
Hisano et al.  1 

Virus Research 

A neo-virus-lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA 
virus: taxonomic and evolutionary considerations.  

Sakae Hisanoa, Rui Zhanga,b, Md. Iqbal Faruka, c, Hideki Kondoa, and Nobuhiro Suzukia, * 

a Institute of Plant Science and Resources (IPSR), Okayama University, Chuou 2-20-1, Kurashiki 

Okayama 710-0046, JAPAN 

*Correspondence may be sent to N. Suzuki (nsuzuki@okayama-u.ac.jp)

Dr. Nobuhiro SUZUKI 

Institute of Plant Science and Resources (IPSR) 

Okayama University 

Chuou 2-20-1, Kurashiki 

Okayama 710-0046, JAPAN 

Email: nsuzuki@okayama-u.ac.jp 

URL: http://www.rib.okayama-u.ac.jp/pmi/index.html 

 

Present address: bState Key Laboratory of Plant Cell and Chromosome Engineering, Institute of 

Genetics and Developmental Biology,  Chinese Academy of Sciences, West Beichen Road 1, 

Chaoyang District Beijing 100101, China; cPlant Pathology Division, Bangladesh Agricultural 

Research Institute, Joydebpur, Gazipur-1701, Bangladesh 

Email Addresses: Sakae Hisano <shisano@okayama-u.ac.jp>; Rui Zhang 

<ruizhang20090601@163.com>; Md. Iqbal Faruk <mifaruk2012@yahoo.com>; Hideki Kondo 

<hkondo@okayama-u.ac.jp>  



 2 

Abstract  
The past few decades showed that fungi as virus hosts provide unique platform for hunting 

viruses and exploring virus/virus and virus/host interactions. Such studies revealed a number of 

as-yet-unreported viruses and virus/virus interactions. Among them is a unique intimate 

relationship between a (+)ssRNA virus, Yado-kari virus (YkV1) and an unrelated double-stranded 

RNA virus, Yado-nushi virus (YnV1). YkV1 dsRNA, a replicated form of YkV1, and RNA 

dependent RNA polymerase (RdRp), are trans-encapsidated by the capsid protein of YnV1. While 

YnV1 can complete its replication cycle, YkV1 relies on YnV1 for its viability. We previously 

proposed a model in which YkV1 diverts YnV1 capsids as the replication sites. YkV1 is neither 

satellite virus nor satellite RNA, because YkV1 appears to encode functional RdRp  and enhance 

YnV1 accumulation. This represents a unique mutualistic virus/virus interplay and possible 

similar relations in other virus/host systems are detectable. This article overviews what is known 

and unknown about the YkV1/YnV1 interactions. We propose the family Yadokariviridae that 

accommodates YkV1 and recently discovered viruses to related YkV1. Also discussed are the 

YnV1 Phytoreo_S7 and YkV1 2A-like domains that may have captured via horizontal transfer 

during the course of evolution and are conserved across extant diverse RNA viruses. Lastly, 

evolutionary scenarios are envisioned for YkV1 and YnV1.  
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1. Introduction 

Next generation sequencing approaches with environmental materials and/or purely isolated or 

cultured materials revolutionalised many areas of virology in the past few decades. They revealed 

the great diversity of viruses and provided interesting evolutionary insights (Marzano and Domier, 

2016; Marzano et al., 2016; Shi et al., 2016). Such research led to discoveries of many 

as-yet-unseen interesting viruses across eukaryotes, particularly from lower eukaryotes. Some of 

them challenge the “virus rules or concept.” For examples giant DNA viruses represented by 

mimiviruses and pandraviruses are greater in particle size and genome size than some bacteria 

(Abergel et al., 2015; Colson et al., 2013), while fungal (+)ssRNA viruses such as narnaviruses, 

and hypoviruses are capsidless (Hillman and Suzuki, 2004; Wickner et al., 2013). Capsidless 

viruses are likely more prevailing in fungi, plants and insect than previously thought (Fukuhara, 

2015; Roossinck et al., 2011; Sabanadzovic et al., 2009; Spear et al., 2010). These capsidless 
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viruses are hypothesized to have originated from fully-fledged capsid-encoding RNA viruses 

(Koonin and Dolja, 2014). 

  Virus hunting has been extensively carried out in several culturable fungi such as the 

chestnut blight fungus (Cryphonectria parasitica) (Liu et al., 2007; Peever et al., 1998), 

rapeseed rot fungus (Sclerotinia sclerotiorum) (Xie and Jiang, 2014), white root rot fungus 

(Rosellinia necatrix) (Kondo et al., 2013), and Heterobasidion spp. some of which are conifer 

pathogens (Vainio and Hantula, 2016). Similar projects have been expanded to other pathogenic 

filamentous fungi that include Fusarium spp. and Aspergillus spp. (Hillman et al., 2017). Some 

of these studies revealed very unusual viruses that challenge “virus rules” with respect to virus 

replication cycles and/or virus morphology, different aspects from the one aforementioned. For 

example, Aspergillus fumigatus tetramycovirus-1 (AfuTmV1) with a 4-segmented dsRNA 

genome (Kanhayuwa et al., 2015) does not form typical virus particles, rather is associated with 

one of the virally encoded proteins (colloidal form) as an infectious entity. Another dsRNA 

virus, Colletotrichum camelliae filamentous virus 1 (CcFV1) (Xu et al.), which is closely 

related to AfuTmV1 though different in genome segment number: 8 vs. 4, appears to form 

filamentous particles. There are no other reported examples of dsRNA viruses able to form 

filamentous particles. The discrepancy in virus morphology needs to be examined further. 

However, the two viruses commonly can be transfected into their host protoplasts in the form of 

purified dsRNA.  

Rosellinia necatrix is an important pathogen destructive to many crops particularly 

perennial fruit trees (Kondo et al., 2013; Pliego et al., 2012). This fungus also provides a system 

for studying virus/host and virus/virus interactions. A virus hunting project has been carried out 

on this fungus since late 1990’s by a Japanese group led by Dr. Naoyuki Matsumoto (Arakawa et 

al., 2002; Ikeda et al., 2004; Matsumoto, 1998). This consequently revealed approximately 20% 

virus incidence rate in field isolates. A large number of new viruses which were later classified 

into new virus families such as Megabirnaviridae and Quadriviridae (Chiba et al., 2009)(Lin et 

al., 2012) (dsRNA viruses) were discovered. Among these, Yado-nushi virus 1 (YnV1, a toti-like 

dsRNA virus) and Yado-kari virus 1 (YkV1, a calici-like ssRNA virus) were isolated from a 

single R. necatrix hypovirulent field strain W1032 (Yaegashi et al., 2013). The two viruses show 

unique mutualistic interactions in which YkV1 highjacks the capsid of YnV1 for 

tans-encapsidation of YkV1 RNA and RNA-dependent RNA polymerase (RdRp) (Zhang et al., 

2016). Both viruses are phylogenetically placed into an expanded picorna-like supergroup 
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accommodating (+)ssRNA viruses such as members of the order Picornavirales and dsRNA 

viruses including totiviruses and many unclassified fungal viruses (Koonin et al., 2015). Here in 

this article we focus on these rules-breaking viruses and their interactions, and discuss what are 

known and unknown about this system. Also discussed is the taxonomy and evolutionary 

scenarios of YkV1 and YnV1. Readers are referred to other more general review articles on 

fungal host/virus, and fungal virus/virus interactions (Ghabrial et al., 2015; Hillman et al., 2017).  

 

2. Inter-and intra-strain sequence variability of coinfecting YnV1 strains and implication of 

RNA polymerase slippage for dsRNA viruses.  

As stated in our previous paper about YkV1 and YnV1 (Zhang et al., 2016), multiple, 

at least three variantes and one defective virus (YnV1D) lacking the RdRp domain, coinfected 

W1032. Although YkV1 is invariant in genome sequence, YnV1 shows inter- and intra-strain 

sequence variability. We first isolated the three strains from transfectants with W1032 virions and 

were designated as YnV1-A, B, and C. While the entire sequence of YnV1-A was reported earlier 

(Zhang et al., 2016) (Fig. 1), the complete sequences of the other two variantes, B (8951 bp) and 

C (8952 bp), deposited in DDBJ with accession numbers LC006254 and LC006256, respectively, 

are described here. Their sequences were obtained by sequencing RT-PCR clones obtained with 

strain-specific primers, the sequences of which are available upon request. Pairwise comparison 

showed approximately 8 to 10% amino acid sequence divergence in the ORF1-encoded protein 

(CP) among the three YnV1 strains, while that for ORF2-encoded protein (RdRp) is 6 to 7% (Fig, 

S1A). Notable interesting nucleotide sequence heterogeneity was observed at the 5’-terminal 

portion (500–1000 nt, see Fig. S1B) and several other map positions (75, 899, 3523, 5476 and 

6380 nt on strain A) (Fig. 1A).  For example, different numbers of A residues were commonly 

detected at position 3526 (on strain A) in strains A and C in RT-PCR clones; the ratio of (A)7: 

(A)8: (A)9 stretches were 1:3:1, while (A)7: (A)8 were 2:4. Similar sequence heterogeneity 

resulting in frame-shifting was detected at the C and U stretches at positions 899, 5476 and 6380 

(on strain A) (Fig. 1A and data not shown). Uninterrupted ORFs shown in Fig. 1A can be detected 

only when genome sequences are assembled at the homopolymeric stretches with those exhibited 

by major RT-PCR clones. Recently, RdRps of members of the expanded picorna-like superfamily 

(plant potyviruses) were shown to slip during polymerization at a specific sequence motif GA6, 

resulting in production of nascent RNA with an additional A there at an approximately 2% of the 

whole transcripts (Olspert et al., 2015; Rodamilans et al., 2015; Untiveros et al., 2016). We failed 

to detect GA6 motif at the variable sites in YnV1. However, some of the regions such as that at 
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position ??? conform to the motifs that are believed to enhance polymerase slippage in 

ebolaviruses (A7) and paramyxoviruses (A2-6G3-6) (Atkins et al. 2016). Also strain-specific 

nucleotide substitutions were found (Table S?). Therefore the three YnV1 strains co-infect the 

W1032 fungal strain and each may exist as a mutant cloud (quasispeies) or a mixed population of 

genomes (Domingo et al., 2012).  

 

2. Molecular signatures, Phytoreo_S7 and 2A-like domains, on YnV1 and YkV1. 

YnV1 ORF1 encodes a zinc-finger like motif, while YnV1 ORF2 a Phytoreo_S7 (pfam07236) 

and an RdRp domain (Fig. 1A). The N terminus of YnV1 CP was mapped to positions 580–589 

aa (GVYDLKKKEW), 632–641 aa (S[T/A]EIKKMFDT) that are 42 amino acids apart. The 

threonine and alanine at position 581 were considered to be from YnV1 strain A, and strains B 

and C, respectively. There may be self-cleavage activity residing at the N-terminal portion of 

ORF1. Alternatively, host fungus-derived protease may be involved in YnV1 CP processing.   

The Phytoreo_S7 domain detectable at the N terminal portion is conserved across 

different virus families such as Reoviridae, Chrysoviridae (dsRNA viruses), and 

Endornaviridae ((+)ssRNA viruses), which was hypothesized to have been horizontally 

transferred among fungal and plant viruses during the course of evolution (Koonin and Dolja, 

2012; Liu et al., 2012). Note that the domain is sporadically found in only some members of the 

families. In fungal viruses, this domain-coding sequence is often found in the RdRp-encoding 

segments (Liu et al., 2012) (Fig. 2A). Interestingly, the Phytoreo_S7 domain resides upstream of 

the RdRp in YnV1 as in the case for chrysoviruses and Phlebiopsis gigantea large virus 1 

(PgLV1), while it is found downstream of RdRp in unclassified fungal dsRNA viruses such as 

Fusarium graminearum dsRNA mycovirus 3 (Cho et al., 2013), Sclerotinia sclerotiorum 

nonsegmented virus L (SsNsV-L) (Liu et al., 2012). Little is known about the functional role of 

the Phytoreo_S7 domain. It was previously shown by ultra-violet cross linking and elctrophretic 

mobility shift assay showed a minor inner core protein, P7, of a phytoreovirus (rice dwarf 

reovirus), to be able to bind dsRNA (Suzuki, 1995; Suzuki, 1997). This RNA binding ability 

possibly is associated with RNA synthesis occurring in inner core particles. However, whether 

its binding capability is associated with the Phytoreo_S7 domain remains to be elucidated. The 

three motifs, zinc finger, RdRp and Phytoreo_S7, identified previously on YnV1 A, are 

conserved in the other two viral strains mentioned above. 
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YkV1 possibly encodes a single polyportein carrying a 2A-like domain in addition to 

an RdRp, hall mark of RNA viruses (Fig. 1B). The 2A self-processing peptide (a conserved 

C-terminal motif, DxExNPG� P-, where ’x’=any amino acid) was first identified in 

foot-and-mouse disease virus (FMDV, GDVESNPGP) and other many picornaviruses (family 

Picornaviridae, order Picornavirales) (Palmenberg et al., 1992; Ryan et al., 1991) (Fig. 2B), 

which separates structural and replication-associated proteins, and later also found in relatively 

diverse animal dsRNA viruses such as a toti-like virus (Penaeid shrimp infectious myonecrosis 

virus) and reoviruses (rota- and cypoviruses) (Donnelly et al., 2001; Nibert, 2007) and 

retrotransposons as well (Heras et al., 2006). The 2A-like sequence motif was first noted for 

fungal dsRNA viruses and (+)ssRNA viruses such as hypoviruses and YkV1 by Petrzik et al. 

(Petrzik et al., 2016). We further demonstrated the presence of this motif in fungal (+)ssRNA 

viruses related YkV1 (see below). The nona-amino acid GDVEKNPGP (881–889 aa) is 
found in YkV1 and a tetravirus (Providence virus, 2A3), while GDIEENPGP is 
conserved in three YkV1-like and a dicistrovirus (Israel acute paralysis virus) (Fig. 1C). 
The conservation of this motif in diverse viruses may support its horizontal structures and 

modular structures of virus genomes (Koonin and Dolja, 2012). However, it should be noted 

that most viruses with the 2A-like motif, whether dsRNA or (+)ssRNA viruses, are members of 

the expanded picorna-like super-family. The 2A- or 2A-like peptide is considered to be involved 

in “ribosome skip” at the G (Gly) residue resulting from the failure of the G–P (Gly–Pro) 

peptide bond formation (Roulston et al., 2016) This “ribosome skip” raises a possibility of three 

translational products of 1) upstream of and including the 2A-like sequence, 2) downstream of 

the 2A-like sequence, and 3) the entire “full-length” protein in which the Gly–Pro peptide bond 

is formed, depending on the efficiency of “ribosome skip.” Whether the 2A-like motif including 

the one of YkV1 is functional in fugal cells remain to be determined.  

3. Intimate interplay between coinfecting viruses: Yado-nushi and Yado-kari viruses. 

Based upon combined immunological and molecular techniques, we demonstrated 

heteroencapsidation of YkV1 dsRNA and RdRp by the CP of YnV1-A (Zhang et al., 2016). We 

proposed a model for their intimate relation in which YkV1 highjacks the YnV1 capsids as its 

replication sites, while YnV1, as an independent virus, completes its replication cycle like other 

encapsidated dsRNA viruses. According to this model, YkV1 behaves or replicates as if it were a 

dsRNA virus with respect to the encasement of RdRp into and RNA synthesis within particles. 

The dependence of YkV1 on YnV1 was clearly proved by using an infectious cDNA clone of 
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YkV1 and virion transfection assay. That is, transfection of virus-free standard strain, W97, of R. 

necatrix resulted in four different types of dsRNA detection patterns: YkV1; YnV1 + YnV1D; 

YnV1 + YkV1; and YnV1 + YnV1D + YkV1. Importantly, no single infection of W97 by YkV1 

was observed. Furthermore, the YkV1 cDNA can launch autonomous YkV1 replication only in 

the presence of YnV1 that was provided via horizontal transfer as a result of hyphal anastomosis 

or pre-existed in spheroplasts used for transformation. It is of interest to note that the other two 

YnV1 strains B and C are also able to help YkV1 (Fig. 1). However, validation of the model must 

await addressing key questions such as 1) whether YkV1 uses its own RdRp, 2) whether purified 

heterocapsids is competent of YkV1 RNA synthesis, and 3) transgenic supply of YnV1 CP can 

support YkV1 replication.  

 The interplay between the two viruses is mutualistic rather than commensal. YnV1 

also benefits from YkV1. As reported by Zhang et al. (2106), coinfection of the W97 strain by 

YnV1 and YkV1 resulted in enhancement of YnV1 accumulation compared to YnV1 single 

infection. Although how YkV1 enhances YnV1 accumulation is an open, interesting question, 

there are some possible explanations. YkV1 may suppress antiviral RNA silencing working at the 

cellular level (Nuss, 2011). It is also possible that YkV1-derived siRNAs compete YnV1-derived 

siRNAs over loading into the Argonaute (AGO) effector proteins.  

 There are several commensal or mutualistic interactions in plant viruses. Rice tungro 

bacilliform virus (RTBV, a dsDNA badnavirus, a plant-infecting pararetrovirus) and rice tungro 

spherical virus (RTSV, a (+)ssRNA secovirus, order Picornavirales) in combination, cause a 

serious rice tungro disease in South and Southeast Asia. RTBV is largely responsible for 

induction of the disease symptoms, while its transmission in a semi-persistent manner by 

leafhopper depend on RTSV (Hibino, 1996). RTSV alone can be transmitted by leafhoppers 

independently. A similar mutualisitic interplays are found between umbraviruses and luteoviruses, 

both of which have (+)ssRNA genomes, as discussed below.  

�

4. Are there any other combinations showing similar mutualistic interplays?  

A blast search with the YkV1 RdRp sequences returned with RdRps from several (+)ssRNA 

viruses. Table S2 lists four viruses infecting filamentous fungi: Rhizoctonia solani mycovirus 1 

(RsMV1) (Bartholomaus et al., 2016), Penicillium aurantiogriseum foetidus-like virus 1 (PaFlV1) 

(Nerva et al., 2016), Aspergillus foetidus slow virus S2 (AfV-S2) (Kozlakidis et al., 2013b). 

Fusarium poae mycovirus 2 (FpMyV2) (Osaki et al., 2016). All of theses viruses possess single 

ORFs encoding the RdRP and 2A-like motifs at the relatively similar positions: RdRp at the 
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central region and 2A-like at the C-proximal portion (Fig. 1C and S2B). It is of great interest to 

note that these viruses were reported to co-infect with toti- or toti-like viruses with a two-ORF 

genome arrangement (see Table 1), suggesting that there is a relationship between the (+)ssRNA 

and dsRNA viruses which is similar to the YkV1 and YnV1 relation. For example, a strain of 

Aspergillus foetidus was reported to be coinfected by three viruses: Aspergillus foetidus virus 

(AfV) F (unclassified quadripartite virus) (Kozlakidis et al., 2013c), S1 (victorivirus, family 

Totivirdae) (Kozlakidis et al., 2013a) and S2 (yado-kari-like virus) (Kozlakidis et al., 2013b). A 

non-coding satellite RNA is associated with AfV-S2, which shares the terminal sequences with 

the helper virus. Defective RNAs of YkV1 also appear during maintenance of YkV1-infected 

cultures (R. Zhang and N. Suzuki, unpublished results). AfV-S2 encoded protein shows overall 

45% amino acid sequence identity to YkV1 RdRp (Table S2).  

Table 1 shows presumable partnership between YkV1-related viruses and YnV1 

equivalents in the respective host strains and their genome size variation. Because of the 

unavailability of full-genome sequences of RsMV1 and 3, these viruses were excluded from a 

comparative analysis below. If the partnership really exists, there appear to be a rule between 

the two viruses. First, YkV1-like viruses (AfV-S2, PaFlV1 and FpMyV2) are always smaller in 

genome size than their partner candidates (AfV-S1, PaTV1 and FpVV1). Second, the ratio of 

the genome sizes of YkV1-like to those of the YnV1-like partners appears to be constant, not so 

variable. The ratios varied only slightly from 1.43 for the YnV1/YkV1 to 1.21 for 

FpVV1/FpMyV1. In other words, their sizes of the two associated viruses are proportional. 

Given that the reported sequences of FpVV1/FpMyV2 are not complete, its actual ratio may be 

much closer to 1.42. This observation may be related to the capacity of the CP interior of 

YnV1-like partner candidates, which primarily determined by the CP size. Overall, 

YkV1-related fungal viruses appear to have a similar lifestyle to YkV1 whose viability depends 

on partner dsRNA viruses. Importantly, the corresponding partner viruses are not necessarily 

closely related to YnV1 (Fig. 2A), although they have similar genome arrangements with two 

ORFs. Also the anticipated partnerships have yet to be substantiated.  

 

5. Taxonomic proposal 

Fungal viruses are now classified into at least 16 families, six of which are families that 

accommodate (+)ssRNA viruses: Barnaviridae, Alphaflexiviridae, Gammaflexiviridae, 

Narnaviridae, Hypoviridae and Endornaviridae. However, there are unclassified (+)ssRNA 
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viruses like Rosellinia necatrix fusarivirus 1 (Zhang et al., 2014), Fusarium graminearum virus 

1 (Kwon et al., 2007), Sclerophthora macrospora virus A and B (Yokoi et al., 1999; Yokoi et al., 

2003). Some fungal (+)ssRNA viruses show phylogenetic affinity to plant and/or animal viruses, 

for example, flexiviruses (Howitt et al., 2006; Howitt et al., 2001; Xie et al., 2006), tombus-like 

viruses (Ai et al., 2016; Preisig et al., 2000), and rubi-like virus (Liu et al., 2009), while others 

constitute their own families or groups (Marzano et al., 2015; Zhang et al., 2014). However, 

YkV1 does not cluster together with these fungal (+)ssRNA viruses. Rather, YkV1 is related, 

though distantly, to caliciviruses such as noro- and sapoviruses (family Caliciviridae), and more 

closely related to the aforementioned four fungal viruses, PaFlV1, FpMyV2, and AfV-S2. 

PaFlV1, YkV1, and AfV-S2 appear to be phylogenetically more closely related to one another 

than FpMyV2 is related to each of them (Fig. 2B). This can be seen in the amino acid sequence 

identity detected in homologous regions of the ORF-encoded protein. We propose that these 

viruses belong to a new virus family designated as “Yadokariviridae” that accommodates the 

four related viruses.  

The taxonomy of Yado-nushi virus and related viruses is not well-established, because 

of their taxonomically and phylogenetically complex nature. The family Totivirdae consists five 

genera; Totivirus, Victorivirus, Leishmavirus, Giardiavirus, and Tricomonasvirus. The family 

accommodates phylogenetically diverse members infecting fungi and protozoa, while most of 

them have undivided dsRNA genomes with two ORFs, except for Ustilago maydis virus H1 

(UmV-H1) that encodes a single large polyprotein (CP-RdRp fusion). UmV-H1 is currently 

classified into the genus Totivirus, however its RdRp shows closer phylogenetic affinity to insect 

dsRNA viruses, Circulifer tenellus virus 1 (CiTV1) and Spissistilus festinus virus 1, and fungal 

bi-segmented botybirnaviruses (floating genus Botybirnavirus) than to other totiviruses (Fig. 2A). 

In addition, there are many viruses with similar genome organization, i.e., undivided genome with 

two ORFs, and often termed “toti-like.” Jiang and co-workers classified these viruses into the 

CiTV1-like, SsNsV-L-like, AaRV-like and PgV1-like groups (Liu et al., 2012). Yado-nushi-like 

viruses form a group distinct from these. No genome sequences of viruses belonging to the 

Yado-nushi-like group have been reported except the one from a phytopathogenic basidiomycete, 

Sclerotium rolfsii (DDBJ/GenBank/EMBL accession no: ????). Taxonomical reorganization of 

totiviruses and “toti-like” virurses is definitely necessary.  

 

6. Molecular entities similar to YkV1.  
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The YkV1/YnV1 is reminiscent of other subviral or viral molecular entities listed in Table 2 show 

similar helper/dependent relations. However, these listed cases are distinct from the interplay 

between a (+)ssRNA virus, YkV1 and a dsRNA virus, YnV1. Satellite viruses usually encode 

capsid protein that encase their own RNAs. Subviral molecules, i.e., satellite RNAs and defective 

RNAs, are associated with helper or parental viruses. While satellite RNAs generally show little 

sequence similarity to their helper virus genomic RNAs, defective RNAs usually do show it and 

could occasionally encode proteins (Simon et al., 2004). Unlike YkV1, all of these molecules do 

not encode their replicase. For example, there is a relationship similar between a reverse 

transcribing dsDNA pararetrovirus, hepatitis B virus (HBV, hepadnavirus), and a satellite virus 

with a circular (-)ssRNA genome, hepatitis D virus (HDV, deltavirus) well-known for its 

ribozyme and pathogenicity (Taylor, 2006). HDV relies on HBV for its virion assembly, cell to 

cell spread, and transmission, thus being a defective virus and a satellite virus of HBV. In both 

combinations one virus (YkV1 and HDV) depends on the other for encapsidation (YnV1 and 

HBV). However, HDV encodes a delta antigen (HDAg), which may have been captured from its 

host genome (Littlejohn et al., 2016), but not RdRp responsible for HDV replication. HDV RNA 

replication (amplification of genomic RNA) and transcription (synthesis for HDAg mRNA) are 

catalyzed by the host RNA polymerase II together with viral ribozyme by a dual rolling-circle 

mechanism. Thus, HDV replicates like plant-infecting non-coding RNAs, viroids (Flores et al., 

2015). In contrast YkV1 possibly uses its own RdRp, which however needs to be substantiated 

(see below), but uses YnV1 capsids as replication sites.  

 Plant umbraviruses are trans-encapsidated by helper luteoviruses which allow for their 

plant-to-plant transmission by aphids (Taliansky and Robinson, 2003). Both viruses have 

(+)ssRNA genomes, and they belong to the families Tombusviridae (flavi-like superfamily) and 

Luteoviridae (picorna-like superfamily), respectively. In addition to RNA polymerase and 

helicase, umbraviruses encode two functional proteins that facilitate cell-to-cell and long-distance 

movement in plant (Taliansky and Robinson, 2003). Umbraviruses are similar to YkV1 and other 

satellite viruses with respect to their dependence for encapsidation. However, unlike YkV1, 

umbraviruses can infect host plants systemically without helper luteoviruses, while less 

efficiently than in co-infected plants. Importantly, umbraviruses are assumed to be replicated in 

cellular membranes like other (+)ssRNA viruses, not in the hetrocapsids.  

 

7. Evolutionary implications for YkV1 and YnV1 



 11 

The viability of YkV1 depends on YnV1 that can complete on its own replication, suggesting 

interesting evolutionary placement of YkV1, i.e., possibly an intermediate evolutionary form of 

this virus. There are a few evolutionary scenarios for YkV1. As proposed by Kupovic and Koonin 

for other capsidless RNA viruses (Krupovic and Koonin, 2017), YkV1’s progenitor might have 

been a calici-like virus and had its own CP gene in the genome (Fig. 3). The ancestral virus then 

might have lost its CP gene and simultaneously started hijacking the CP of another co-infecting 

fully-fledged dsRNA virus. Encounter of the progenitor with co-infecting toti-like viruses would 

not have been implausible, given their prevalence and high incidence rate of mixed infections in 

fungi (Hillman et al., 2017). There must have been compatible association between hijacked 

capsid and partner (+)ssRNA virus for heteroencapsidation to occur. Under the premise that 

YkV1 will be an independent virus capable of autonomous replication, YkV1 will need to acquire 

a CP gene and become a dsRNA utilizing the replication strategy of typical dsRNA viruses. 

Alternatively, YkV1 may employ vesicles or rearranged membrane (spherule) (Ahlquist, 2006; 

Nagy et al., 2016) as the replication sites like hypovirus and possibly other fungal capsidless 

RNA viruses. In this case, YkV1 will remain one of the most simple genome architecture with 

one single ORF, as in the case of capsidless narnaviruses (Hillman and Cai, 2013).   

 Multi-segmented dsRNA viruses tentatively termed polymycoviruses, AfuTmV1 and 

related viruses, were reported from filamentous fungi (Kotta-Loizou and Coutts, 2017). There is 

no consensus about their virion morphology, but they commonly appear to be infectious as naked 

dsRNA when host protoplasts are transfected (Kanhayuwa et al., 2015). Interesting parallelism 

found between these viruses and YkV1 is that both show phylogenetic affinity to caliciviruses 

with respect to RdRp (Fig. S2A). However, of note are that AfuTmV1’s RdRp has “GDNQ” in 

motif C as catalytic site, typical of mononegaviruses (Fig. S2B) and that AfuTmV1 possesses a 

dsRNA genomic segment encoding methyltransferase like reoviruses (Kotta-Loizou and Coutts, 

2017). It seems that polymycoviruses evolved into more independent viruses than YkV1 relying 

on another dsRNA virus. 

 DsRNA viruses are diverse and polyphyletic. Reoviruses are assumed to have originated 

from prokaryotic dsRNA viruses, cystoviruses, while many other eukaryotic dsRNA viruses may 

have been derived from ancestral picornaviruses with (+)ssRNA genomes (Koonin et al., 2015). 

The phylogenetic tree with alignable regions of RdRps of YnV1-related dsRNA viruses reveal 

two large groups (Fig. 2A) each containing several lineages: one accommodating families 

Totiviridae, Chrysoviridae, Megabirnaviridae, and Quadriviridae, the genus Botybirnavirus, 

PgV-like and SsNsVL-like, and the other group encompassing AaRTV-like, the genus 
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Giardiavirus within the Totiviridae, proposed genus Artivirus and the Yadonushi-like virus 

group.. Hosts of both groups are largely fungi in addition to protozoans, plants, insects, while the 

latter group has additionally fish and marine eukaryotic organisms as hosts. Interestingly, both 

groups have members with different genome segment numbers as described by Liu et al. (Liu et 

al., 2012), suggesting the occurrence of segmentation, capture and loss of dsRNA genome 

segments during the course of evolution. In this regards, it should be noted that some fungal lose 

dsRNA genome segments during maintenance under laboratory conditions and possibly in nature 

(Kanematsu et al., 2010; Urayama et al., 2014). Acquisition of some dsRNA genome segments 

has not yet been substantiated, but likely occurs, although it may be infrequent.  

The two domains Phytoreo_S7 and 2A-like, discussed above, may represent good 

examples of multiple independent horizontally transfer events, rather than vertical inheritance, 

that may have occurred during their evolution. It is noteworthy that these domains are not 

always present in the entire virus family, rather conserved in a limited number of family or 

genus members. Liu and others indicated multiple independent horizontal transfer of the 

Phytoreo_S7 domain based on a few observations. Those include 1) Phytoreo_S7 is conserved 

in diverse RNA viruses belonging to different families or groups but only in some viruses of a 

given family, 2) Phytoreo_S7-based trees are not congruent with those based on RdRps, and 3) 

the domain of non-phytoreoviruses are shorter than those of phytoreoviruses and juxtaposed 

differently in their genomes. These convincingly show that Phytoreo_S7 of diverse dsRNA 

viruses may have been acquired from ancestral phytoreoviruses and spread via horizontal 

transfer among them. A similar logic may be applicable to demonstrate horizontal transfer of the 

2A-like motif. However, the 2A-like motif is very short, composed of eight amino acids, and 

lack sequence similarity at their flanking regions. This makes it difficult to phylogentically 

analyze the 2A-like sequences conserved in diverse RNA viruses.  

 

8. Conclusions and perspectives.  
This article largely focuses on properties of two viruses YnV1 and YkV1 with a novel lifestyle, 

unique mutual interplay between them, and touched their taxonomical and evolutionary 

considerations. The nature of YnV1/YkV1 neo-lifestyle was discovered in 2016 (Zhang et al., 

2016), almost two years ago, and therefore there are many unknowns. For example, it is still 

unknown whether single particles encapsidate both of the two virus genomes or either one of 

them. Excepting reovirus particles (monopartite particles) which encase a set of genomic 
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segments 9 to 12, other segmented dsRNA viruses are most likely to multipartite, each segment 

encapsidates separately in a single particle (Ref, Liu et al., 2014?). The size of capsids is 

generally proportional to their genome sizes, and is primarily determined by the size of capsid 

protein, as summarized in the Louke et al. (Luque et al., 2016). Based on these points, it is 

anticipated that YnV1 CP encapsidates either one single YkV1 or YnV1 RNA molecule, but not 

both. Assuming that the capsid is composed of 60 asynmetrical dimers in the T=1 lattice as for 

other dsRNA viruses (Luque et al., 2016; Miyazaki et al., 2015), the masses were approximately 

calculated to be 20.3 MDa for YnV1 capsid and 18.5 MDa for the YkV1 heterocapsid (N. Suzuki, 

unpublished results?). This issue should be addressed by high-resolution equilibrium density 

gradient centrifugation if applicable or other appropriate methods. 

 Another related question is whether heterocapsids really serve as the replication sites, or 

whether YkV1 RdRp catalyzes synthesis of YkV1 RNA. Taking advantage of the infectious 

cDNA clone of YkV1, experiments to address this question 1 is underway by introducing 

mutations into the GDD hallmark motif of YkV1 RdRp. Preliminary results suggest that 

mutations at the GDD motif result in abolishment of YkV1 viability even the presence of YnV1, 

strongly supporting the model proposed by Zhang et al. (A. M. Mahfuz, R. Zhang, S. Hisano, and 

N. Suzuki, published elsewhere). Other interesting open questions regarding the YkV1/YnV1 

include: 1) how YnV1 trans-encapsidates efficiently YkV1 RNA and RdRp, 2) where the YkV1 

assembly origin reside on the sequence, 3) how YkV1 enhances YnV1 replication, and 4) whether 

there are any other similar viral mutualistic interplays in other eukaryotic organisms than fungi.  
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Figure legends 

 
Fig. 1. Genome organization of YnV1 and YkV1. Diagrams of genetic organization of YnV1 (A) and 
YkV1 (B). YnV1 and YkV1 are 8971 nt and 6310 nt in length that possesses two (ORF1 and ORF2) 
and one ORF, respectively. Open boxes illustrated using solid lines denote ORFs, while that drawn by 
dashed lines denotes a possible extension of YnV1 ORF2 by -1 frameshifting (-1FS). RdRp domains 
highlighted in red are found in YnV1 ORF2 and the YkV1 ORF (Fig. S2). Regions highlighted in 
purple and green refer to a zinc-finger motif (smart00356) and a Phytoreo_S7 motif (Fig. S1). Two 
versions of the capsid proteins were detected in purified virion fractions. The arrows in A indicate 
positions of the amino-terminal of the 120-kDa CP with its amino acid sequences. Arrows head shows 
the position of sequence heterogeneity along with a frame-shifting of each ORF. A possible cleavage 
site of the YnV1 protein in B is indicated by the arrow with 2A-like amino acid sequences. C, 
Comparison of the 2A-like nona-amino acid sequences among YnV1 and other related fungal viruses. 
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Fig. 2. A, B. Maximum likelihood phylogenetic trees of YnV1, YkV1 and their related virus 
sequences. Two trees were constructed based on the multiple amino acid sequence alignment of the 
RNA-dependent RNA polymerase (RdRp) or its precursor using PhyML 3.0 (Guindon et al., 2010) 
with the best-fit model “LG+I+G” (A) or “LG+G” model (B). Related dsRNA viruses and (+)ssRNA 
viruses were included, respectively, whose sequence information are shown in Table S1. Different 
host groups of the analyzed viruses are differentiated by circles filled with different colors. The 
segmented viruses are labeled with segment numbers below the family or tentative group name. 
Phylogenetic placements of YnV1 and YkV1 are highlighted in red. The branch support values were 
estimated by the approximate likelihood ratio test (aLRT) with a SH-like algorithm (Anisimova and 
Gascuel, 2006) (only values greater than 0.9 are shown). Viruses with two asterisks are expected to 
have yadokari-like partners listed in the Table 1. 
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Fig. 3. Evolutionary considerations of the past, present and future forms of YkV1. See text for 
explanation.
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Table 1.  

Possible interplays similar to the YnV1/YkV1. 

Host Strain 
Virus / Genome size (kbp) a Ratio 

(Yn-like/Yk-like) 
Reference 

Yado-nushi like Yado-kari like 

Rosellinia necatrix W1032 YnV1 9.0 YkV1 6.3 1.43 Zhang et al. (2016) 

Fusarium poae  MAFF 240374 FpVV1 >5.1 FpMyV1 >4.2 1.21 Osaki et al. (2016) 

Penicillium aurantiogriseum MUT433 PaTV1 5.2 PaFlV1 >3.7 <1.41 Nerva et al. (2016) 

Aspergillus foetidus  IMI 41871 AfV-S1 5.2 AfV-S2 3.6 1.44 Kozlakidis et al. (2013b) 

Rhizoctonia solani AG 2-2IV/DC17 RsMV-3 N.A. RsMV-1 N.A – Bartholomaeus et al. (2016) 
a GenBank accession no, YnV1: LC061478; YkV1: LC006253; FpVV1: LC150610; FpMyV2: LC150617; PaTV1: KT592305; PaFlV1: KT601100; 

AfV-S1: HE588147; AfV-S2: HE588148; Rhizoctonia solani mycovirus 3 (RsMV-3, PgV-1 like, partial CDS): KX349070; RsMV-1: KX349063 

(partial CDS). N.A.: not available. 
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Table 2.  
Comparison of YkV1 with other unusual viruses or subviral agents.  

 Viruses Sub-viral agents a 

   
YkV1 Umbraviruses Capsidless 

RNA viruses 
Satellite viruses Satellite 

nucleic acids HDV b STNV c Virophages 

Genome  (+)ssRNA (+)ssRNA (+)ssRNA Circular 
(-)ssRNA (+)ssRNA Circular 

dsDNA 

ssDNA 
(+)ss- d or 

dsRNA 

Encoding  
capsid protein 

NO: Trans- 
encapsidated 

NO: Trans- 
encapsidated NO: Capsidless NO: Trans- 

encapsidated b YES YES NO: Trans- 
encapsidated 

Encoding RNA or 
DNA polymerase YES YES YES NO NO YES NO 

Independent auto- 
nomous replication NO e YES f YES f NO NO NO NO 

Partner or helper 
virus YnV1 Luteoviruses Not required hepatitis B 

virus  
tobacco 

necrosis virus Giant viruses Various viruses  

a Classification for sub-viral agents have been proposed (Krupovic et al., 2016). 
b Hepatitis delta virus: categorized as a satellite virus in this table. HDV encodes the hepatitis delta antigen that constitutes the inner 

nucleocapsid, but not outer capsid. 
c Satellite tobacco necrosis virus. 
d Subgroups 1: large satellite RNAs, 2: small linear satellite RNAs, 3: circular satellite RNAs or virusoids (see Palukaitis, 2016).  

e Genome replication probably occurs inside the trans-encapsidated particles. 
f Genome replication probably occurs inside the reorganized host cell membranes. 
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Fig. S1. A, Pairwise comparisons of nucleotide and amino acid sequence identity among three YnV1 
varians. B, Nucleotide sequence similarities of the entire genome length of the YnV1-A (top row) 
and YnV1-C (bottom row) generated using Simplot ver. 3.5.1 (Lole et al., 1999).  
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Fig. S2. A, Comparison of the conserved motifs of the RdRP in YnV1, YnV1-like viruses, 
polymymoviruses and caliciviruses. B, Phylogenetic relationships of the RdRps of YnV1 and its 
related viruses. The ML tree was constructed using PhyML 3.0 with a best fit model “Blosum62 
+G+I”. GenBank/Refseq accession numbers of the RdRp sequences are listed in Table S1 with the 
addition of four polymymoviruses: Aspergillus fumigatus tetramycovirus-1 (AfTmV-1), CDP74618; 
Botryosphaeria dothidea virus 1 (BdV-1), YP_009342446; Aspergillus fumigatus tetramycovirus-1 
(AfTmV-1), CDP74618; Cladosporium cladosporioides virus 1 (CcV-1), YP_009052470. Two 
picornaviruses used as an out group. 
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Table S2.  

Summary of protein blast search with YkV1 polyprotein (1430 aa). 
a Query coverage 

 

Viruses Protein name Length  Overlap QCa E value Identity Accession no. 

Penicillium aurantiogriseum foetidus-like virus 115 kDa protein 975 aa 346/710 49% 0.0 49% YP_009182156 

Aspergillus foetidus slow virus 2 RdRp 962 aa 337/659 45% 0.0 51% CCD33025 

Rhizoctonia solani mycovirus 1 RdRp, partial (311 aa) 163/319 22% 1e-91 51% ANR02697 

Fusarium poae mycovirus 2 RdRp 1107 aa 120/381 25% 1e-29 31% YP_009272910 

Sapovirus Hu/GII/JP/2010/Kashiwa1 ORF1 polyprotein 2279 aa 62/234 15% 0.011 26% BAX24515 

Norovirus isolates RdRp, partial (149 aa) 40/130 8% 0.022 31% AAB81329 

Sapovirus SaKaeo-15/Thailand polyprotein 2281 aa 62/242 16% 0.023 26% AAV69574 

Sapovirus Hu/GII/Hokkaido/Nay1/2005/JPN polyprotein, partial (393 aa) 51/181 12% 0.025 28% ABO20832 

Sapovirus C12 ORF1 protein 2281 aa 62/242 16% 0.038 26% YP_164336 

Sapporo virus-London/29845 polyprotein, partial (849 aa) 49/181 12% 0.039 27% AAC40584.1 

Sapovirus Mc10 polyprotein precursor 2278 aa 62/242 16% 0.039 26% YP_022762 


