) requires students to write whole Java codes to satisfy the given specifications [11].
Among them, this thesis focuses on the CWP.

In the first two problems, the answers of students are marked by string matching with correct
ones. In the latter two problems, the answers are marked by unit testing using test codes on JUnit.
The difficulty level of the problems is designed to increase in this order of the four problems.

2.2 Code Writing Problem
In this section, we discuss the details of the code writing problem (CWP) [11]. The CWP is based
on the test-driven development (TDD) method [5]. It asks a student to write the source code that
satisfies the specification given in the test code on JUnit. A student can easily repeat the cycle
of writing, testing, and modifying the source code by himself/herself. The test code is prepared
by a teacher. test code 1 shows a sample test code for source code 1. “CityTest class” at line 4
represents the test class to test “City class” in the source code. “addDataTest method” at line 6
runs as the test case. “assertEquals method” at line 10 tests whether the value at the first index in
the list is “Okayama”.

test code 1
1 import static org.junit.Assert.*;
2 import java.util.List;
3 import org.junit.Test;
4 public class CityTest {
5 @Test
6 public void addDataTest() {
7 City obj = new City();
8 List<String> list = obj.addData();
9 assertEquals(1, list.size());

10 assertEquals("Okayama", list.get(0));
11 }
12 }

5

source code 1
1 import java.util.ArrayList;
2 import java.util.List;
3 public class City {
4 List<String> addData() {
5 List<String> list = new ArrayList<>();
6 list.add("Okayama");
7 return list;
8 }
9 }

2.3 Test-driven Development Method
In this section, we overview the test-driven development (TDD) method [5] along with its features.

2.3.1 Outline of TDD Method
In the TDD method, the test code should be written before or while the source code is implemented,
so that it can verify whether the current source code satisfies the required specifications during its
development process. The basic cycle in the TDD method is as follows:

1) to write the test code to test each required specification,

2) to write the source code, and

3) to repeat modifications of the source code until it passes each test using the test code.

2.3.2 JUnit
JPLAS adopts JUnit as an open-source Java framework to support the TDD method. JUnit can
assist the unit test of a Java source code unit or a class. Because JUnit has been designed with
the Java-user friendly style, its use including the test code programming is less challenging for
Java programmers. In JUnit, a test is performed by using a given method whose name starts from
assert. Test code 2 adopts the assertThat method to compare the execution result of the source
code with its expected value.

2.3.3 Test Code
A test code should be written using libraries in JUnit. Here, by using the following source code
2 for MyMath class, we explain how to write a test code. MyMath class returns the summation of
two integer arguments.

source code 2
1 public class MyMath{
2 public int plus (int a, int b){
3 return (a+b);
4 }
5 }

Then, the following test code 2 can test the plus method in the MyMath class.
test code 2

6

1 import static org.junit.Assert.*;
2 import org.junit.Test;
3 public class MyMathTest {
4 @Test
5 public void testPlus(){
6 myMath ma = new MyMath();
7 int result = ma.plus(1, 4);
8 assertThat(5, is(result));
9 }

10 }

The names in the test code should be related to those in the source code so that their correspon-
dence becomes clear:

• The class name is given by the test class name + Test.

• The method name is given by the test + test method name.

The test code imports JUnit packages containing test methods at lines 1 and 2, and declares Math-
Test at line 3. @Test at line 4 indicates that the succeeding method represents the test method.
Then, it describes the test method.

The test code performs the following functions:

1) to generate an instance for the MyMath class,

2) to call the method in the instance in 1) using the given arguments,

3) to compare the result with its expected value for the arguments in 2) using the assertThat
method, where the first argument represents the expected value and the second one does the
output data from the method in the source code under test.

2.3.4 Features in TDD Method
In the TDD method, the following features can be observed:

1) The test code can represent the specifications of the source code, because it must describe
the function tested in the source code.

2) The test process for a source code becomes efficient, because each function can be tested
individually.

3) The refactoring process of a source code becomes effective, because the modified code can
be tested instantly.

Therefore, to study the TDD method and writing a test code is useful even for students, where the
test code is equivalent to the source code specification. Besides, students should experience the
software test that has become important in software companies.

2.4 User Service Functions
The user functions of JPLAS consist of the teacher service functions and the student service func-
tions. The utilization procedure for both JPLAS functions by a teacher and a student is given
below.

7

2.4.1 Teacher Service Functions
Teacher service functions include the registration of courses, the registration and management of
assignments, and the verification of source codes that are submitted by students.

To register a new assignment, a teacher needs to input an assignment title, a problem statement,
a reference (model) source code, and a test code. After the registration, they are disclosed to the
students except for the source code. It is noted that the test code must be able to test the model
source code correctly, where we will present the method to automatically generate the test code
from the model source code in Section 2.3.3.

To evaluate the difficulty of assignments and the comprehension of students, a teacher can
refer to the number of submissions for answer code testing from each student. If a teacher finds
an assignment with plenty of submissions, it can be considered as quite difficult for the students,
and should be changed to an easier one. If a teacher finds a student who submitted answers many
times, this student may require additional assistance from the teacher.

2.4.2 Student Service Functions
Student service functions include the view of the assignments and the submission of source codes
for the assignments. A student should write a source code for an assignment by referring the
problem statement and the test code. It is requested to use the class/method names, the types, and
the argument setting specified in the test code. All submitted source codes will be stored in the
database on the server as a reference for students.

2.5 Desktop-version JPLAS
As mentioned before, JPLAS has been developed as a Web application system. However, it has
been found that the use of JPLAS can often be difficult, particularly in developing countries, where
the Internet may not be stable due to the weak network infrastructure and the frequent power
shortage. Besides, skilled persons to manage the Web server may not be available.

To avoid those difficulties of the online Web-version JPLAS, we have implemented the offline
Desktop-version JPLAS (D-JPLAS) as an efficient solution for schools and homes with the poor
Internet access. [3]. Unlike to the online JPLAS, D-JPLAS runs on the client PC only, without
the server access through the Internet. It keeps all the programs and data including the problems
and the student answers in the file system of the user’s PC, where it does not use the database.
Basically, the students submit their answers to the teacher using USB memories. Then, the teacher
will analyze the answers on his/her own PC and give feedbacks to the students. In this thesis, we
implement the function for analyzing the student answers in D-JPLAS.

2.6 Summary
In this chapter, we reviewed the Java Programming Learning Assistant System (JPLAS). On JPLAS,
we discussed the sever platform, the software architecture, the implemented problem types, the
code writing problem, the test-driven development method, the user service functions, and the
Desktop-version JPLAS(D-JPLAS).

8

Chapter 3

Review of Informative Test Code Approach
in Code Writing Problem

In this chapter, we review the informative test code approach for the code writing problem in
JPLAS.

3.1 Informative Test Code Approach in Code Writing Problem

3.1.1 Concept of Informative Test Code
The informative test code helps a student to complete the source code by offering the necessary
code design information in the hard code writing problem that requires the use of multiple class-
es/methods, and/or the adoption of advanced concepts of the object-oriented programming such as
encapsulation, inheritance, and polymorphism. It may give the following information to imple-
ment the code:

• the names for class, methods and member variables,

• the access modifiers for them,

• the data types for the important variables and arguments,

• the returning data types for the methods, and

• the exception handling.

3.1.2 Assignment Generation with Informative Test Code
Generally, for generating an assignment in code writing problem, a teacher prepares the test code
file, the input data file, and the expected output data file, in addition to the problem statement in
the natural language. Then, a student is requested to write the source code that passes every test
described in the test code on JUnit. This means that a student writes the source code by referring
to the detailed specifications in the test code.

The informative test code can be generated after the teacher had prepared the qualitative model
source code for the problem. It is expected that the student completes the qualitative source code
for the problem that has the similar structure with the model source code by referring to this test

9

code. For the teacher, the generation procedure of the code writing problem using the informative
test code contains the following steps:

1. The teacher prepares the statement and the input data file for the new assignment.

2. He/she prepares the model source code that not only satisfies every specification of the prob-
lem but also designs the code structure for high quality.

3. He/she prepares the expected output data file by running the model source code, where
this output file is used to compare the output data file of the student code for checking the
correctness.

4. He/she generates the informative test code describing the necessary information to imple-
ment the source code by a student.

3.1.3 Example Assignment Generation for BFS Algorithm
In this subsection, we describe the details of Steps 1, 2, and 3 using the BFS algorithm [12]. This
algorithm starts at the root node (or arbitrary node of a graph), and explores the neighbor nodes
first, before moving to the next level neighbors.

3.1.3.1 Input Data File

To represent a graph, the input data file should contain the index and the label for every vertex,
and the source vertex label and the destination vertex label for every edge. The following example
represents a graph with eight vertices and seven edges.

Listing 3.1: Input data file for BFS
1 node−number node−label
2 0 s
3 1 r
4 2 w
5 3 t
6 4 x
7 5 v
8 6 u
9 7 y

10 source−node target−node
11 s r
12 s w
13 r v
14 w t
15 w x
16 t u
17 x y

3.1.3.2 Model Source Code

The model source code for the code writing problem should be carefully prepared by using the
proper classes and methods, so that the measured metrics of the model source code exist in the
desired ranges.

For example, the model source code for the BFS algorithm can be implemented using graph
class for handling the graph data, BFS class for applying the algorithm procedure, and main class

10

for controlling the whole code. The teacher can obtain the model source code from textbooks or
websites. By comparing the measured metrics of the source codes in them, the teacher can select
the best source code for the model one.

3.1.3.3 Expected Output Data File

The expected output data file can be obtained by running the model source code with the input
data file. It describes the expected results of the source code by a student. For the BFS algorithm,
it includes the selected edges by the algorithm in the selected order that are described by a pair of
two end node labels.

Listing 3.2: Output data file for BFS
1 select−node pre−node
2 s −
3 r s
4 w s
5 v r
6 t w
7 x w
8 u t
9 y x

3.1.3.4 Informative Test Code

The informative test code should be generated by referring the model source code such that any
important method in the model code must be tested in this test code. It is possible to apply an
automatic test code generation tool to help the test code generation [13]. Then, the test code is
generated from the model source code by the following rules:

1. The class name is given by the test class name + Test.

2. The method name is given by the test + test method name.

3. The specific values are specified for the arguments in the test code by the teacher.

The test code can more clearly describe the specifications than a description using natural
language. It is expected that the student obtains the information for the class/method names, the
data types, and the argument settings by reading the test code, before writing the source code.
Because the information in the test code comes from the model source code, the student is able to
complete the same qualitative source code as the model code.

3.1.3.5 Informative Test Code Example

The following test code is generated from the source code for the BFS algorithm. It contains the
necessary information to implement a source code for the BFS algorithm, including the classes, the
methods, the important variables and their data type, the exception handling, and returning values
of method.

Listing 3.3: Informative test code for BFS
1 import static org.junit.Assert.*;
2 import java.io.BufferedReader;
3 import java.io.File;

11

4 import java.io.FileReader;
5 import java.io.IOException;
6 import java.util.Arrays;
7 import org.junit.Test;
8 public class BFSTest {
9 @Test

10 public void testSimpleGraph() {
11 SimpleGraph G = new SimpleGraph (5);
12 boolean a=G.labels instanceof String [];
13 boolean b=G.edges instanceof boolean [][];
14 assertEquals(true, a);
15 assertEquals(true, b);
16 assertEquals(5,G.labels.length);
17 assertEquals(5,G.edges.length);
18 assertEquals(5,G.edges[0].length);
19 }
20 @Test
21 public void testSetLabel(){
22 SimpleGraph G= new SimpleGraph(2);
23 G.setLabel(1, "a");
24 assertEquals("a",G.labels[1]);
25 }
26 @Test
27 public void testGetLabel(){
28 SimpleGraph G = new SimpleGraph (2);
29 G.setLabel(1, "b");
30 String label=(String)G.getLabel(1);
31 assertEquals("b",label);
32 }
33 @Test
34 public void testAddEdge(){
35 SimpleGraph G = new SimpleGraph (3);
36 G.addEdge(1, 2);
37 assertEquals(true,G.edges[1][2]);
38 }
39 @Test
40 public void testNeighbours(){
41 SimpleGraph G = new SimpleGraph(3);
42 int [] expectedNode = {1,2};
43 G.addEdge(0,1);
44 G.addEdge(0,2);
45 assertTrue(Arrays.equals(expectedNode, G.neighbors(0)));
46 }
47 @Test
48 public void testFindBFS1(){
49 SimpleGraph G = new SimpleGraph(4);
50 BFS bfs = new BFS();
51 G.setLabel(0, "a");
52 G.setLabel(1, "b");
53 G.setLabel(2, "c");
54 G.setLabel(3, "e");
55 G.addEdge(0,1);
56 G.addEdge(0,2);
57 G.addEdge(1,3);
58 String Path[]=bfs.findBFS(G, 0);
59 String[] expectedPath = {"a a", "b a", "c a", "e b"};
60 assertTrue(Arrays.equals (expectedPath,Path));
61 }
62 @Test
63 public void testFindBFS2() throws IOException {
64 BFS bfs= new BFS();

12

65 File testFileName=new File ("./Graph/graphBFS.txt");
66 File OutFileName=new File ("D:/Graph/bfsout.txt");
67 String graph=bfs.readFile(testFileName);
68 String [] path=bfs.findBFS(graph);
69 bfs.writeFile(OutFileName, path);
70 }
71 @Test
72 public void assertReaders() throws IOException {
73 BufferedReader expected= new BufferedReader (new FileReader("./Graph/

expectedbfsout.txt"));
74 BufferedReader actual = new BufferedReader (new FileReader("D:/Graph/

bfsout.txt"));
75 String line;
76 while ((line = expected.readLine()) != null) {
77 assertEquals(line, actual.readLine());
78 }
79 assertNull("Actual had more lines than the expected.", actual.

readLine());
80 assertNull ("Expected had more lines than the actual.", expected.

readLine());
81 }
82 }

• Lines from 1 to 7 import some library functions. Firstly, the JUnit library is imported to
use the JUnit4 in Eclipse for writing tests. Then, the BufferReader calss is imported to read
text from a character input stream.The java.io.File class is an abstract representation of file
and directory path names. java.io.FileReader is to read the contents of a file as a stream
of characters. To throw the IOException whenever an input or output operation is failed or
interpreted, java.io.IOException is imported. The Arrays class in java.util package provides
static methods to dynamically create and access Java arrays. The Test annotation tells JUnit
that the public void method to which it is attached can be run as a test case.

• Lines from 10 to 19 describe the test method for two important variables, labels and edges,
in SimpleGraph class. labels has the String data type and one dimensional array. edges has
the Boolean data type and two dimensional array.

• Lines from 21 to 25 describe the test method for setLabel method in SimpleGraph, which
accepts two arguments with integer and string data types, namely index and label, and inserts
the information to labels.

• Lines from 27 to 32 describe the test method for getLabel method, which accepts one argu-
ment with integer data type and returns the corresponding label from labels.

• Lines from 34 to 38 describe the test method for addEdge method, which accepts two ar-
guments with integer data types, namely source and target, and inserts the information to
edges.

• Lines from 40 to 46 describe the test method for neighbours method, which accepts one
argument with integer data type, namely index, and returns the integer array which includes
the indexes are neighboring to the input index.

• Lines from 48 to 61 describe the first test method for findBFS method in BFS class, which
accepts two arguments with the Graph object and the integer data type and returns a string

13

array which includes the labels from labels for the selected indexes and the previous index
from them by BFS. Here, setLabel and addEdge methods in SimpleGraph class are also
described here.

• Lines from 63 to 70 describe the second test method for findBFS method, which accepts one
argument of the string data type and returns the string array which includes the labels from
labels for the selected indexes and the previous index from them by BFS. Here, readFile
and writeFile methods in BFS class are also described. The readFile method accepts one
argument of File object and returns the string that includes the index and labels for the graph
to be applied to findBFS method. The writeFile method accepts two arguments of the File
object and the string data type array, and writes the input string array, which includes the
labels from labels for the selected indexes and the previous index from them by BFS, to the
output file and generate it. This test method throws IOException whenever an input or output
operation is failed or interrupted when the program is executed.

• Lines from 72 to 81 describe the test method that is used to compare the expected output
data file with the output data file from the source code of the student.

3.1.3.6 Simple Test Code Example

Then, to evaluate the performances of students using the informative test code, we also prepare the
simple test code for them. The following simple test code for BFS contains only the test methods
for readFile method, writeFile method, and findBFS method in BFS class.

The simple test code only tests the input data file reading and output data file writing functions
in the source code. It does not test the internal functions of the code.

Listing 3.4: Simple test code for BFS
1 import static org.junit.Assert.*;
2 import java.io.BufferedReader;
3 import java.io.File;
4 import java.io.FileReader;
5 import java.io.IOException;
6 import java.util.Arrays;
7 import org.junit.Test;
8 public class BFSTest {
9 @Test

10 public void testFindBFS() throws IOException {
11 BFS bfs= new BFS();
12 File testFileName=new File ("./Graph/graphBFS.txt");
13 File OutFileName=new File ("D:/Graph/bfsout.txt");
14 String graph=bfs.readFile(testFileName);
15 String [] path= bfs.findBFS(graph);
16 bfs.writeFile(OutFileName, path);
17 }
18 @Test
19 public void assertReaders() throws IOException {
20 BufferedReader expected= new BufferedReader (new FileReader("./Graph/

expectedbfsout.txt"));
21 BufferedReader actual = new BufferedReader (new FileReader("D:/Graph/

bfsout.txt"));
22 String line;
23 while ((line = expected.readLine()) != null) {
24 assertEquals(line, actual.readLine());
25 }

14

26 assertNull("Actual had more lines than the expected.", actual.
readLine());

27 assertNull ("Expected had more lines than the actual.", expected.
readLine());

28 }
29 }

3.2 Eclipse Metrics Plugin
In this section, we introduce Eclipse Metrics Plugin to measure the code quality metrics.

3.2.1 Software Metrics
Software metrics are used for a variety of purposes including the evaluation of the software quality
and the prediction of the development/maintenance cost. Software metrics can be measured from
software products such as source codes and documents. Most of software metrics are defined on
the conceptual modules of software systems, including files, classes, methods, functions, and data
flows. This means that software metrics can be measured in any programming language.

At present, a variety of software metrics exist. They can be classified into basic metrics, com-
plexity metrics, CK metrics, and coupling metrics. CK metrics indicate features of object-oriented
software, and has been widely used [14][15].

Basic metrics include the following metrics:

• number of classes (NOC)
Total number of classes in the selected scope

• number of methods (NOM)
Total number of methods defined in the selected scope

• number of fields (NOF)
Total number of fields defined in the selected scope

• number of overridden methods (NORM)
Total number of methods in the selected scope that are overridden from ancestor classes

• number of parameters (PAR)
Total number of parameters in the selected scope What is parameter?

• number of static methods (NSM)
Total number of static methods in the selected scope

• number of static fields (NSF).
Total number of static fields/attributes in the selected scope

Complexity metrics include the following metrics:

• method lines of code (MLOC)

• specialization index (SIX),

• McCabe cyclomatic complexity (VG)

• nested block depth (NBD).

15

CK metrics include the following metrics:

• weighted methods per class (WMC)

• depth of inheritance tree (DIT),

• number of children (NSC)

• lack of cohesion in methods (LCOM).

Coupling metrics include the following metrics:

• afferent/efferent coupling (CA/CE).

3.2.2 Eclipse Metrics Plugin
Until now, a lot of software metric measurement tools have been developed. Among them, Eclipse
Metrics Plugin by Frank Sauer is the commonly used open source software plugin for Eclipse
IDE for the metrics calculation and the dependency analyzer. It can measure various metrics and
display the results in the integrated view. Actually, 23 metrics can be measured by this tool, which
can be used for the quality assurance testing, the software performance optimization, the software
debugging, the process management of software developments such as time or methodology, and
the cost/size estimations of a project [16].

3.2.3 Adopted Seven Metrics
In this thesis, we use this tool to measure the necessary metrics to evaluate the quality of source
codes from the students that pass the test code on JUnit. The following seven metrics are actually
adopted in this thesis:

1. Number of Classes (NOC)
This metric represents the number of classes in the source code.

2. Number of Methods (NOM)
This metric represents the total number of methods in all the classes.

3. Cyclomatic Complexity (VG)
This metric represents the number of decisions caused by the conditional statements in the
source code. The larger value for VG indicates that the source code is more complex and
becomes harder to be modified.

4. Lack of Cohesion in Methods (LCOM)
This metric represents how much the class lacks cohesion. A low value for LCOM indicates
that it is a cohesive class. On the other hand, the value close to 1 for LCOM indicates the
lack of cohesion and suggests that the class might better be split into several (sub)classes.
LCOM can be calculated as follows:

1) Each pair of the methods in the class are selected.

2) If they access to the disjoint set of instance variables, P is increased by one. If they
share at least one variable, Q is increased by one. It is noted that P and Q are initialized
by 0.

16

3) LCOM is calculated by:

LCOM =

P − Q (if P > Q)
0 (otherwise)

(3.1)

5 Nested Block Depth (NBD)
This metric represents the maximum number of nests in the method. It indicates the depth
of the nested blocks in the code.

6. Total Lines of Code (TLC)
This metric represents the total number of lines in the source code, where the comment and
empty lines are not included.

7. Method Lines of Code (MLC)
This metric represents the total number of lines inside the methods in the source code, where
the comment and empty lines are not included.

3.3 Summary
In this chapter, we reviewed the informative test code approach for the code writing problem,
including its concepts and example, and introduced the software metrics to evaluate the quality of
generated source codes by students.

17

Chapter 4

Application to Standard Input/output with
Exception Handling

4.1 Introduction
The code writing problem in JPLAS asks a student to write a source code to satisfy the specifi-
cations of a given assignment that are described in the test code [11]. The code writing problem
is implemented based on the test-driven development (TDD) method [5], using an open source
framework JUnit [4]. JUnit automatically tests the codes on the server to verify their correctness
using the test code when they are submitted by students. Thus, students can repeat the cycle of
writing, testing, modifying, and resubmitting codes by themselves, until they can complete the
correct codes for the assignments.

To register a new assignment for the code writing problem in JPLAS, a teacher has to prepare
a problem statement, a reference source code, and a test code using a Web browser. The problem
statement should describe the assignment overview and the important specifications of the code. It
is noted that the reference source code is essential to verify the correctness of the problem statement
and the test code. Then, a student should write a source code for the assignment while referring
the statement and the test code, so that the source code can be tested by using the given test code
on JUnit.

However, teachers at schools are usually not accustomed to writing a test code that can run on
JUnit. Some teachers may spend much time in struggling to write a test code, and may register
an incomplete test code that does not verify some requirements described in the problem state-
ment correctly. This incomplete test code must be avoided because it may produce inappropriate
feedback to a student and undermine confidence to JPLAS.

On the other hand, a commercial tool for generating a test code is usually expensive, and may
not cover a test code that verifies the standard input/output with exception handling in a source
code. The code by implementing the standard input/output with exception handling should be
mastered by novice students at the early stage of Java programming educations as the first step
programming for human interfaces.

In this chapter, we propose an informative test code generation for the code writing problem
in JPLAS. It generates a test code using a reference source code to test the standard input/output
with exception handling through the following steps: 1) a test code template is provided by our
proposal, 2) a set of standard inputs to be tested are made by a teacher, 3) by running the reference
code with each standard input, the corresponding expected standard output is extracted correctly,
and 4) this pair of the standard input and the standard output are embedded into the test code

18

template. By repeating steps 3) and 4) for every standard input, the test code can be completed. To
run the source code using the test code on JUnit, it introduces the classes to handle the standard
input/output functions as the memory access functions in [6].

To evaluate the proposed method, first, we applied it to 97 source codes in Java programming
textbooks or Web sites that contain the standard input/output. It has been proved that the generated
test codes could correctly verify the source codes except for one code using a random generator.
Then, we generated the test codes for three problems and asked five students who are currently
studying Java programming to write the source codes using them. It was found that they com-
pleted the codes that can pass the test codes, whereas the use of exception handling functions was
sometimes insufficient or incorrect.

4.2 Standard Stream
In computer programming, the standard stream [56] represents a pre-connected input and output
(I/O) communication channel between a computer program (process) and its environment (usually,
host computer) when it begins execution [18]. The three typical I/O environments are standard in-
put stream (stdin), standard output stream (stdout), and standard error stream (stderr). Originally,
the communication channel happened via a physically connected system console (input via key-
board, output via monitor), but standard streams abstract this.

4.2.1 Standard Input Stream (stdin)
Standard input stream is a stream from which a program reads its input data. The program requests
data transfer by use of the read operation. System.in implements the standard input stream.

4.2.2 Standard Output Stream (stdout)
Standard output stream is a stream to which a program writes its output data. The program requests
data transfer with the write operation. System.out implements the standard output stream.

4.2.3 Standard Error Stream (stderr)
Standard error stream is a stream to which a program writes its error messages. System.err imple-
ments the standard error stream.

4.3 Exception Handling
Exception handling is one of the powerful mechanism in Java [19] to handle the runtime errors so
that normal flow of the application can be maintained even if errors occur there.

4.3.1 What is Exception Handling
In Java, the exception is an event that disrupts the normal flow of the program. It is an object
which is thrown at runtime. Exception handling is the mechanism to handle runtime errors. Java
offers a variety of classes for Exception handling to handle each specific runtime error properly,

19

such as ClassNotFoundException, IOException, SQLException, and RemoteException. The core
advantage of exception handling is to maintain the normal flow of the application. An exception
normally disrupts the normal flow of the application that is why we use exception handling.

4.3.2 Hierarchy of Java Exception Classes
java.lang.Throwable class is the root class of the exception hierarchy in Java which is inherited by
two subclasses: Exception and Error. The hierarchy of exception classes in Java are given below:

Figure 4.1: Hierarchy of exception classes in Java.

4.3.3 Types of Exceptions
There are mainly two types of exceptions: checked and unchecked as an error is considered as the
unchecked exception. However, according to Oracle, there are three types of exceptions:

20

1. checked exception

2. unchecked exception

3. error

4.4 Informative Test Code Generation
In this section, we propose the informative test code generation for standard input/output with
exception handling for the code writing problem.

4.4.1 Scope of Source Code under Test
At the early stage of the Java programming education, the responsibility of a student is to master
how to write a source code that contains the standard input/output with exception handling. Thus,
a teacher in a Java programming course should prepare a considerable number of assignments
for writing source codes containing them, where many Java programming textbooks offer such
assignments for novice students.

The source code for this study must contain the functions for the standard input/output and the
exception handling. Then, if the proper data is given to the code from the standard input, it must
handle it correctly and outputs the message specified in the assignment to the standard output.
On the other hand, if the improper data is given, it must handle it using the exception handling
command without abortion and outputs the corresponding message.

4.4.2 Requirements in Test Code
Subsequently, the test code must satisfy the following requirements:

1. The input data from the standard input (keyboard) must be described in the test code to test
the standard input in the source code.

2. The output data to the standard output (console) must be received by the test code to test the
standard output in the source code.

3. The input data must be elaborated in the test code for the standard input.

4. The input data in the test code should cover any possible one for the standard input, including
the proper and improper ones.

5. The expected output data for each input data must be narrated in the test code correctly.

4.4.3 Solutions for Requirements
The test code generation method adopts the following functions and commands to solve the above-
mentioned requirements by referring the test code implementation in [6]:

• To describe the standard input data to the source code, the Inputln method in StandardInput-
Snatcher class is adopted in the test code. It is noted that StandardInputSnatcher class is
extended from InputStream class.

21

• To receive the standard output data from the source code, the readLine method in Standard-
OutputSnatcher class is adopted in the test code. It is noted that StandardOutputSnatcher
class is extended from PrintStream class.

• Any possible standard input data is prepared by a teacher beforehand. It is used in the
argument of Inputln.

• To obtain the expected standard output data from the code for each input data, the reference
source code is executed with this input data.

• Each pair of the standard input and output data is embedded into the test code.

4.4.4 Conditions of Source Code
Currently, to avoid the complexity, the proposed method confines the applicable source code that
satisfies the following conditions:

1. it has the main method only.

2. it contains the standard input function.

3. it contains the standard output function for handling the proper input.

4. it contains the standard output function for handling the exception.

It is noted that a source code containing multiple standard input/output functions can be handled
by increasing the number of Inputln or assertThat in the test code accordingly. Besides, if a code
does not have the main method, it can be handled by describing the proper statements to execute
the method for the standard input/output in the test code.

An example source code in this scope is as follows:
source code 2

1 import java.util.Scanner;
2 public class Sample {
3 public static void main(String args[]){
4 int number;
5 Scanner scan = new Scanner(System.in);
6 try{
7 System.out.print("Enter an integer");
8 String actual = scan.nextLine();
9 number = Integer.parseInt(actual);

10 System.out.println(number +": is input number");
11 } catch(NumberFormatException e) {
12 System.out.print("NumberFormatException occurs!");
13 }
14 }
15 }

source 2 accepts an integer data from a console and outputs a message with this data on a
display. In this source code, 1) it has only the main method at line 3, 2) scan object of Scanner
class is defined at line 5 as the standard input function, 3) System.out.println is called at line 10
as the standard output function for handling the proper input, and 4) System.out.println is called at
line 12 as the standard output function for handling the exception.

22

4.4.5 Test Code Template
The proposed method provides the test code template containing the required functions for the
above mentioned source code. The following code describes the core part of the test code template
starting from @Test. In advance, several import statements to use related libraries, and the instance
generations for the StandardInputSnatcher and StandardOutputSnatcher classes are necessary. Be-
sides, the definitions of these classes are also required to complete the test code template.

In this template, in.Inputln at line 29 gives the standard input data to the source code, where in
is an instance of StandardInputSnatcher class. The statements at lines 30-37 run the source code
and read the standard output data for this input data, where out is an instance of StandardOutput-
Snatcher class. expected at line 38 represents the expected output data of the source code. The
blanks “” at lines 29 and 38 should be filled by the standard input and output data. assertThat at
line 39 compares the expected data with the output data of the code. The whole statements at lines
25-40 should be prepared for each input data.

test code template
1 import static org.hamcrest.CoreMatchers.is;
2 import static org.junit.Assert.assertThat;
3 import static org.junit.Assert.*;
4 import java.io.InputStream;
5 import org.junit.Before;
6 import org.junit.Test;
7 import Snatcher.StandardOutputSnatcher;
8 import java.io.BufferedReader;
9 import java.io.ByteArrayOutputStream;

10 import java.io.IOException;
11 import java.io.InputStream;
12 import java.io.PrintStream;
13 import java.io.StringReader;
14
15 public class TemplateTest {
16 private StandardInputSnatcher in = new StandardInputSnatcher();
17 private StandardOutputSnatcher out = new StandardOutputSnatcher();
18
19 @Before
20 public void setUp() {
21 System.setIn(in);
22 System.setOut(out);
23 }
24
25 @Test
26 public void test1() throws Exception {
27 StringBuffer bf = new StringBuffer();
28 String actual,line,expected;
29 in.Inputln(""); // standard input
30 Sample.main(new String[0]);
31 System.out.flush();
32 while ((line = out.readLine()) != null) {
33 if (bf.length() > 0)
34 bf.append("\n");
35 bf.append(line);
36 }
37 actual = bf.toString();
38 expected = ""; // expected standard output
39 assertThat(actual,is(expected));
40 }
41 }

23

4.4.6 Test Code Generation Procedure
The test code generation procedure using the test code template in the proposed method is as
follows:

1) A teacher prepares the reference source code for the assignment.

2) He/she prepares a set of possible standard input data to the source code.

3) He/she runs the source code by using each standard input data and observes the correspond-
ing standard output data.

4) He/she embeds the standard input data into “” at line 5 and the observed standard output
data into “” at line 13 in the test code template.

As the possible standard input data in step 2), the following five data types should be consid-
ered. Then, the teacher needs to select one value for each data type, which is used in step 3).

• positive integer: 5

• negative integer: -14

• zero integer: 0

• floating-point number: 0.5

• one-byte character: “a b c”

• two-byte character: “A B C”

4.4.7 Generated Test Code Example
This subsection introduces an example of the test code generated by applying the proposed method
to source code 2. The file name for the generated test code is given as SampleTest.java. The
following test code 2 shows a part of the test code.

test code2
1
2
3 @Test
4 public void test1() throws Exception {
5 StringBuffer bf = new StringBuffer();
6 String actual,line,expected;
7 in.Inputln("5"); // proper standard input data
8 Sample.main(new String[0]);
9 System.out.flush();

10 while ((line = out.readLine()) != null) {
11 if (bf.length() > 0)
12 bf.append("\n");
13 bf.append(line);
14 }
15 actual = bf.toString();
16 expected = "Enter an integer" +
17 "5: is input number";
18 assertThat(actual, is(expected));

24

19 }
20
21 @Test
22 public void test2() throws Exception {
23 StringBuffer bf = new StringBuffer();
24 String actual,line,expected;
25 in.Inputln("abc"); // improper standard input data
26 Sample.main(new String[0]);
27 System.out.flush();
28 while((line = out.readLine()) != null) {
29 if (bf.length() > 0)
30 bf.append("\n");
31 bf.append(line);
32 }
33 actual = bf.toString();
34 expected = "Enter an integer" + "NumberFormatException occurs!";
35 assertThat(actual,is(expected));
36 }
37

4.5 Evaluation
In this section, we evaluate the effectiveness of the proposed test code generation method in terms
of generating test codes from existing source codes and writing source codes using the test codes
by students.

4.5.1 Test Code Generation Results
First, we evaluate the proposed method in generating test codes from source codes. For this pur-
pose, 97 source codes were collected from Java programming textbooks or Web sites [20]-[24],
and the test codes were generated by applying the proposed method. It is noted that some codes in
[23] were modified to use the standard input/output through the console instead of using the dialog
box. Then, the correctness of each test code was examined by testing the original source code. It
was found that our method generated the test codes that can pass original codes correctly except for
one source code, which outputs a random number generated in the code. Thus, the effectiveness of
the proposed method was confirmed.

The following source code 3 shows an example source code in [20] where the method success-
fully generates the test code shown in test code 3. It is noted that try - catch is used here instead
of throws in the original source code.

source code 3
1 import java.io.*;
2 class Sample3 {
3 public static void main(String[] args) throws IOException {
4 try {
5 System.out.println("Enter two integers");
6 BufferedReader br =
7 new BufferedReader(new InputStreamReader(System.in));
8 String str1 = br.readLine();
9 String str2 = br.readLine();

10 int num1 = Integer.parseInt(str1);
11 int num2 = Integer.parseInt(str2);
12 System.out.println("The sum is " + (num1+num2) + ".");

25

13 } catch(NumberFormatException e) {
14 System.out.print("NumberFormatException occurs!");
15 }
16 }
17 }

test code3
1
2
3 @Test
4 public void test1() throws Exception {
5 StringBuffer bf = new StringBuffer();
6 String actual,line,expected;
7 in.Inputln("2"); in.Inputln("7");// proper standard input data
8 Sample.main(new String[0]);
9 System.out.flush();

10 while((line = out.readLine()) != null) {
11 if (bf.length() > 0)
12 bf.append("\n");
13 bf.append(line);
14 }
15 actual = bf.toString();
16 expected = "Enter two integers" +"The sum is 9.";
17 assertThat(actual,is(expected));
18 }
19
20 @Test
21 public void test2() throws Exception {
22 StringBuffer bf = new StringBuffer();
23 String actual,line,expected;
24 in.Inputln("0.5"); in.Inputln("-3");// improper standard input data
25 Sample.main(new String[0]);
26 System.out.flush();
27 while((line = out.readLine()) != null) {
28 if (bf.length() > 0)
29 bf.append("\n");
30 bf.append(line);
31 }
32 actual = bf.toString();
33 expected = "Enter two integers" + "NumberFormatException occurs!";
34 assertThat(actual,is(expected));
35 }
36

4.5.2 Source Code Writing Results
Next, we evaluate the proposed method in writing source codes with generated test codes by five
students who are currently studying Java programming and have same technical levels. For this
purpose, we prepared the following three problems, where all the students completed the source
codes that pass the test codes for any problem.

4.5.2.1 Problem #1

In problem #1, the code accepts an integer data from a console, and outputs a message with this
data to a console, where source 2 is the reference source code and test 2 is the test code. The
source code from a student is expected to use NumberFormatException to check the input data

26

format. Then, three students use this class for the exception handling, and one uses Exception.
However, one student does not use it where he implements the data format checking function.

4.5.2.2 Problem #2

In problem #2, the code accepts an integer index from a console, and outputs the indexed data from
the data array. The student code is expected to use ArrayIndexOutofBoundException to check the
range of the index. Then, only one student uses this class. The other students implement the
index checking function in the codes. Two students use IOException, and two students do not use
any class for the exception handling. No student use NumberFormatException to check the input
data format, although the class was requested in problem #1. Unfortunately, many students cannot
integrate the knowledge that has been studied sequentially.

4.5.2.3 Problem #3

In problem #3, the code accepts a file path from a console, and outputs the string at the first line
in the file. The student code is expected to use FileNotFoundException or IOException to check
the file path. Then, three students use FileNotFoundException, one uses Exception, and one uses
IOException.

4.5.2.4 Summary of Student Applications

This simple experiment of our proposal shows that the students can generally complete source
codes using standard input/output with exception handling that can pass the generated test codes.
However, their use of the class for the exception handling is sometimes insufficient or incorrect. It
has been observed that these students are not experts, which causes the difference in their source
codes, although they have enough programming skills. To let them understand the correct use, it
is necessary to improve the proposed method.

4.6 Summary
In this chapter, we proposed the test code generation method for the code writing problem in
JPLAS that requires implementing a Java source code containing the standard input/output with
exception handling. To access the standard input/output from the test code on JUnit, the test code
template is first prepared with the input/output snatcher classes. Then, the test code is completed by
embedding the input and output extracted by running the reference source code into the template.
This proposal is helpful in reducing the teacher load in writing the test code for the programming
assignment that requires the standard input/output with exception handling, which is common for
novice students. The effectiveness is evaluated through applying the method to 97 source codes in
Java programming text books or Web sites, and asking five students to write source codes using
the generated test codes for three problems.

In future studies, we will extend the proposed method to handle other input/output functions,
and other methods than the main method, and improve the readability of the generated test code to
make it easier for novice students.

27

Chapter 5

Application to Java Collection Framework

5.1 Introduction
Nowadays, Java has been broadly used in various practical applications as a highly reliable, portable,
and scalable objected oriented programming language. Java is a versatile general-purpose pro-
gramming language that can be used to create cross-platform applications for desktop, mobile, or
Web systems [25]. Java was the most popular programming language in 2015 [26] and is in the
third in 2018 [27]. Therefore, there have been strong demands of industries for Java programming
educations. Correspondingly, a plenty of universities and professional schools are currently offer-
ing Java programming courses to meet this challenge. A typical Java programming course consists
of grammar instructions and programming exercises.

To improve programming exercise environments, we have developed Java Programming Learn-
ing Assistant System (JPLAS) [28]. JPLAS performs excellently not only in reducing teacher loads
by marking answers automatically but also in advancing student motivations with immediate re-
sponses. JPLAS offers the code writing problem [29], which asks a student to write a source code
that passes the given test code on JUnit [4]. To help a student write a complex code, the detailed
information for the source code implementation is described in the test code. Previously, we con-
firmed the effectiveness of this informative test code approach in studying the three object-oriented
programming concepts for Java [30]. It is expected that a student will learn how to use the concepts
by writing a source code which can pass the test code.

Java collections framework (JCF) [31] provides a strong and useful architecture to store or
control a group of objects by offering the appropriate library methods. JCF and arrays are similar
in that they both hold references to objects, and can be managed as a group. However, unlike
arrays, JCF does not need to be assigned a certain capacity when instantiated. It can grow and
shrink in size automatically when objects are added or removed. Array can hold basic data type
elements (primitive types) such as int, long, or double. On the other hand, JCF holds Wrapper
Classes such as Integer, Long, or Double. Thus, the students should master the proper use of
JCF at Java programming study. In this thesis, List, Set, and Map are selected as the most useful
interfaces in JCF.

In this chapter, we present the application of the informative test code approach for studying
the three interfaces in JCF. This test code intends to test whether a method in a source code uses
the proper method in the JCF library. For evaluations, we generated five informative test codes for
JCF, and asked 19 students from Japan, Myanmar, China, and Indonesia to implement the source
codes. Then, all of them successfully completed the source codes whose software metrics confirm
the sufficient quality. However, certain students did not properly use methods in the JCF library.

28

5.2 Informative Test Code Approach for Java Collections Frame-
work

In this section, we present the informative test code approach for the code writing problem using
Java Collections Framework (JCF) in JPLAS. By solving code writing problems with informative
tests codes for various JCF libraries, it is expected that students can master the proper use of JCF.

5.2.1 Review of Java Collections Framework
Java Collections Framework (JCF) is a hierarchy of interfaces and classes that are used for storing
and manipulating a group of objects. The most useful interfaces in JCF are List, Set, and Map. An
iterator method is prepared to go through all the elements in each collection.

List is a more flexible version of an array to be used to insert and retrieve the objects. It allows
the duplicated objects. List includes the methods for get, set, add, indexOf, and lastIndexOf.
List can be implemented as ArrayList or LinkedList. Set is an unordered collection of objects
and does not allow duplicate objects. Any object in Set cannot be accessed by using the index.
Set can be implemented as TreeSet, HashSet, or LinkedHashSet. Map is an object that maps
keys to values and cannot contain duplicate keys. Map includes the methods for put, get, remove,
containsKey, and containsValue. The three basic implementations of Map are HashMap, TreeMap,
and LinkedHashMap. Iterator is used in JCF to retrieve elements one by one [32]. There are three
iterator interfaces: Enumeration, Iterator, and ListIterator.

5.2.2 Overview of Informative Test Code for JCF
The informative test code describes the necessary information for implementing the source code
using the key point under study, such as the grammar, the framework, or the concept. This test
code includes the class names, the method names, the access modifiers, and the data types for the
important member variables, the argument types, and the returning data types for the methods,
and the exception handling in the expected source code. By writing a source code to pass this test
code, a student is expected to learn how to use the point under study in the source code. In general,
an informative test code consists of a test method for testing names and data types of member
variables in the source code, named “variableNameTest”, a test method for testing the number of
methods, their names, and returning data types, named “methodNameTest”, and one or more test
methods for testing actions of methods in the code, named “(action)Test”.

5.2.3 Informative Test Code for List
The test code 1 demonstrates an informative test code for List. variableNameTest tests that in
the source code, “ArrayListImp class” is implemented, one variable “list” is defined, and its data
type is List object. methodNameTest tests that in the code, three methods exist, their names are
“addImp”, “swapImp”, and “removeImp”, they have no arguments, and the returning data type is
List object. addTest tests that addImp returns the List object of String, and adds “Red”, “Green”,
“Blue”, “Black” and “Orange” to list in this order. swapTest tests that swapImp exchanges the first
and third data in list. removeTest tests that removeImp removes Red and Blue from list. source
code 1 shows an example source code for the test code 1.

test code 1

29

1 public class ArrayListImpTest {
2 @Test
3 public void variableNameTest() throws NoSuchFieldException, SecurityException {
4 ArrayListImp obj = new ArrayListImp();
5 Field f1 = obj.getClass().getDeclaredField("list");
6 Field[] f = obj.getClass().getDeclaredFields();
7 assertEquals(1, f.length);
8 assertEquals(f1.getType(), List.class);
9 }

10 @Test
11 public void methodNameTest() throws NoSuchMethodException, SecurityException

{
12 ArrayListImp obj = new ArrayListImp();
13 Method[] m = obj.getClass().getDeclaredMethods();
14 assertEquals(3, m.length);
15 Method m1 = obj.getClass().getDeclaredMethod("addImp", null);
16 Method m2 = obj.getClass().getDeclaredMethod("swapImp", null);
17 Method m3 = obj.getClass().getDeclaredMethod("removeImp", null);
18 assertEquals(List.class, m1.getReturnType());
19 assertEquals(List.class, m2.getReturnType());
20 assertEquals(List.class, m3.getReturnType());
21 }
22 @Test
23 public void addTest() {
24 ArrayListImp obj = new ArrayListImp();
25 List<String> list = obj.addImp();
26 assertEquals(5, list.size());
27 assertEquals("Red", list.get(0));
28 assertEquals("Green", list.get(1));
29 assertEquals("Blue", list.get(2));
30 assertEquals("Black", list.get(3));
31 assertEquals("Orange", list.get(4));
32 }
33 @Test
34 public void swapTest() {
35 ArrayListImp obj = new ArrayListImp();
36 List<String> list = obj.addImp();
37 obj.swapImp();
38 assertEquals(5, list.size());
39 assertEquals("Blue", list.get(0));
40 assertEquals("Red", list.get(2));
41 }
42 @Test
43 public void removeTest() {
44 ArrayListImp obj = new ArrayListImp();
45 List<String> list = obj.addImp();
46 obj.removeImp();
47 assertEquals(3, list.size());
48 assertEquals("Green", list.get(0));
49 assertEquals("Black", list.get(1));
50 assertEquals("Orange", list.get(2));
51 }
52 }

source code 1
1 public class ArrayListImp {
2 List<String> list = new ArrayList<String>();
3 public List<String> addImp() {
4 list.add("Red");
5 list.add("Green");

30

6 list.add("Blue");
7 list.add("Black");
8 list.add("Orange");
9 return list;

10 }
11 public List<String> swapImp() {
12 Collections.swap(list, 0, 2);
13 return list;
14 }
15 public List<String> removeImp() {
16 list.remove(0);
17 list.remove(1);
18 return list;
19 }
20 }

5.2.4 Informative Test Code for Set
The test code 2 reveals an informative test code for Set. variableTest tests that in the source code,
TreeSetImp class is implemented, two variables, “tset” and “iterator”, are defined, and their data
types are TreeSet of String objects and Iterator respectively. The methodTest tests that the number
of the methods is three, their names are “addImp”, “removeImp”, and “displayImp”, they have
no argument, and their returning data types are TreeSet. The addTest tests that every element in
tset is String object, the number of elements is six, the first element is “ABC”, and the last one is
“Test”. The removeTest tests that two elements are removed from tset, the first element becomes
“ABC”, and the last one becomes “String”. The displayTest tests that the output data from tset at
the console is “ABC Ink Jack Pen String Test” after applying addImp to tset.

Test code 2
1 public class TreeSetImpTest {
2
3 @Test
4 public void addTest() {
5 TreeSetImp obj = new TreeSetImp();
6 TreeSet<String> tset = obj.addImp();
7 for (Object x : tset) {
8 assertEquals("String".getClass().getName(), x.getClass().getName());
9 }

10 assertEquals(6, tset.size());
11 assertEquals("ABC", tset.first());
12 assertEquals("Test", tset.last());
13 }
14 @Test
15 public void removeTest() {
16 TreeSetImp obj = new TreeSetImp();
17 TreeSet<String> tset = obj.addImp();
18 obj.removeImp();
19 assertEquals(4, tset.size());
20 assertEquals("ABC", tset.first());
21 assertEquals("String", tset.last());
22 }
23 @Test
24 public void displayTest() {
25 TreeSetImp obj = new TreeSetImp();
26 TreeSet<String> tset = obj.addImp();
27 ByteArrayOutputStream baos=new ByteArrayOutputStream(1024);
28 PrintStream s = System.out;

31

29 PrintStream st = new PrintStream(baos);
30 System.setOut(st);
31 obj.displayImp();
32 System.setOut(s);
33 assertEquals("ABC Ink Jack Pen String Test", baos.toString().trim());
34 }
35 }

The source code 2 shows an example source code for test code 2. In addImp, the six strings
are added to tset with the consideration of displayTest. In removeImp, one element among “Ink”,
“Jack”, “Pen”, and “Test” is removed. Here, “Pen” and “Test” are actually removed. In displayImp,
each element in tset is output at the console sequentially using Iterator.

Source Code 2
1 public class TreeSetImp {
2 TreeSet<String> tset = new TreeSet<String>();
3 Iterator iterator;
4 public TreeSet<String> addImp() {
5 tset.add("ABC");
6
7 tset.add("Test");
8 return tset;
9 }

10 public TreeSet<String> removeImp() {
11 tset.remove("Pen");
12 tset.remove("Test");
13 return tset;
14 }
15 public void displayImp() {
16 Iterator<String> itr = tset.iterator();
17 while (itr.hasNext()) {
18 String item = itr.next();
19 System.out.print(item + " ");
20 }
21 }

5.2.5 Informative Test Code for Map
Test code 3 exhibits an informative test code for Map. variableTest tests that in the source code,
“HashMapImp class” is implemented, one variable, “hmap”, is defined, and the data type is
“HashMap”. methodTest tests that the number of the methods is three, their names are “putImp”,
“removeImp”, and “displayImp”, they have no argument, and their returning data types for the first
two methods are “HashMap” and no returning data for the last one. putTest tests that hmap accepts
the returning data with a pair of Integer and String, putImp adds “Coconut”, “strawberry”, “Ap-
ple”, “Mango”, and “Orange” to hmap using 1 to 5 for the key. displayTest tests that one element is
removed from hmap, and the output data from hmap at the console is “1=Coconut, 2=Strawberry,
4=Mango, 5=Orange” after applying putImp and removeImp to hmap.

source code 3 shows an example source code for test code 3. In removeImp, “Apple” is
removed. In displayImp, each key and value in hmap are output at the console sequentially using
Iterator.

Test Code 3
1 public class HashMapImpTest {
2
3 @Test

32

4 public void putTest() {
5 HashMapImp obj = new HashMapImp();
6 HashMap<Integer,String> hmap = obj.putImp();
7 assertEquals(5, hmap.size());
8 assertEquals("Coconut", hmap.get(1));
9

10 assertEquals("Orange", hmap.get(5));
11 }
12 @Test
13 public void displayTest() {
14 HashMapImp obj = new HashMapImp();
15 HashMap<Integer,String> hmap = obj.putImp();
16 obj.removeImp();
17
18 assertEquals("1=Coconut 2=Strawberry 4=Mango 5=Orange", baos.toString

().trim());
19 }
20 }

Source Code 3
1 public class HashMapImp {
2 HashMap<Integer, String> hmap = new HashMap<Integer, String>();
3 public HashMap<Integer, String> putImp() {
4 hmap.put(1, "Coconut");
5
6 return hmap;
7 }
8 HashMap<Integer, String> removeImp() {
9 hmap.remove(3);

10 return hmap;
11 }
12 public void displayImp() {
13 Iterator<Entry<Integer, String>> itr = hmap.entrySet().iterator();
14 String str = "";
15 while (itr.hasNext()) {
16 Map.Entry<Integer, String> pair = (Map.Entry<Integer, String>) itr.next();
17 str += pair.getKey() + "=" + pair.getValue() + " ";
18 }
19 System.out.println(str);
20 }
21 }

5.2.6 Evaluation
In this section, we evaluate the informative test code approach for JCF. We generated five infor-
mative test codes for JCF, three for List, one for Set, and one for Map. Then, 19 students with
different programming skills from Japan, Myanmar, China, and Indonesia were asked to complete
the source codes passing the test codes. In the end, we measured the software metrics using metrics
plugin for Eclipse [33].

Table 5.1 shows the summary of the measured metrics of the source codes from the students. It
is noted that all the students completed the source codes. This table indicates that generally, they
are high quality since the metrics values exist in superior ranges.

First, NOM (number of methods) shows that one student always uses one more method than
the others, because he creates the constructor to initialize the variables. The test code on JUnit can
test the number of constructors and the number of methods separately.

33

However, metrics plugin for Eclipse counts them together in total. Thus, it appears to be
difficult to control the implementation of the constructor by the test code. Next, for swapImp in
ArrayListImp, nine students used Collections.swap as the proper JCF library function to exchange
two objects in the list as in source code 1, which is expected to study JCF.

By contrast, four students did not adopt the library function, and two students directly set the
data in the list, instead of swapping them, which are not expected. For displayImp in TreeSetImp,
12 students used iterator to display the data in tset as expected. However, one student used the
enhanced for-loop statement instead of iterator, and two students directly displayed the expected
result in the test code by copying it instead of displaying the data in tset. The strategy to avoid
them will be explored in future works.

Table 5.1: Comparison of metric values for JCF

Problem Name NOC NOM VG NBD LCOM T LC MLC
BookData 2 3-4 2 2 0 31-40 11-19

ArrayListImp 1 4-5 1-1.25 1-1.25 0.5-0.75 29-36 12-19
LinkedListImp 1 4-5 1-1.50 1-1.50 0 23-29 9-15

TreeSetImp 1 3-4 1-1.33 1-1.33 0.5-0.75 25-32 13-18
HashMapImp 1 3-4 1-1.33 1-1.33 0 20-28 9-14

5.3 Summary
In this chapter, we presented the informative test code approach to the code writing problem for
studying the Java Collections Framework (JCF) in JPLAS. The informative test code describes the
detailed information for the code implementation including methods and variables. We evaluated
the effectiveness of the approach by asking 19 students to write source codes using JCF libraries
for five informative test codes, where all of them completed high quality source codes that pass the
test codes. However, some students did not use JCF library functions.

In future works, we will improve the informative test code to confirm the proper use of library
functions for JCF.

34

Chapter 6

Student Answer Analyzing Function for
Desktop-version JPLAS

6.1 Introduction
To enhance Java Programming educations, we have developed the Java Programming Learning
Assistant System (JPLAS) as an online Web application system. This online system can be used
only in Internet available environments. Since many students who live in developing counties may
need to access JPLAS at no Internet-access places, we have implemented offline Desktop-version
JPLAS (D-JPLAS), which can run without the Internet [3]. Currently,D-JPLAS supports five types
of programming problems that cover various stages of Java programming study. D-JPLAS offers
teacher service function and the student service functions.

In this chapter, we implement the student answer analyzing function for the five problem types
in D-JPLAS so that a teacher can mark the student answers on his/her PC as easily as possible. This
function helps a teacher in grading the students and giving feedbacks to them, by summarizing the
answer results that are described in a lot of text files, and/or the answer source code files submitted
from the students. We evaluate this function for the element fill-in-blank problem solutions by
students in Japan, Myanmar, China, and Indonesia.

6.2 Desktop-version Java Programming Learning Assistant Sys-
tem (D-JPLAS)

In this section, we introduce the overview of the Desktop-version JPLAS (D-JPLAS). D-JPLAS
does not use the online database and the web server. Currently, D-JPLAS offers teacher service
functions for generating programming assignments, managing answer files from students, and an-
alyzing their answers, and student service functions for solving and answering assigned problems.

Figure 6.1 illustrates the usage flow of D-JPLAS. In D-JPLAS, the teacher, who has the au-
thority of managing the assignments, needs to create and assign the programming assignment first.
Then, he/she distributes them to the students to solve them for improving programming skills. A
student can repeat solving the assignments on his/her own PC on offline. After that, the student
submits the answer files to the teacher who stores the files in the respective folder for each prob-
lem type and the student. Finally, the teacher analyzes the files submitted by the students using
the answer analysis function, and gives feedbacks to the students. In D-JPLAS, the teacher and the

35

students exchange the files of assignments and answers by using USB memories, file servers, or
emails if the Internet is accessible.

Figure 6.1: Usage flow of Desktop-version JPLAS.

6.2.1 Problem Types in D-JPLAS
Currently, D-JPLAS supports the following five types of programming problems in JPLAS:

• Element fill-in-blank problem (EFP):
In the element fill-in-blank problem (EFP) [8], a Java code with several blank elements is
given to a student who is requested to fill in the proper word for each blank in the problem
source code. To solve this problem, a student needs to carefully read the problem code to
understand the structure, the algorithm/logic, and the semantics. Subsequently, the student
can fill in the blanks correctly by applying grammar and syntax rules.

• Value trace problem (VTP):
In the value trace problem (VTP), a student is requested to answer the actual values of im-
portant variables in the given Java source code that implements a fundamental data structure
or algorithm [35, 34]. To trace the values of the important variables, the blank line selection
algorithm is developed to automatically make blanks for the output data line of the code
where at least one data is changed from the previous one.

• Code correction problem (CRP):
In the code correction problem (CRP), a student is requested to correct the incorrect elements
in the given problem code. It aims the programming practice in reading and debugging the
code so that it can pass the given test code on JUnit. The problem code has several errors
that cannot be passed by the test code. This code is generated from the sample source code
by using the error generation algorithm.

• Statement element fill-in-blank problem (SFP):
In the statement element fill-in-blank problem (SFP), a student is requested to fill in the blank
statements in the given problem code. The correctness of the answer is verified by the test
code on JUnit. The blank statements are selected by generating the Program Dependence

36

Graph (PDG) of the code and finding the statements that have the largest dependences in
PDG.

• Code writing problem (CWP):
In the code writing problem (CWP), a student is requested to complete the source code that
can pass the given test code. The test code describes the detailed specifications of the source
code. This problem is based on the test-driven development (TDD) method, using an open
source framework JUnit. A student can repeat writing, testing and modifying the source
code.

6.3 Student Answer Analyzing Function
In this section, we present the implementation of the function for analyzing student answers for
the five problem types in D-JPLAS. In EEP and VTP, the student answer is marked through string
matching with the correct answer. In CRP, SFP, and CWP, the student answer is marked through
software test running the test code on JUnit [4]. These marking functions run on the PCs of stu-
dents. The students need to submit the answer files of the results to the teacher. If an answer file
contains duplicated submissions for a problem, this function selects the one with the last submis-
sion time.

6.3.1 Input Data
As the input data to the student answer analyzing function, each row of the answer file contains the
student ID, the problem ID, the answer date and time, and the answers and their marking results at
each submission.

Figure 6.2 shows the example answer file for EEP, where the answer to problem #375 was
submitted three times.

Figure 6.2: Example answer file for EFP.

• Each row of the answer file describes the following data:
51429352 2020-06-25 12:41:46 class[o],static[o],String[o],for[o],int[o],void[o],String [o],)[x],
Here, 51429352 indicates the student ID, 2020-06-025 12:41:46 does answer date and time,
class does the answer by the student for the first question, and [o] indicates the correct answer
where [x] does the incorrect answer.

37

Figure 6.3 shows the example answer file for CWP, where the answer to problem #310 was
submitted two times.

Figure 6.3: Example answer file for CWP.

• Each row of the answer file in describes the following data:
11129311 2020/05/29 14:23:24 p310.CarTest 4 1 0
Here, 11129311 indicates the student ID, 2020/05/29 14:23:24 does answer date and time,
p310.CarTest does the package and class name, and 4 1 0 indicates one test was failed among
four tests.

6.3.2 Output Data
As the output data, the function outputs the correct answer rate of each student for each problem.

• EFP, VTP:

1. Count the number of blank questions and the number of correct answers of each student
for each problem.

2. Calculate the correct answer rate by the following equation Eq. (6.1)

Correct Rate =
number o f correct answers

number o f blanks
× 100 (6.1)

• CRP, SFP, CWP:

1. Count the number of tests in the test code and the number of successful tests of each
student for each problem.

2. Calculate the correct rate by the follwing equation Eq. (6.2)

Correct Rate =
number o f success tests

number o f tests
× 100 (6.2)

38

6.3.3 Student Result Interfaces
Figure 6.4 shows the answer result interface for a teacher, to helps finding a student who cannot
solve a problem well. The corresponding raw is highlighted when the correct answer rate is smaller
than the threshold that is given by the teacher. Each row of answer analysis interface also contains
student id, question id, number of blanks, number of correct answers, and number of submissions.
From the correct answer rate of each student, the teacher can know the programming skill and give
proper feedbacks.

Figure 6.4: Answer result of each student for each problem.

Figure 6.5 shows the correct answer rate for EFP instances. It helps the teacher to evaluate
the difficulty of the assigned problems. If there is a problem with many submissions, it can be too
difficult for students.

Figure 6.6 shows the result summary of each student for each problem type. It shows the
student-id, the problem type and the average correct answer rate of all the problems for each
student. If the average correct rate of a student is lower than the given threshold by the teacher,
he/she should give some feedbacks to improve the programming skill.

6.4 Summary
This chapter presented the implementation of the student answer analyzing function to the five
problem types in D-JPLAS. The proposed function was evaluated by EFP solutions by the students
from Japan, Myanmar, China, and Indonesia. Our future works include the use of D-JPLAS in Java
programing courses.

39

Figure 6.5: Success rate for each EFP.

Figure 6.6: Student result summary.

40

Chapter 7

Related Works

In this section, we introduce some related works to this thesis.
In [36], Brunet et al. presented the concept of design test that automatically checks whether

the code conforms to the specific design rule by using a test-like program. To support it, Design-
Wizard (DW) had been developed with a fully-fledged API that allows writing design tests for Java
codes using JUnit. The proposal was applied to three software products in their group and student
projects in the undergraduate course. The results showed that this approach was suitable to check
conformance between the design rules and the code implementation. Moreover, it has been ob-
served that both designers and programmers appreciated the design tests as executable documents
that can be easily kept up to date.

In [37], Akahane et al. presented a Web-based automatic scoring system for Java program-
ming assignments to reduce loads of teachers in verifying a huge number of codes and in giving
feedbacks to students. The system receives Java application programs submitted by students, and
immediately returns the results of JUnit tests where the Java Reflect API is adopted for testing
private classes and methods that have been commonly found in introductory courses. The regular
expression is used to compare the output texts of each student program and those of the reference
program. Through use in an actual course in their university, it was confirmed that this system was
very helpful for students to improve programming skills by correcting mistakes in their programs
and repeating their submissions.

In [38], Kitaya et al. presented a Web-based scoring system of programming assignments to
students, which is similar to JPLAS. Their test consists of compiler check, JUnit test, and result
test. The result test verifies the correctness of a student code composed of only the main method
that reads/writes data from/to the standard input/output devices, by comparing the results of this
code and of the reference code. However, the method has several disadvantages from our proposal:
1) it is only applicable to a code composed of the main method with the standard input/output, 2)
it uses other programs to use the redirection for handling the standard input/output, and 3) it needs
several input files to check the correctness for different input data. On the other hand, our method
is applicable to a code containing other than the main method, it needs only JUnit with a test code,
and all the input data can be described in a single test code.

In [39], Fu et al. presented a static exception-flow analysis that computes chains of semantically-
related exception-flow links and reports entire exception propagation paths. These chains can be
used, 1) to show the error handling architecture of a system, 2) to assess the vulnerability of a
single component and the whole system, 3) to support the better testing of an error recovery code,
and 4) to facilitate the tracing of the root cause of a logged problem.

In [40], Zhu et al. presented a system for mining API usage examples from the test code.

41

They found that the test code can be a good source for API usage examples that programmers
need to know, like our approach. The test code can provide the information on small units of
a code like functions, classes, procedures, and interfaces. The information in the test code is
helpful in developing and maintaining a source code, including the knowledge sharing and transfer
among programmers. However, the repetitive API use in a test code makes it complicated for
programmers to read it. To address this issue, they studied the JUnit test code and summarized a
set of test code patterns. They employed a code pattern based heuristic slicing approach to separate
test scenarios in code examples. Then, they cluster similar API usages to remove redundancy and
provide recommendations for API usage examples for programmers.

In [41], Kolassa et al. presented a system based on JUnit to test the partial code in a template
of a template-based code generator where it is generated by the template engine. It facilitates
the partial testing of a code by supporting the code execution in a mocked environment. They
adopted TUnit, an extension of JUnit based on the MontiCore language workbench [42], [43],
[44], to support the unit test of an incomplete code in the mocked environment. By using TUnit,
a code generator template can be tested with mocked contexts such as mocked variables, mocked
templates, and mocked help functions that are the inputs to the template. This testing intends to
answer the questions: Is the set of the specified inputs accepted by the code generator template,
e.g., the code can be generated?, Does the code generator template produce syntactically valid
source code?, and Are the target language context conditions valid for the generated source code?

In [45], Rashkovits et al. showed that most of college students understand the concept of Java
exception handling at the basic level, and the majority of them have difficulty in understanding ad-
vanced properties such as use of multiple exceptions, flow of control in the context of exceptions,
handling exceptions further up the calling chain, catching and handling hierarchically related ex-
ceptions, and overriding methods that throw exceptions. They also provided a tutorial of exception
handling, and quoted that exception handling is perceived as a relatively difficult task by novice
programmers. In future works, we will consider to adopt their contributions.

In [46], Nakshatri et al. presented an empirical study of exception handling patterns in Java
projects. It forces developers to think in sophisticated ways to handle the exceptions. In this
study, empirical data was extracted from projects by analyzing data in GitHub and SourceForge
repositories. The results were compared with recommendations for best practices in exception
handling presented by Bloch [47]. It has been observed that most programmers ignore checking
exceptions, and higher classes in the exception class hierarchy are more frequently used.

In [48], Xue et al. presented an integrity verification method for exception handling in service-
oriented software. In this method, they construct state spaces associated with exception handling,
convert the issue of integrity verification into a model of boundedness analysis based on CPN, and
reduce the size of state spaces by extending Stubborn Set and Transition Dependency Graph. The
experimental results confirmed that the method has good generalization abilities.

In [49], Júnior et al. presented a practical approach to preserve the exception policy in a system
by automatically checking exception handling design rules. They are checked through executions
of JUnit test cases with dynamic mock objects that are generated by the supporting tool. Four ver-
sions of Mobile Media in SPL were used to evaluate whether the policy was preserved or not. The
results show that the approach can effectively detect violations on the policy of software product
lines.

In [50], Fairbanks et al. use the term design fragment to refer to patterns that describe how a
program interacts with frameworks. Design fragments describe what programmers should build to
accomplish some goals and which are the relevant parts of the framework that the programmer’s
code will interact. The authors have created a catalog of design fragments and also mechanisms

42

to implement (using XML) design fragments to check conformance between application and those
design fragments.

In [51], Koile et al. presented a study for aTablet-PC-based system called the classroom Learn-
ing Partner (CLP) developed to help in-class formative assessment in huge size of classes. CLP
intended to increase instructor-student interaction by increasing student learning. It is evaluated
using Tablet-PCs and a Tablet-PC-based classroom presentation system in an introductory com-
puter science class. In this study, the classroom presenter supports student wireless submission
of digital ink answers to in-class exercises. In their study, they evaluate the hypothesis that the
use of such a system increases student learning by: (1) increasing student focus and attentiveness
in class, (2) providing immediate feedback to both students and instructor about student misun-
derstandings, (3) enabling the instructor to adjust course material in real-time based upon student
answers to in-class exercises, (4) increasing student satisfaction. This pilot study evaluates each
of the above four parameters by means of classroom observation, surveys, and interviews. In our
study, we consider the classroom out of internet access range to provide immediate feedback to
students and to adjust course material as quick as possible by developing Desktop-version offline
JPLAS.

In [52], Zhou et al. presented an Android application system using a tablet called Isaly to
provide visual programming environments for educations. In this proposal, the concept of the
state-transition diagram is used to make a program by a student. Isaly contains several features
and user interfaces suitable for the use in a tablet.

In [53], Yamamoto et al. presented an improved group discussion system for the active learning
system (ALS) using mobile devices to increase the examination pass rate. In their previous study,
it was found that the proposed ALS could not increase the examination pass rate of the students
although the self-learning time was increased. The experimental evaluation of the improved group
discussion system showed that it can increase the examination pass rate. In future works, we will
consider implementing the group discussion function with interfaces for mobile devices in JPLAS,
so that students can continue studying Java programming with proper advises or hints from other
students.

This paper presented an automatic technique for generating maintainable regression unit tests
for programs. They found previous test generation techniques inadequate for two main reasons.
First. they were designed for and evaluated upon libraries rather than applications. Second, they
were designed to find bugs rather than to create maintainable regression test suites: the test suites
that they generated were brittle and hard to understand. This paper presents a suite of techniques
that address these problems by enhancing an existing unit test generation system. In experiments
using an industrial system, the generated tests achieved good coverage and mutation kill score,
were readable by the product’s developers, and required few edits as the system under test evolved.
While our evaluation is in the context of one test generator, we are aware of many research systems
that suffer similar limitations, so our approach and observations are more generally relevant.

In [54], the author presented an automatic technique for generating maintainable regression
unit tests for programs according to two main reasons compared to previous studies. First. they
designed test generation techniques for and evaluated upon libraries rather than applications. Sec-
ond, they designed them to find bugs rather than to create maintainable regression test suites: the
test suites that they generated were brittle and hard to understand. Thus, they present a suite of
techniques that address these problems by enhancing an existing unit test generation system. In
experiments using an industrial system, the generated tests achieved good coverage and mutation
kill score, were readable by the product’s developers, and required few edits as the system un-
der test evolved. While their evaluation is in the context of one test generator, they are aware of

43

many research systems that suffer similar limitations, so our approach and observations are more
generally relevant.

In [55], the author applied a programming education tool called pgtracer, which they had devel-
oped as a moodle plug-in, at an actual programming course to provide homework assignments to
the students. They developed fill-in-the-blank questions based on the course syllabus at each week
and evaluated the activities of students by using various functions provided by pgtracer. They also
provided the analysis results to the teacher about the activities and achievement of the students
for better collaboration between lecture and homework. They achieved the positive feedbacks by
interviewing the teacher and surveying student’s activities about the usefulness of pgtracer.

In our system, we consider the exception handling to reduce possible combinations in case of
checking the standard input and output data with the students source codes. Moreover, we apply the
informative test code approach on the three most popular Java Collection Framework, namely, List,
Set and Map. Additionally, we implement the Desktop-version offline JPLAS system(D-JPLAS) to
be helpful for the students who live in low speed internet communication regions. Student Analysis
function is integrated to the D-JPLAS, therefore, the student answers could be evaluated without
accessing to the internet.

44

Chapter 8

Conclusion

In this thesis, we studied the informative test code approach for the code writing problem in two
important Java programming topics for novice students in Java Programming Learning Assistant
System (JPLAS) and the implementation of the new teacher service function in Desktop-version
Java Programming Learning Assistant System (D-JPLAS).

Firstly, we presented the informative test code generation for standard input/output with ex-
ception handling, to support a teacher preparing complex test codes for the code writing problem.
The proposed method generates an informative test code from the test code template and the model
source code. For evaluations, we evaluated this approach by applying the proposal to 97 source
codes in Java programming textbooks or Web sites that contain the standard input/output. The
results showed that all the students completed the codes that can pass the test code, although the
use of exception handling functions was sometimes insufficient or incorrect.

Secondly, we presented the informative test code approach to Java Collections Framework
(JCF) that is a library of providing a strong and useful architecture for storing and manipulating a
group of objects. To evaluate this approach, we generated five informative test codes for JCF, and
asked 19 students from Japan, Myanmar, China, and Indonesia to solve the code writing problems
using these test codes. The software metrics are calculated to confirm the quality of their codes.
The results show that all of them successfully completed the source codes.

Thirdly, we presented the implementation of the new function in Desktop-version Java Pro-
gramming Learning Assistant System (D-JPLAS), to support a teacher summarizing the student
answers submitted in text files and analyzing them. D-JPLAS provides both teacher service func-
tions and student service functions to offer Java programming study environments using JPLAS
even without the Internet. The analyzing results can be used to assess the performances of the
students and return proper feedbacks to them.

In future works, we will continue studying informative test code approaches for other Java
programming topics, implementing other teacher service functions such as detecting illegal copies
in student answers for D-JPLAS, and applying them in Java programming courses.

45

Bibliography

[1] “Java,” Internet: https://java.com/en/download/faq/whatis_java.xml, Access
July 7, 2020.

[2] S. l. Ao et al. ed., IAENG Transactions on Engineering Sciences - Special Issue for the
International Association of Engineers Conferences 2016 (Volume II), World Sci. Pub., pp.
517-530, 2018. http://www.worldscientific.com/worldscibooks/10.1142/10727

[3] S. S. Wint, N. Funabiki, and M. Kuribayashi, “Design and implementation of desktop-version
Java programming learning assistant system,” Proc. HISS, pp. 254-257, Nov. 2018.

[4] “JUnit,” Internet: http://www.junit.org/, Access July 7, 2020.

[5] K. Beck, Test-driven development: by example, Addison-Wesley, 2002.

[6] “Diary of kencoba,” Internet: http://d.hatena.ne.jp/kencoba/20120831/

1346398388, Access July 7, 2020.

[7] N. Ishihara, N. Funabiki, M. Kuribayashi, and W.-C. Kao, “A software architecture for Java
programming learning assistant system,” J. Comp. Soft. Eng., vol. 2, no. 1, Sept. 2017.

[8] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, “A graph-based blank element se-
lection algorithm for fill-in-blank problems in Java programming learning assistant system,”
IAENG J. CS, vol. 44, no. 2, pp. 247-260, May 2017.

[9] K. K. Zaw, N. Funabiki, and W.-C. Kao, “A proposal of value trace problem for algorithm
code reading in Java programming learning assistant system,” Info. Eng. Exp., vol. 1, no. 3,
pp. 9-18, Sept. 2015.

[10] N. Ishihara, N. Funabiki, and W.-C. Kao, “A proposal of statement fill-in-blank problem using
program dependence graph in Java programming learning assistant system,” Info. Engr. Exp.,
vol. 1, no. 3, pp. 19-28, Sept. 2015.

[11] N. Funabiki, Y. Matsushima, T. Nakanishi, K. Watanabe, and N. Amano, “A Java program-
ming learning assistant system using test-driven development method,” IAENG J. CS, vol.40,
no.1, pp. 38-46, Feb. 2013.

[12] “BFS,” Internet: http://www.geeksforgeeks.org/breadth-first-traversal-for-
a-graph, Access July 7, 2020.

[13] “JUnit-Tools,” Internet: http://www.junit-tools.org/index.php/getting-

started, Access July 7, 2020.

47

https://java.com/en/download/faq/whatis_java.xml
http://www.worldscientific.com/worldscibooks/10.1142/10727
http://www.junit.org/
http://d.hatena.ne.jp/kencoba/20120831/1346398388
http://d.hatena.ne.jp/kencoba/20120831/1346398388
http://www.geeksforgeeks.org/breadth-first-traversal-for-a-graph
http://www.geeksforgeeks.org/breadth-first-traversal-for-a-graph
http://www.junit-tools.org/index.php/getting-started
http://www.junit-tools.org/index.php/getting-started

[14] Y. Higo, A. Saitoh, G. Yamada, T. Miyake, S. Kusumoto, and K. Inoue, “A pluggable tool for
measuring software metrics from source code,” Proc. IWSM-MENSURA, pp. 2-12, 2011.

[15] T. G. S. Filó and M. A. S. Bigonha, “A catalogue of thresholds for object-oriented software
metrics,” Proc. SOFTENG, pp. 48-55, 2015.

[16] “Metric Plugin,” Internet: http://metrics.sourceforge.net, Access July 7, 2020.

[17] “Standard Streams,” Internet: https://en.wikipedia.org/wiki/Standard_streams,
Access July 7, 2020.

[18] D. M. Ritchie, “A Stream Input-Output System”, AT&T Bell Lab. Tech. J., 68(8), Oct. 1984.

[19] “Exception Handling in Java,” Internet: https://www.javatpoint.com/exception-
handling-in-java, Access July 7, 2020.

[20] M. Takahashi, Easy Java, 5th Ed., Soft Bank Creative, 2013.

[21] H. Yuuki, Java programming lessen, 3rd Ed., Soft Bank Creative, 2012.

[22] Y. D. Liang, Introduction to Java programming, 9th Ed., Pearson Education, 2014.

[23] “Java programming seminar,” Internet: http://java.it-manual.com/start/about.
html, Access July 7, 2020.

[24] “Kita Soft Koubo,” Internet: http://kitako.tokyo/lib/JavaExercise.aspx, Access
July 7, 2020. .

[25] M. J. Garbade, “Top 3 most popular programming languages in 2018,” https:
//hackernoon.com/top-3-most-popular-programming-languages-in-2018-

and-their-annual-salaries-51b4a7354e06, Access July 7, 2020.

[26] S. Cass, “The 2015 Top Ten Programming Languages - IEEE Spectrum,” Inter-
net: https://www.linkedin.com/pulse/2015-top-ten-programming-languages-
ieee-spectrum-farzin-pashaee, Access July 7, 2020.

[27] S. Cass and P. Bulusu, “Interactive: The Top Programming Languages 2018,” Inter-
net: https://spectrum.ieee.org/static/interactive-the-top-programming-

languages-2018, Access July 7, 2020.

[28] N. Funabiki, K. K. Zaw, N. Ishihara, and W.-C. Kao, “Java programming learning assistant
system: JPLAS,” IAENG Trans. Eng. Sci., Spec. Issue. Int. Assoc. Eng. Conf. 2016 vol. II,
pp. 517-530, 2016

[29] N. Funabiki, Y. Matsushim, T. Nakanishi, K. Watanabe, and N. Amano, “A Java programming
learning assistant system using test-driven development method,” IAENG Int. J. Comput.
Sci., vol. 40, no. 1, pp. 38-46, Feb. 2013.

[30] K. K. Zaw, N. Funabiki, E. E. Mon, and W.-C. Kao, “An informative test code approach
for studying three object-oriented programming concepts by code writing problem in Java
programming learning assistant system,” Proc. Global Conf. Consum. Elect. (GCCE2018),
pp. 592-596, Oct. 2018.

48

http://metrics.sourceforge.net
https://en.wikipedia.org/wiki/Standard_streams
https://www.javatpoint.com/exception-handling-in-java
https://www.javatpoint.com/exception-handling-in-java
http://java.it-manual.com/start/about.html
http://java.it-manual.com/start/about.html
http://kitako.tokyo/lib/JavaExercise.aspx
https://hackernoon.com/top-3-most-popular-programming-languages-in-2018-and-their-annual-salaries-51b4a7354e06
https://hackernoon.com/top-3-most-popular-programming-languages-in-2018-and-their-annual-salaries-51b4a7354e06
https://hackernoon.com/top-3-most-popular-programming-languages-in-2018-and-their-annual-salaries-51b4a7354e06
https://www.linkedin.com/pulse/2015-top-ten-programming-languages-ieee-spectrum-farzin-pashaee
https://www.linkedin.com/pulse/2015-top-ten-programming-languages-ieee-spectrum-farzin-pashaee
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018

[31] “JCF,” Internet: https://docs.oracle.com/javase/tutorial/collections/, Ac-
cess July 7, 2020.

[32] “Iterators in Java,” Internet: https://www.geeksforgeeks.org/iterators-in-java/,
Access July 7, 2020.

[33] “Metrics 1.3.6,” Internet: http://metrics.sourceforge.net, Access July 7, 2020.

[34] K. K. Zaw and N. Funabiki, ”A concept of value trace problem for Java code reading educa-
tion,” Proc. Int. Cong. Adv. Appl. Info., July 2015, pp. 253-258.

[35] K. K. Zaw, N. Funabiki, and W.-C. Kao, ”A proposal of value trace problem for algorithm
code reading in Java programming learning assistant system,” to appear in Inf. Eng. Exp.,
2015.

[36] J. Brunet, D. Guerrero, J. Figueiredo, “Design Tests: An Approach to Programmatically
Check your Code Against Design Rules,” Proc. Int. Conf. on SW Eng. Comp. vol. pp. 225-
258, January 2009.

[37] Y. Akahane, H. Kitaya, and U. Inoue, “Design and evaluation of automated Scoring Java
programming assignments,” Proc. Int. Conf. Soft. Eng., Art. Intel., Net. Para./Dist. Comput.,
pp.1-6, 2015.

[38] H. Kitaya and U. Inoue, “An online automated scoring system for Java programming assign-
ments,” Int. J. Inform. Edu. Tech., vol. 6, no. 4, pp. 275-279, Apr. 2016.

[39] C. Fu and B. G. Ryder, “Exception-chain analysis: revealing exception handling architecture
in Java server applications,” Proc. Int. Conf. Soft. Eng., pp. 230-239, May 2007.

[40] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang, “Mining API usage examples from test
code,” Proc. IEEE Int. Conf. Soft. Mainte. Evo., pp. 301-310, 2014.

[41] C. Kolassa, M. Look, K. Müller, A. Roth, D. Rei, and B. Rumpe, “TUnit –unit testing for
template-based code generators,” Proc. Modellierung Conf., pp. 221-236, 2016.

[42] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, S. Völkel, “MontiCore: A framework for
the development of textual domain specific languages,” Proc. Int. Conf. Soft. Eng. (ICSE),
2008.

[43] H. Krahn, B. Rumpe, S. Völkel, “MontiCore: Modular development of textual domain spe-
cific languages,” Proc. Int. Conf. Model. Tech. Tool. Comp. Perform. Evaluation, pp. 297-
315, 2008.

[44] H. Krahn, B. Rumpe, S. Völkel, “MontiCore: “A framework for compositional development
of domain specific languages,” Int. J. SW Tool. Tech. Transfer, vol. 12, no. 5, pp. 353-372,
Sept. 2010.

[45] R. Rashkovits and I. Lavy, “Students’ understanding of advanced properties of Java excep-
tions,” J. Info. Tech. Edu., vol. 11, pp. 327-352, 2012.

[46] S. Nakshatri, M. Hegde, and S. Thandra, “Analysis of exception handling patterns in Java
projects: an empirical study,” Proc. IEEE/ACM Work. Conf. Mining Soft. Rep., pp. 500-503,
May 2016.

49

https://docs.oracle.com/javase/tutorial/collections/
https://www.geeksforgeeks.org/iterators-in-java/
http://metrics.sourceforge.net

[47] J. Bloch, Effective Java, 2nd Ed., Prentice Hall PTR, Upper Saddle River, NJ, USA, 2008.

[48] T. Xue, S. Ying, Q. Wu, X. Jia, X. Hu, X. Zhai, and T. Zhang, “Verifying integrity of excep-
tion handling in service-oriented software,” Int. J. Grid. Utility Comput., vol. 8, pp. 17-21,
2017.

[49] R. J. S. Júnior and R. Coelho,“Preserving the exception handling design rules in software
product line context: a practical approach,” Proc. Latin-American Symp. Depend. Comp.
Work., pp. 9-16, 2011.

[50] G. Fairbanks, D. Garlan, and W. Scherlis, “Design fragments make using frameworks easier,”
Proc. OOPSLA Conf. vol. 41, pp. 75–88, Oct. 2006.

[51] K. Koile and D. Singer “Development of a Tablet-PC-based System to Increase Instructor-
Student Classroom Interactions and Student Learning,” Proc. WIPTE (Workshop on the Im-
pact of Pen-based Tech. on Edu., Purdue University) Apr. 2006.

[52] E. Zhou, Z. Niibori, S. Okamoto, M. Kamada, and T. Yonekura, “IslayTouch: an educational
visual programming environment for tablet devices”, J. Space-Based and Situated Comput.,
vol. 6, no. 3, pp. 183-197, 2016.

[53] N. Yamamoto, “An improved group discussion system for active learning using smart-phone
and its experimental evaluation,” J. Space-Base. Situated Comput., vol. 6, no. 4, pp. 221-227,
2016.

[54] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine and N. Li, ”Scaling up automated test
generation: Automatically generating maintainable regression unit tests for programs,” 26th
IEEE/ACM Int. Conf. on Auto. SW Eng. (ASE 2011), pp. 23-32, 2011.

[55] T. Kakeshita and M. Murata, ”Application of Programming Education Support Tool pg-
tracer for Homework Assignment,” J. of Learn. Tech. and Learn. Envr, vol1. no.1, pp. 41-60,
Mar.,2018.

[56] “Standard Streams,” Internet: https://en.wikipedia.org/wiki/Standard_streams,
Access July 7, 2020.

[57] S. Heckman, “An Empirical Study of In-Class Laboratories on Student Learning of Linear
Data Structures,” Proc. Int. Conf. Int Comp. Edu. Res. pp. 217-225, Aug. 2015.

50

https://en.wikipedia.org/wiki/Standard_streams

	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	List of Codes
	Introduction
	Background
	Contributions
	Contents of This Dissertation

	Review of JPLAS
	Overview of JPLAS
	Server Platform
	Software Architecture
	Problem Types

	Code Writing Problem
	Test-driven Development Method
	Outline of TDD Method
	JUnit
	Test Code
	Features in TDD Method

	User Service Functions
	Teacher Service Functions
	Student Service Functions

	Desktop-version JPLAS
	Summary

	Review of Informative Test Code Approach in Code Writing Problem
	Informative Test Code Approach in Code Writing Problem
	Concept of Informative Test Code
	Assignment Generation with Informative Test Code
	Example Assignment Generation for BFS Algorithm
	Input Data File
	Model Source Code
	Expected Output Data File
	Informative Test Code
	Informative Test Code Example
	Simple Test Code Example

	Eclipse Metrics Plugin
	Software Metrics
	Eclipse Metrics Plugin
	Adopted Seven Metrics

	Summary

	Application to Standard Input/output with Exception Handling
	 Introduction
	Standard Stream
	Standard Input Stream (stdin)
	Standard Output Stream (stdout)
	Standard Error Stream (stderr)

	Exception Handling
	What is Exception Handling
	Hierarchy of Java Exception Classes
	Types of Exceptions

	Informative Test Code Generation
	Scope of Source Code under Test
	Requirements in Test Code
	Solutions for Requirements
	Conditions of Source Code
	Test Code Template
	Test Code Generation Procedure
	Generated Test Code Example

	Evaluation
	Test Code Generation Results
	Source Code Writing Results
	Problem #1
	Problem #2
	Problem #3
	Summary of Student Applications

	Summary

	Application to Java Collection Framework
	Introduction
	Informative Test Code Approach for Java Collections Framework
	Review of Java Collections Framework
	Overview of Informative Test Code for JCF
	Informative Test Code for List
	Informative Test Code for Set
	Informative Test Code for Map
	Evaluation

	Summary

	Student Answer Analyzing Function for Desktop-version JPLAS
	Introduction
	Desktop-version Java Programming Learning Assistant System (D-JPLAS)
	Problem Types in D-JPLAS

	Student Answer Analyzing Function
	Input Data
	Output Data
	Student Result Interfaces

	Summary

	Related Works
	Conclusion
	References

