
Math. J. Okayama Univ. 63 (2021), 175–182

ON SOME FAMILIES OF INVARIANT POLYNOMIALS

DIVISIBLE BY THREE AND THEIR ZETA FUNCTIONS

Koji Chinen

Abstract. In this note, we establish an analog of the Mallows-Sloane
bound for Type III formal weight enumerators. This completes the
bounds for all types (Types I through IV) in synthesis of our previous
results. Next we show by using the binomial moments that there exists
a family of polynomials divisible by three, which are not related to linear
codes but are invariant under the MacWilliams transform for the value
3/2. We also discuss some properties of the zeta functions for such
polynomials.

1. Introduction

This article, as a sequel of [3]-[5], investigates some polynomials of the
form

(1.1) W (x, y) = xn +
n
∑

i=d

Aix
n−iyi ∈ C[x, y] (Ad 6= 0)

that satisfy certain transformation rules: for a linear transformation σ =
(

a b
c d

)

, the action of σ on W (x, y) is defined by

W σ(x, y) =W (ax+ by, cx+ dy)

and we are interested in W (x, y) of the form (1.1) with the property

W σq (x, y) = ±W (x, y),

where

σq =
1√
q

(

1 q − 1
1 −1

)

(the MacWilliams transform).

We call W (x, y) with W σq(x, y) =W (x, y) a “σq-invariant polynomial” and
W (x, y) with W σq(x, y) = −W (x, y) a formal weight enumerator. We some-
times say a “q-formal weight enumerator” when we specify the value q.
Moreover, W (x, y) is called “divisible by c” (c > 1) if “Ai 6= 0 ⇒ c|i”. In
this article, we are interested in the case c = 3.
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The earliest example of the divisible formal weight enumerator in the
literature is the case (q, c) = (2, 4), which is given in Ozeki [13] (the de-
nomination “formal weight enumerator” is also due to him). Ozeki’s formal
weight enumerators are members of the polynomial ring

R−

II := C[WH8
(x, y),W12(x, y)],

where

WH8
(x, y) = x8 + 14x4y4 + y8,

W12(x, y) = x12 − 33x8y4 − 33x4y8 + y12

(W12(x, y) satisfies W12
σ2(x, y) = −W12(x, y)). Note that WH8

(x, y) is the
weight enumerator of the extended Hamming code. We will call formal
weight enumerators in R−

II “Type II formal weight enumerators”, since they
resemble weight enumerators of Type II codes, which are divisible by four
and σ2-invariant. We also have rings of formal weight enumerators for the
cases (q, c) = (2, 2), (3, 3) and (4, 2) which we shall call Types I, III and IV,
respectively:

(Type I) R−

I := C[W2,2(x, y), ϕ4(x, y)],

(Type III) R−

III := C[W4(x, y), ψ6(x, y)],

(Type IV) R−

IV := C[W2,4(x, y), ϕ3(x, y)],

where,

W2,q(x, y) = x2 + (q − 1)y2,

ϕ4(x, y) = x4 − 6x2y2 + y4,

W4(x, y) = x4 + 8xy3,

ψ6(x, y) = x6 − 20x3y3 − 8y6,

ϕ3(x, y) = x3 − 9xy2.

The ring R−

III is introduced by Ozeki [14], R−

I and R−

IV are dealt with in [5].
Our first goal in this article is to complete the following theorem by prov-

ing the case of Type III (the cases Types I and IV are already proved in [5]
and the case Type II is proved in [1]):

Theorem 1.1. For all formal weight enumerators of Types I through IV of
the form (1.1), we have the following:

(Type I) d ≤ 2

[

n− 4

8

]

+ 2,

(Type II) d ≤ 4

[

n− 12

24

]

+ 4,



INVARIANT POLYNOMIALS DIVISIBLE BY THREE 177

(Type III) d ≤ 3

[

n− 6

12

]

+ 3,(1.2)

(Type IV) d ≤ 2

[

n− 3

6

]

+ 2,

where [x] means the greatest integer not exceeding x for x ∈ R.

This is an analog of the famous Mallows-Sloane bound for weight enu-
merators of divisible self-dual codes ([11]). Similarly to the case of codes,
we can define the extremal formal weight enumerator:

Definition 1. A formal weight enumerator of Types I through IV is called
extremal if an equality holds in Theorem 1.1.

Our interest in divisible formal weight enumerators arose from the con-
sideration of their zeta functions. Zeta functions of this type were defined
in Duursma [6] for weight enumerators of linear codes (see also [7]-[9]) and
some generalization was made by the present author ([1], [2]):

Definition 2. For any homogeneous polynomial of the form (1.1) and q ∈ R
(q > 0, q 6= 1), there exists a unique polynomial P (T ) ∈ C[T ] of degree at
most n− d such that

(1.3)
P (T )

(1− T )(1− qT )
(y(1− T ) + xT )n = · · ·+ W (x, y)− xn

q − 1
T n−d + · · · .

We call P (T ) and Z(T ) = P (T )/(1 − T )(1 − qT ) the zeta polynomial and
the zeta function of W (x, y), respectively.

We must assume d, d⊥ ≥ 2 where d⊥ is defined by

W σq(x, y) = ±xn +Ad⊥x
n−d⊥yd

⊥

+ · · · (Ad⊥ 6= 0)

when considering zeta functions ([7, p.57]). The Riemann hypothesis is
formulated as follows:

Definition 3 (Riemann hypothesis). A polynomial of the form (1.1) with
W σq (x, y) = ±W (x, y) satisfies the Riemann hypothesis if all the zeros of
P (T ) have the same absolute value 1/

√
q.

Our second result is the following theorem, which is an analog of Okuda’s
theorem ([12, Theorem 5.1]), of which proof will be given briefly in Section
2 :

Theorem 1.2. Let W (x, y) be the Type III extremal formal weight enumer-
ator of degree n = 12k + 6 (k ≥ 1). Then

W ∗(x, y) :=
1

(n− 3)4

∂

∂x

(

∂3

∂x3
+

∂3

∂y3

)

W (x, y)
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is the extremal formal weight enumerator of degree n − 4. Moreover, the
zeta polynomial P (T ) of W (x, y) and P ∗(T ), that of W ∗(x, y) are related by
P ∗(T ) = (3T 2− 3T +1)P (T ). The Riemann hypothesis of W (x, y) and that
of W ∗(x, y) are equivalent.

These results, together with the ones in [1] and [5] suggest that formal
weight enumerators of Types I through IV have similar properties to the
weight enumerators of corresponding Types.

The last feature of this article is the discovery of σ3/2-invariant polyno-
mials. They are also divisible by three:

(1.4) R3/2 := C[η6(x, y), η24(x, y)],

where

η6(x, y) = x6 +
5

2
x3y3 − 1

8
y6,(1.5)

η24(x, y) = x24 +
253

4
x18y6 +

1265

32
x15y9 +

7659

256
x12y12

−1265

256
x9y15 +

253

256
x6y18 +

1

4096
y24.(1.6)

We can also construct the ring of 3/2-formal weight enumerators:

(1.7) R−

3/2 := C[η6(x, y), η12(x, y)],

where

(1.8) η12(x, y) = x12 − 11x9y3 − 11

8
x3y9 − 1

64
y12.

These families were discovered by the use of the binomial moments. We will
explain it and observe their Riemann hypothesis in Section 3.

In what follows, we put τ =

(

1 0
0 ω

)

(ω = (−1 +
√
−3)/2). The

Pochhammer symbol (a)n means (a)n = a(a + 1) · · · (a + n − 1) for n ≥ 1
and (a)0 = 1.

2. Type III formal weight enumerators

First we give an outline of the proof of Theorem 1.1 (Type III). For a
homogeneous polynomial p(x, y) ∈ C[x, y], p(x, y)(D) means a differential
operator obtained by replacing x by ∂/∂x and y by ∂/∂y. Here we use
p(x, y) = y(y3 − 8x3). In a similar manner to Duursma [9, Lemma 2], we
can prove the following (see also [5, Proposition 3.1]):

Proposition 4. Let W (x, y) be a Type III formal weight enumerator with
d ≥ 6. Then we have

(2.1) {y(x3 − y3)}d−4|p(x, y)(D)W (x, y).
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Using this, we can prove (1.2). Proof is similar to that of [5, Theorem
3.3] and the notation follows it:

(Proof of Theorem 1.1 (Type III))

Let a(x, y) = {y(x3 − y3)}d−4 and we put

p(x, y)(D)W (x, y) = a(x, y)ã(x, y).

Note that

p
tσ3(x, y) = p(x, y),

W σ3(x, y) = −W (x, y),

aσ3(x, y) = a(x, y).

So we have

ãσ3(x, y) = −ã(x, y).
Similarly, the transformation rules

p
tτ (x, y) = ωp(x, y),

W τ (x, y) = W (x, y),

aτ (x, y) = ω2a(x, y)

imply

ãτ (x, y) = ã(x, y).

Considering the terms of p(x, y)(D)W (x, y) and a(x, y), we can verify that
ã(x, y) has a term of a power of x only (it is the term of xn−4d+12). Therefore,
we can see that ã(x, y) is a constant times a certain formal weight enumerator
of the form (1.1) and that ψ6(x, y)|ã(x, y). Since (a(x, y), ψ6(x, y)) = 1, we
can conclude

a(x, y)ψ6(x, y)|p(x, y)(D)W (x, y).

Comparing the degrees on both sides, we have 4(d− 4)+6 ≤ n− 4. Putting
d = 3d′, we get d′ ≤ (n − 6)/12 + 1. Since d′ ∈ Z, it is equivalent to
d′ ≤ [(n− 6)/12] + 1. The conclusion follows immediately. �

Remark. Some numerical examples of zeta polynomials for Type III formal
weight enumerators are given and the extremal property is mentioned up to
degree 18 in [1, Section 4].

(Proof of Theorem 1.2)

We follow the method of Okuda [12] (see also [5, Theorem 3.9]). Here
we use p(x, y) = x(x3 + y3). Let W (x, y) be the extremal formal weight
enumerator of degree n = 12k + 6, that is,

W (x, y) = x12k+6 +A3k+3x
9k+3y3k+3 + · · · .
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Then from the rules

p
tσ3(x, y) = p

tτ (x, y) = p(x, y),

W σ3(x, y) = −W (x, y), W τ (x, y) =W (x, y),

W ∗(x, y) is also a Type III formal weight enumerator. It is of the form

W ∗(x, y) = x12k+2 +A′
3kx

9k+2y3k + · · · .
By the uniqueness of the extremal formal weight enumerator at each degree,
we can see that W ∗(x, y) is extremal at the degree 12k+2 (note that 3[(n−
6)/12] + 3 = 3k if n = 12k + 2). Next we use the MDS weight enumerators
for q = 3. Let Mn,d = Mn,d(x, y) be the [n, k = n − d + 1, d] MDS weight
enumerator. If the genus of W (x, y) is n/2−d+1, then the zeta polynomial

P (T ) of W (x, y) satisfies degP (T ) = n−2d+2. Let P (T ) =
∑n−2d+2

i=0 aiT
i.

Then P (T ) and W (x, y) are related by

(2.2) W (x, y) = a0Mn,d + a1Mn,d+1 + · · ·+ an−2d+2Mn,n−d+2

(see [7, formula (5)]). By the use of the “puncturing and averaging operator”
and the “shortening and averaging operator” in [7, Section 3], we have

x(D)Mn,i(x, y) = nMn−1,i(x, y),

y(D)Mn,i(x, y) = n(Mn−1,i−1(x, y)−Mn−1,i(x, y)).

Applying these rules repeatedly to the both sides of (2.2), we can ver-
ify that the zeta polynomial of x4(D)W (x, y)/(n − 3)4 is P (T ), that of
xy3(D)W (x, y)/(n − 3)4 is (1 − T )3P (T ). Adjusting the degrees, we can
conclude that P ∗(T ) = (3T 2 − 3T + 1)P (T ). The equivalence of the Rie-
mann hypothesis is straightforward. �

3. Polynomials for q = 3/2

Our construction of η6(x, y) (see (1.5)) uses the binomial moments. We
give an outline (see also [3]). We search a σq-invariant polynomial W (x, y)
of the form

(3.1) W (x, y) =

[2n/3]
∑

i=0

Aix
2n−3iy3i (A0 = 1).

The formula of the binomial moments for (3.1) becomes
(3.2)

[(2n−ν)/3]
∑

i=0

(

2n− 3i

ν

)

Ai − qn−ν

[ν/3]
∑

i=0

(

2n− 3i

2n− ν

)

Ai = 0 (ν = 0, 1, · · · , 2n)

(it is obtained from [10, p.131, Problem (6)]). In (3.2), the values ν and
2n− ν give essentially the same formula, so it suffices to consider the cases
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ν = 0, 1, · · · , n. Moreover, (3.2) is trivial when ν = n. Thus (3.2) gives n
linear equations of [2n/3] + 1 unknowns A0, A1, · · · , A[2n/3]. The number of
equations and unknowns coincide when n = 3, in which case the system of
equations becomes







(1− q3)A0 +A1 +A2 = 0,
6(1 − q2)A0 + 3A1 = 0,
15(1 − q)A0 + 3A1 = 0.

Since A0 = 1, we have 2q2 − 5q+3 = 0. We get a non-trivial value q = 3/2.
We can determine other coefficients A1 = 5/2, A2 = −1/8 and get η6(x, y).
We can verify it is indeed σ3/2-invariant. We can also verify (with some
computer algebra system) that there is no σ3/2-invariant polynomialW (x, y)

of even degrees in the range 8 ≤ degW (x, y) ≤ 22 except for η6(x, y)
2 and

η6(x, y)
3, but we can find η24(x, y) in (1.6) at degree 24 (η6(x, y) and η24(x, y)

are algebraically independent). We can furthermore find η12(x, y) from the
condition that it is invariant under σ3/2τσ3/2. The ring R3/2 is the invariant

polynomial ring of the group 〈σ3/2, τ〉, and R−

3/2 is that of 〈σ3/2τσ3/2, τ〉.
Clearly, we have R−

3/2 ⊃ R3/2.

For the members of R−

3/2 (including R3/2), there seems to be bounds

similar to Theorem 1.1 (proof seems to be difficult):

Conjecture 5. (i) All σ3/2-invariant polynomials of the form (1.1) in R3/2

satisfy

d ≤ 3
[ n

24

]

+ 3.

(ii) All 3/2-formal weight enumerators of the form (1.1) in R−

3/2 satisfy

d ≤ 3

[

n− 12

24

]

+ 3.

Here are some examples of zeta polynomials for the members of R−

3/2. The

zeta polynomial of η6(x, y) is P6(T ) = (3T 2 +3T + 2)/8, that of η12(x, y) is
P12(T ) = (3T 2 − 2)(27T 6 +27T 5 +36T 4 +26T 3 +24T 2 +12T +8)/160 (the
zeta polynomial of η24(x, y) is a polynomial of degree 14). From numerical
experiments we can conjecture that extremal σ3/2-invariant polynomials and

extremal formal weight enumerators in R−

3/2 satisfy the Riemann hypothesis.
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