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Abstract: We are focusing on the algorithms for solving the large-scale convex optimization problem
in linear elasticity contact problems discretized by Finite Element method (FEM). The unknowns of the
problem are the displacements of the FEM nodes, the corresponding objective function is defined as a
convex quadratic function with symmetric positive definite stiffness matrix and additional non-linear
term representing the friction in contact. The feasible set constraints the displacement subject to
non-penetration conditions. The dual formulation of this optimization problem is well-known as a
Quadratic Programming (QP) problem and can be considered as a most basic non-linear optimization
problem. Understanding these problems and the development of efficient algorithms for solving
them play the crucial role in the large-scale problems in practical applications. We shortly review the
theory and examine the behavior and the efficiency of Spectral Projected Gradient method modified
for QP problems (SPG-QP) on the solution of a toy example in MATLAB environment.
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1. Introduction

One of the key components of the structural design is the contact problem. This problem is crucial,
for example, during the design process of steel components, namely welded and screwed contacts.
From the mathematical point of view, we are dealing with variational equalities and variational
inequalities [1]. Since the problem is analytically solvable only for simple geometries, the typical
approach is to discretize the problem and using the Finite Element Method (FEM, [2,3]). Using the
reformulation of the problem by the so-called Ritz–Galerkin method and under certain assumptions,
one can mathematically prove that the solution of the discretized problem is the approximation of the
contiguous one. Additionally, the error converges asymptotically to zero with the density increase in
the used mesh [1,3]. The advantage of the method is the possibility of the formulation of the problem
as the (constrained) energy functional minimization problem. In the case of the linear elasticity,
this corresponding problem is the Quadratic programming (QP) problem [4].

QP problems belong among to the most important optimization problems in practical applications;
for example, in the case of the least square methods for regression analysis with the Euclidean
distance [5], the solution of the problems with symmetric positive definite system matrix [6,7],
Support Vector Machine (SVM, [8,9]), the inner subproblem of more complex (non-linear) optimization
problems [10,11], and the numerical solution of variational inequalities in the linear elasticity contact
problems [1,4,12,13].
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In our case, the Hessian matrix represents the stiffness matrix and the linear term of the
objective function is the force density vector. The unknown is the vector of the displacements
in the FEM nodes. In the case of contact problems, the non-penetration conditions of the bodies
and obstacles are defining the feasible set of the corresponding optimization problem with the
linear inequality constraints. Additionally, if we consider also a friction between the bodies and/or
the obstacles, the original contiguous problem captures this property by the new term influencing
the solution displacement. For example, in the case of the linear elasticity contact problem with
the Tresca (given) friction, the discretized minimization problem of the energy functional with the
additional non-linear term representing the response of displacement caused by friction and constraints
representing the non-penetration, can be reformulated using the dualization into the QP problem with
bound and separable quadratic inequality constraints [1,12,14].

Although the QP problems belong to the basic non-linear optimization problems necessary for
understanding non-linear optimization theory in general, there does not exist the best algorithm for
solving problems from different applications, especially when one introduces the Dirichlet boundary
conditions by equality constraints and/or uses non-overlapping domain decomposition methods,
such as the Finite Element Tearing and Interconnecting Method (FETI, [4,15–21]). The contact problems
of linear elasticity are characterized by the bounded spectrum independent of the used mesh [22].
The utilization of this property has been proven and practically applied/demonstrated only in the
case of active-set algorithms, namely the MPRGP algorithm (Modified Proportioning with Reduced
Gradient Projections, [4,8,12,23,24]). Another approach is to use Interior-Point (IP, [25]) method—we
eliminate the inequality constraints using barrier functions and solve the sequence of resulting
saddle-point problems. In this paper, we examine the projected gradient descent method [26–28],
especially SPG-QP (Spectral Projected Gradients [29] for QP [5]).

2. Problem Definition

As a simple benchmark, we consider the block of homogeneous material Ω with fixed zero
displacement on boundary ΓD and imposed traction forces F on ΓF. The part ΓC denotes the part of
boundary that may get into contact with a rigid obstacle. The block is attracted to the obstacle as
consequence of the gravity force Fg, see Figure 1.

Figure 1. Contact problem with rigid obstacle and given friction.

We solve the discretized form of the problem using FEM (see [2,3,30]), which leads to the
optimization problem

u∗ := arg min
u∈ΩC

f (u) + jh(u), (1)

where N ∈ N is a number of used FEM nodes, n = 3N is a number of primal variables, mc ≤ N is a
number of FEM nodes in ΓC, the terms of the objective function are defined as

f (u) :=
1
2

uTKu− f Tu, jh(u) :=
mc

∑
i=1

ψi‖Tiu‖2,
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and

• u ∈ Rn is a vector of unknown displacements in FEM nodes;
• ΩC ⊂ Rn is a set of feasible (non-penetrated) displacements;
• K ∈ Rn,n is a symmetric positive definite (SPD) stiffness matrix (the Dirichlet boundary condition

is implemented by the modification of the stiffness matrix);
• f ∈ Rn is a vector of forces density resulting from the stresses imposed on the structure during a

displacement (the discretized form of F and Fg);
• jh : Rn → R is a numerical integration of functional describing the friction forces in the weak

formulation of the problem;
• Ti ∈ R2,n, i = 1, . . . , mc are basis vectors formed by appropriately placed multiples of the unit

tangential vectors in such a way that the jump of tangential displacement in i-th FEM node is
given by Tiu;

• ψi ∈ R+, i = 1, . . . , m are slip bound coefficients associated with Ti.

Since our problem has a simple geometry, see Figure 2, we set n := [0, 0,−1] as the unit normal
contact vector and t1 := [1, 0, 0], t2 := [0, 1, 0] as the tangential vectors for every FEM node in ΓC.

FEM node t
t

n

1

2

Figure 2. Normal and tangential vectors of FEM nodes in ΓC.

For every contact node (i-th node of ΓC) Ti ∈ R2,n is given by a zero matrix with 1 in the first
row on appropriate x-coordinate of i-th node and in the second row on appropriate y-coordinate of
i-th node. Consequently, the matrix composed as

T :=

 T1
...

Tmc

 ∈ R2mc ,n

is a full rank matrix.
We can modify the non-differentiable term jh in (1) into equivalent form (see [1])

jh(u) =
mc

∑
i=1

max
‖τi‖2≤ψi

τT
i Tiu, (2)

where τi ∈ R2 are regulation variables. We denote the function and the vector

L(u, τ) := f (u) + τTTu, τ =

 τ1
...

τmc

 ∈ R2mc , (3)

and we write constraints ‖τi‖2 ≤ ψi in (2) in the form√
[τi]

2
1 + [τi]

2
2 ≤ ψi, i = 1, . . . , mc. (4)
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After the substitution into (1), we get

min
u∈ΩC

f (u) + jh(u) = min
u∈ΩC

max
τ∈Λτ

L(u, τ), (5)

where we denoted Λτ ⊂ R2mc as a feasible set defined by constraints (4). We consider L(u, τ) as a
Lagrange function and τ as a vector of the Lagrange multipliers (in notation (3)) and we use the duality
theorem (see Dostál [4]) to reformulate problem (5) into

min
u∈ΩC

max
τ∈Λτ

L(u, τ) = max
τ∈Λτ

min
u∈ΩC

L(u, τ). (6)

We include condition u ∈ ΩC by creating new Lagrange multipliers

max
τ∈Λτ

min
u∈ΩC

L(u, τ) = max
τ∈Λτ ,λC≥0

min
u∈Rn

L(u, τ) + λT
C(Bu− c), (7)

where matrix B ∈ Rmc ,n and vector c ∈ Rmc are constructed in such way that

ΩC = {u ∈ Rn : Bu ≤ c}. (8)

Due to geometry in our problem we can construct B simply; B is zero matrix with −1 in every
i-th row (which is corresponding to i-th node in ΓC) on appropriate z-coordinate of i-th node (see the
choice of normal vectors for nodes in ΓC in Figure 2). Using these values, the set (8) consists of the
feasible displacements which do not penetrate the rigid obstacle.

Problem (6) is equivalent to the saddle point problem

(u∗, λ∗) := arg max
λ∈Λ

min
u∈Rn

f (u) + λT(B̂u− ĉ), (9)

where

λ :=

[
τ

λC

]
, B̂ :=

[
T
B

]
, ĉ :=

[
0
c

]
and

Λ := {[τ, λC] ∈ R3mc :
√

τ2
2i−1 + τ2

2i ≤ ψi, i = 1, . . . , mc, λC ≥ 0}. (10)

We derive the dual problem corresponding to (9). From the first KKT condition (since stiffness
matrix is SPD, we can use standard inversion K−1) we get

Ku− f + B̂Tλ = 0 ⇒ u = K−1
(

f − B̂Tλ
)

(11)

and substitute into Lagrange function (7). After the simplifications, we get

L(u, λ) = L
(

K−1( f − B̂Tλ), λ
)
= −1

2
λT B̂K−1TTλ + λT B̂K−1 f − 1

2
f TK−1 f .

We obtain the function of only one variable λ. Since we want to find maximizer
(see saddle-point problem (9)), we omit the constant term and change signs and λ∗ solves equivalent
minimization problem

λ∗ = arg min
λ∈Λ

Θ(λ), Θ(λ) :=
1
2

λT Aλ− λTb, (12)

where we denoted
A := B̂K−1B̂T , b := B̂K−1 f . (13)

After solving the minimization problem (12), the corresponding solution u∗ of primal problem (1)
can be evaluated using (11).
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Obviously, A ∈ R3mc ,3mc is SPD and problem (12) is the QP problem with separable quadratic
constraints combinated with bound constraints. Such a problem always has a unique solution [4].

3. Numerical Solution

To solve the problem (12), we use the Spectral Projected Gradient method (SPG, [29]), which is a
projection gradient method for solving the general minimization problems

x̄ := arg min
x∈Θ

f (x).

The method is based on the Barzilai–Borwein (BB, [31,32]) step-size

xit+ 1
2
= PΘ(xit − αit∇ f (xit)), αit :=

〈xit − xit−1, xit − xit−1〉
〈xit − xit−1,∇ f (xit)−∇ f (xit−1)〉

,

where ∇ f (x) ∈ Rn is a gradient of objective function f : Rn → R and PΘ : Rn → Θ is the projection
onto closed convex feasible set Θ ⊂ Rn. However, since this procedure does not necessarily provide
the decreasing sequence of function values (see [33]), an additional step is introduced

xit+1 = xit + βitdit, dit = xit+ 1
2
− xit,

where dit ∈ Rn is called spectral projected gradient. The appropriate step-size βit ∈ (0, ∞) is computed
using the iterative Grippo–Lampariello–Lucidi line-search method (GLL, [34]) to satisfy so-called
generalized Armijo condition

f (xit + βitdit) < fmax + τβit〈∇ f (xit), dit〉. (14)

Here, τ ∈ (0, 1) represents a safeguarding parameter and

fmax := max{ f (xit−j) : 0 ≤ j ≤ min{it, m− 1}}

with predefined constant m ∈ N. Because of the enforcement of condition (14), the algorithm generates
the sequence of approximations with a decrease in objective function in every m iterations and the
algorithm is converging to the minimizer.

Recently, [5] introduced the simplification of the method in the case of the quadratic
optimization problem. If the objective function is quadratic, one can derive the analytical formula for
the computation of step-size, which satisfies (14)

βit ∈
[
σ1, min{σ2, β̂}

]
with safeguarding parameters 0 < σ1 < σ2 < 1 and

β̂ = (1− τ)β̄ +
√
(1− τ)2 β̄2 + 2ξ, ξ =

fmax − f (xit)

〈Adit, dit〉
, β̄ = −〈∇ f (xit), dit〉

〈Adit, dit〉
,

where A = ∇2 f (xit) ∈ Rn,n is a Hessian matrix of quadratic objective function f : Rn → R.
The algorithm can be written with only single matrix-vector multiplication during one iteration,
see Algorithm 1.
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Algorithm 1: SPG for QP problems (SPG-QP, [5])

Given a quadratic objective function f (x) = 1
2 xT Ax− bTx with A ∈ Rn,n SPD and b ∈ Rn, closed

convex feasible set Θ ⊂ Rn, initial approximation x0 ∈ Θ, projection onto feasible set PΘ(x),
parameters m ∈ N, τ ∈ (0, 1), safeguarding parameters σ1, σ2 ∈ R : 0 < σ1 < σ2 < 1, precision
ε > 0, and initial step-size α0 > 0.

g0 := Ax0 − b
f0 := 1/2〈g0 − b, x0〉
set index of iteration it := 0

while stopping criterium is not safisfied
dit := PΘ(xit − αitgit)− xit

compute matrix-vector multiplication Adit
compute multiple dot-product 〈dit, {dit, Adit, git}〉

fmax := max{ f (xit−j) : 0 ≤ j ≤ min{it, m− 1}}
ξ := ( fmax − f (xit))/〈dit, Adit〉
β̄ := −〈git, dit〉/〈dit, Adit〉
β̂ := τβ̄ +

√
τ2 β̄2 + 2ξ

choose βit ∈ [σ1, min{σ2, β̂}]

xit+1 := xit + βitdit
git+1 := git + βit Adit
fit+1 := f (xit) + βit〈dit, git〉+ 1

2 β2
it〈dit, Adit〉

αit+1 := 〈dit, dit〉/〈dit, Adit〉

it := it + 1
endwhile

Return the approximation of solution xit and the number of performed iterations it.

We used the presented Spectral Projected Gradient method for QP for solving the dual problem (12)
with variable λ ∈ Rmc , objective function Θ : R3mc → R, and feasible set (10) defined by separable
quadratic constraints and bound constraints.

4. Results

We implement and solve the problem introduced in Section 2 using MATLAB. For the
FEM discretization, we adopt the open-source library presented in [35]. Instead of evaluating and
computing the inverse of the matrix in the dualization (13), we solve the system of linear equations
with multiple right-hand side vectors. In MATLAB, we evaluate

Y = K\B̂; A = B̂ ∗ Y ; b = YT ∗ f . (15)

In our numerical experiment, we consider steel brick with E = 2× 105 [MPa], µ = 0.33, ρ =

7.85× 10−2 [kg ·m−3] of size 2× 1× 0.25 [m] in contact with the rigid obstacle. The displacement and
the friction are caused by the force F = [450, 0, 0] [MPa]. We consider given (Tresca) friction between
the brick and the obstacle. To discretize the problem, we construct regular grid with the number of
FEM nodes in axis equal to Nx = 25, Ny = 13, Nz = 4. In total, we obtain N = 1300 FEM nodes,
the primal problem of dimension n = 3900, the number of FEM nodes in contact mc = 325, and dual
problem of 975 unknowns. The feasible set of dual problem is composed from 325 bound constraints
and 325 separable quadratic constraints.
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We implemented SPG-QP in MATLAB and set the parameters of the Armijo criterion to
recommended values m = 10, τ = 0.9 and initial approximation equal to the (feasible) zero vector.
The first BB step-size is equal to steepest descent (Cauchy) step-size. We solved the problem
(see Figures 3 and 4) with the coefficient of friction (slip bound) ψi = 100Si [MPa], where Si is
the contact surface corresponding to i-th node. Figure 5 demonstrates the decrease in the Euclidean
norm of scaled projected gradient

gP
ᾱ (x) :=

1
ᾱ
(PΘ(x− ᾱ∇ f (x))− x) ,

where ᾱ ∈
(
0, 1/λA

max
]

(see [36]) and λA
max is an upper estimation of the largest eigenvalue of the

Hessian matrix A, which we compute using Gershgorin circle theorem. The norm of the projected
gradient is used as a stopping criterion of the algorithm—i.e., we stop the algorithm if√

〈dit, dit〉 < ε.

In the SPG-QP algorithm, we decided to choose the largest possible βit to perform the steps in as
large a manner as possible. This approach has been suggested by Fletcher [33].

Figure 3. The solution of the problem: the displacement.

Figure 4. The solution of the problem: the Eulidean norm of Friction forces computed from the
corresponding Lagrange multipliers of dual quadratic constraints. The arrows represent the relative
size and the direction of the force in FEM nodes of the contact zone.
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Figure 5. The decrease in objective function (left) and the norm of scaled projected gradient (right)
during the solution process. The notation x∗ is used for the solution obtained in the last iteration.

Figure 6 shows the dependency of the number of iterations on the value of friction coefficient
(the size of quadratic constraints) and the size of the problem. In the first case, we solve the problem
of dimension N = 1300 and absolute error ε = 10−6 for the norm of scaled projected gradient. In the
second case, we are solving the problem with friction coefficient ψ̂ = 100 [MPa] while varying the
problem size using the same stopping criterion.
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Figure 6. The number of iterations for the problems with different friction coefficients; (left) the number
of iterations and the solution time depending on the problem size (right).

To improve the performance of the solution process, we utilize the GPU capability of the MATLAB.
In our case, we compute on GeForce RTX 2080 Ti (4352 cuda cores, 11GB GDDR6 memory) and compare
with Intel Core i9-7900X in MATLAB R2017a. Since our code is highly vectorized, the only prerequisite
to perform the computation on GPU is to transfer the data using MATLAB command gpuArray.
The overloaded MATLAB operations perform the matrix and vector operations on GPU. To analyze
the performance of this approach, we fix the number of iterations of the SPG-QP algorithm to
be equal to 104 and measure the computational time. From the results presented in Figure 7,
it is clear that the main computational bottleneck is not the solution of dual QP problem, but the
dualization—i.e., the solution of the system of linear Equations (15). The results suggest the suitability
of used gradient projected method on GPU; however, the problem has to be sufficiently large to efficiently
use this architecture. The performance of SPG-QP is limited by the matrix–vector multiplication with
dense dual Hessian matrix, which is the most time-consuming operation. Consequently, the time
complexity of the method scales quadratically with the dimension of dual problem, see Figure 7.
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Figure 7. The computational time: the dualization by evaluation of (15) (left), and the performance of
104 iterations of SPG-QP on one CPU and one GPU (right).

5. Conclusions

We examined SPG-QP algorithm for solving the strictly convex QPQC in the solution of linear
elasticity contact problem with given friction. The results demonstrate the suitability of the algorithm
for this type of problems. However, with the increasing size of the primal problem, we observe the
increase in the computational complexity of the corresponding Hessian matrix inverse (which has
polynomial complexity, in general). We suggested using domain decomposition methods, for instance
the Finite Element Tearing and Interconnecting method (FETI). This extension will be the topic of our
upcoming research.
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writing—review and editing, L.P. and M.Č.; visualization, L.P.; supervision, D.H. and M.Č.; project administration,
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