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Abstract: Extracting information from individual risk factors provides an effective way to identify
diabetes risk and associated complications, such as retinopathy, at an early stage. Deep learning and
machine learning algorithms are being utilized to extract information from individual risk factors to
improve early-stage diagnosis. This study proposes a deep neural network (DNN) combined with
recursive feature elimination (RFE) to provide early prediction of diabetic retinopathy (DR) based on
individual risk factors. The proposed model uses RFE to remove irrelevant features and DNN to
classify the diseases. A publicly available dataset was utilized to predict DR during initial stages,
for the proposed and several current best-practice models. The proposed model achieved 82.033%
prediction accuracy, which was a significantly better performance than the current models. Thus,
important risk factors for retinopathy can be successfully extracted using RFE. In addition, to evaluate
the proposed prediction model robustness and generalization, we compared it with other machine
learning models and datasets (nephropathy and hypertension–diabetes). The proposed prediction
model will help improve early-stage retinopathy diagnosis based on individual risk factors.

Keywords: retinopathy; risk factor; machine learning; deep neural network; recursive feature
elimination; deep learning

1. Introduction

Diabetes is a chronic disease associated with abnormal blood glucose (BG) levels. Patients with
type 1 diabetes (T1D) cannot control their BG naturally due to lacking insulin secretion, while for type 2
diabetes (T2D), the body cannot utilize its produced insulin [1,2]. Thus, T1D patients must administer
insulin via injection or an insulin pump to achieve a near-normal glucose metabolism [3]. For T2D
patients, a healthy diet, physical exercise, and drug administration are suggested to control BG levels
and prevent many complications. Diabetes patients commonly develop acute complications, such as
hypoglycemia (BG < 70 mg/dL) and hyperglycemia (BG > 180 mg/dL) if they fail to carefully self-manage
BG levels [4]. Excessive BG (hyperglycemia) can result in long-term complications, e.g., retinopathy [5,6],
nephropathy or kidney disease [7,8], and cardiovascular disease [9,10]. Diabetic retinopathy (DR) is the
most common ocular complication from diabetes and the leading cause of visual impairment among
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patients [11]. Thus, it is important to accurately predict related complications to help prevent their
progression [12], and individual significant risk factors can be utilized as input features to improve
prediction model performance.

Considerable research effort has recently focused on developing of retinopathy prediction
models using machine learning based on individual risk factors, aiming for high accuracy and good
generalization. Pre-diagnosis models have been used for different populations and have shown
significant performance predicting diabetic retinopathy [13–17]. Deep neural networks (DNNs) are
machine learning systems that incorporate many layers to learn more complex patterns, achieving
exceptional prediction accuracy for many applications. In particular, DNNs have shown excellent
performance by improving classification accuracy compared with conventional models [18–23].
DNNs have also been trained to successfully predict diabetic retinopathy based on retinal fundus
images [24–29]. Furthermore, previous studies have established positive impacts from support vector
machine–recursive feature elimination (SVM-RFE) as the feature selection algorithm on improving
classification accuracy [30–37], especially for DNNs [38,39].

However, none of these previous studies included DNNs with RFE for retinopathy prediction based
on individual risk factors. Therefore, the current study integrated DNN and SVM-RFE for retinopathy
to improve prediction accuracy. We employed SVM-RFE to extract significant risk factors and DNN
to subsequently generate higher accuracy prediction models. Utilizing the identified significant
retinopathy predictors (risk factors) provides optimized prediction models. Thus, this study will help
diabetic patients to reduce diabetic retinopathy risk, the major cause of blindness in such patients.

The remainder of this paper is organized as follows. Section 2 discusses related works for retinopathy
prediction, including related DNN and RFE applications for healthcare. Section 3 details the proposed
retinopathy prediction model, and Section 4 discusses experimental results for the proposed model. Section 5
summarizes and concludes the paper, including discussing study limitations and future research directions.

2. Literature Review

This section discusses previously proposed machine learning models for retinopathy pre-diagnosis,
with particular attention regarding DNN and RFE for health-related datasets.

2.1. Diabetic Retinopathy Prediction

Prediction models based on machine learning and employing individuals’ risk factors as input
features helped improve retinopathy pre-diagnosis for Iran, Korea, US, and Taiwan populations.
Hosseini et al. [13] used a logistic regression (LR) model to predict retinopathy for 3734 T2D
patients from the Isfahan Endocrinology and Metabolism Research Center, Iran. The model achieved
AUC = 0.704, sensitivity = 60%, and specificity = 69%. Oh et al. [14] proposed retinopathy risk
prediction based on Lasso. They used a dataset from the Korea National Health and Nutrition
Examination Surveys (KNHANES) V-1, with 327 patients randomly selected as training data and
163 as validation. The proposed model achieved AUC = 0.81, accuracy = 73.6%, sensitivity = 77.4%,
and specificity = 72.7%.

Retinopathy prediction has also been applied for US patients. Ogunyemi and Kermah [15]
investigated machine learning models for predicting retinopathy from six health centers in South Los
Angeles, comprising 513 T2D patients. The dataset was split into approximately 80% for training and
the remainder for testing. They compared RUSBoost ensemble and AdaBoost model predictions and
showed that RUSBoost ensemble was superior to AdaBoost, achieving accuracy = 73.5%, AUC = 0.72,
sensitivity = 69.2%, and specificity = 55.9%. LR, support vector machine (SVM), and artificial neural
network (ANN) models also helped improve retinopathy prediction performance for the overall
US population [16] using an updated dataset comprising 27,116 T1D and T2D patients from the
Los Angeles County Department of Health Services. Combining ANN and the synthetic minority
oversampling technique (SMOTE) achieved superior results with AUC = 0.754, sensitivity = 58%,
and specificity = 80%. Tsao et al. [17] proposed SVM-, decision tree (DT)-, ANN-, and LR-based models
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to predict DR based on several risk factors for T2D patients. The dataset was gathered from a private
hospital in Northern Taiwan, incorporating 430 normal and 106 DR patients. The SVM based model
was superior to the other algorithms considered, achieving accuracy = 79.5% and AUC = 0.839.

2.2. Deep Neural Network

Deep neural network models have been used in many previous studies to the improve prediction
accuracy compared with other models. For diabetes prediction-related issues, DNNs have only been
applied to predict T2D. Kim et al. [22] used phenotype and genotype data from the Nurses’ Health Study
(NHS) with data from the Health Professionals Follow-up Study (HPFS) to evaluate the prediction
model performance. The proposed DNN outperformed LR, with AUC = 0.931 and 0.928 for male and
female patients. Stacked autoencoders in DNN were also applied for T2D diabetes classification [23].
Their model was applied to a Pima Indian dataset and achieved classification accuracy = 86.26%.

Diabetic retinopathy is a complication of diabetes that causes damage to the blood vessels in the
retina and leading to vision impairment. Therefore, an accurate prediction model for pre-diagnosis
retinopathy would be very useful to improve patient health outcomes. DNN have shown good
performance diagnosing retinopathy from retinal fundus images, including datasets from Otago
and Messidor [24], and three clinical departments in Sichuan Provincial People’s Hospital [25].
Parmar et al. [26] employed a convolutional neural network to detect DR from retinal images and
their model outperformed others considered. Furthermore, the ResNet architecture model was
utilized to detect DR from fundus images achieving an excellent classification accuracy [27,28]. Finally,
Gadekallu et al. [29] employed a DNN with grey wolf optimization (GWO) and principle components
analysis (PCA) to optimize the parameters and reduce dimensionality, respectively, to predict DR based
on extracted features from retinal imaging. However, these studies only diagnosed retinopathy from
retinal fundus images, and to our best knowledge, no previous study considered DNNs for retinopathy
based on risk factors.

2.3. Recursive Feature Elimination

Many previous studies employed feature selection to improve the model prediction accuracy.
Guyon et al. [30] introduced RFE to select the most significant gene(s) for cancer classification and,
hence, improve classification model accuracy. The algorithm calculates a rank score and eliminates
the lowest-ranking features. Previous studies showed significant performance improvements by
employing RFE, including predicting mental states (brain activity) [31,32], Parkinson [33], skin
disease [34], autism [35], Alzheimer [36], and T2D [37]. They showed that SVM-RFE achieved superior
performance than several comparison methods. In addition, previous studies demonstrated DNN
accuracy improvement by integrating RFE as the feature selection algorithm [38,39]. The experimental
results showed that integration of SVM-RFE to DNN algorithms achieved best prediction accuracy as
compared to other methods.

To our best knowledge, only Kumar et al. [37] considered RFE for diabetes prediction. Kumar et al.
used SVM-RFE to identify the most discriminatory gene target for T2D. These identified significant
genes could then be focused on as potential drug targets. However, although SVM-RFE was employed
to extract significant features for T2D, this was not applied to the DR dataset. Similarly, previous
DR studies used DNNs to classify disease from retinal fundus images only, and risk factors were not
utilized as DNN input features. Therefore, the current study proposed SVM-RFE and DNN to improve
DR prediction accuracy from individual risk factors. To our best knowledge, this is the first time
SVM-RFE and DNN using individual risk factors were employed to improve DR prediction accuracy.
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3. Methodology

3.1. Datasets

Previous studies established that T1D or T2D patients tend to develop complications, such as
retinopathy, nephropathy, cardiovascular disease (CVD), etc. Therefore, we proposed a DNN-based
model to predict whether T1D or T2D patients will later develop DR. The dataset was collected
by Khodadadi et al. [40] and related with diabetes complications in Lur and Lak populations of
Iran. Informed consent was obtained from patients, and the dataset was made publicly available by
previous authors (https://data.mendeley.com/datasets/k62fdsnwkg/1). The dataset was gathered from
133 diabetic patients covering known risk factors for neuropathy, nephropathy, diabetic retinopathy
(DR), peripheral vessel disease (PVD), CVD, food ulcer history, and dawn effect. Originally, the dataset
consisted of 24 information gathered from diabetic patients (T1D and T2D). We removed irrelevant
features, leaving 14 potentially DR-relevant risk factors, as shown in Table 1. The class label (retinopathy)
was assigned when the subject had symptomatic cases with a history of laser or surgical therapy.
The objective of our study was to classify whether a diabetic patient will develop diabetic retinopathy
(DR) in the future.

3.2. Design of Proposed Model

Figure 1 shows the proposed DNN model to predict DR diagnosis from several risk factors,
based on a public DR dataset. Data pre-processing removed inappropriate and inconsistent data.
During the pre-processing stage, data normalization was applied by rescaling real valued numeric
attributes into [0, 1]. Missing values in the numeric and nominal attributes were replaced by mean and
mode, respectively. Then RFE removed irrelevant features, and a DNN-based prediction was developed
using the grid search algorithm to optimize the model hyperparameter and, hence, maximize DNN
performance. Performance was evaluated by comparing the proposed and other best-practice machine
learning models from previous studies.
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Figure 1. Proposed deep neural network model for diabetic retinopathy (DR) prediction.

We used stratified 10-fold cross-validation (CV), a variation of k-fold CV for the proposed and
comparison machine learning models. In k-fold CV, the dataset is split into k subsets of equal size
and the instances for each subset or fold are randomly selected. Each subset, in turn, is used for
testing and the remainder for the training set. The model is evaluated k times such that each subset
is used once as the test set. However, in stratified k-fold cross-validation, each subset is stratified so
that they contain approximately the same proportion of class labels as the original dataset. By this
procedure, the variance among the estimates are reduced and the average error estimate is reliable.
Furthermore, our dataset is imbalanced, with 32% of subjects classified as DR patients. A previous
study demonstrated that stratified k-fold CV is generally considered superior to regular CV, particularly
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for unbalanced datasets [41]. Figure 2 shows the overview of the model validation based on CV and
stratified CV applied to the two-class dataset.

Table 1. Diabetic retinopathy dataset.

No Attribute Description Type Range

1 BMI Subject’s body mass index Numeric 18–41

2 DM duration Subject’s diabetes duration (y) Numeric 0–30

3 A1c Subject’s average blood glucose level
over the past 3 months (mg/dL) Numeric 6.5–13.3

4 Age Subject’s age (y) Numeric 16–79

5 FBS Subject’s fasting blood sugar level
(mg/dL) Numeric 80–510

6 LDL Subject’s low-density lipoprotein level
(mg/dL) Numeric 36–267

7 HDL Subject’s high-density lipoprotein
level (mg/dL) Numeric 20–62

8 TG Subject’s triglyceride level (mg/dL) Numeric 74–756

9 Sys BP Subject’s systolic blood pressure
(mmHg) Numeric 105–180

10 Dias BP Subject’s diastolic blood pressure
(mmHg) Numeric 60–120

11 Sex Subject’s sex Categorical 0 = Female
1 = Male

12 DM type Subject’s diabetes type (T1D or T2D) Categorical 0 = T1D
1 = T2D

13 DM treat Subject’s diabetes treatment Categorical

0 = Both
(Insulin and
oral agent)
1 = Insulin
2 = Oral agent

14 Statin Subject’s statin status (frequently
used as part of diabetes care) Categorical

0 = Ator
(atorvastatin)
1 = No statin
2 = ROS
(rosuvastatin)

15 Retinopathy
(class) Subject’s retinopathy status Categorical 0 = No (91)

1 = Yes (42)

3.3. Recursive Feature Elimination (RFE)

Feature selection removes redundant and irrelevant features to improve machine learning quality
and efficiency. This study applied RFE with SVM kernels, i.e., linear function, to evaluate feature
significances for DR dataset [30]. SVM-RFE works first by training the dataset with the SVM classifier.
Next, the ranking weights for all features are computed. Finally, the feature with smallest weight
is deleted. This process is repeated until no features are left, with later eliminated features having
higher ranks. The bottom ranked ones are the least informative and removed in the first iteration.
Thus, irrelevant features are gradually eliminated and important features retained for classification.
The process is summarized in Algorithm 1.
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Algorithm 1. SVM-RFE pseudocode

Input: X0 = (x1, x2, . . . , xm)
T

y = (y1, y2, . . . , ym)
T

s = [1, 2, . . . , n]
r = []

Output: r
while s is not empty do

X = X0(:, s)
α = SVM_train(X, y)
w =

∑
k
αkykxk

ci = (wi)
2

f = argmin(c)
r = [s( f ), r]
s = s(1 : f − 1, f + 1 : length(s))

end while
return r
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The SVM-RFE algorithm can be divided into three steps, which are input, calculation of the weight
of each feature, and removing the lowest ranked feature. In Algorithm 1, during the input stage, X0 is
defined as the training sample, y is class labels, s is subset of remaining features, and r is feature sorted
list. In the next process, the weight calculation of each feature is conducted where the algorithm repeats
the process until the list of s is empty. The new training sample X is defined according to the remaining
features s. The set of paired inputs and outputs is used by training the classifier α. The calculation of
the weight vector w and ranking criteria ci is conducted at this stage. When the lowest ranking feature
f was obtained, the feature sorted list r can be updated. At the last stage, the feature with the smallest
ranking criterion is removed and s is updated. The users can stop the iteration when the list of s is not
empty, so that desired number of features can be obtained.

In Algorithm 1, SVM_train (linear SVM) is utilized to learn from the set of paired inputs X and
outputs y. The linear SVM classifies training data by mapping the original data onto a high dimensional
feature space and finding the linear optimal hyperplane to separate instances of each class from the
others [42]; for the case of separating training vectors belonging to two linearly separable classes:

(xi, yi), xi ∈ Rn, yi ∈ {+1,−1}, i = 1, . . . , n (1)

where xi is a real valued n-dimensional input vector and yi is the class label associated with the training
vector. The separating hyperplane is determined by an orthogonal vector w and bias b, which identify
points that satisfy

w.x + b = 0 (2)

Thus, the classification mechanism for linear SVM can be expressed as

maxα
[ ∑n

i = 1
αi −

1
2

∑n

i, j = 1
αiα jyiy j

(
xi.x j

)]
(3)

with constraints ∑n

i = 1
αiy j = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . ., n (4)

where α is the parameter vector for the classifier hyperplane, and C is a penalty parameter to control
the number of misclassifications.

Figure 3 shows the attribute ranking for the DR dataset. We investigated the impact of the top k
features for DNN accuracy. The SVM-RFE was executed to remove irrelevant features, and important
features (k) are utilized as the input for the DNN. This process is repeated for all possible k features.
Finally, we found that the first (top) 13 DR features is the optimal number of features that can maximize
DNN accuracy. Hence only systolic blood pressure (Sys BP) was removed from the DR dataset.
Section 4.2 discusses optimizing the number of features for the dataset.
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We also compared the performance of SVM-RFE with other feature selection methods on improving
DNN accuracy, such as chi-squared, ANOVA, and extra trees. The result of feature selection execution
for the dataset as shown in Table 2. The feature selection methods showed different results in terms of
extracting the most important features. A higher value of score, f-value, and gini importance indicate
the importance of the features. The impact of a different feature selection on DNN accuracy is presented
in Section 4.2.

Table 2. Feature selection results for the diabetes retinopathy (DR) dataset.

No Attribute
Feature Selection Model

RFE (Rank) Chi-Squared (Score) ANOVA (F-Value) Extra Trees (Gini Importance)

1 BMI 10 0.225 2.352 0.056

2 DM
duration 1 5.474 49.028 0.161

3 A1c 5 1.054 4.780 0.081
4 Age 4 1.352 24.473 0.098
5 FBS 2 0.970 12.349 0.088
6 LDL 9 0.520 6.207 0.059
7 HDL 3 0.571 8.726 0.077
8 TG 12 0.643 6.419 0.077
9 Sys BP 14 1.992 18.519 0.083

10 Dias BP 7 1.734 18.738 0.070
11 Sex 8 2.669 4.641 0.045
12 DM type 13 0.127 1.870 0.009
13 DM treat 11 0.779 2.889 0.061
14 Statin 6 0.064 0.176 0.031

The proposed SVM-RFE generated the top five features, i.e., DM duration, FBS, HDL, Age, and A1c
as significant risk factors for retinopathy. Other feature selection methods, such as chi-squared, ANOVA,
and extra trees, generated a different subset of important features. In chi-squared, the attributes
DM duration, Sex, Sys BP, Dias BP, and Age were identified as the top five features. Furthermore,
the attributes DM duration, Age, Dias BP, Sys BP, and FBS were identified as the top five features
in ANOVA, while in extra trees, the result is similar to ANOVA except that A1C was included in
the top five features instead of the attribute Dias BP. These top five features generated by the feature
selection methods can be utilized as the input features for the deep neural network to improve
classification accuracy.

Finally, the SVM-RFE identified the attribute Sys BP as an irrelevant feature, while the attribute
Statin was recognized by chi-squared and ANOVA as a less important feature. The attribute DM type
was discovered by extra trees as an unimportant feature; therefore, these irrelevant features generated
by feature selection must be removed as input for the classifier. Excluding these irrelevant features is
expected to improve DNN performance. A more detailed discussion regarding our significant risk
factors for retinopathy and a comparison with the results from previous studies are presented in
Section 4.3.

3.4. Proposed Deep Neural Network

We employed a DNN model to predict DR from the risk factors dataset. A DNN is an ANN
class with multiple hidden layers between input and output layers and has recently become highly
successful for classification. A DNN is fully connected; hence, each unit receives connections from all
units in the previous layer. Thus, each unit has its own bias and a weight for every pair of units in two
consecutive layers. The net input was calculated by multiplying each input with its corresponding
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weight and then summing. Each unit in the hidden layer took the net input and applied an activation
function. Thus, network computation with three hidden layers can be expressed as

h(1)i = ϕ(1)

∑
j

w(1)
i j x j + b(1)i

 (5)

h(2)i = ϕ(2)

∑
j

w(2)
i j h(1)j + b(2)i

 (6)

h(3)i = ϕ(3)

∑
j

w(3)
i j h(2)j + b(3)i

 (7)

and

yi = ϕ(4)

∑
j

w(4)
i j h(3)j + b(4)i

 (8)

where x j is the input units, w is weight, b is bias, y is output units, h(l)i is units in the lth hidden layer,
and ϕ is the activation function. In our study, we used and evaluated several activation functions,
such as sigmoid, hyperbolic tangent, and rectified linear unit (ReLU), which are presented in detail in
Equations (9)–(11), respectively.

ϕ(v) =
1

1 + e−v (9)

ϕ(v) =
e2v
− 1

e2v + 1
(10)

ϕ(v) = max{v, 0} (11)

The DNNs were trained using the back propagation (BP) algorithm [43], which compares the
prediction result with the target value and modifies each training tuple’s weights to minimize error
between prediction and target values. In measuring a good prediction model to predict the expected
outcome, a loss function is required. Our study focused on binary classification, where the number of
classes is two. The cross-entropy loss function can be calculated as

Loss = −
∑

i

(
y′i log(yi) +

(
1− y′i

)
log(1− yi)

)
(12)

where y′i is true probability and yi is predicted probability value. This process was iterated to produce
optimal weights, providing optimal predictions for the test data. Figure 4 shows the proposed DNN
model to predict DR from individuals’ risk factors.

We utilized the grid search algorithm [44] to automatically select the best parameters for the
proposed deep neural network (DNN) model. We then applied a grid search for the training set and
measured cross-validation to obtain the best prediction model, as shown in Figure 5. The objective
for this method was to select the best hyperparameter for the proposed DNN model to achieve the
highest accuracy for DR. We found a five-hidden-layers network with different neurons each, ReLU as
activation function, and SGD as weight optimization were the best parameters for the DNN. Table 3
shows optimized hyperparameter details for the proposed DNN for DR. Finally, we applied these
parameters to the proposed DNN model.
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Table 3. Optimized hyperparameter using grid search.

Hyperparameter Optimized Value

Hidden layer size 100, 64, 128, 64, 32
Activation function ReLU

Alpha 0.0001
Initial learning rate 0.01
Maximum iteration 500

Optimization algorithm SGD

Notes: ReLU = rectified linear unit, SGD = stochastic gradient descent.

3.5. Experimental Setup

Machine-learning models were applied to distinguish DR from the public dataset. Classification
and feature selection methods were implemented in Python V3.7.3, utilizing the Scikit-learn V0.22.2
library [45]. We used Scikit-learn default parameters to simplify implementing other models.
We performed the experiments on an Intel Core i5-4590 computer with 8 GB RAM running Windows
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7 64 bit. Average performance metrics, such as accuracy (%), precision (%), sensitivity or recall (%),
specificity (%), F1 score (%), and AUC were obtained by conducting 10 runs of stratified 10-fold CV.

4. Results and Discussion

This section considers the proposed DNN model performance and feature selection model impacts
and discusses DR risk factors. We also verified a good generalization capability by applying our results
to other public datasets (nephropathy and hypertension–diabetes).

4.1. Prediction Model Performances

We applied the proposed DNN with RFE model to predict DR using known risk factors and
compared the outcomes with several current best-practice data-driven models that have wide acceptance
and a proven track record for accuracy and efficiency: k-nearest neighbor (KNN), C4.5 decision tree
(DT), support vector machine (SVM), naïve Bayes (NB), and random forest (RF). Table 4 compares
model performance metrics, averaged from 10 runs of stratified 10-fold CV. The proposed DNN with
RFE model was superior to the traditional models with respect to accuracy, sensitivity, specificity,
F1 score, and AUC, achieving 82.033%, 76.000%, 80.389%, 71.820%, and 0.804, respectively. In terms
of detecting the positive cases, the KNN model achieved the highest precision (79.714%); however,
our proposed model generated the highest recall (76.000%). The precision is the ratio of correctly
predicted positive cases to the total predicted positive cases. On other hand, the recall indicates the
accuracy of a model in predicting the positive cases for the cases where the actual condition is positive.
Therefore, to identify prediction of positive cases (retinopathy) accurately, the model should focus
more on recall rather than precision. In the medical area, it is common to focus more on sensitivity
(recall) and specificity to evaluate medical tests [46]. Furthermore, it is also important to detect positive
cases accurately, since when the model fails to detect the retinopathy, it will lead to blindness in such
patients. Finally, the proposed model achieved 5.308% accuracy improvement compared with the
current best-practice DR models.

Table 4. Performance metrics for diabetes retinopathy prediction.

Method Accuracy Precision Sensitivity (Recall) Specificity F1 AUC

KNN 77.418 79.714 49.500 69.806 56.492 0.698
DT 75.989 63.095 65.000 73.222 59.558 0.732

SVM 78.846 75.214 51.500 71.361 56.333 0.714
NB 73.022 54.970 66.000 70.889 56.939 0.709
RF 78.352 62.500 39.000 67.889 45.944 0.679

Proposed model
(DNN + RFE) 82.033 72.937 76.000 80.389 71.820 0.804

Accuracy rate is the most common metric for classifier performance. However, class distribution
must be considered for unbalanced datasets using specific classifier metrics. ROC is a useful tool to
provide evaluation criteria for unbalanced datasets [47]. The ROC curve contrasts false positive and false
negative outcomes, as shown in Figure 6, where AUC indicates overall classification performance [48],
with the best model having AUC ≈ 1. Figure 6 shows ROC curves analysis for the proposed and other
considered classification models for DR dataset. The proposed model achieved the highest AUC = 0.80.
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Thus, the proposed model achieved significantly improved metrics compared with current best
practice classification methods. Specific impacts for RFE and other feature selection methods on
performance accuracy are presented in Section 4.2.

4.2. Feature Selection Impacts

The optimal number of features is required to implement RFE. Therefore, we investigated the
impact of top k features on DNN accuracy. The full dataset included 14 features, and RFE expected
to remove irrelevant features. Figure 7a shows the impact of the best k features as defined by RFE
on DNN model accuracy. Optimal, k = 13 for DR dataset, and maximum DNN model accuracy are
achieved when including only these defined optimal features. The result showed that removing high
number of features leads to the reduction of accuracy; therefore, the highest accuracy can be achieved
by removing a small number of features.

Mathematics 2020, 8, x FOR PEER REVIEW 12 of 19 

 

to remove irrelevant features. Figure 7a shows the impact of the best k features as defined by RFE on 
DNN model accuracy. Optimal, k = 13 for DR dataset, and maximum DNN model accuracy are 
achieved when including only these defined optimal features. The result showed that removing high 
number of features leads to the reduction of accuracy; therefore, the highest accuracy can be achieved 
by removing a small number of features. 

Based on the strategy of searching, the feature selection can be categorized into three methods, 
such as wrapper, filter, and embedded methods [49,50]. Filter methods measure the relevance of 
features by their correlation with the target variable, while wrapper methods utilize a learning 
machine to measure the usefulness of a subset of features according to their predictive power. 
Embedded methods perform feature selection in the process of training based on specific learning 
machines. In our study, we used SVM-RFE as an application of wrapper methods, while for filter 
methods, ANOVA and chi-squared were utilized. For embedded methods, we utilized the extra trees 
algorithm to extract relevant features [51]. Figure 7b shows the impact of the feature selection method 
on DNN model accuracy. The feature selection based on extra trees automatically selected the optimal 
number of features = 7. We also investigated and found that the optimal number of features for 
ANOVA and chi-squared are same (13 features). RFE generated superior accuracy, up to 9.07% for 
DR dataset compared to outcomes without feature selection. However, the other considered feature 
selection methods performed poorly, with only slight accuracy improvements for the DR dataset 
using chi-squared, ANOVA, and extra trees. Thus, RFE was the best choice for the DNN, providing 
the maximum DR prediction accuracy. 

  

(a) (b) 

Figure 7. Proposed DNN model accuracy (a) with respect to number of top k features defined from 
recursive feature elimination (RFE) and (b) other feature selection models for the diabetes retinopathy 
(DR) dataset. 

4.3. Risk Factors and Previous Studies 

Table 5 compares the proposed and previous models for DR. Previous prediction models with 
different input variables were applied to various populations, including Iran, South Korea, US, and 
Taiwan. To our best knowledge, no previous study considered DNN with RFE for DR prediction. 
The proposed DNN and RFE model achieved superior performance compared with all previous 
models in terms of model accuracy. However, SVM [17] and Lasso [14] achieved superior AUC for 
DR. Most of the previous studies used holdout for model validation, whereas we used stratified 10-
fold CV to avoid overfitting. 

Risk factors and their relative importance vary across the world and the previous studies 
showed that important predictors could be retrieved for DR. Hosseini et al. [13] used age, BMI, sex, 
diabetes duration, and HbA1c; whereas Oh et al. [14] identified fasting BG, triglyceride, low BMI, 
and insulin therapy as strong predictors. Other studies also identified insulin use [17] and A1C [16] 

Figure 7. Proposed DNN model accuracy (a) with respect to number of top k features defined from
recursive feature elimination (RFE) and (b) other feature selection models for the diabetes retinopathy
(DR) dataset.



Mathematics 2020, 8, 1620 13 of 19

Based on the strategy of searching, the feature selection can be categorized into three methods,
such as wrapper, filter, and embedded methods [49,50]. Filter methods measure the relevance of
features by their correlation with the target variable, while wrapper methods utilize a learning machine
to measure the usefulness of a subset of features according to their predictive power. Embedded
methods perform feature selection in the process of training based on specific learning machines.
In our study, we used SVM-RFE as an application of wrapper methods, while for filter methods,
ANOVA and chi-squared were utilized. For embedded methods, we utilized the extra trees algorithm
to extract relevant features [51]. Figure 7b shows the impact of the feature selection method on
DNN model accuracy. The feature selection based on extra trees automatically selected the optimal
number of features = 7. We also investigated and found that the optimal number of features for
ANOVA and chi-squared are same (13 features). RFE generated superior accuracy, up to 9.07% for
DR dataset compared to outcomes without feature selection. However, the other considered feature
selection methods performed poorly, with only slight accuracy improvements for the DR dataset using
chi-squared, ANOVA, and extra trees. Thus, RFE was the best choice for the DNN, providing the
maximum DR prediction accuracy.

4.3. Risk Factors and Previous Studies

Table 5 compares the proposed and previous models for DR. Previous prediction models with
different input variables were applied to various populations, including Iran, South Korea, US,
and Taiwan. To our best knowledge, no previous study considered DNN with RFE for DR prediction.
The proposed DNN and RFE model achieved superior performance compared with all previous models
in terms of model accuracy. However, SVM [17] and Lasso [14] achieved superior AUC for DR. Most of
the previous studies used holdout for model validation, whereas we used stratified 10-fold CV to
avoid overfitting.

Table 5. Comparison with previous studies for predicting diabetes retinopathy (DR).

Dataset Population Study Method Number of Features Model Validation Accuracy AUC

DR

Iran [13] LR 9 - - 0.704
South Korea [14] Lasso 19 Holdout (67:33) 0.736 0.810
United States [15] Ensemble RUSBoost 11 Holdout (80:20) 0.735 0.720

Taiwan [17] SVM 10 Holdout (80:20) 0.795 0.839
United States [16] ANN + SMOTE 8 Holdout (66:34) - 0.754

Iran Current DNN + RFE 13 Stratified 10-fold CV 0.820 0.804

Notes: DNN = deep neural network; RFE = recursive feature elimination; LR = logistic regression; SVM = support
vector machine; ANN = artificial neural network; SMOTE = synthetic minority oversampling technique.

Risk factors and their relative importance vary across the world and the previous studies showed
that important predictors could be retrieved for DR. Hosseini et al. [13] used age, BMI, sex, diabetes
duration, and HbA1c; whereas Oh et al. [14] identified fasting BG, triglyceride, low BMI, and insulin
therapy as strong predictors. Other studies also identified insulin use [17] and A1C [16] as important
risk factors. Our proposed study used RFE to select the best variables and identified the top five risk
as diabetes duration, fasting BG, HDL, Age, and A1c; which are largely consistent with selected risk
factors from previous studies.

Directly comparing these results is inappropriate, since they were derived from different datasets,
pre-processing methods, and validation methods. Therefore, Table 5 should not be considered as strong
evidence regarding model performance, but it provides a general comparison and allows discussions
regarding the proposed model and previous approaches. We used a public dataset for the current
study, which was limited to small populations in Iran. Benchmarking machine learning models will
become somewhat fairer as other datasets become publicly available.
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4.4. Another Diabetes Dataset

To evaluate the proposed prediction model robustness and generalization, we compared it
with other machine learning models and datasets (diabetic nephropathy and hypertension–diabetes).
Diabetic nephropathy (DN) is a serious kidney-related complication (kidney disease) relatively
commonly developed by T1D and T2D patients. The DN dataset we employed was related to DR
(Table 1), provided by Khodadadi et al. [40]. The dataset was gathered from 133 diabetic patients with
73 among them developing DN. Thus, we used the same 14 input features as in Table 1 but with a
different output class, i.e., DN. The description of DN dataset can be seen in Appendix A (see Table A1).
The objective for this dataset was to classify whether the diabetic patient would develop DN.

We also gathered a dataset from the National Health Insurance Sharing Service (NHISS) Korea
comprising applicant’s general health data 2013–2014 [52]. The original input variables were age
group (BTH_G), systolic blood pressure (BP), diastolic BP, fasting BG, BMI, and sex. The dataset
included four classes, where the subject was diagnosed to have hypertension, diabetes (T1D or T2D),
hypertension and diabetes, or healthy (no diabetes or hypertension history). We converted this
multiclass into a binary classification problem, transforming it into healthy or disease (hypertension,
diabetes), and removed fasting BG, since this variable is closely related with diabetes diagnosis.
We randomly selected 1000 individuals from approximately 1 million, and hence, the final dataset
comprised 761 healthy and 239 disease (hypertension, diabetes) patients. The description of NHISS
dataset can be seen in Appendix A (see Table A2). The objective for this dataset was to classify whether
the subject would develop disease (i.e., hypertension or diabetes).

Table 6 compares classification performance for the proposed DNN + RFE model with other
machine learning models (KNN, DT, SVM, NB, and RF). Average accuracy and AUC were calculated
from 10 runs of stratified 10-fold CV. The proposed model achieved superior accuracy and AUC for
both datasets: 84.121% and 0.839 for the DN and 81.600% and 0.702 for the NHISS datasets, respectively.

Table 6. Proposed prediction model performance compared with other models for public datasets.

Method
DN NHISS

Accuracy AUC Accuracy AUC

KNN 81.813 0.814 80.600 0.690
DT 81.978 0.817 80.900 0.679

SVM 83.297 0.834 80.700 0.665
NB 67.527 0.649 79.600 0.701
RF 82.747 0.825 80.775 0.664

Proposed DNN + RFE 84.121 0.839 81.600 0.702

Notes: DN = diabetes nephropathy dataset, NHISS = hypertension–diabetes dataset from NHISS, Korea.
RF = random forest; DNN = deep neural network; RFE = recursive feature elimination; KNN = k-nearest
neighbor; SVM = support vector machine; DT = decision tree; NB = naïve Bayes.

Applying RFE, we selected 13 features for the DN dataset and 3 for the NHISS dataset (BTH_G,
Systolic BP, and BMI), and we used grid search to optimize the DNN hyperparameter. Thus, we found
the optimal DNN design for the DN dataset to be five hidden layers (100, 64, 128, 64, 32), ReLU activation
function, and a maximum of 100 iterations. For NHISS dataset, DNN with five hidden layers (100,
64, 128, 64, 32) and tanh activation function has achieved highest accuracy. The best optimization
algorithms were identified as LBFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno) and Adam
for the DN and NHISS datasets, respectively. These additional experiments confirmed the proposed
model robustness toward different healthcare domains.

5. Conclusions and Future Work

The current study combined DNN with RFE to predict DR. The model is expected to help
individuals foresee DR danger based on risk factors during initial disease phases. A public dataset
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incorporating DR risk factors was utilized, and the proposed model performance was compared
with previous best-practice KNN, DT, SVM, NB, and RF models. The proposed model outperformed
conventional classification models and most other previous models, achieving accuracy = 82.033%.

We applied RFE to identify significant features from all datasets, i.e., extracting the highest
DR risk factors. Combining RFE and DNN improved the prediction accuracy as compared with all
other considered feature selection methods (chi-squared, ANOVA, and extra trees). The proposed
DNN + RFE model improved the accuracy (9.07%) compared with DNN without feature selection.
Thus, machine learning combined with feature selection can effectively detect DR. This offers increased
cost-effectiveness for health care systems, where decision support based on the proposed prediction
model could provide decision opinions. We hope this study will help reduce the DR risk for diabetic
patients, which is the major cause of blindness.

The dataset used here was from a relatively small and quite specific population; hence,
the prediction model outcomes cannot not be simply generalized for broader application. Similarly,
the identified important risk factors might not be appropriate for other populations. Thus, as it stands,
the proposed model would be unsuitable for clinical trials due to dataset limitations. Therefore,
the proposed approach should be extended to other clinical datasets and compared widely with other
prediction and feature selection models. Once model validation is extended to broader datasets, other
risk factors affecting DR could be identified.
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Abbreviations

The following abbreviations are used in this manuscript.
ANN Artificial Neural Network
ANOVA Analysis of Variance
AUC Area under the ROC Curve
BG Blood Glucose
BMI Body Mass Index
CV Cross Validation
CVD Cardiovascular Disease
DBP Diastolic Blood Pressure
Dias BP Diastolic Blood Pressure
DM Diabetes Mellitus
DN Diabetic Nephropathy
DNN Deep Neural Network
DR Diabetic Retinopathy
DT Decision Tree
FBS Fasting Blood Sugar
GWO Grey Wolf Optimization
HbA1c Hemoglobin A1c
HDL High-density Lipoproteins
KNN K-Nearest Neighbor
LBFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno
LDL Low-density Lipoprotein
LR Logistic Regression
NB Naïve Bayes
NHISS National Health Insurance Sharing Service
PCA Principal Components Analysis
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PVD Peripheral Vessel Disease
ReLU Rectified Linear Units
RF Random Forest
RFE Recursive Feature Elimination
ROC Receiver Operating Characteristic
SBP Systolic Blood Pressure
SGD Stochastic Gradient Descent
SMOTE Synthetic Minority Over-sampling Technique
SVM Support Vector Machine
SVM-RFE Support Vector Machine–Recursive Feature Elimination
Sys BP Systolic Blood Pressure
T1D Type 1 Diabetes
T2D Type 2 Diabetes
TG Triglyceride

Appendix A

Table A1 describes the diabetes nephropathy (DN) dataset, comprises residents’ risk factors from 133 diabetic
patients with 73 among them developing DN (Khodadadi et al. [40]). The dataset is made publicly available by
previous authors (https://data.mendeley.com/datasets/k62fdsnwkg/1).

Table A1. Diabetic nephropathy (DN) dataset.

No Attribute Description Type Range

1 BMI Subject’s body mass index Numeric 18–41

2 DM duration Subject’s diabetes duration (y) Numeric 0–30

3 A1c Subject’s average blood glucose level
over the past 3 months (mg/dL) Numeric 6.5–13.3

4 Age Subject’s age (y) Numeric 16–79

5 FBS Subject’s fasting blood sugar level
(mg/dL) Numeric 80–510

6 LDL Subject’s low-density lipoprotein level
(mg/dL) Numeric 36–267

7 HDL Subject’s high-density lipoprotein
level (mg/dL) Numeric 20–62

8 TG Subject’s triglyceride level (mg/dL) Numeric 74–756

9 Sys BP Subject’s systolic blood pressure
(mmHg) Numeric 105–180

10 Dias BP Subject’s diastolic blood pressure
(mmHg) Numeric 60–120

11 Sex Subject’s sex Categorical 0 = Female
1 = Male

12 DM type Subject’s diabetes type Categorical 0 = T1D
1 = T2D

13 DM treat Subject’s diabetes treatment Categorical

0 = Both
(Insulin and
oral agent)
1 = Insulin
2 = Oral agent

14 Statin Subject’s statin status (frequently
used as part of diabetes care) Categorical

0 = Ator
(atorvastatin)
1 = No statin
2 = ROS
(rosuvastatin)

15 Nephropathy (class) Subject’s nephropathy status Categorical 0 = No (60)
1 = Yes (73)

https://data.mendeley.com/datasets/k62fdsnwkg/1
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Table A2 describes the NHISS Korea dataset, comprises residents’ risk factors from 1000 individuals with
239 among them developing disease (hypertension, diabetes) [50]. The NHISS Korea dataset is available online
(https://nhiss.nhis.or.kr/bd/ab/bdabf003cv.do).

Table A2. National Health Insurance Sharing Service (NHISS) Korea dataset.

No Attribute Description Type Range

1 BTH_G Age group of a subject Categorical

0 = 20–24
1 = 25–26
2 = 27–28
. . .
26 = greater than 75

2 SBP Subject’s systolic blood pressure
(mmHg) Numeric 84–190

3 DBP Subject’s diastolic blood pressure
(mmHg) Numeric 50–120

4 BMI Subject’s body mass index Numeric 15.6–39.9

5 SEX Subject’s sex Categorical 0 = Male
1 = Female

6 DIS (class) Subject’s disease (hypertension,
diabetes) status Categorical 0 = No (761)

1 = Yes (239)
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