A NOTE ON PRODUCTS IN STABLE HOMOTOPY GROUPS OF SPHERES VIA THE CLASSICAL ADAMS SPECTRAL SEQUENCE

Ryo Kato and Katsumi Shimomura

Abstract

In recent years, Liu and his collaborators found many nontrivial products of generators in the homotopy groups of the sphere spectrum. In this paper, we show a result which not only implies most of their results, but also extends a result of theirs.

1. Introduction

The homotopy groups $\pi_{*}\left(S^{0}\right)$ of the sphere spectrum S^{0} form an algebra with multiplication given by composition. The determination of the structure of $\pi_{*}\left(S^{0}\right)$ is one of the most important problems in stable homotopy theory. We study the problem by considering the p-component ${ }_{p} \pi_{*}\left(S^{0}\right)$ of the groups at a prime number p. The classical Adams spectral sequence (ASS) and the Adams-Novikov spectral sequence (ANSS) are typical and effective tools for calculating ${ }_{p} \pi_{*}\left(S^{0}\right)$. We usually use the ANSS to study ${ }_{p} \pi_{*}\left(S^{0}\right)$ at an odd prime p, and the ASS at the prime two. In recent years, Liu and his collaborators advocated that the ASS is sufficiently effective at $p>2$ as well as at $p=2$. Indeed, they derived out many results on the non-triviality of products of generators in ${ }_{p} \pi_{*}\left(S^{0}\right)$ from the ASS at $p>2$ by use of the May spectral sequence (MSS). Their method is simple as follows: for a product $\xi \in{ }_{p} \pi_{t-s}\left(S^{0}\right)$ of generators, let $\bar{\xi}$ be an element of the $E_{2^{-}}$ term ${ }^{A} E_{2}^{s, t}$ of the ASS, which detects ξ. We also consider an element x in the E_{1}-term ${ }^{M} E_{1}^{s, t, *}$ of the MSS, which converges to $\bar{\xi}$. Then, they proceed their argument in the following steps:

1) The element x is not a coboundary of the first May differential $d_{1}^{M}:{ }^{M} E_{1}^{s-1, t, *} \rightarrow$ ${ }^{M} E_{1}^{s, t, *}$.
2) For any $r \geq 2$, the domain of the May differential $d_{r}^{M}:{ }^{M} E_{r}^{s-1, t, *} \rightarrow$ ${ }^{M} E_{r}^{s, t, *}$ is zero, and
3) For any $r \geq 2$, the domain of the Adams differential $d_{r}^{A}:{ }^{A} E_{r}^{s-r, t-r+1} \rightarrow$ ${ }^{A} E_{r}^{s, t}$ is zero by use of the MSS.
The main theorem of this paper Theorem 1.1 is shown in a similar procedure (Proposition 4.1 and Corollary 4.2 for 1) and 2), and the proof of Theorem

[^0]1.1 for 3$)$) for the homotopy groups $\pi_{*}(V(2))$ of the second Smith-Toda spectrum $V(2)$ ($c f$. (1.1)). The result is new one, and implies most of results shown by Liu and his collaborators as a corollary.

From here on, we assume that the prime number p is greater than five. Let $H_{*}(X)$ denote the $\bmod p$ reduced homology groups of a spectrum X represented by the mod p Eilenberg-MacLane spectrum H. The $E_{2^{-}}$ term ${ }^{A} E_{2}^{*, *}(X)$ of the ASS converging to the homotopy groups ${ }_{p} \pi_{*}(X)$ of a spectrum X is the Ext group $\operatorname{Ext}_{\mathcal{A}_{*}}^{*, *}\left(\mathbb{Z} / p, H_{*}(X)\right)$ of the category of $\mathcal{A}_{*^{-}}$ comodules. Here $\mathcal{A}_{*}=H_{*}(H)$ denotes the dual of the Steenrod algebra, which is isomorphic as an algebra to the free algebra $P\left(\xi_{i}: i \geq 1\right) \otimes E\left(\tau_{i}\right.$: $i \geq 0$) over generators ξ_{i} 's and τ_{i} 's. Let $V(k)$ for $k \geq-1$ denotes the k-th Smith-Toda spectrum defined by $H_{*}(V(k))=E\left(\tau_{i}: 0 \leq i \leq k\right)$. Then, for $k \leq 3, V(k)$ is known to exist if and only if $p \geq 2 k+1$ (Smith [32], Toda [33], Ravenel [31]). In particular, if $p \geq 7$, then $V(k)$ for $k \leq 3$ are given by the cofiber sequences

$$
\begin{gather*}
S^{0} \xrightarrow{p} S^{0} \xrightarrow{i} V(0) \xrightarrow{j} \Sigma S^{0}, \\
\Sigma^{q} V(0) \xrightarrow{\alpha} V(0) \xrightarrow{i_{1}} V(1) \xrightarrow{j_{1}} \Sigma^{q+1} V(0), \\
\Sigma^{(p+1) q} V(1) \xrightarrow{\beta} V(1) \xrightarrow{i_{2}} V(2) \xrightarrow{j_{2}} \Sigma^{(p+1) q+1} V(1) \quad \text { and } \tag{1.1}\\
\Sigma^{\left(p^{2}+p+1\right) q} V(2) \xrightarrow{\gamma} V(2) \xrightarrow{i_{3}} V(3) \xrightarrow{j_{3}} \Sigma^{\left(p^{2}+p+1\right) q+1} V(2),
\end{gather*}
$$

in which α is the Adams v_{1}-periodic map, and β and γ are the $v_{2^{-}}$and the v_{3}-periodic maps given by Smith and Toda, respectively. Hereafter, q denotes the integer $2 p-2$, and $\pi_{*}\left(S^{0}\right)$ denotes ${ }_{p} \pi_{*}\left(S^{0}\right)$. In this paper, we consider the Greek letter elements of $\pi_{*}\left(S^{0}\right)$ and $\pi_{*}(V(0))$ defined by

$$
\begin{gather*}
\alpha_{s}=j \alpha^{s} i, \quad \beta_{s}=j j_{1} \beta^{s} i_{1} i \text { and } \gamma_{s}=j j_{1} j_{2} \gamma^{s} i_{2} i_{1} i \in \pi_{*}\left(S^{0}\right) ; \quad \text { and } \\
\beta_{1}^{\prime}=j_{1} \beta i_{1} i \in \pi_{*}(V(0)) \tag{1.2}
\end{gather*}
$$

We moreover consider some other generators:

$$
\zeta_{n} \in \pi_{\left(p^{n}+1\right) q-3}\left(S^{0}\right), \quad j \xi_{n} \in \pi_{\left(p^{n}+p\right) q-3}\left(S^{0}\right) \quad \text { and } \quad \varpi_{n} \in \pi_{\left(p^{n}+2 p+1\right) q-3}\left(S^{0}\right)
$$

given by Cohen [1], Lin [4] and Liu [19]. Lin and Zheng [7] and Liu [15] constructed generators $\lambda_{n, s} \in \pi_{\left(p^{n}+s p^{2}+s p+s\right) q-7}\left(S^{0}\right)$ for $n \geq 2$ and $3 \leq s<$ $p-2$. We now state our main theorem, which extends the results [20, Theorems 1.2 and 1.3] of Liu's. In this paper, n denotes a fixed integer >4.

Theorem 1.1. Let n be an integer greater than four. The following products of elements of $\pi_{*}\left(S^{0}\right)$ and $\pi_{*}(V(0))$ are all non-trivial:

$$
\begin{array}{ll}
\alpha_{1} \varpi_{n} \gamma_{s} \beta_{1}, j \xi_{n} \alpha_{1} \beta_{2} \gamma_{s} \in \pi_{\left(p^{n}+s p^{2}+(s+2) p+s\right) q-9}\left(S^{0}\right) & \text { for } 3 \leq s<p \\
\zeta_{n} \beta_{1} \beta_{2} \gamma_{s} \in \pi_{\left(p^{n}+s p^{2}+(s+2) p+s\right) q-10}\left(S^{0}\right) & \text { for } 3 \leq s<p-2, \text { and } \\
\beta_{1}^{\prime} \lambda_{n, s} \beta_{1} \in \pi_{\left(p^{n}+s p^{2}+(s+2) p+s\right) q-10}(V(0)) & \text { for } 3 \leq s<p-2
\end{array}
$$

The proof is given at the end of the paper.

Corollary 1.2. Every factor of the elements $\alpha_{1} \varpi_{n} \gamma_{s} \beta_{1}, j \xi_{n} \alpha_{1} \beta_{2} \gamma_{s}, \zeta_{n} \beta_{1} \beta_{2} \gamma_{s}$ of ${ }_{p} \pi_{*}\left(S^{0}\right)$ and $\beta_{1}^{\prime} \lambda_{n, s} \beta_{1}$ of $\pi_{*}(V(0))$ in the theorem is also non-trivial in the homotopy groups.

We note that the corollary contains almost of all results of Liu and his collaborators on the non-triviality of products of elements of $\pi_{*}\left(S^{0}\right)$: [2], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [34], [35], [36] and [37].

Acknowledgement

The authors would like to thank the referee for many useful comments.

2. The Adams spectral sequence for $\pi_{*}(V(2))$

Hereafter, $P\left(x_{i}\right)$ and $E\left(x_{i}\right)$ denote a polynomial and an exterior algebras on generators x_{i} over \mathbb{Z} / p, respectively. Let \mathcal{A}_{*} denote the dual of the Steenrod algebra isomorphic to $P\left(\xi_{1}, \xi_{2}, \ldots\right) \otimes E\left(\tau_{0}, \tau_{1}, \ldots\right)$ as a graded algebra, where $\operatorname{deg} \xi_{m}=2\left(p^{m}-1\right)$ and $\operatorname{deg} \tau_{m}=2 p^{m}-1$. It is also a Hopf algebra with the coproduct $\Delta: \mathcal{A}_{*} \rightarrow \mathcal{A}_{*} \otimes \mathcal{A}_{*}$ given by

$$
\Delta \xi_{m}=\sum_{i=0}^{m} \xi_{m-i}^{p^{i}} \otimes \xi_{i} \quad \text { and } \quad \Delta \tau_{m}=\tau_{m} \otimes 1+\sum_{i=0}^{m} \xi_{m-i}^{p^{i}} \otimes \tau_{i}
$$

$\left(\xi_{0}=1\right)$. Consider the Adams spectral sequence

$$
{ }^{A} E_{2}^{s, t}(V(2))=\mathrm{Ext}_{\mathcal{A}_{*}}^{s, t}\left(\mathbb{Z} / p, H_{*}(V(2))\right) \Rightarrow \pi_{t-s}(V(2))
$$

The second Smith-Toda spectrum $V(2)$ satisfies $H_{*}(V(2))=E\left(\tau_{0}, \tau_{1}, \tau_{2}\right)=$ $\mathcal{A}_{*} \square_{\overline{\mathcal{A}}_{*}} \mathbb{Z} / p$ for the quotient Hopf algebra $\overline{\mathcal{A}}_{*}=P\left(\xi_{1}, \xi_{2}, \ldots\right) \otimes E\left(\tau_{3}, \tau_{4}, \ldots\right)$, and we have the isomorphisms

$$
\begin{aligned}
{ }^{{ }^{A}} E_{2}^{s, t}(V(2)) & =\operatorname{Ext}_{\mathcal{A}_{*}}^{s, t}\left(\mathbb{Z} / p, H^{*}(V(2))\right) \\
& =\operatorname{Ext}_{\mathcal{A}_{*}}^{s, t}\left(\mathbb{Z} / p, \mathcal{A}_{*} \square \overline{\mathcal{A}}_{*} \mathbb{Z} / p\right)=\operatorname{Ext}_{\frac{\mathcal{A}_{*}}{s, t}}(\mathbb{Z} / p, \mathbb{Z} / p)
\end{aligned}
$$

by the change of rings theorem ($c f$. [31, A1.3.13]). The Ext group is determined as the cohomology of the cobar complex $C_{\overline{\mathcal{A}}_{*}}^{*}$ defined by $C \frac{s}{\mathcal{A}_{*}}=\overline{\mathcal{A}}_{*} \otimes$ $\cdots \otimes \overline{\mathcal{A}}_{*}$ (the s-fold tensor product of $\overline{\mathcal{A}}_{*}$) with coboundary $d_{s}: C_{\overline{\mathcal{A}}_{*}}^{s} \rightarrow C_{\overline{\mathcal{A}}_{*}}^{s+1}$ given by $d_{s}(x)=1 \otimes x+\sum_{i=1}^{s}(-1)^{i} \Delta_{i}(x)+(-1)^{s+1} x \otimes 1$ for $\Delta_{i}\left(x_{1} \otimes \ldots \otimes x_{s}\right)=$ $x_{1} \otimes \ldots \otimes \Delta\left(x_{i}\right) \otimes \ldots \otimes x_{s}$. We consider the following generators:

$$
\begin{align*}
h_{i} & =\left[\xi_{1}^{p^{i}}\right] \in{ }^{A} E_{2}^{1, p^{i} q}(V(2)) \text { and } \\
b_{i} & =\left[\sum_{k=1}^{p-1} \frac{1}{p}\binom{p}{k} \xi_{1}^{k p^{i}} \otimes \xi_{1}^{(p-k) p^{i}}\right] \in{ }^{A} E_{2}^{2, p^{i+1} q}(V(2)) \tag{2.1}
\end{align*}
$$

for $i \geq 0$, where $[x]$ denotes the cohomology class of a cocycle x of the cobar complex $C_{\mathcal{A}_{*}}^{*}$. We also have generators

$$
\begin{align*}
g_{0} & =\left\langle h_{0}, h_{0}, h_{1}\right\rangle \in{ }^{A} E_{2}^{2,(p+2) q}(V(2)) \text { and } \\
k_{0} & =\left\langle h_{0}, h_{1}, h_{1}\right\rangle \in{ }^{A} E_{2}^{2,(2 p+1) q}(V(2)) \tag{2.2}
\end{align*}
$$

given by the Massey products. By the juggling theorem of the Massey products, we have a well known relation:

$$
\begin{equation*}
g_{0} h_{1}=h_{0} k_{0} \in{ }^{A} E_{2}^{3,2(p+1) q}(V(2)) \tag{2.3}
\end{equation*}
$$

3. The May spectral sequence

Hereafter, we abbreviate ${ }^{A} E_{2}^{*, *}(V(2))$ to ${ }^{A} E_{2}^{*, *}$. In this section, we study the Adams E_{2}-term by the May spectral sequence ${ }^{M} E_{1}^{s, t, u} \Rightarrow{ }^{A} E_{2}^{s, t}$ with

$$
{ }^{M} E_{1}^{*, *, *}=A \otimes H_{0} \otimes H \otimes B
$$

and differential $d_{r}^{M}:{ }^{M} E_{r}^{s, t, u} \rightarrow{ }^{M} E_{r}^{s+1, t, u-r}$. Here,

$$
\begin{gather*}
A=P\left(a_{i}: i \geq 3\right), \quad H_{0}=E\left(h_{i, 0}: i>0\right) \\
H=E\left(h_{i, j}: i>0, j>0\right) \quad \text { and } \quad B=P\left(b_{i, j}: i>0, j \geq 0\right) \tag{3.1}
\end{gather*}
$$

on the generators

$$
\begin{gathered}
a_{i} \in{ }^{M} E_{1}^{1,2 p^{i}-1,2 i+1} \\
h_{i, j} \in{ }^{M} E_{1}^{1,2\left(p^{i}-1\right) p^{j}, 2 i-1} \quad \text { and } \quad b_{i, j} \in{ }^{M} E_{1}^{2,2\left(p^{i}-1\right) p^{j+1}, p(2 i-1)} .
\end{gathered}
$$

We notice that the May E_{1}-term is a graded commutative algebra and the May differentials are derivations. For each element $x \in{ }^{M} E_{1}^{s, t, u}$, we denote by $\operatorname{dim} x$ and $\operatorname{deg} x$ the superscripts s and t, respectively. The first May differential d_{1}^{M} is given by

$$
\begin{gather*}
d_{1}^{M}\left(a_{i}\right)=\sum_{3 \leq k<i} h_{i-k, k} a_{k}, \\
d_{1}^{M}\left(h_{i, j}\right)=\sum_{0<k<i} h_{i-k, k+j} h_{k, j} \quad \text { and } \quad d_{1}^{M}\left(b_{i, j}\right)=0 . \tag{3.2}
\end{gather*}
$$

By definition of the May E_{1}-term, the generators $h_{1, i}, b_{1, i}, \widehat{g}_{0}=h_{2,0} h_{1,0}$ and $\widehat{k}_{0}=h_{2,0} h_{1,1}$ are obtained by the elements in (2.1) and (2.2). We also have a generator $\widehat{\gamma}_{s}$, see [8, Th. 1.1].

Lemma 3.1. In the May E_{1}-term, we have permanent cycles

$$
h_{1, i}, \quad b_{1, i}, \quad \widehat{g}_{0}, \quad \widehat{k}_{0} \quad \text { and } \quad \widehat{\gamma}_{s}=a_{3}^{s-3} h_{3,0} h_{2,1} h_{1,2}
$$

for $i \geq 0$ and $3 \leq s<p$, which detect $h_{i}, b_{i}, g_{0}, k_{0}$ in (2.1) and (2.2), and $\bar{\gamma}_{s} \in{ }^{A} E_{2}^{*, *}$, respectively. Here, $\bar{\gamma}_{s}$ is an element converging to $i_{2} i_{1} i \gamma_{s} \in$ $\pi_{\left(s p^{2}+(s-1) p+s-2\right) q-3}(V(2))$ for the element γ_{s} in (1.2)

Throughout this paper, the word 'monomial' means a (nonzero) product of algebraic generators of the May E_{1}-term up to sign, that is, a monomial $x y$ is identified as $y x$ (without sign) for generators x and y. A monomial $x \in{ }^{M} E_{1}^{*, *, *}$ is expressed as

$$
\begin{equation*}
x=\prod_{x_{i} \in G} x_{i} \text { for a subset } G \subset\left\{a_{k^{\prime}}, h_{l, k}, b_{l, k} \mid k^{\prime} \geq 3, k \geq 0, l \geq 1\right\} \tag{3.3}
\end{equation*}
$$

In particular, if $G=\emptyset$, then $x=1$. A monomial x of ${ }^{M} E_{1}^{*, *, *}$ has a factorization

$$
\begin{equation*}
x=a(x) h_{0}(x) f(x) \text { for } a(x) \in A, h_{0}(x) \in H_{0}, f(x) \in H \otimes B \tag{3.4}
\end{equation*}
$$

Let M denote the set of all monomials of ${ }^{M} E_{1}^{*, *, *}$. We define mappings $c, c^{\prime}, c_{k}: M \rightarrow \mathbb{Z}$ for $k \geq 0$ so that

$$
\begin{aligned}
c^{\prime}\left(a_{i}\right) & =1, \quad c^{\prime}\left(h_{i, j}\right)=0, \quad c^{\prime}\left(b_{i, j}\right)=0 \\
c_{k}\left(a_{i}\right) & =\left\{\begin{array}{ll}
1 & 0 \leq k<i \\
0 & \text { otherwise }
\end{array}, \quad c_{k}\left(h_{i, j}\right)= \begin{cases}1 & j \leq k<i+j \\
0 & \text { otherwise }\end{cases} \right. \\
c_{k}\left(b_{i, j}\right) & = \begin{cases}1 & j<k \leq i+j \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

for the generators of ${ }^{M} E_{1}^{*, *, *}$, and for a monomial $x=\prod_{i} x_{i}$,

$$
c^{\prime}(x)=\sum_{i} c^{\prime}\left(x_{i}\right), \quad c_{k}(x)=\sum_{i} c_{k}\left(x_{i}\right)
$$

and

$$
\begin{equation*}
c(x)=\left(\sum_{k \geq 0} c_{k}(x) p^{k}\right) q+c^{\prime}(x) \tag{3.5}
\end{equation*}
$$

Under the notation, we see that

$$
\begin{equation*}
\operatorname{deg} x=c(x) \tag{3.6}
\end{equation*}
$$

We note that the part $\sum_{k \geq 0} c_{k}(x) p^{k}$ of (3.5) is not always the p-adic expansion of c in $\operatorname{deg} x=c q+c^{\prime}(x)$. We notice that

$$
\begin{gather*}
c^{\prime}(x)=c_{0}(a(x))=c_{1}(a(x))=c_{2}(a(x))=\operatorname{dim} a(x), \\
c_{0}\left(h_{0}(x)\right)=\operatorname{dim} h_{0}(x) \tag{3.7}
\end{gather*}
$$

and

$$
\begin{equation*}
c_{0}(x)=c_{0}\left(a(x) h_{0}(x)\right)=c^{\prime}(x)+\operatorname{dim} h_{0}(x)=\operatorname{dim} a(x) h_{0}(x) . \tag{3.8}
\end{equation*}
$$

Furthermore, we have the following relations on $c_{k}(x)$:
Lemma 3.2. Let $x \in{ }^{M} E_{1}^{*, *, *}$ be a monomial. Then,

1) For integers s, t and u with $s>t>u$, we have $c_{s}(x)+c_{u}(x)-c_{t}(x) \leq$ $\operatorname{dim} x$.
2) For $r \geq 0, \operatorname{dim} h_{0}(x)-r \leq c_{r}(x)$.

Proof. 1) For a monomial $x=\prod_{x_{i} \in G} x_{i}$ in (3.3), we put $C_{s}(x)=\left\{x_{i} \in G \mid\right.$ $\left.c_{s}\left(x_{i}\right)=1\right\}$. We notice that $c_{s}(x)=\# C_{s}(x)$ and $C_{s}(x) \cap C_{u}(x) \subset C_{t}(x)$. It follows that $c_{s}(x)+c_{u}(x)-c_{t}(x) \leq c_{s}(x)+c_{u}(x)-\#\left(C_{s}(x) \cap C_{u}(x)\right)=$ $\#\left(C_{s}(x) \cup C_{u}(x)\right) \leq \operatorname{dim} x$.
2) We note that $\operatorname{dim} h_{i, 0}=1$ and $c_{r}\left(h_{i, 0}\right)=1$ if $i>r$. For a monomial $x=\prod_{x_{i} \in G} x_{i}$, we have

$$
\operatorname{dim} h_{0}(x)=\operatorname{dim} \prod_{h_{i, 0} \in G, i \leq r} h_{i, 0}+\operatorname{dim} \prod_{h_{i, 0} \in G, i>r} h_{i, 0} \leq r+c_{r}(x)
$$

We introduce a notation:

$$
\begin{equation*}
\mathbf{c}_{i}(x)=\left(c_{i-1}(x), c_{i-2}(x), \ldots, c_{0}(x)\right) \tag{3.9}
\end{equation*}
$$

for $i \geq 1$ and a monomial x.
In the Adams spectral sequence, we write

$$
\xi=(y)^{\sim}
$$

if a permanent cycle y of the E_{2}-term detects a homotopy element ξ. This is well defined up to higher filtration of the ASS. The Greek letter elements we consider here are

$$
\begin{gather*}
\alpha_{1}=\left(h_{0}\right)^{\sim} \in \pi_{q-1}\left(S^{0}\right), \quad \beta_{1}=\left(b_{0}\right)^{\sim} \in \pi_{p q-2}\left(S^{0}\right), \\
\beta_{2}=\left(k_{0}\right)^{\sim} \in \pi_{(2 p+1) q-2}\left(S^{0}\right) ; \quad \text { and } \quad \beta_{1}^{\prime}=\left(h_{1}\right)^{\sim} \in \pi_{p q-1}(V(0)), \tag{3.10}
\end{gather*}
$$

and Cohen's [1], Lin's [4] and Liu's elements [19]:

$$
\begin{align*}
& \zeta_{n}=\left(h_{0} b_{n-1}\right)^{\sim} \in \pi_{\left(p^{n}+1\right) q-3}\left(S^{0}\right) \text { for } n \geq 1, \\
& j \xi_{n}=\left(b_{0} h_{n}+h_{1} b_{n-1} \sim \in \pi_{\left(p^{n}+p\right) q-3}\left(S^{0}\right) \text { for } n \geq 3, \quad\right. \text { and } \tag{3.11}\\
& \varpi_{n}=\left(k_{0} h_{n}\right)^{\sim} \in \pi_{\left(p^{n}+2 p+1\right) q-3}\left(S^{0}\right) \text { for } n \geq 3 .
\end{align*}
$$

Lin and Zheng [7] constructed a generator

$$
\lambda_{n}=\left\langle\zeta_{n-1}^{\prime \prime} i_{1}, \alpha, \beta_{1}^{\prime}\right\rangle=\left(b_{n-1} g_{0}\right)^{\sim} \in \pi_{\left(p^{n}+p+2\right) q-4}(V(1))
$$

(Toda bracket), where $\zeta_{n-1}^{\prime \prime} \in[V(1), V(1)]_{\left(p^{n}+1\right) q-4}$ satisfies $j_{1} \zeta_{n-1}^{\prime \prime}=i j j_{1}\left(\zeta_{n-1} \wedge\right.$ $V(1))$. Lin and Zheng [7] and Liu [15] showed that the composite $\lambda_{n, s}=$ $j j_{1} j_{2} \gamma^{s} i_{2} \lambda_{n}$ satisfying

$$
\begin{equation*}
\lambda_{n, s}=\left(b_{n-1} g_{0} \bar{\gamma}_{s}\right)^{\sim} \in \pi_{\left(p^{n}+s\left(p^{2}+p+1\right)\right) q-4-s}\left(S^{0}\right) \tag{3.12}
\end{equation*}
$$

is essential for $n \geq 4$ and $3 \leq s<p-2$.

For a monomial $x \in{ }^{M} E_{1}^{*, *, *}$, we denote by \widetilde{x} the set of monomials, each of these has degree $\operatorname{deg} x$. Hereafter, we consider a monomial

$$
l_{i, j} \in\left\{h_{i, j}, b_{i, j-1}\right\}
$$

We see that $\widetilde{l}_{i, j}=\widetilde{h}_{i, j}=\widetilde{b}_{i, j-1}$. For example,

$$
\widetilde{l}_{2,1}=\left\{h_{2,1}, b_{2,0}, h_{1,2} h_{1,1}, h_{1,1} b_{1,1}, h_{1,2} b_{1,0}, b_{1,1} b_{1,0}, h_{1,1} b_{1,0}^{p}, b_{1,0}^{p+1}\right\}
$$

and

$$
\widetilde{a}_{4}=\left\{a_{4}, a_{3} h_{1,3}, a_{3} b_{1,2}, a_{3} h_{1,2} b_{1,1}^{p-1}, a_{3} b_{1,1}^{p}\right\}
$$

Lemma 3.3. For $u>0$ and $k \geq 0$, we consider a monomial x of ${ }^{M} E_{1}^{s, c(x), *}$ such that

$$
c_{i}(x)=\left\{\begin{array}{ll}
u & k \leq i<n \tag{3.13}\\
0 & i \geq n
\end{array} .\right.
$$

If $l_{a, b}$ with $k<a+b<n$ (resp. a_{b} with $k<b<n$) is a factor of x, then x has a factor in $\widetilde{l}_{n-b, b} \quad\left(\right.$ resp. $\left.\widetilde{a}_{n}\right)$.

Proof. Consider an element $l_{a, b}$ with $k<a+b<n$ such that $x=x_{0} l_{a, b}$ for a monomial x_{0}. Then, $c_{a+b-\varepsilon}\left(x_{0}\right)=c_{a+b-\varepsilon}(x)-\varepsilon=u-\varepsilon$ for $\varepsilon=0,1$, which shows that x_{0} has a factor $l_{\iota_{1}, a+b}$ for an integer $\iota_{1}>0$. Therefore, x has a factor $l_{\iota_{1}, a+b} l_{a, b} \in \widetilde{l}_{a+\iota_{1}, b}$. Inductively, we see that x has a factorization

$$
l_{\iota_{\ell}, s_{\ell}} l_{\iota_{\ell-1}, s_{\ell-1}} \cdots l_{\iota_{1}, s_{1}} l_{a, b} \quad \text { for some } \ell>\sum_{i=1}^{j-1} \iota_{i}
$$

which is in $\widetilde{l}_{n-b, b}$ if $\iota_{\ell}+s_{\ell}=n$.
The statement for \widetilde{a}_{n} is verified similarly.
For sets S_{k} for $1 \leq k \leq \ell$ of monomials in the May E_{1}-terms, we consider a set

$$
\mathrm{S}_{1} \mathrm{~S}_{2} \cdots \mathrm{~S}_{\ell}=\left\{x_{1} x_{2} \cdots x_{\ell} \mid x_{k} \in \mathrm{~S}_{k}\right\}
$$

of monomials. In particular, we write $\mathrm{S}^{e}=\mathrm{S} \cdots \mathrm{S}$ (e factors) if $e>0$, and $S^{0}=\emptyset$ for a set S. We also define

$$
\mathrm{S}^{(d)}=\{x \in \mathrm{~S} \mid \operatorname{dim} x=d\}
$$

and

$$
\underline{\operatorname{dim}} S= \begin{cases}0 & \mathrm{~S}=\emptyset \\ \min \{\operatorname{dim} x \mid x \in \mathrm{~S}\} & \text { otherwise }\end{cases}
$$

In particular, we have

$$
\underline{\operatorname{dim}} \widetilde{l}_{n-\iota, \iota}^{e}= \begin{cases}0 & \iota=0 \text { and } e>n, \text { or } e=0 \tag{3.14}\\ 2 e-1 & \text { otherwise } .\end{cases}
$$

Indeed, if $e \geq 1$ and $\widetilde{l}_{n-i, i}^{e} \neq \emptyset$, then the dimension of a monomial of the subset

$$
\begin{equation*}
h_{n-i, i}\left(\widetilde{l}_{n-i, i}^{(2)}\right)^{e-1} \subset \widetilde{l}_{n-i, i} \tag{3.15}
\end{equation*}
$$

is $2 e-1$ and implies $\underline{\operatorname{dim}} \widetilde{l}_{n-i, i}^{e}=2 e-1$ since $h_{i, j}^{2}=0$.
Proposition 3.4. Suppose that a monomial $x \in{ }^{M} E_{1}^{s, c(x), *}$ satisfies (3.13) for integers $u>0$ and $k \geq 0$. Then,

$$
x=l z \quad \text { for } l \in \widetilde{a}_{n}^{e_{0}} \widetilde{l}_{n-\iota_{1}, \iota_{1}}^{e_{1}} \cdots \widetilde{l}_{n-\iota_{m}, \iota_{m}}^{e_{m}}
$$

in which $k \geq \iota_{1}>\iota_{2}>\cdots>\iota_{m} \geq 0$ for $m \geq 0, e_{0} \geq 0, e_{i}>0$ for each $i \geq 1$, $\sum_{i=0}^{m} e_{i}=u=c_{n-1}(x)$, and z is a monomial which has no factor of the form $l_{\iota_{i}-\ell, \ell}$ nor $a_{\iota_{i}}$. Furthermore, $c_{i}(z)=0$ for $i \geq k$ and $c_{\iota_{i}-1}(z) \leq c_{\iota_{i}}(z)$.

Note that we do not claim the uniqueness of the factorization of the proposition.
 $\widetilde{l}_{n-\iota_{0}, \iota_{0}} \cup \widetilde{a}_{n}$ such that $x=x_{0} y_{0}$. The factor x_{0} also satisfies (3.13) for $k \geq 0$ and $u-1$ unless $u=1$. Inductively, we obtain a factorization

$$
x=z y_{u-1} y_{u-2} \ldots y_{0},
$$

for $y_{i} \in \widetilde{l}_{n-\iota_{i}, \iota_{i}} \cup \widetilde{a}_{n}$ with $\iota_{i} \leq k$, and z has no factor of the form $l_{\iota_{i}-\ell, \ell}$ nor $a_{\iota_{i}}$. Put $l=y_{u-1} \cdots y_{0}$, and we may consider $l \in \widetilde{a}_{n}^{e_{0}} \widetilde{l}_{n-\iota_{1}, \iota_{1}}^{e_{1}} \cdots \widetilde{l}_{n-\iota_{m}, \iota_{m}}^{e_{m}}$ and $\iota_{1}>$ $\iota_{2}>\cdots>\iota_{m} \geq 0$. We also obtain the equality $\sum_{j=0}^{m} e_{j}=u$. The element z satisfies $c_{i}(z)=0$ for $i \geq k$, since $c_{i}(z)=c_{i}(x)-c_{i}\left(y_{u-1} y_{u-2} \ldots y_{0}\right)=$ $u-u=0$.

We also have $c_{\iota_{i}-1}(z) \leq c_{\iota_{i}}(z)$. Indeed, if $c_{\iota_{i}-1}(z)>c_{\iota_{i}}(z)$, then z should have a factor $z^{\prime} \in \widetilde{l}_{\iota_{i}-\ell, \ell} \cup \widetilde{a}_{\iota_{i}}$, which implies $y_{i} z^{\prime} \in \widetilde{l}_{n-\ell, \ell} \cup \widetilde{a}_{n}$. Hence we may replace y_{i} with $y_{i} z^{\prime}$ as a factor of l.

Now consider the internal degree

$$
\begin{equation*}
t_{0}=\left(p^{n}+p^{3}+2 p-1\right) q+p-4 \tag{3.16}
\end{equation*}
$$

We put

$$
\begin{equation*}
u_{s}=\operatorname{deg} a_{3}^{s}=\left(s p^{2}+s p+s\right) q+s \quad \text { for } s \geq 0 \tag{3.17}
\end{equation*}
$$

Lemma 3.5. Consider a monomial x of the May E_{1}-term ${ }^{M} E_{1}^{p+5+\varepsilon-s-r, t_{0}-u_{s}-r+1, *}$ with $\varepsilon \in\{0,1\}, 0 \leq s \leq p-4$, and $r \geq 1$. Then $\mathbf{c}_{n+1}(x)$ in (3.9) is

$$
\begin{gather*}
\mathbf{c}_{n+1}^{0}(s)=(1,0, \ldots, 0, p-1-s, p+1-s, p-1-s) \text { or } \\
\mathbf{c}_{n+1}^{1}(s)=(0, p-1, \ldots, p-1, p, p-1-s, p+1-s, p-1-s) \tag{3.18}
\end{gather*}
$$

Proof. We first note that

$$
\begin{equation*}
\operatorname{dim} x \leq p+5-s<2 p-1-s \tag{3.19}
\end{equation*}
$$

by $p \geq 7$. We also note that

$$
\begin{align*}
\operatorname{deg} x & =t_{0}-u_{s}-r+1 \\
& =\left(p^{n}+p^{3}-s p^{2}+(2-s) p-1-s\right) q+p-3-s-r \tag{3.20}\\
& =\left(\sum_{k \geq 0} c_{k}(x) p^{k}\right) q+c^{\prime}(x)
\end{align*}
$$

by (3.5) and (3.6). Consider the factorization (3.4). By (3.7), we obtain $\operatorname{dim} a(x)=c^{\prime}(x) \equiv p-3-s-r \bmod q$. The inequality

$$
q+p-3-s-r>p+5+\varepsilon-s-r=\operatorname{dim} x
$$

implies

$$
\begin{equation*}
\operatorname{dim} a(x)=c^{\prime}(x)=p-3-s-r \tag{3.21}
\end{equation*}
$$

Notice that $c_{0}(x) \equiv-1-s \bmod p$ by (3.20), $0 \leq c_{0}(x) \leq \operatorname{dim} x$ and $c_{0}(x)=$ $\operatorname{dim} a(x)+\operatorname{dim} h_{0}(x)$ by (3.8), and we obtain

$$
\begin{equation*}
c_{0}(x)=p-1-s \quad \text { and } \quad \operatorname{dim} h_{0}(x)=2+r . \tag{3.22}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\operatorname{dim} f(x)=6+\varepsilon-r \tag{3.23}
\end{equation*}
$$

Since $c_{1}(x) \equiv 1-s \bmod p$ by (3.20), and $2 \leq r+1=\operatorname{dim} h_{0}(x)-1 \leq c_{1}(x)$ by (3.22) and Lemma 3.2 2), we deduce

$$
c_{1}(x)=p+1-s
$$

under the condition (3.19), and so

$$
c_{2}(x)=p-1-s \quad \text { and } \quad c_{3}(x) \equiv 0 \quad \bmod p
$$

We also see that $c_{n}(x)=1$ or $=0$. If $c_{n}(x)=1$, then $c_{i}(x)=0$ for $3 \leq i<n$ by degree reason. Therefore, we have $\mathbf{c}_{n+1}(x)=\mathbf{c}_{n+1}^{0}(s)$ in this case.

Suppose that $c_{n}(x)=0$. Then, we have an integer j with $3 \leq j<n$ such that

$$
c_{i}(x)= \begin{cases}0 & 3 \leq i<j \\ p & i=j \\ p-1 & j<i<n\end{cases}
$$

If $j \neq 3$, then Lemma 3.21) shows that $p+5+\varepsilon-s-r \geq c_{j}(x)+c_{1}(x)-$ $c_{3}(x)=2 p+1-s$, which contradicts to (3.19). Thus, $j=3$ and we have $\mathbf{c}_{n+1}(x)=\mathbf{c}_{n+1}^{1}(s)$.

Lemma 3.6. Let x be a monomial such that $\mathbf{c}_{n+1}(x)=\mathbf{c}_{n+1}^{1}(s)$ in (3.18). Then,

$$
x=l z \text { for } l \in \widetilde{a}_{n}^{e} \widetilde{l}_{n-3,3}^{e_{3}} \widetilde{l}_{n-1,1}^{e_{1}} \widetilde{l}_{n, 0}^{e_{0}}
$$

where e, e_{3}, e_{1} and e_{0} are non-negative integers such that

$$
\begin{equation*}
e+e_{3}+e_{1}+e_{0}=p-1 \tag{3.24}
\end{equation*}
$$

$e_{0} \leq n, e_{3} \in\{s, s+1\}$ and $e_{1} \in\{0,1,2\}$. The factor z satisfies $c_{i}(z)=0$ for $i>3, c^{\prime}(z) \leq 3$,

$$
\begin{equation*}
\mathbf{c}_{4}(z)=\left(1, e_{3}-s, 2+e_{3}-s, e_{3}+e_{1}-s\right) \tag{3.25}
\end{equation*}
$$

and $\operatorname{dim} z \geq 3$. Furthermore, $s+r \leq \frac{4+w+\varepsilon-c^{\prime}(z)-\operatorname{dim} z}{2}<3$, where w denotes the number of i 's with $e_{i} \neq 0$.

Proof. Consider a factorization

$$
x=l z
$$

in Proposition 3.4. Since the integer k in Lemma 3.3 is four in our case,

$$
\begin{aligned}
& l \in \widetilde{a}_{n}^{e^{e}} \widetilde{e}_{n-4,4} \widetilde{l}_{n-3,3}^{e_{3}} \widetilde{l}_{n-2,2}^{e_{2}} \widetilde{e}_{n-1,1} \widetilde{l}_{n, 0}^{e_{0}} \text { for } e \geq 0 \text { and } e_{i} \geq 0(0 \leq i \leq 4), \quad \text { and } \\
& \qquad c_{i}(z)=0 \text { for } i \geq 4
\end{aligned}
$$

We may assume that $e_{0} \leq n$. Indeed, if $e_{0}>n$, then $\widetilde{l}_{n, 0}^{e_{0}}=\emptyset$. Furthermore, the fact $c_{n-1}(x)=p-1$ implies $e+\sum_{i=0}^{4} e_{i}=p-1$, and so

$$
\mathbf{c}_{4}(z)=\left(1+e_{4}, e_{4}+e_{3}-s, 2+\sum_{i=2}^{4} e_{i}-s, \sum_{i=1}^{4} e_{i}-s\right)
$$

since $\mathbf{c}_{n}(l)=\left(p-1, \ldots, p-1, \sum_{i=0}^{4} e_{i}, \sum_{i=0}^{3} e_{i}, \sum_{i=0}^{2} e_{i}, e_{1}+e_{0}, e_{0}\right)$. Notice that $c_{3}(z)>0=c_{4}(z)$ and $c_{1}(z)>c_{2}(z)$. Then, the last statement in Proposition 3.4 implies $e_{4}=0$ and $e_{2}=0$. Thus, we obtain (3.24) and (3.25). By (3.25), $c_{1}(z)=2+c_{2}(z) \geq 2$. If $c_{1}(z) \geq 3$, then $\operatorname{dim} z \geq 3$. If $c_{1}(z)=2$, then $c_{2}(z)=0$. Therefore, z has a factor $l_{1,3} \in \widetilde{l}_{1,3}$ and two factors whose coefficient c_{1} is one, and so $\operatorname{dim} z \geq 3$.

Proposition 3.4 implies that $2 \geq e_{1}$ by (3.25) if $e_{1} \neq 0$, and that $0 \leq$ $c_{2}(z)=e_{3}-s \leq c_{3}(z)=1$ if $e_{3} \neq 0$. We also see $c_{2}(z)=-s \geq 0$ if $e_{3}=0$. These show $e_{1} \in\{0,1,2\}$, and $e_{3} \in\{s, s+1\}$. Now, $c^{\prime}(z)=c_{1}(a(z)) \leq$ $c_{1}(z) \leq 3$ by (3.7) and (3.25).

Note that $e_{0} \leq n$. By (3.14), we compute

$$
\begin{aligned}
& \operatorname{dim} x \geq e+2\left(e_{3}+e_{1}+e_{0}\right)-w+\operatorname{dim} z \\
&=e+2(p-1-e)-w+\operatorname{dim} z \quad(\text { by }(3.24)) \\
&=2(p-1)-(p-3-s-r-\operatorname{dim} a(z))-w+\operatorname{dim} z \\
& \quad\left(\operatorname{by} c^{\prime}(x)=e+\operatorname{dim} a(z) \text { and }(3.21)\right) .
\end{aligned}
$$

Since $\operatorname{dim} x=p+5+\varepsilon-s-r, w \leq 3$ and $\operatorname{dim} z \geq 3$, we obtain the last inequality.

4. Proof of the main theorem

In this section, we also abbreviate ${ }^{A} E_{2}^{*, *}(V(2))$ to ${ }^{A} E_{2}^{*, *}$. Put $m_{s}(x)=$ $x \bar{\gamma}_{s} g_{0} h_{1} b_{0}$ for $x \in{ }^{A} E_{2}^{*, *}$. Then $m_{s}\left(h_{n}\right) \in{ }^{A} E_{2}^{s+6,\left(p^{n}+s p^{2}+(s+2) p+s\right) q+s}$ and $m_{s}\left(b_{n-1}\right) \in{ }^{A} E_{2}^{s+7,\left(p^{n}+s p^{2}+(s+2) p+s\right) q+s}$. We notice that

$$
\begin{equation*}
\text { the elements } m_{s}\left(h_{n}\right) \text { and } m_{s}\left(b_{n-1}\right) \text { are permanent cycles, } \tag{4.1}
\end{equation*}
$$

since
(4.2) $i_{2} i_{1} i\left(\alpha_{1} \varpi_{n} \gamma_{s} \beta_{1}\right)=\left(m_{s}\left(h_{n}\right)\right)^{\sim}$ and $i_{2} i_{1} i\left(\zeta_{n} \beta_{1} \beta_{2} \gamma_{s}\right)=\left(m_{s}\left(b_{n-1}\right)\right)^{\sim}$.

Indeed, we have

$$
\begin{aligned}
m_{s}\left(h_{n}\right) & =h_{n} \bar{\gamma}_{s} g_{0} h_{1} b_{0}=b_{0} k_{0} h_{n} h_{0} \bar{\gamma}_{s}=\left(b_{0} h_{n}+h_{1} b_{n-1}\right) k_{0} h_{0} \bar{\gamma}_{s} \text { and } \\
m_{s}\left(b_{n-1}\right) & =b_{n-1} \bar{\gamma}_{s} g_{0} h_{1} b_{0}=h_{0} b_{n-1} b_{0} k_{0} \bar{\gamma}_{s}=h_{1} b_{n-1} g_{0} \bar{\gamma}_{s} b_{0}
\end{aligned}
$$

by (2.3), and also (3.10), (3.11) and (3.12) imply

$$
\begin{align*}
i_{2} i_{1} i\left(\alpha_{1} \varpi_{n} \gamma_{s} \beta_{1}\right) & =\left(h_{0} k_{0} h_{n} \bar{\gamma}_{s} b_{0}\right)^{\sim} \\
& =\left(-\left(b_{0} h_{n}+h_{1} b_{n-1}\right) h_{0} k_{0} \bar{\gamma}_{s}\right)^{\sim} \\
& =-i_{2} i_{1} i\left(j \xi_{n} \alpha_{1} \beta_{2} \gamma_{s}\right) \text { and } \\
i_{2} i_{1} i\left(\zeta_{n} \beta_{1} \beta_{2} \gamma_{s}\right) & =\left(h_{0} b_{n-1} b_{0} k_{0} \bar{\gamma}_{s}\right)^{\sim} \tag{4.3}\\
& =\left(h_{1} b_{n-1} g_{0} \bar{\gamma}_{s} b_{0}\right)^{\sim} \\
& =i_{2} i_{1}\left(\beta_{1}^{\prime} \lambda_{n, s} \beta_{1}\right)
\end{align*}
$$

in $\pi_{*}(V(2))$. In particular,

$$
i_{2} i_{1} i\left(\alpha_{1} \varpi_{n} \gamma_{s} \beta_{1}\right)=-i_{2} i_{1} i\left(j \xi_{n} \alpha_{1} \beta_{2} \gamma_{s}\right)
$$

and

$$
i_{2} i_{1} i\left(\zeta_{n} \beta_{1} \beta_{2} \gamma_{s}\right)=i_{2} i_{1}\left(\beta_{1}^{\prime} \lambda_{n, s} \beta_{1}\right)
$$

up to Adams filtration. In this section, we show that the elements in (4.2) are non-trivial.

Proposition 4.1. The elements $m_{p-1}\left(h_{n}\right)$ and $m_{p-1}\left(b_{n-1}\right)$ of the Adams E_{2}-term are non-trivial.
Proof. Let $y_{\varepsilon} \in{ }^{A} E_{2}^{p+5+\varepsilon, t_{0}}$ denote $m_{p-1}\left(h_{n}\right)$ if $\varepsilon=0$, and $m_{p-1}\left(b_{n-1}\right)$ if $\varepsilon=1$. We also take an element \bar{y}_{ε} in ${ }^{M} E_{1}^{p+5+\varepsilon, t_{0}, *}$, which detects y_{ε}. If $y_{\varepsilon}=0$, then there exists $\bar{x}_{\varepsilon} \in{ }^{M} E_{r}^{p+4+\varepsilon, t_{0}, *}$ such that $d_{r}^{M}\left(\bar{x}_{\varepsilon}\right)=\bar{y}_{\varepsilon}$ for some r. We denote by $x_{\varepsilon} \in{ }^{M} E_{1}^{p+4+\varepsilon, t_{0}, *}$ a monomial appearing in a term of a representative of \bar{x}_{ε}. By Lemma 3.5 at $(s, r)=(0,1)$, the n-tuple $\mathbf{c}_{n+1}\left(x_{\varepsilon}\right)$
is $\mathbf{c}_{n+1}^{0}(0)$ or $\mathbf{c}_{n+1}^{1}(0)$ in (3.18). Since $t_{0} \equiv p-4 \bmod (q)$ by (3.16), we see $c^{\prime}\left(x_{\varepsilon}\right)=p-4$. Therefore,

$$
x_{\varepsilon} \in \begin{cases}\widetilde{a}_{3}^{p-4} \widetilde{l}_{1, n} \widetilde{l}_{1,2}^{2} \widetilde{l}_{3,0}^{3} & \mathbf{c}_{n+1}\left(x_{\varepsilon}\right)=\mathbf{c}_{n+1}^{0}(0) \\ \widetilde{a}_{n}^{p-4} \widetilde{l}_{1,3} \widetilde{l}_{1,1}^{2} \widetilde{l}_{n-1,0}^{3} & \mathbf{c}_{n+1}\left(x_{\varepsilon}\right)=\mathbf{c}_{n+1}^{1}(0)\end{cases}
$$

Since $\operatorname{dim} x_{\varepsilon}=p+4+\varepsilon$ and $\underline{\operatorname{dim}}\left(\widetilde{a}_{3}^{p-4} \widetilde{l}_{1, n} \widetilde{l}_{1,1}^{2} \widetilde{l}_{3,0}^{3}\right)=p+5=\underline{\operatorname{dim}}\left(\widetilde{a}_{n}^{p-4} \widetilde{l}_{1,3} \widetilde{l}_{1,1}^{2} \widetilde{l}_{n-1,0}^{3}\right)$, we have $\varepsilon=1$. It follows that there is no monomial for x_{0}, and so ${ }^{M} E_{1}^{p+3, t_{0}, *}=$ 0 . Therefore, \bar{y}_{0} survives to $y_{0}=m_{p-1}\left(h_{n}\right)$.

We consider the case $\varepsilon=1$. If $\mathbf{c}_{n+1}\left(x_{1}\right)=\mathbf{c}_{n+1}^{1}(0)$, then

$$
x_{1} \in a_{n}^{p-4} h_{1,3} h_{1,1} b_{1,0} h_{n, 0}\left(\widetilde{l}_{n-1,0}^{(2)}\right)^{2}
$$

by (3.15). Put $w_{i, j}=h_{n-1-i, i} h_{i, 0} h_{n-1-j, j} h_{j, 0}$. Then, we see that $\left(\widetilde{l}_{n-1,0}^{(2)}\right)^{2}=$ $\left\{w_{i, j}: 1 \leq i<j \leq n-2\right\}$. It follows that the monomial x_{1} is of the form $x_{1, i, j}=a_{n}^{p-4} h_{1,3} h_{1,1} b_{1,0} h_{n, 0} w_{i, j}$. Since $n>4$, we have

$$
d_{1}^{M}\left(x_{1, i, j}\right)=-4 a_{n}^{p-5} a_{4} h_{n-4,4} h_{1,3} h_{1,1} b_{1,0} h_{n, 0} w_{i, j}+\cdots \neq 0
$$

The images $d_{1}^{M}\left(x_{1, i, j}\right)$ are linearly independent, since so are $w_{i, j}$'s. Therefore, any linear combination of $x_{1, i, j}$'s doesn't survive to the May E_{2}-term.

For the case $\mathbf{c}_{n+1}\left(x_{1}\right)=\mathbf{c}_{n+1}^{0}(0)$, we have

$$
x_{1} \in a_{3}^{p-4} h_{1, n} h_{1,1} b_{1,0} h_{3,0}\left(\widetilde{l}_{3,0}^{(2)}\right)^{2}
$$

by (3.15). Since $\left(\widetilde{l}_{3,0}^{(2)}\right)^{2}=\left\{h_{1,0} h_{2,0} h_{1,2} h_{2,1}\right\}$,

$$
x_{1}=a_{3}^{p-4} h_{1, n} h_{1,1} b_{1,0} h_{3,0} h_{1,0} h_{2,0} h_{1,2} h_{2,1}
$$

which converges to $\bar{\gamma}_{p-1} h_{1} b_{0} k_{0} h_{n}$ in the Adams E_{2}-term by Lemma 3.1. Therefore $d_{r}^{M}\left(x_{1}\right)=0$ for $r \geq 1$, and so ${ }^{M} E_{r}^{s+5, t_{0}, *}=0$ for $r \geq 2$.

By the above argument, for $r \geq 2$, we obtain $d_{r}(x)=0$ for any $x \in$ ${ }^{M} E_{r}^{p+5, t_{0}, *}$. Hence $y_{1}=m_{p-1}\left(b_{n-1}\right)$ survives to the Adams E_{2}-term.

Corollary 4.2. The elements $m_{s}\left(h_{n}\right)$ for $3 \leq s<p$ and $m_{s}\left(b_{n-1}\right)$ for $3 \leq s<p-2$ in the E_{2}-terms are non-zero.

Proof. Since $a_{3} \in{ }^{M} E_{1}^{*, *, *}$ survives to ${ }^{A} E_{2}^{*, *}$, the multiplication by a_{3} induces a homomorphism

$$
\begin{equation*}
\left(a_{3}\right)_{*}:{ }^{A} E_{2}^{*, *} \rightarrow{ }^{A} E_{2}^{*, *} \tag{4.4}
\end{equation*}
$$

Since $a_{3}^{p-s-1} \widehat{\gamma}_{s}=\widehat{\gamma}_{p-1}$ in the May E_{1}-term by Lemma 3.1, we have $\left(a_{3}\right)_{*}^{p-s-1}\left(\bar{\gamma}_{s}\right)=$ $\bar{\gamma}_{p-1}$, and hence $\left(a_{3}\right)_{*}^{p-s-1}\left(m_{s}\left(h_{n}\right)\right)=m_{p-1}\left(h_{n}\right)$. Proposition 4.1 implies the non-triviality of the first element.

Since Lemma 3.1 also implies $\left(a_{3}\right)_{*}^{p-s-1}\left(b_{n-1} g_{0} \bar{\gamma}_{s}\right)=b_{n-1} g_{0} \bar{\gamma}_{p-1}$, we obtain the non-triviality of the second elements similarly by Proposition 4.1.

Remark. In the May spectral sequence converging to ${ }^{A} E_{2}^{*, *}\left(S^{0}\right)$, the geneator a_{3} in the E_{1}-term is not permanent, and therefore the map (4.4) is not defined. This is a reason why we consider the second Smith-Toda spectrum $V(2)$ in this paper.
Proof of Theorem 1.1. It suffices to show that

$$
\begin{equation*}
{ }^{A} E_{2}^{p+5+\varepsilon-s^{\prime}-r, t_{0}-u_{s^{\prime}}-r+1}=0 \tag{4.5}
\end{equation*}
$$

for $\varepsilon \in\{0,1\}, r \geq 2$ and $s^{\prime} \geq \varepsilon$. Indeed, if it holds, then the elements $m_{p-1-s^{\prime}}\left(h_{n}\right)$ and $m_{p-1-s^{\prime}}\left(b_{n-1}\right)$ in (4.1) we concern are not in the image of the Adams differential

$$
\begin{equation*}
d_{r}^{A}:{ }^{A} E_{r}^{p+5+\varepsilon-s^{\prime}-r, t_{0}-u_{s^{\prime}}-r+1} \rightarrow{ }^{A} E_{r}^{p+5+\varepsilon-s^{\prime}, t_{0}-u_{s^{\prime}}} \tag{4.6}
\end{equation*}
$$

and the theorem follows from (4.2) and Corollary 4.2. We show (4.5) by verifying

$$
{ }^{M} E_{2}^{p+5+\varepsilon-s^{\prime}-r, t_{0}-u_{s^{\prime}}-r+1, *}=0
$$

For a monomial $x \in{ }^{M} E_{1}^{p+5+\varepsilon-s^{\prime}-r, t_{0}-u_{s^{\prime}}-r+1, *}$ with $r \geq 2$, if $c_{3}(x)=0$, then $\operatorname{dim} h_{0}(x) \leq 3$ by Lemma 3.22), which contradicts to (3.22). It follows that $\mathbf{c}_{n+1}(x)=\mathbf{c}_{n+1}^{1}\left(s^{\prime}\right)$ by Lemma 3.5, and so $s^{\prime}+r \leq 2$ by Lemma 3.6. This implies

$$
\left(s^{\prime}, r\right)=(0,2)
$$

Therefore, (4.5) holds except for this case.
We will show ${ }^{M} E_{2}^{p+3, t_{0}-1, *}=0$. By Lemma 3.6, a monomial x in ${ }^{M} E_{1}^{p+3, t_{0}-1, *}$ is factorized into

$$
x=l z
$$

for $l \in \widetilde{a}_{n}^{e^{e} \widetilde{e}_{n-3,3}} \widetilde{l}_{n-1,1}^{e_{1}} \widetilde{l}_{n, 0}^{e_{0}}$ and a monomial z with $\mathbf{c}_{4}(z)=\left(1, e_{3}, 2+e_{3}, e_{3}+e_{1}\right)$, $e_{3} \in\{0,1\}$ and $e_{1} \in\{0,1,2\}$. We notice that we can tell the least dimension of z from $\mathbf{c}_{4}(z)$. Since $e=p-5-c^{\prime}(z)$ by (3.7) and (3.16), we have

$$
\begin{equation*}
e_{3}+e_{1}+e_{0}=p-1-e=4+c^{\prime}(z) \tag{4.7}
\end{equation*}
$$

by (3.24). These give rise to a table:

$\left(e_{3}, e_{1}\right)$	$(0,0)$	$(0,1)$	$(0,2)$	$(1,0)$	$(1,1)$	$(1,2)$
$\mathbf{c}_{4}(z)$	$(1,0,2,0)$	$(1,0,2,1)$	$(1,0,2,2)$	$(1,1,3,1)$	$(1,1,3,2)$	$(1,1,3,3)$
$\operatorname{dim} z \geq$	3	3	4	3	3	4
w	1	2	2	2	3	3

Here, w is the integer given in Lemma 3.6. We also see that $w-c^{\prime}(z)-$ $\operatorname{dim} z \in\{0,1\}$ by the inequality of Lemma 3.6, and hence $w-\operatorname{dim} z \geq 0$.

The table shows us that the inequation holds only when $\left(e_{3}, e_{1}\right)=(1,1)$, $\operatorname{dim} z=3$ and $c^{\prime}(z)=0$. Then the monomial x is of the form

$$
x_{j}=a_{n}^{p-5} h_{n-3,3} h_{n-1,1} h_{n, 0} h_{n-j, j} h_{j, 0} h_{4,0} h_{2,0} h_{1,1}
$$

for $j \geq 5$. Since

$$
d_{1}^{M}\left(x_{j}\right)=-5 a_{n}^{p-6} a_{4} h_{n-4,4} h_{n-3,3} h_{n-1,1} h_{n, 0} h_{n-j, j} h_{j, 0} h_{4,0} h_{2,0} h_{1,1}+\cdots \neq 0
$$

the images $d_{1}^{M}\left(x_{j}\right)$ are linearly independent. Thus, (4.5) also holds in this case.

References

[1] R. L. Cohen, Odd primary infinite families in stable homotopy theory, Mem. Amer. Math. Soc. 30 (1981), no. 242.
[2] J. Hong, X. Liu, and D. Zheng, On a family involving R. L. Cohen's ζ-element (II), Sci. Chin. Math. 58 (2014), 1-8.
[3] C.-N. Lee, Detection of some elements in the stable homotopy groups of spheres, Math. Z. 222 (1996), 231-245.
[4] J. Lin, A new family of filtration three in the stable homotopy of spheres, Hiroshima Math. J. 31 (2001), 477-492.
[5] J. Lin, New Families in the Stable Homotopy of Spheres Revisited, Acta Mathematica Sinica, English Series 18 (2002), 95-106.
[6] J. Lin, Two new families in the stable homotopy groups of sphere and Moore spectrum, Chinese Ann. Math. Ser. B 27 (2006), 311-328.
[7] J. Lin and Q. Zheng, A new family of filtration seven in the stable homotopy of spheres, Hiroshima Math. J. 28 (1998), 183- 205.
[8] X. Liu, A nontrivial product in the stable homotopy groups of spheres, Sci. China Ser. A Math. 47 (2004), 831-841.
[9] X. Liu, A new family of filtration $s+6$ in the stable homotopy groups of spheres, Acta Math. Sci. Ser. B. 26 (2006), 193-201.
[10] X. Liu, Non-triviality of some compositions $\alpha_{1} \beta_{1} \gamma_{s}$ in the stable homotopy of spheres, Adv. Math. (China) 35 (2006), 733-738.
[11] X. Liu, Non-trivial of two homotopy elements in $\pi_{*}(S)$, J. Korean Math. Soc. 43 (2006), 783-801.
[12] X. Liu, A new infinite family $\alpha_{1} \beta_{2} \gamma_{s}$ in $\pi_{*}(S)$, JP J. Geom. Topol. 7 (2007), 51-63.
[13] X. Liu, Non-triviality of an element $\alpha_{1} \beta_{1} \beta_{s}$ in the stable homotopy of spheres, Acta Math. Sci. Ser. A. Chin. Ed. 27 (2007), 208-214.
[14] X. Liu, A nontrivial product of filtration $s+5$ in the stable homotopy of spheres, Acta Math. Sin. (Engl. Ser.) 23 (2007), 385-392.
[15] X. Liu, Some notes on the May spectral sequence (Chinese). Acta Math. Sci. Ser. A. Chin. Ed. 27 (2007), 802-810.
[16] X. Liu, A nontrivial product in the stable homotopy groups of spheres, Sci. China Ser. A. 47 (2007). 831-841.
[17] X. Liu, On the convergence of products $\gamma_{s} h_{1} h_{n}$ in the Adams spectral sequence, Acta Math. Sin. (Engl. Ser.) 23 (2007), 1025-1032.
[18] X. Liu, Detection of a new non-trivial family in the stable homotopy of spheres $\pi_{*}(S)$, Tamkang J. Math. 39 (2008), 75-83.
[19] X. Liu, Detection of some elements in the stable homotopy groups of spheres, Chin. Ann. Math. Ser. B 29 (2008), 291-316.
[20] X. Liu, On the ϖ_{n}-related elements in the stable homotopy group of spheres, Arch. Math. (Basel) 91 (2008), 471-480.
[21] X. Liu, Some infinite elements in the Adams spectral sequence for the sphere spectrum, J. Math. Kyoto Univ. 48 (2008), 617-629.
[22] X. Liu, On R. L. Cohen's ζ-element, Algebr. Geom. Topol. 11 (2011). 1709-1735.
[23] X. Liu, A composite map in the stable homotopy groups of spheres. Forum Math. 25 (2013), 241-253.
[24] X. Liu and S. Jiang, Convergence of the products $b_{0} g_{0} \gamma_{s}$ in Adams spectral sequence, Adv. Math. (Chin.) 38 (2009). 319-326.
[25] X. Liu and W. Li, A product involving the β-family in stable homotopy theory, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), 411-420.
[26] X. Liu and K. Ma, A new family in the homotopy groups of spheres, Bull. Iranian Math. Soc. 38 (2012), 313-322.
[27] X. Liu and X. Wang, The convergence of $\gamma_{s}\left(b_{0} h_{n}-h_{1} b_{n-1}\right)$, Chinese Ann. Math. Ser. B. 27 (2006), 329-340.
[28] X. Liu and H. Zhao, On two non-trivial products in the stable homotopy groups of spheres, Bol. Soc. Mat. Mexicana 13 (2007), 367-380.
[29] X. Liu, H. Zhao and Y. Jin, A non-trivial product of filtration $s+6$ in the stable homotopy groups of spheres. Acta Math. Sci. Ser. B. Engl. Ed. 29 (2009), 276-284.
[30] X. Liu and D. Zheng, On a family involving R. L. Cohen's ζ-element. Topol. Appl. 160 (2013), 394-405.
[31] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, Providence, 2004.
[32] L. Smith, On realizing complex bordism modules, Amer. J. Math. 92 (1970), 793-856.
[33] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology, 10 (1971), 53-65.
[34] X. Wang and Q. Zheng, The convergence of $\widetilde{\alpha}_{s}^{(n)} h_{0} h_{k}$, Sci. China (ser. A), 41 (1998), 622-628.
[35] H. Zhao, X. Liu and Y. Jin, A non-trivial product of filtration $s+6$ in the stable homotopy groups of spheres, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), 276-284.
[36] L. Zhong and X. Liu, On homotopy element $\alpha_{1} \beta_{1} \beta_{2} \gamma_{s}$, Chin. Ann. Math., Ser. A 34 (2013), 487-498.
[37] L. Zhong and Y. Wang, Detection of a nontrivial product in the stable homotopy groups of spheres, Algebr. Geom. Topol. 13 (2013), 3009-3029.

Ryo Kato
Faculty of Fundamental Science National Institute of Technology, Nifhama College Nilhama, 792-8580, Japan
e-mail address: ryo_kato_1128@yahoo.co.jp

Katsumi Shimomura
Department of Mathematics
Faculty of Science and Technology
Kochi University
Kochi, 780-8520, Japan
e-mail address: katsumi@kochi-u.ac.jp
(Received March 15, 2019)
(Accepted July 21, 2019)

[^0]: Mathematics Subject Classification. Primary 55Q45; Secondary 55T15.
 Key words and phrases. Stable homotopy of spheres, Adams spectral sequence, May spectral sequence .

