LINEAR STABILITY OF RADIALLY SYMMETRIC EQUILIBRIUM SOLUTIONS TO THE SINGULAR LIMIT PROBLEM OF THREE-COMPONENT ACTIVATOR-INHIBITOR MODEL

Takuya Kojima and Yoshinito Oshita

Abstract

We show linear stability or instability for radially symmetric equilibrium solutions to the system of interface equation and two parabolic equations arising in the singular limit of three-component activator-inhibitor models.

1. Introduction and statement of main results

We are interested in the system of equations

$$
\begin{align*}
V_{\Gamma(t)} & =W\left(v_{1}, v_{2}\right)-(N-1) \alpha H & & \text { on } \Gamma(t), t>0 \tag{1.1}\\
\theta_{1} \frac{\partial v_{1}}{\partial t} & =\Delta v_{1}+G_{1}^{+}\left(v_{1}\right) \chi_{\Omega^{+}(t)}+G_{1}^{-}\left(v_{1}\right) \chi_{\Omega^{-}(t)} & & \text { in } \mathbb{R}^{N}, t>0 \tag{1.2}\\
\theta_{2} \frac{\partial v_{2}}{\partial t} & =\Delta v_{2}+G_{2}^{+}\left(v_{2}\right) \chi_{\Omega^{+}(t)}+G_{2}^{-}\left(v_{2}\right) \chi_{\Omega^{-}(t)} & & \text { in } \mathbb{R}^{N}, t>0 . \tag{1.3}
\end{align*}
$$

Here $\Omega^{+}(t) \subset \mathbb{R}^{N}$ is a bounded domain, $\Gamma(t)=\partial \Omega^{+}(t)$ is an embedded surface called an interface, $\Omega^{-}(t)=\mathbb{R}^{N} \backslash \overline{\Omega^{+}(t)}, H$ is the mean curvature at each point of $\Gamma(t)$, and $V_{\Gamma(t)}$ is the normal velocity of $\Gamma(t)$ in the direction of $\Omega^{-}(t)$. Furthermore, θ_{1} and θ_{2} are nonnegative constants, α is a positive constant, and χ_{A} denotes the characteristic function of a subset $A \subset \mathbb{R}^{N}$. Throughout this paper, we assume that $N \geq 2$. We make the following assumptions on $G_{j}^{ \pm}$and W.
(G) $G_{j}^{ \pm} \in C^{1}(\mathbb{R}), \frac{d G_{j}^{ \pm}}{d v_{j}}\left(v_{j}\right)<0$, and there exist $\underline{v}_{j}, \bar{v}_{j}$ such that $G_{j}^{+}\left(\bar{v}_{j}\right)=$ $0, G_{j}^{-}\left(\underline{v}_{j}\right)=0$, where $-\infty<\underline{v}_{j}<\bar{v}_{j}<\infty$, for each $j=1,2$.
$(\mathbf{W}) W \in C^{1}\left(\mathbb{R}^{2}\right), W_{v_{1}}\left(v_{1}, v_{2}\right)<0$, and $W_{v_{2}}\left(v_{1}, v_{2}\right)<0$.
A typical example satisfying the assumptions (G) and (W) is $G_{j}^{ \pm}\left(v_{j}\right)=$ $\pm 1-v_{j}$, and $W\left(v_{1}, v_{2}\right)=-\left(a v_{1}+b v_{2}+c\right)$, where a, b, c are constants with $a, b>0$.

This problem (1.1), (1.2) and (1.3) can be derived formally by taking the singular limit of the following three-component activator-inhibitor model (or

[^0]propagator-controller model):
\[

\left\{$$
\begin{aligned}
\frac{1}{\alpha} \frac{\partial u}{\partial t} & =\Delta u+\frac{1}{\varepsilon^{2}}\left(u-u^{3}+\frac{\sqrt{2} \varepsilon}{3 \alpha} W\left(v_{1}, v_{2}\right)\right) \\
\theta_{1} \frac{\partial v_{1}}{\partial t} & =\Delta v_{1}+f_{1}\left(u, v_{1}\right) \\
\theta_{2} \frac{\partial v_{2}}{\partial t} & =\Delta v_{2}+f_{2}\left(u, v_{2}\right)
\end{aligned}
$$\right.
\]

Here $f_{j}\left(u, v_{j}\right)$ is a function that is monotonically decreasing in v_{j}, and monotonically increasing in u, θ_{1} and θ_{2} are nonnegative constants, ε is a small parameter, and α is a given constant. When ε is sufficiently small, the phase domains $\{u \sim 1\}$ and $\{u \sim-1\}$ are formed, and the thin layered region appear between them. The internal transition layer has a width of order ε. The discontinuity surface, which is often called the sharp interface, appears in the limit $\varepsilon \rightarrow 0$. The evolution of the interface is governed by not only the inhibitors v_{1} and v_{2} but also its mean curvature.

Heijster and Sandstede [9] studied travelling spots that bifurcate from radially symmetric stationary spots of three-component FitzHugh-Nagumo system

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t} & =\varepsilon^{2} \Delta u+u-u^{3}-\varepsilon(a v+b w+c) \tag{1.4}\\
\theta_{1} \frac{\partial v}{\partial t} & =\Delta v+u-v \\
\theta_{2} \frac{\partial w}{\partial t} & =d^{2} \Delta w+u-w
\end{align*}\right.
$$

It is suggested that the supercritical drift bifurcation does not occur in twocomponent FitzHugh-Nagumo system. The existence and stability of planar radially symmetric spots of (1.4) was studied in [8]. Taniguchi [7] studied the linear stability of spherical interfaces in an equilibrium ball in a two-phase boundary problem. Internal layered patterns and sharp interfaces arising in reaction-diffusion systems including two-component or three-component FitzHugh-Nagumo type have been studied extensively in recent years (see $[1,3,4,5,6,10]$ and references therein).

Radially symmetric equilibrium solutions. Denote by $\Gamma(R)=\{x \in$ $\left.\mathbb{R}^{N}:|x|=R\right\}$ the radially symmetric interface. To consider the radially symmetric stationary solutions to (1.1), (1.2) and (1.3), we define the following functions. For each $j=1,2$ and $R>0$, let $V_{j}(r, R)$ be the unique
solution to

$$
\left\{\begin{array}{l}
-\Delta_{r} v=G_{j}^{+}(v(r)) \chi_{\{r<R\}}+G_{j}^{-}(v(r)) \chi_{\{r>R\}}, \quad 0<r<\infty \tag{1.5}\\
v_{r}(0, R)=0, \quad v(+\infty, R)=\underline{v}_{j}
\end{array}\right.
$$

where

$$
\Delta_{r}:=\partial_{r}^{2}+\frac{N-1}{r} \partial_{r}
$$

and $r=|x|$. It is known that for each $j=1,2$ the solution $V_{j}(r, R)$ satisfies $\frac{\partial V_{j}}{\partial r}(r, R)<0$ for all $r>0$. See [2]. We then define the functions $Z_{j}(R):=$ $V_{j}(R, R)$ for $j=1,2$. Then define $h(R):=W\left(Z_{1}(R), Z_{2}(R)\right)$ and

$$
U(R):=h(R)-\frac{(N-1) \alpha}{R}
$$

We see that $U\left(R_{0}\right)=0$ if and only if $\left(\Gamma\left(R_{0}\right), V_{1}\left(r, R_{0}\right), V_{2}\left(r, R_{0}\right)\right)$ is a radially symmetric equilibrium solution to (1.1)-(1.3).

The linearized eigenvalue problem. Let $\Phi_{n}(\xi), \xi \in S^{N-1}$ be any spherically harmonic function of degree n. Then

$$
\begin{equation*}
-\Delta_{S^{N-1}} \Phi_{n}=\kappa_{n} \Phi_{n} \quad \text { on } S^{N-1} \tag{1.6}
\end{equation*}
$$

where $\Delta_{S^{N-1}}$ denotes the Laplace-Beltrami operator on S^{N-1} and $\kappa_{n}=$ $n(n+N-2), n=0,1,2, \ldots$ Our linearized eigenvalue problem around the radially symmetric equilibriums is the following:

$$
\left\{\begin{array}{l}
\lambda_{n}=-\sum_{j=1}^{2} P_{j}\left(R_{0}\right)\left[\partial_{r} V_{j}\left(R_{0}, R_{0}\right)+z_{j, n}\left(R_{0}\right)\right]+\frac{\alpha\left(N-1-\kappa_{n}\right)}{R_{0}^{2}} \tag{1.7}\\
\left(-\Delta_{r}+\frac{\kappa_{n}}{r^{2}}+g_{j}\left(r, R_{0}\right)+\theta_{j} \lambda_{n}\right) z_{j, n}(r)=Q_{j}\left(R_{0}\right) \delta_{R_{0}}(r) \quad(j=1,2)
\end{array}\right.
$$

for each $n=0,1, \ldots$, where $\delta_{R_{0}}(r)$ denotes the Dirac delta function concentrated at $r=R_{0}$, and

$$
\begin{aligned}
P_{j}(R) & :=-\frac{\partial W}{\partial v_{j}}\left(V_{1}(R, R), V_{2}(R, R)\right)>0 \\
Q_{j}(R) & :=G_{j}^{+}\left(V_{j}(R, R)\right)-G_{j}^{-}\left(V_{j}(R, R)\right)>0, \\
g_{j}(r, R) & :=-\frac{d G_{j}^{+}}{d v_{j}}\left(V_{j}(r, R)\right) \chi_{\{r<R\}}-\frac{d G_{j}^{-}}{d v_{j}}\left(V_{j}(r, R)\right) \chi_{\{r>R\}}>0
\end{aligned}
$$

for each $j=1,2$ and $R>0$. When $\left(\lambda_{n}, z_{1, n}, z_{2, n}\right)$ solves (1.7), we call λ_{n} an eigenvalue of mode n. We can approximate the solutions near $\left(\Gamma\left(R_{0}\right)\right.$,
$\left.V_{1}\left(r, R_{0}\right), V_{2}\left(r, R_{0}\right)\right)$ as in

$$
\begin{align*}
\Gamma(t) & =\left\{\left[R_{0}+\eta \rho(\xi) e^{\lambda t}\right] \xi+O\left(\eta^{2}\right): \xi \in S^{N-1}\right\}, \\
v_{1}(x, t) & =V_{1}\left(r, R_{0}\right)+\eta w_{1}(x) e^{\lambda t}+O\left(\eta^{2}\right), \tag{1.8}\\
v_{2}(x, t) & =V_{2}\left(r, R_{0}\right)+\eta w_{2}(x) e^{\lambda t}+O\left(\eta^{2}\right)
\end{align*}
$$

with a small parameter $\eta, \lambda=\lambda_{n}$ and

$$
\left(\rho(\xi), w_{1}(x), w_{2}(x)\right)=\left(\Phi_{n}(\xi), z_{1, n}(r) \Phi_{n}(\xi), z_{2, n}(r) \Phi_{n}(\xi)\right)
$$

See Appendix A for the derivation of this eigenvalue problem.
To state our main results, we define a function

$$
\begin{equation*}
f(R)=-\frac{(N+1) h(R)}{(N-1) R}+\sum_{j=1}^{2} P_{j}(R) Q_{j}(R)\left[\phi_{j, 1}(R, R)-\phi_{j, 2}(R, R)\right] \tag{1.9}
\end{equation*}
$$

where $\phi_{j, 1}(r, R)(j=1,2)$ is the unique solution to the equation

$$
\left\{\begin{array}{l}
\left(-\Delta_{r}+\frac{N-1}{r^{2}}+g_{j}(r, R)\right) \phi=\delta_{R} \tag{1.10}\\
\phi(\infty, R)=0, \quad \phi_{r}(0, R)=0
\end{array}\right.
$$

for $R>0$, and $\phi_{j, 2}(r, R)(j=1,2)$ is the unique solution to the equation

$$
\left\{\begin{align*}
\left(-\Delta_{r}+\frac{2 N}{r^{2}}+g_{j}(r, R)\right) \phi & =\delta_{R} \tag{1.11}\\
\phi(\infty, R)=0, \quad \phi_{r}(0, R) & =0
\end{align*}\right.
$$

for $R>0$. Let $\phi_{j, 0}(r)(j=1,2)$ be the unique solution to the equation

$$
\left\{\begin{array}{l}
\left(-\Delta_{r}+g_{j}\left(r, R_{0}\right)\right) \phi=\delta_{R_{0}} \tag{1.12}\\
\phi\left(\infty, R_{0}\right)=0, \quad \phi_{r}\left(0, R_{0}\right)=0
\end{array}\right.
$$

where $R_{0}>0$ is a solution to $U\left(R_{0}\right)=0$. Our main result gives criteria for the stability of equilibrium solutions.

Theorem 1.1. Suppose that $R_{0}>0$ satisfies $U\left(R_{0}\right)=0$. Then (1.1)-(1.3) has an equilibrium solution $\left(\Gamma\left(R_{0}\right), V_{1}\left(r, R_{0}\right), V_{2}\left(r, R_{0}\right)\right)$. Suppose also that $\theta_{j} \geq 0(j=1,2)$ satisfies

$$
\begin{equation*}
\frac{1}{R_{0}^{N-1}} \sum_{j=1}^{2} P_{j}\left(R_{0}\right) Q_{j}\left(R_{0}\right)\left(\int_{0}^{\infty} r^{N-1}\left|\phi_{j, 0}\right|^{2} d r\right) \theta_{j}<1 \tag{1.13}
\end{equation*}
$$

Then we have the following:
(1) If $U^{\prime}\left(R_{0}\right)<0$ and $f\left(R_{0}\right)<0$, then the equilibrium solution $\left(\Gamma\left(R_{0}\right)\right.$, $\left.V_{1}\left(r, R_{0}\right), V_{2}\left(r, R_{0}\right)\right)$ to (1.1)-(1.3) is linearly stable.
(2) If either $U^{\prime}\left(R_{0}\right)>0$ or $f\left(R_{0}\right)>0$, then the equilibrium solution $\left(\Gamma\left(R_{0}\right), V_{1}\left(r, R_{0}\right), V_{2}\left(r, R_{0}\right)\right)$ to (1.1)-(1.3) is linearly unstable.

This paper is organized as follows. In Section 2, we prove Theorem 1.1 by using some of the results in [2] and [7]. In Section 3, we give an example of both stable and unstable radially symmetric equilibrium solutions.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We regard a radially symmetric function as a function of $r=|x|$. We define

$$
C_{0, \mathrm{rad}}^{\infty}\left(\mathbb{R}^{N}\right):=\left\{u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) \mid u \text { is a radially symmetric function }\right\} .
$$

Let L_{rad}^{2} be the completion of $C_{0, \mathrm{rad}}^{\infty}\left(\mathbb{R}^{N}\right)$ with respect to the norm

$$
\|u\|^{2}:=\int_{0}^{\infty} r^{N-1}|u|^{2} d r
$$

For each $\kappa \geq 0$, let $H_{\text {rad }, \kappa}^{1}$ be the completion of $C_{0, \mathrm{rad}}^{\infty}\left(\mathbb{R}^{N}\right)$ with respect to the norm

$$
\|u\|_{H_{\mathrm{rad}, \kappa}^{1}}^{2}:=\int_{0}^{\infty} r^{N-1}\left(\left|u_{r}\right|^{2}+|u|^{2}\right)+\kappa r^{N-3}|u|^{2} d r .
$$

We regard $v \in L_{\mathrm{rad}}^{2}$ as an element of $\left(H_{\mathrm{rad}, \kappa}^{1}\right)^{\prime}$ such that

$$
\langle u, v\rangle=\int_{0}^{\infty} r^{N-1} u(r) \overline{v(r)} d r
$$

for $u \in H_{\mathrm{rad}, \kappa}^{1}$. For $j=1,2$, let $L_{j}(\kappa, \lambda)$ be a linear operator from $H_{\mathrm{rad}, \kappa}^{1}$ to $\left(H_{\mathrm{rad}, \kappa}^{1}\right)^{\prime}$ such that

$$
\begin{equation*}
\left\langle u, L_{j} v\right\rangle=\int_{0}^{\infty}\left[r^{N-1} \frac{d u}{d r} \cdot \frac{d \bar{v}}{d r}+r^{N-3} \kappa u \bar{v}+r^{N-1}\left(g_{j}+\theta_{j} \bar{\lambda}\right) u \bar{v}\right] d r \tag{2.1}
\end{equation*}
$$

for all $u, v \in H_{\mathrm{rad}, ~}^{1}$. For smooth v, we have

$$
\begin{equation*}
L_{j}(\kappa, \lambda) v=-\Delta_{r} v+\left(\frac{\kappa}{r^{2}}+g_{j}(r, R)+\theta_{j} \lambda\right) v \tag{2.2}
\end{equation*}
$$

For $j=1,2$, let $u_{j}(\cdot, \kappa, \lambda)$ be the unique solution to the equation

$$
\begin{equation*}
L_{j}(\kappa, \lambda) u_{j}=\delta_{R_{0}}, \quad u_{j}(\cdot, \kappa, \lambda) \in H_{\mathrm{rad}, \kappa}^{1} \tag{2.3}
\end{equation*}
$$

for $\kappa \geq 0$ and $\operatorname{Re} \lambda \geq 0$. Then for $j=1,2$, we have $\phi_{j, 0}(r)=u_{j}(r, 0,0)$, $\phi_{j, 1}\left(r, R_{0}\right)=u_{j}(r, N-1,0)$, and $\phi_{j, 2}\left(r, R_{0}\right)=u_{j}(r, 2 N, 0)$.

Let $R_{0}>0$ be a number such that $U\left(R_{0}\right)=0$, and $\left(\Gamma\left(R_{0}\right), V_{1}\left(r, R_{0}\right)\right.$, $\left.V_{2}\left(r, R_{0}\right)\right)$ be the associated equilibrium solution. Assume that $\left(\lambda_{n}, z_{1, n}(r)\right.$,
$\left.z_{2, n}(r)\right)$ solves (1.7). Since $u_{j}(r, \kappa, \lambda)(j=1,2)$ satisfy the equation (2.3), we have $z_{j, n}(r)=Q_{j} u_{j}\left(r, \kappa_{n}, \lambda_{n}\right)$ for $j=1,2$. Hence, we obtain

$$
-\sum_{j=1}^{2}\left(P_{j} \partial_{r} V_{j}\left(R_{0}, R_{0}\right)+P_{j} Q_{j} u_{j}\left(R_{0}, \kappa_{n}, \lambda_{n}\right)\right)+\frac{\alpha\left(N-1-\kappa_{n}\right)}{R_{0}^{2}}-\lambda_{n}=0
$$

Now we define
$F(\kappa, \lambda):=-\sum_{j=1}^{2}\left(P_{j} \partial_{r} V_{j}\left(R_{0}, R_{0}\right)+P_{j} Q_{j} u_{j}\left(R_{0}, \kappa, \lambda\right)\right)+\frac{\alpha(N-1-\kappa)}{R_{0}^{2}}-\lambda$,
and

$$
\begin{equation*}
E(\kappa):=-\sum_{j=1}^{2}\left(P_{j} \partial_{r} V_{j}\left(R_{0}, R_{0}\right)+P_{j} Q_{j} u_{j}\left(R_{0}, \kappa, 0\right)\right)+\frac{\alpha(N-1-\kappa)}{R_{0}^{2}} \tag{2.5}
\end{equation*}
$$

We have the following:
Lemma 1. For every $\kappa>0$, there holds $E^{\prime \prime}(\kappa)<0$.
Proof. From (2.5), we get

$$
E^{\prime}(\kappa)=-\frac{\alpha}{R_{0}^{2}}-\sum_{j=1}^{2} P_{j}\left(R_{0}\right) Q_{j}\left(R_{0}\right) \frac{\partial u_{j}}{\partial \kappa}\left(R_{0}, \kappa, 0\right)
$$

Therefore we have

$$
\begin{equation*}
E^{\prime \prime}(\kappa)=-\sum_{j=1}^{2} P_{j}\left(R_{0}\right) Q_{j}\left(R_{0}\right) \frac{\partial^{2} u_{j}}{\partial \kappa^{2}}\left(R_{0}, \kappa, 0\right) \tag{2.6}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
R_{0}^{N-1} \frac{\partial^{2} u_{j}}{\partial \kappa^{2}}\left(R_{0}, \kappa, 0\right) & =\left\langle\frac{\partial^{2} u_{j}}{\partial \kappa^{2}}(\cdot, \kappa, 0), \delta_{R_{0}}\right\rangle \\
& =\left\langle\frac{\partial^{2} u_{j}}{\partial \kappa^{2}}(\cdot, \kappa, 0), L_{j}(\kappa, 0) u_{j}(\cdot, \kappa, 0)\right\rangle \\
& =\left\langle L_{j}(\kappa, 0) \frac{\partial^{2} u_{j}}{\partial \kappa^{2}}(\cdot, \kappa, 0), u_{j}(\cdot, \kappa, 0)\right\rangle
\end{aligned}
$$

for $j=1,2$. Using

$$
L_{j}(\kappa, 0)\left(\frac{\partial^{2} u_{j}}{\partial \kappa^{2}}(\cdot, \kappa, 0)\right)=-\frac{2}{r^{2}} \frac{\partial u_{j}}{\partial \kappa}(\cdot, \kappa, 0)
$$

and

$$
L_{j}(\kappa, 0)\left(\frac{\partial u_{j}}{\partial \kappa}(\cdot, \kappa, 0)\right)=-\frac{1}{r^{2}} u_{j}(\cdot, \kappa, 0)
$$

we compute

$$
\begin{aligned}
& \left\langle L_{j}(\kappa, 0) \frac{\partial^{2} u_{j}}{\partial \kappa^{2}}(\cdot, \kappa, 0), u_{j}(\cdot, \kappa, 0)\right\rangle \\
& =2\left\langle\frac{\partial u_{j}}{\partial \kappa}(\cdot, \kappa, 0),-\frac{1}{r^{2}} u_{j}(\cdot, \kappa, 0)\right\rangle \\
& =2\left\langle\frac{\partial u_{j}}{\partial \kappa}(\cdot, \kappa, 0), L_{j}(\kappa, 0) \frac{\partial u_{j}}{\partial \kappa}(\cdot, \kappa, 0)\right\rangle>0
\end{aligned}
$$

for $j=1,2$. It follows from (2.6) that $E^{\prime \prime}(\kappa)<0$ as desired.
Lemma 2. For all $\kappa \geq 0$ and $\operatorname{Re} \lambda \geq 0$, there holds

$$
\begin{equation*}
\left\|u_{j}(\cdot, \kappa, \lambda)\right\|^{2} \leq\left\|u_{j}(\cdot, 0,0)\right\|^{2} \tag{2.7}
\end{equation*}
$$

Proof. Assume that $\lambda=\lambda^{R}+i \lambda^{I}$ is an eigenvalue of (1.7) with $\lambda_{R} \geq 0$. Differentiating (2.3) with respect to λ^{R}, we have
$-\left(\frac{\partial u_{j}}{\partial \lambda^{R}}\right)^{\prime \prime}-\frac{N-1}{r}\left(\frac{\partial u_{j}}{\partial \lambda^{R}}\right)^{\prime}+\frac{\kappa}{r^{2}} \frac{\partial u_{j}}{\partial \lambda^{R}}+g_{j}(r) \frac{\partial u_{j}}{\partial \lambda^{R}}+\theta_{j} u_{j}+\theta_{j} \lambda^{R} \frac{\partial u_{j}}{\partial \lambda^{R}}=0$.
This implies that

$$
\begin{equation*}
L_{j}\left(\frac{\partial u_{j}}{\partial \lambda^{R}}\right)=-\theta_{j} u_{j} \quad(j=1,2) \tag{2.8}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
L_{j}\left(\frac{\partial u_{j}}{\partial \lambda^{I}}\right)=-i \theta_{j} u_{j} \quad(j=1,2) \tag{2.9}
\end{equation*}
$$

Furthermore, we differentiate (2.3) with respect to κ, we obtain

$$
\begin{equation*}
L_{j}\left(\frac{\partial u_{j}}{\partial \kappa}\right)=-\frac{u_{j}}{r^{2}} \quad(j=1,2) \tag{2.10}
\end{equation*}
$$

We show that for all $\lambda^{I} \neq 0$, there holds $\left\|u_{j}\left(\cdot, \kappa, \lambda^{R}+i \lambda^{I}\right)\right\|^{2}<\left\|u_{j}\left(\cdot, \kappa, \lambda^{R}\right)\right\|^{2}$ $(j=1,2)$. It follows from (2.9) that

$$
\begin{aligned}
\frac{\partial}{\partial \lambda^{I}}\left\|u_{j}\left(\cdot, \kappa, \lambda^{R}+i \lambda^{I}\right)\right\|^{2} & =2 \operatorname{Re}\left\langle u_{j}, \frac{\partial u_{j}}{\partial \lambda^{I}}\right\rangle \\
& =2 \operatorname{Re}\left\langle\frac{i}{\theta_{j}} L_{j}\left(\frac{\partial u_{j}}{\partial \lambda^{I}}\right), \frac{\partial u_{j}}{\partial \lambda^{I}}\right\rangle \\
& =-2 \lambda^{I}\left\|\frac{\partial u_{j}}{\partial \lambda^{I}}\right\|^{2}
\end{aligned}
$$

for $j=1,2$. Therefore, $\left\|u_{j}\left(\cdot, \kappa, \lambda^{R}+i \lambda^{I}\right)\right\|^{2}<\left\|u_{j}\left(\cdot, \kappa, \lambda^{R}\right)\right\|^{2}(j=1,2)$ for all $\lambda^{I} \neq 0$.

We consider the case of $\lambda^{I}=0$. Since $R_{0}^{N-1} u_{j}\left(R_{0}, \kappa, \lambda^{R}\right)=\left\langle u_{j}, L_{j} u_{j}\right\rangle$, we find that $u_{j}\left(R_{0}, \kappa, \lambda^{R}\right)>0$ holds for $j=1,2$. By $u_{j}\left(\infty, \kappa, \lambda^{R}\right)=0$ and the maximum principle, we see that $u_{j}\left(r, \kappa, \lambda^{R}\right)>0(j=1,2)$ for all $r>0$. It therefore follows from (2.8) and (2.10) that

$$
L_{j}\left(\frac{\partial u_{j}}{\partial \lambda^{R}}\right)<0, \quad L_{j}\left(\frac{\partial u_{j}}{\partial \kappa}\right)<0
$$

for $j=1,2$. By

$$
\frac{\partial u_{j}}{\partial \lambda^{R}}\left(\infty, \kappa, \lambda^{R}\right)=\frac{\partial u_{j}}{\partial \kappa}\left(\infty, \kappa, \lambda^{R}\right)=0
$$

and the maximum principle, we obtain that

$$
\frac{\partial u_{j}}{\partial \lambda^{R}}\left(r, \kappa, \lambda^{R}\right)<0, \quad \frac{\partial u_{j}}{\partial \kappa}\left(r, \kappa, \lambda^{R}\right)<0
$$

for all $r>0$ and $j=1,2$. Thus it follows from

$$
\begin{aligned}
\frac{\partial}{\partial \lambda^{R}}\left\|u_{j}\left(\cdot, \kappa, \lambda^{R}\right)\right\|^{2} & =2\left\langle u_{j}, \frac{\partial u_{j}}{\partial \lambda^{R}}\right\rangle \\
\frac{\partial}{\partial \kappa}\left\|u_{j}\left(\cdot, \kappa, \lambda^{R}\right)\right\|^{2} & =2\left\langle u_{j}, \frac{\partial u_{j}}{\partial \kappa}\right\rangle
\end{aligned}
$$

that $\frac{\partial}{\partial \lambda^{R}}\left\|u_{j}\left(\cdot, \kappa, \lambda^{R}\right)\right\|^{2}<0$ and $\frac{\partial}{\partial \kappa}\left\|u_{j}\left(\cdot, \kappa, \lambda^{R}\right)\right\|^{2}<0$ for $j=1,2$. We conclude that $\left\|u_{j}(\cdot, \kappa, \lambda)\right\|^{2} \leq\left\|u_{j}(\cdot, 0,0)\right\|^{2}(j=1,2)$ for all $\kappa \geq 0$ and $\operatorname{Re} \lambda \geq 0$. This completes the proof.

We consider the equation

$$
\begin{equation*}
F(\kappa, \lambda)=0, \quad \operatorname{Re} \lambda \geq 0 \tag{2.11}
\end{equation*}
$$

for each $\kappa \geq 0$.
Lemma 3. Assume that (1.13). Then any solution λ of (2.11) with a nonnegative real part must be real.
Proof. For $j=1,2$, we write $u_{j}(r, \kappa, \lambda)=u_{j}^{R}+i u_{j}^{I}$ where both u_{j}^{R} and u_{j}^{I} are real. We can calculate $u_{j}\left(R_{0}, \kappa, \lambda\right)(j=1,2)$ as

$$
\begin{equation*}
R_{0}^{N-1} u_{j}\left(R_{0}, \kappa, \lambda\right)=\left\langle u_{j}, \delta_{R_{0}}\right\rangle=\left\langle u_{j}, L_{j} u_{j}\right\rangle \tag{2.12}
\end{equation*}
$$

Taking the imaginary part, we have $R_{0}^{N-1} u_{j}^{I}\left(R_{0}, \kappa, \lambda\right)=-\lambda^{I} \theta_{j}\left\|u_{j}(\cdot, \kappa, \lambda)\right\|^{2}$ for $j=1,2$. We obtain from $\operatorname{Im} F(\kappa, \lambda)=0$ that

$$
\lambda^{I}\left[\frac{1}{R_{0}^{N-1}} \sum_{j=1}^{2} P_{j} Q_{j} \theta_{j}\left\|u_{j}(\cdot, \kappa, \lambda)\right\|^{2}-1\right]=0
$$

It follows from (2.7) and (1.13) that
$\frac{1}{R_{0}^{N-1}} \sum_{j=1}^{2} P_{j} Q_{j} \theta_{j}\left\|u_{j}(\cdot, \kappa, \lambda)\right\|^{2}-1 \leq \frac{1}{R_{0}^{N-1}} \sum_{j=1}^{2} P_{j} Q_{j} \theta_{j}\left\|u_{j}(\cdot, 0,0)\right\|^{2}-1<0$.
This implies $\lambda^{I}=0$. Therefore the eigenvalue λ must be real. This completes the proof.

Lemma 4. For all $\kappa \geq 0$ and $\lambda \in \mathbb{R}$ with $\lambda \geq 0$, there holds

$$
F_{\lambda}(\kappa, \lambda) \leq \frac{1}{R_{0}^{N-1}} \sum_{j=1}^{2} P_{j} Q_{j} \theta_{j}\left\|u_{j}(\cdot, 0,0)\right\|^{2}-1
$$

Proof. Let $\kappa \geq 0$ and $\lambda \geq 0$. From (2.1) and (2.8), we get

$$
R_{0}^{N-1} \frac{\partial u_{j}}{\partial \lambda}\left(R_{0}, \kappa, \lambda\right)=-\theta_{j}\left\|u_{j}\right\|^{2}
$$

for $j=1,2$. It then follows that

$$
\begin{aligned}
F_{\lambda}(\kappa, \lambda) & =-1-\sum_{j=1}^{2} P_{j}\left(R_{0}\right) Q_{j}\left(R_{0}\right) \frac{\partial u_{j}}{\partial \lambda}\left(R_{0}, \kappa, \lambda\right) \\
& =-1+\frac{1}{R_{0}^{N-1}} \sum_{j=1}^{2} P_{j} Q_{j} \theta_{j}\left\|u_{j}(\cdot, \kappa, \lambda)\right\|^{2} \\
& \leq \frac{1}{R_{0}^{N-1}} \sum_{j=1}^{2} P_{j} Q_{j} \theta_{j}\left\|u_{j}(\cdot, 0,0)\right\|^{2}-1
\end{aligned}
$$

as desired.

Proposition 5. Assume that (1.13) holds. Then
(1) (2.11) has a unique solution $\lambda>0$ if $E(\kappa)>0$.
(2) (2.11) has a unique solution $\lambda=0$ if $E(\kappa)=0$.
(3) (2.11) has no solution if $E(\kappa)<0$.

Proof. Note that by Lemma 3, any solution λ of (2.11) with a nonnegative real part is real. By Lemma 4, we have

$$
\begin{equation*}
F(\kappa, \lambda) \leq F(\kappa, 0)-A \lambda=E(\kappa)-A \lambda \tag{2.13}
\end{equation*}
$$

for $\lambda \geq 0$ with

$$
A:=1-\frac{1}{R_{0}^{N-1}} \sum_{j=1}^{2} P_{j} Q_{j} \theta_{j}\left\|u_{j}(\cdot, 0,0)\right\|^{2}>0
$$

The claims (2) and (3) follow from (2.13).
(1) Let $E(\kappa)>0$. Then it follows from (2.13) that $F(\kappa, 0)>0>F(\kappa, \lambda)$ if $\lambda>E(\kappa) / A$. Therefore by the monotonicity of $F(\kappa, \cdot)$ on $[0, \infty)$, there exists a unique $\lambda_{*}>0$ such that $F\left(\kappa, \lambda_{*}\right)=0$. This completes the proof of (1).

In order to study the stability of $\left(\Gamma\left(R_{0}\right), V_{1}\left(r, R_{0}\right), V_{2}\left(r, R_{0}\right)\right)$, we need to determine the sign of $E(0)$ and $E(2 N)$.

Lemma 6. Assume $U\left(R_{0}\right)=0$. Then there holds

$$
E(0)=U^{\prime}\left(R_{0}\right)
$$

Proof. Differentiating $U(R)$ with respect to R, we get

$$
\begin{equation*}
U^{\prime}(R)=\frac{\partial W}{\partial v_{1}} \cdot \frac{d V_{1}}{d R}(R, R)+\frac{\partial W}{\partial v_{2}} \cdot \frac{d V_{2}}{d R}(R, R)+\frac{(N-1) \alpha}{R^{2}} \tag{2.14}
\end{equation*}
$$

Differentiating (1.5) with respect to R, we have

$$
\begin{equation*}
\left(-\Delta_{r}+g_{j}(r, R)\right) \frac{\partial V_{j}}{\partial R}=\left[G_{j}^{+}\left(V_{j}(r, R)\right)-G_{j}^{-}\left(V_{j}(r, R)\right)\right] \delta_{R}(r) \tag{2.15}
\end{equation*}
$$

for $j=1,2$. Substituting $R=R_{0}$ into (2.15), we obtain

$$
\left(-\Delta_{r}+g_{j}\left(R_{0}, R_{0}\right)\right) \frac{\partial V_{j}}{\partial R}\left(R_{0}, R_{0}\right)=Q_{j}\left(R_{0}\right) \delta_{R_{0}}
$$

and thus

$$
\begin{equation*}
\frac{\partial V_{j}}{\partial R}\left(R_{0}, R_{0}\right)=Q_{j}\left(R_{0}\right) u_{j}\left(R_{0}, 0,0\right) \tag{2.16}
\end{equation*}
$$

for $j=1,2$. For each $j=1,2$ and all $R>0$, we have

$$
\frac{d V_{j}}{d R}(R, R)=\frac{\partial V_{j}}{\partial r}(R, R)+\frac{\partial V_{j}}{\partial R}(R, R)
$$

Therefore, substituting $R=R_{0}$ into (2.14) and using the equations (2.15) and (2.16), we obtain

$$
U^{\prime}\left(R_{0}\right)=-\sum_{j=1}^{2}\left(P_{j} \partial_{r} V_{j}\left(R_{0}, R_{0}\right)+P_{j} Q_{j} u_{j}\left(R_{0}, 0,0\right)\right)+\frac{(N-1) \alpha}{R_{0}^{2}}
$$

By the definition of $E(\kappa)$, we obtain the desired relation. This completes the proof.

Lemma 7. Assume $U\left(R_{0}\right)=0$. Then

$$
E(2 N)=f\left(R_{0}\right)
$$

Proof. Differentiating (1.5) with respect to r, we have

$$
L_{j}(N-1,0)\left(\frac{\partial V_{j}}{\partial r}\right)=-Q_{j}(R) \delta_{R}
$$

for $j=1,2$. Thus we find that

$$
\begin{equation*}
-\frac{\partial V_{j}}{\partial r}(r, R)=Q_{j}(R) \phi_{j, 1}(r, R) \tag{2.17}
\end{equation*}
$$

for $j=1,2$. From $U\left(R_{0}\right)=0$, we get

$$
\alpha=\frac{R_{0} h\left(R_{0}\right)}{N-1} .
$$

Therefore, by using the definition of $E(\kappa)$, we obtain $E(2 N)=f\left(R_{0}\right)$, where f is defined as in (1.9). This completes the proof.

Completion of Proof of Theorem 1.1.

Case 1: Assume that $U^{\prime}\left(R_{0}\right)>0$. Then this means that $E(0)>0$ by Lemma 6. Hence there exits a positive eigenvalue $\lambda_{0}>0$ of mode 0 by Proposition 5 (1).

Case 2: Assume that $f\left(R_{0}\right)>0$. Then $E(2 N)>0$ by Lemma 7. By Proposition 5 (1), we see that there exists a positive eigenvalue $\lambda_{2}>0$ of mode 2.

Case 3: Assume that $U^{\prime}\left(R_{0}\right)<0$ and $f\left(R_{0}\right)<0$, then we have $E(0)<0$ and $E(2 N)<0$. Note that we have

$$
\begin{equation*}
u_{j}(r, N-1,0)=\phi_{j, 1}\left(r, R_{0}\right) \tag{2.18}
\end{equation*}
$$

for $j=1,2$. Substituting $\kappa=N-1$ into (2.5) and using the equations (2.17) and (2.18), we get $E(N-1)=0$. Combining this fact and $E^{\prime \prime}(\kappa)<0$, we see that $E(\kappa) \leq E(2 N)<0$ for all $\kappa \in[2 N, \infty)$. Therefore $E\left(\kappa_{n}\right)<0$ for all $n \neq 1$. By Proposition 5 (3), we see that $\operatorname{Re} \lambda_{n}<0$ for all $n \neq 1$. Moreover by Proposition 5 (2), there exists no eigenvalue λ_{1} of mode 1 such that $\operatorname{Re} \lambda_{1} \geq 0$ and $\lambda_{1} \neq 0$.

This completes the proof of Theorem 1.1.

3. An Example

In this section, we present an example to illustrate the existence and the stability of equilibrium solutions. If θ_{1} and θ_{2} are sufficiently small, the stability of equilibriums is determined by the eigenvalues λ_{0} and λ_{2}.

Example 1. Let $N=3$. Consider the following problem:
(3.1)

$$
\begin{aligned}
V_{\Gamma(t)} & =-k v_{1}-(1-k) v_{2}-2 \alpha H \quad \text { on } \Gamma(t), t>0 \\
\theta_{1} \frac{\partial v_{1}}{\partial t} & =\Delta v_{1}+\left(1-b^{2} v_{1}+c\right) \chi_{\Omega^{+}}+\left(-1-b^{2} v_{1}+c\right) \chi_{\Omega^{-}} \quad \text { in } \mathbb{R}^{3}, t>0 \\
\theta_{2} \frac{\partial v_{2}}{\partial t} & =\Delta v_{2}+\left(1-b^{2} v_{2}+c\right) \chi_{\Omega^{+}}+\left(-1-b^{2} v_{2}+c\right) \chi_{\Omega^{-}} \quad \text { in } \mathbb{R}^{3}, t>0
\end{aligned}
$$

Here, $b \in(0, \infty), k \in(0,1), c=1-2 e^{-2} \approx 0.72933$ are constants, and $\alpha>0$ is a parameter. Assume that θ_{1} and θ_{2} satisfy

$$
\begin{equation*}
\theta_{1} \geq 0, \quad \theta_{2} \geq 0, \quad k \theta_{1}+(1-k) \theta_{2} \leq 2 b^{3} \tag{3.2}
\end{equation*}
$$

Let $G_{j}^{ \pm}\left(v_{j}\right)= \pm 1-b^{2} v_{j}+c(j=1,2)$ and $W\left(v_{1}, v_{2}\right)=-k v_{1}-(1-k) v_{2}$. Then $G_{j}^{ \pm}$and W satisfy all the assumptions (G) and (W) in Section 1 with $\underline{v}_{j}=-b^{-2}(1-c)<0, \bar{v}_{j}=b^{-2}(1+c)>0$. We use the same notations $h(R), U(R), P_{j}(R), Q_{j}(R), V_{j}(r, R), g_{j}(r, R), \phi_{j, 1}(r, R)$, and $\phi_{j, 2}(r, R)$ as in Section 1.

The radially symmetric stationary problem of (3.1) such that $v_{j}(x)$ has a finite limit as $|x| \rightarrow \infty$ is given by

$$
\begin{align*}
h(R) & =\frac{2 \alpha}{R} \tag{3.3}\\
\left(-\frac{d^{2}}{d r^{2}}-\frac{2}{r} \frac{d}{d r}\right) v_{j} & =\left(1-b^{2} v_{j}+c\right) \chi_{\{r<R\}}+\left(-1-b^{2} v_{j}+c\right) \chi_{\{r>R\}} \\
v_{j}^{\prime}(0) & =0 \tag{3.5}\\
\lim _{r \rightarrow \infty} v_{j}(r) & =-b^{-2}(1-c) \tag{3.6}
\end{align*}
$$

where $h(R)=-k v_{1}(R)-(1-k) v_{2}(R)$ and $j=1,2$. The explicit solution $v_{j}(r)=V_{j}(r, R)$ of (3.4)-(3.6) is

$$
v_{j}(r)= \begin{cases}b^{-2}\left[1+c-2(1+b R) e^{-b R}(b r)^{-1} \sinh (b r)\right] & \text { if } r<R \\ 2 b^{-2}[b R \cosh (b R)-\sinh (b R)](b r)^{-1} e^{-b r}-b^{-2}(1-c) & \text { if } r>R\end{cases}
$$

for $j=1,2$. Therefore we get

$$
\begin{equation*}
h(R)=b^{-2}\left[\frac{1}{b R}-\frac{e^{-2 b R}}{b R}-e^{-2 b R}-c\right] . \tag{3.7}
\end{equation*}
$$

We find that $h^{\prime}(R)<0$ for $R>0$, and $h\left(b^{-1}\right)=0$. Hence $h(R)>0$ for $R \in\left(0, b^{-1}\right)$ and $h(R)<0$ for $R \in\left(b^{-1}, \infty\right)$.

We consider the equation (3.3), that is, $U(R)=0$. Now $U(R)=0$ if and only if

$$
\alpha=\frac{R}{2} b^{-2}\left[\frac{1}{b R}-\frac{e^{-2 b R}}{b R}-e^{-2 b R}-c\right]=: F_{0}(R)
$$

Then we see that $F_{0}{ }^{\prime \prime}(R)<0$ for $R>0, \lim _{R \rightarrow 0+} F_{0}(R)=0$, and $F_{0}\left(b^{-1}\right)=$ 0 . Hence there exits a unique $R_{*} \in\left(0, b^{-1}\right)$ such that $F_{0}{ }^{\prime}\left(R_{*}\right)=0$. We have $F_{0}{ }^{\prime}(R)>0$ for $R \in\left(0, R_{*}\right)$, and $F_{0}{ }^{\prime}(R)<0$ for $R \in\left(R_{*}, \infty\right)$. Let $\alpha_{1}=F_{0}\left(R_{*}\right)>0$. Then we have the following:

- $U(R)=0$ has two solutions $R=R_{1}(\alpha), R_{2}(\alpha)$ for each $\alpha \in\left(0, \alpha_{1}\right)$, where $0<R_{1}(\alpha)<R_{2}(\alpha), R_{1}(\alpha)$ is monotonically increasing, $R_{2}(\alpha)$ is monotonically decreasing in $\left(0, \alpha_{1}\right), \lim _{\alpha \rightarrow 0+} R_{2}(\alpha)=b^{-1}$, and $\lim _{\alpha \rightarrow \alpha_{1}-} R_{2}(\alpha)=\lim _{\alpha \rightarrow \alpha_{1}-} R_{1}(\alpha)=R_{*}$. Moreover $U^{\prime}\left(R_{1}(\alpha)\right)>0$ and $U^{\prime}\left(R_{2}(\alpha)\right)<0$ for $\alpha \in\left(0, \alpha_{1}\right)$.
- $U(R)=0$ has exactly one solution $R=R_{*}$, and $U^{\prime}\left(R_{*}\right)=0$ for $\alpha=\alpha_{1}$.
- $U(R)=0$ has no solution for each $\alpha \in\left(\alpha_{1}, \infty\right)$.

Next we consider the linear stability of these equilibriums. Note that we have $P_{1}(R)=k, P_{2}(R)=1-k, Q_{j}(R)=2$, and $g_{j}(r, R) \equiv b^{2}$. For $j=1,2$, let $u_{j}\left(r, R, \kappa_{n}\right)$ be the unique solution to

$$
\mathcal{L}_{j}\left(\kappa_{n}\right) u(r)=\delta_{R}, \quad u \in H_{\mathrm{rad}, \kappa}^{1}
$$

where $R>0, \kappa_{n}=n(n+1)$, and the operator $\mathcal{L}_{j}(\kappa)$ is defined as in

$$
\mathcal{L}_{j}(\kappa)=-\frac{d^{2}}{d r^{2}}-\frac{2}{r} \frac{d}{d r}+\frac{\kappa}{r^{2}}+b^{2}
$$

Then for $j=1,2, u_{j}\left(r, R, \kappa_{n}\right)$ can be expressed as

$$
u_{j}\left(r, R, \kappa_{n}\right)= \begin{cases}R \sqrt{R / r} I_{n+\frac{1}{2}}(b r) K_{n+\frac{1}{2}}(b R) & \text { if } r<R \\ R \sqrt{R / r} I_{n+\frac{1}{2}}(b R) K_{n+\frac{1}{2}}(b r) & \text { if } r>R\end{cases}
$$

where $I_{n+\frac{1}{2}}$ and $K_{n+\frac{1}{2}}$ are the modified Bessel functions of the first kind and the second kind, respectively. Since $\phi_{j, 1}(r, R)=u_{j}\left(r, R, \kappa_{1}\right)$ and $\phi_{j, 2}(r, R)=$ $u_{j}\left(r, R, \kappa_{2}\right)$, we have

$$
\begin{aligned}
\phi_{j, 1}(R, R) & =R I_{\frac{3}{2}}(b R) K_{\frac{3}{2}}(b R), \\
\phi_{j, 2}(R, R) & =R I_{\frac{5}{2}}(b R) K_{\frac{5}{2}}(b R)
\end{aligned}
$$

for $j=1,2$. We set $s=b R$. By using the expression (1.9) of $f(R)$, we obtain

$$
\begin{equation*}
f(R)=2 R\left(I_{\frac{3}{2}}(s) K_{\frac{3}{2}}(s)-I_{\frac{5}{2}}(s) K_{\frac{5}{2}}(s)\right)-\frac{2 h(R)}{R} \tag{3.8}
\end{equation*}
$$

By the elementary computation, we get

$$
\begin{align*}
& I_{\frac{3}{2}}(s) K_{\frac{3}{2}}(s)-I_{\frac{5}{2}}(s) K_{\frac{5}{2}}(s) \\
& =\frac{1}{2 s^{5} e^{2 s}}\left[\left(2 s^{2}-9\right) e^{2 s}+2 s^{4}+8 s^{3}+16 s^{2}+18 s+9\right] \tag{3.9}
\end{align*}
$$

Substituting this relation and (3.7) into (3.8), we have

$$
f(R)=\frac{R}{s^{5} e^{2 s}}\left[\left(2 c s^{3}-9\right) e^{2 s}+2 s^{4}+10 s^{3}+18 s^{2}+18 s+9\right]
$$

Now we define

$$
\begin{aligned}
& F_{1}(s)=\left(2 c s^{3}-9\right) e^{2 s}+2 s^{4}+10 s^{3}+18 s^{2}+18 s+9 \\
& F_{2}(s)=s^{5} e^{2 s}>0
\end{aligned}
$$

for $s>0$. By the assumption $0<c<1$, we find that $F_{1}(s)$ has a unique zero point $s_{0}>0$ with $F_{1}\left(s_{0}\right)=0, F_{1}(s)<0$ for $s \in\left(0, s_{0}\right)$, and $F_{1}(s)>0$ for $s \in\left(s_{0}, \infty\right)$. Since $F_{1}(1)=53-7 e^{2} \approx 1.2766>0$, we see that $s_{0}<1$. On the other hand, if $\alpha=\alpha_{1}$, then $R=R_{*}$ is an equilibrium such that $E(0)=U^{\prime}\left(R_{*}\right)=0$. Since $E^{\prime \prime}(\kappa)$ is negative and $E(N-1)=0$, we see that $f\left(R_{*}\right)=E(2 N)$ should be negative. Hence $b R_{*}<s_{0}$. Therefore there exists a unique $\alpha_{2} \in\left(0, \alpha_{1}\right)$ such that $R_{2}\left(\alpha_{2}\right)=b^{-1} s_{0}$.

Let $R_{0}>0$ be an equilibrium solution. Note that $\phi_{j, 0}(r)(j=1,2)$ is given by

$$
\phi_{j, 0}(r)= \begin{cases}R_{0} \sqrt{R_{0} / r} I_{\frac{1}{2}}(b r) K_{\frac{1}{2}}\left(b R_{0}\right) & \text { if } r<R_{0} \\ R_{0} \sqrt{R_{0} / r} I_{\frac{1}{2}}\left(b R_{0}\right) K_{\frac{1}{2}}(b r) & \text { if } r>R_{0}\end{cases}
$$

Then the condition (1.13) becomes

$$
\begin{aligned}
& \left(K_{\frac{1}{2}}\left(b R_{0}\right)^{2} \int_{0}^{R_{0}} r I_{\frac{1}{2}}(b r)^{2} d r+I_{\frac{1}{2}}\left(b R_{0}\right)^{2} \int_{R_{0}}^{\infty} r K_{\frac{1}{2}}(b r)^{2} d r\right) \\
& \times\left(k \theta_{1}+(1-k) \theta_{2}\right)<\frac{1}{2 R_{0}}
\end{aligned}
$$

that is,

$$
k \theta_{1}+(1-k) \theta_{2}<\frac{2 b^{3}}{e^{-2 b R_{0}}\left(e^{2 b R_{0}}-1-2 b R_{0}\right)}
$$

Therefore under the condition (3.2), we have the following:

- $R_{0}=R_{2}(\alpha)$ is linearly unstable for $\alpha \in\left(0, \alpha_{2}\right)$.
- $R_{0}=R_{2}(\alpha)$ is linearly stable for $\alpha \in\left(\alpha_{2}, \alpha_{1}\right)$.
- $R_{0}=R_{1}(\alpha)$ is linearly unstable for $\alpha \in\left(0, \alpha_{1}\right)$.

We remark that numerical computations show that

$$
\begin{aligned}
R_{*} & \approx 0.508739 \cdot b^{-1}, & & \alpha_{1} \approx 0.0417721 \cdot b^{-3} \\
s_{0} & \approx 0.808191, & & \alpha_{2} \approx 0.0257134 \cdot b^{-3} .
\end{aligned}
$$

Appendix A. Derivation of the linearized eigenvalue problem
To approximate solutions near the stationary solution $\left(\Gamma\left(R_{0}\right), V_{1}\left(r, R_{0}\right)\right.$, $\left.V_{2}\left(r, R_{0}\right)\right)$, set

$$
\Gamma(t)=\left\{\left[R_{0}+\eta \rho(\xi) e^{\lambda t}\right] \xi+O\left(\eta^{2}\right): \xi \in S^{N-1}\right\}
$$

$$
\begin{align*}
& v_{1}(x, t)=V_{1}\left(r, R_{0}\right)+\eta w_{1}(x) e^{\lambda t}+O\left(\eta^{2}\right) \tag{A.1}\\
& v_{2}(x, t)=V_{2}\left(r, R_{0}\right)+\eta w_{2}(x) e^{\lambda t}+O\left(\eta^{2}\right)
\end{align*}
$$

with small parameter η. Here $\lambda \in \mathbb{C}$, while $\rho(\xi)$ and $w_{j}(x)(j=1,2)$ are real valued functions on S^{N-1} and \mathbb{R}^{N}, respectively.

By substituting (A.1) into (1.1), (1.2), and (1.3), dividing both sides by $\eta e^{\lambda t}$, and sending η to 0 , we obtain

$$
\begin{array}{r}
\lambda \rho(\xi)=-\sum_{j=1}^{2} P_{j}\left(R_{0}\right)\left[V_{j}^{\prime}\left(R_{0}, R_{0}\right) \rho(\xi)+w_{j}\left(R_{0} \xi\right)\right] \tag{A.2}\\
+\frac{\alpha}{R_{0}^{2}}\left[(N-1) \rho(\xi)+\Delta_{S^{N-1}} \rho(\xi)\right]
\end{array}
$$

$$
\begin{equation*}
\left(-\Delta+g_{j}\left(R_{0}, R_{0}\right)+\theta_{j} \lambda\right) w_{j}=\rho(\xi) Q_{j}\left(R_{0}\right) \delta_{R_{0}} \quad(j=1,2) \tag{A.3}
\end{equation*}
$$

Here $\Delta_{S^{N-1}}$ denotes the Laplace-Beltrami operator on S^{N-1}.
Since the set $\left\{\Phi_{n}\right\}_{n=0}^{\infty}$ of the spherically harmonic functions is complete for the continuous functions on S^{N-1}, we can expand $\rho(\xi), w_{1}(x), w_{2}(x)$ in a Fourier series:

$$
\begin{equation*}
\rho(\xi)=\sum_{n=0}^{\infty} \rho_{n} \Phi_{n}(\xi), \quad w_{j}(x)=\sum_{n=0}^{\infty} w_{j, n}(r) \Phi_{n}(\xi) \quad(j=1,2) \tag{A.4}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
\lambda \sum_{n=0}^{\infty} \rho_{n} \Phi_{n}(\xi)=- & \sum_{j=1}^{2} \sum_{n=0}^{\infty} P_{j}\left(R_{0}\right)\left[V_{j}^{\prime}\left(R_{0}, R_{0}\right) \rho_{n} \Phi_{n}(\xi)+w_{j, n}\left(R_{0}\right) \Phi_{n}(\xi)\right] \\
& +\sum_{n=0}^{\infty} \frac{\alpha\left(N-1-\kappa_{n}\right)}{R_{0}^{2}} \rho_{n} \Phi_{n}(\xi)
\end{aligned}
$$

$$
\sum_{n=0}^{\infty}\left(-\Delta_{r}+\frac{\kappa_{n}}{r^{2}}+g_{j}+\theta_{j} \lambda\right) w_{j, n}(r) \Phi_{n}(\xi)=\sum_{n=0}^{\infty} \rho_{n} Q_{j}\left(R_{0}\right) \Phi_{n}(\xi) \delta_{R_{0}}
$$

for $j=1,2$. Therefore for each n,

$$
\begin{gathered}
\lambda \rho_{n}=-\sum_{j=1}^{2} P_{j}\left(R_{0}\right)\left[V_{j}^{\prime}\left(R_{0}, R_{0}\right) \rho_{n}+w_{j, n}\left(R_{0}\right)\right] \\
+\frac{\alpha\left(N-1-\kappa_{n}\right)}{R_{0}^{2}} \rho_{n} \\
\left(-\Delta_{r}+\frac{\kappa_{n}}{r^{2}}+g_{j}+\theta_{j} \lambda\right) w_{j, n}(r)=\rho_{n} Q_{j}\left(R_{0}\right) \delta_{R_{0}} \quad(j=1,2) .
\end{gathered}
$$

If $\rho_{n} \neq 0$ for some n, then setting $z_{j, n}=\frac{w_{j, n}}{\rho_{n}}(j=1,2),\left(\lambda, z_{1, n}, z_{2, n}\right)$ solves

$$
\begin{gathered}
\lambda=-\sum_{j=1}^{2} P_{j}\left(R_{0}\right)\left[V_{j}^{\prime}\left(R_{0}, R_{0}\right)+z_{j, n}\left(R_{0}\right)\right] \\
+\frac{\alpha\left(N-1-\kappa_{n}\right)}{R_{0}^{2}} \\
\left(-\Delta_{r}+\frac{\kappa_{n}}{r^{2}}+g_{j}+\theta_{j} \lambda\right) z_{j, n}(r)=Q_{j}\left(R_{0}\right) \delta_{R_{0}} \quad(j=1,2) .
\end{gathered}
$$

References

[1] X. Chen, Generation and propagation of interfaces in reaction-diffusion systems, Trans. Amer. Math. Soc. 334, 877-913 (1992)
[2] X. Chen and M. Taniguchi, Instability of spherical interfeces in a nonlinear free boundary problem, Advances in Differential Equations 5, 747-772 (2000)
[3] P.C. Fife, Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics 53, SIAM, Philadelphia, 1988
[4] D. Hilhorst, Y. Nishiura and M. Mimura, A free boundary problem arising in some reaction-diffusion systems, Proc. Roy. Soc. Edinburgh 118A, 355-378 (1991)
[5] T. Kajiwara and K. Kurata, On a variational problem arising from the threecomponent FitzHugh-Nagumo type reaction-diffusion systems, Tokyo J. Math. 41, 131-174 (2018)
[6] Y. Oshita, Singular limit problem for some elliptic systems, SIAM J. Math. Anal. 38, 1886-1911 (2007)
[7] M. Taniguchi, Multiple existence and linear stability of equilibrium balls in a nonlinear free boundary problem, Quarterly of Applined Mathematics 58, 283-302 (2000)
[8] P. van Heijster and B. Sandstede, Planer radial spots in a three-component FitzHughNagumo system, Nonlinear Science 21, 705-745 (2011)
[9] P. van Heijster and B. Sandstede, Bifurcations to travelling planar spots in a threecomponent FitzHugh-Nagumo system, Physica D 275, 19-34 (2014)
[10] P. van Heijster, C-N. Chen, Y. Nishiura, and T. Teramoto, Pinned solutions in a heterogeneous three-component FitzHugh-Nagumo model, J. Dynam. Differential Equations 31, 153-203 (2019)

Takuya Kojima
Graduate school of Natural Science and Technology
Okayama University
Okayama 700-8530, Japan
e-mail address: puqc9o2q@s.okayama-u.ac.jp
Yoshinito Oshita
Department of Mathematics, Okayama University, 3-1-1 Tsushima-naka,
Okayama 700-8530, Japan
e-mail address: oshita@okayama-u.ac.jp
(Received December 3, 2019)
(Accepted September 18, 2020)

[^0]: Mathematics Subject Classification. Primary 35B35; Secondary 35K57.
 Key words and phrases. singular limit problem, equilibrium solutions, linear stability.

