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Abstract: Wavelet transformation is one of the most frequent procedures for data denoising,
smoothing, decomposition, features extraction, and further related tasks. In order to perform such
tasks, we need to select appropriate wavelet settings, including particular wavelet, decomposition
level and other parameters, which form the wavelet transformation outputs. Selection of such
parameters is a challenging area due to absence of versatile recommendation tools for suitable wavelet
settings. In this paper, we propose a versatile recommendation system for prediction of suitable
wavelet selection for data smoothing. The proposed system is aimed to generate spatial response
matrix for selected wavelets and the decomposition levels. Such response enables the mapping of
selected evaluation parameters, determining the efficacy of wavelet settings. The proposed system
also enables tracking the dynamical noise influence in the context of Wavelet efficacy by using
volumetric response. We provide testing on computed tomography (CT) and magnetic resonance
(MR) image data and EMG signals mostly of musculoskeletal system to objectivise system usability
for clinical data processing. The experimental testing is done by using evaluation parameters such is
MSE (Mean Squared Error), ED (Euclidean distance) and Corr (Correlation index). We also provide
the statistical analysis of the results based on Mann-Whitney test, which points out on statistically
significant differences for individual Wavelets for the data corrupted with Salt and Pepper and
Gaussian noise.

Keywords: wavelet transformation; Daubechies wavelet; Symlet wavelet; Coiflet wavelet; spatial
and volumetric modeling

1. Introduction

As far as it is commonly known, as the result of the physical limitations of most medical systems,
signals and images have the tendency to manifest some random noise within signal and image
acquisition [1]. In a general way, such additive noise is perceived as a data distortion, which may
significantly deteriorate the process of data observation, analysis and feature extraction [2–4]. In the
present time, we are overcrowded by plenty acquiring medical devices, intended for data acquisition,
where the resulting signals and images may be affected by different types of the noise. Such noise
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sources have the potential to significantly deteriorate quality of clinical information [5–7]. Therefore,
the smoothing methods are gaining a significant importance in the computer aided analysis. Among
others, Additive White Gaussian Noise (AWGN), impulse noise (also called Salt and Pepper), quantisation
noise, Poisson noise, and speckle noise are frequently discussed in the recent literature [1,8,9]. Considering
different nature of individual types of the noise, we can deduce that individual smoothing methods
may be differently sensitive and robust to each of the noise type. This hypothesis deals with the fact
that there is not unified method, with unified settings which would perform the data smoothing,
corrupted by different noise manifestation with the same effectivity [10,11].

By using the basic formulation of digital signal, we use the model, representing a sequence
(matrix), corresponding with individual discrete samples (Equation (1)). In the case of the digital
image, this form is encoded as a matrix, containing gray-level or colour pixels (voxels) [12–14]. These
elements represent image intensities. In the case of the gray scale (so called monochromatic) images,
the form is represented as 2D image: (r, u(r)), where u(r) represents the image intensity in the
coordinates: r = [x, y]. In the case of the colour image, u(r) assumes a triplet of the intensity values
individual chrominance channel: red, green and blue [15,16]. When assuming the noise presence,
we need to incorporate into formulation of the signal function noise model, which is denoted as n(r)
in Equation (1).

f (r) = u(r) + n(r),⊂ R, R ⊂ Z. (1)

This noise can be additive or multiplicative in nature. After formulation of the noise model, it
should be noted that the additive noise is firmly bounded with the original (native) information, which
is transmitted from the human body by the form of signals or images [17,18]. Therefore, the resulting
magnitude of the signal element f (r) is composed as from the native clinically important information,
as from the noise sample. Thus, these components cannot be completely separated. Based on this
fact, by utilizing the image smoothing we perform a prediction of native signal u(r) by suppressing
n(r). Based on this principle, we always at least partially suppress the native clinical information, and
perceive the additive noise. For this reason, we usually search for a compromise between non-distorting
clinical information and in the same time elimination as much noise level as possible [19–21].

There are various reasons for incorporating the data smoothing procedures. Standardly,
these methods are applied prior the methods for identification and classification of clinical information.
In the case of the signals, we commonly need to detect (identify) the signal trend to analyse evolution
of the biologic signals over the time. The signal noise often causes a signal distortion in the form of
glitches and oscillations [21,22]. Such phenomena have the tendency to affect the signal morphology
and influence signal trend.

In this paper, we analyse the performance, including effectivity and robustness of the Wavelet
transformation by a novel metric, utilizing the spatial and volumetric modelling of objective parameters.
Among others smoothing procedures, Wavelet transformation plays a crucial role. In the contrast with
many other methods, Wavelet transformation allows for the data decomposition on various scales.
Such procedure makes a bank of the filters instead of single filtering procedures. The leading benefit of
the Wavelet transformation is a large selection from mother’s Wavelets and their families. These facts
predetermine various using of this method for multiple purpose. We bring a novel method, utilizing
construction of spatial and volumetric matrixes, allow for mapping Wavelet behaviour within Wavelet
families and individual scales. Mapping of objective parameters, including correlation coefficient,
Mean Squared Error (MSE) and Euclidean distance (ED) enables analysis of distribution of the Wavelet
behaviour with various settings. We publish an extensive testing of performance distribution over
electromyography (EMG) signals and various imaging systems (computed tomography (CT) and
magnetic resonance (MR)) to report a comprehensive comparative analysis of the Wavelet performance
in different data processing. In the further step, we aimed on the study of the dynamic noise influence
on the Wavelet behaviour. Such extensive analysis points out on the Wavelet behaviour upon dynamical
features of the noise and types of the noise over the time. The structure of the paper is follows. Section 2
deals with the recent methods and trends of the procedures for biomedical data smoothing. In the
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Section 3, we publish datasets of 1D signals and 2D images, which are used for the testing and
evaluation of the proposed methods. Section 4 deals with a proposal and realization of spatial and
volumetric modelling of the Wavelet response. Section 5 deals with analysis of the results. We mainly
analyse the spatial and volumetric characteristics for 1D and 2D data, which are corrupted by the
additive Salt and Pepper and Gaussian noise. Part of this analysis is statistical testing of the significance
of the distributions of Wavelet response parameters.

2. Recent Work

In the recent literature, there are plenty contributions, reporting image-based smoothing (filtering)
for medical image data enhancement, typically for medical signals and images. Generally, the data
smoothing are mostly performed either in spatial or frequency domain [23]. The filters, utilizing the
pixel’s distribution have become mainly interesting for the research community. Here, we recognize
the local filters, considering a certain finite representative pixel neighbourhood. Based on the local
statistical features they are capable of modifying the pixels values [24,25]. Such principle is utilized
in average, median, Gaussian filter or bilateral filter. One of the frequently used filters is Wiener
filter [26]. This filter do not employ mean of the neighbourhood pixels, but involve linear estimation of
desired signal sequence based on the another related sequences [27,28]. Such filters often blur edges
as a negative side effect of the filtering, conversely they are able to effectively suppress local noise.
Such local window may be argument of limitations of these filters due to approximation only local
features of the image spatial area [29,30]. In the contrast of this principle, non-local filtering is often
applied in the medical image processing [31,32]. In this category, we point out on well-known Non
Local Mean Filter (NLM filter). The advantage of NLM filter is the fact that all the surrounding pixels
may affect the representative pixels, without restriction of the weighting function [33,34]. This type of
the filtering incorporates two features: besides the intensity information NLM filter works with the
distance function between representative pixel and others [35–38].

The further popular techniques for image smoothing are the methods based on the random fields.
These methods work with the image intensities as dependence of adjacent intensity values [39]. These
methods are based on the observation that the global representation of the medical image can be
estimated from its local physical structures based on conditional probability distribution function.
Such popular principle is called Markov random field (MRF) [40,41].

Another challenging field in the image filtering is the redundant and sparse representation.
These concepts of sparsity and redundancy have been extensively applicable with using of various
multi-scale and directional transforms, such is curvelets, ridgelets, brushlets, and directionlet [42].
One of the popular approach that introduce sparsity and redundancy for image representation is the
sparse representation based on the dictionary learning. As typical member of this category is BLS-GSM
(Bayes Least Square Gaussian Scale Mixture). This approach translates the image denoising problem
into an inverse problem with the use of Bayesian minimisation [42,43].

The last important section of the image smoothing is the category transform domain filtering.
When comparing with the spatial domain, transform domain methods take advantage of the sparsity
features [44,45]. For instance, the signals or images may be represented by a shorter sequence of
non-zero coefficients, such is the Fourier coefficients. In this category, we state Fourier transform (FT),
Fast Fourier transform (FFT), discrete cosine transform (DCT), curvelets, ridgelets, ripplet, contourlet,
wedgelets, directionlet, shearlet, and mainly Wavelet transformation [46–48]. Among other domain
filtering methods, Wavelet transformation plays a significantly important role [30,49]. Besides a
multiple using of Wavelet transform, this method allows various settings, including scaling (filter
bank) and wide possibilities of Wavelet families and individual wavelets for various applications to
various medical data [50–55]. These extensive settings create challenging issues. Firstly, the behaviour
of Wavelet transformation among individual settings, application, effectivity and robustness of Wavelet
transform for various image sources, including the study of the feasibility of particular wavelets for
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various image structures (CT, MR, ultrasound, and others), and lastly the prediction of Wavelet
dynamical behaviour when the noise with the dynamic intensity effect is presented.

3. Data Analysis

To properly analyze the performance of the approach described in the next chapter, a bank of
input test data needs to be prepared and described first. In our research, we are primarily focused
on the analysis of the 1D and 2D image data mostly of the musculoskeletal system. These input test
data were selected to benchmark the proposed algorithm. Datasets are mostly related to the human’s
musculoskeletal system, however, algorithm’s application is not limited to this specific field. As for
1D signals we used EMG measurements of hand movements from publicly available data source [56].
The algorithm’s performance of 2D datasets was tested on CT and MRI scans. CT scans are showing
blood vessel calcification in the area of lower limbs. There are several levels of detail magnification so
images with different properties like spatial frequency could be tested. MRI dataset is consisting of
successive slices showing knee cartilage in order to test various spatial frequency images. Examples of
various musculoskeletal images used for the analysis are depicted in Figure 1.

Figure 1. Examples of CT (A–F) and MRI (G and H) scans used to test the proposed algorithm.
Tested images are showing various level of magnification and amount of detail. Also, native noise
levels contained within these images are different. Images (A–F) are depicting blood vessel calcification in
different details and perspectives, whereas images (G–H) are showing successive slices of knee cartilage.

Although, the selected 1D signals and 2D images (mostly of musculoskeletal apparatus) are from
the real clinical measurements and basically consist of some level of native noise (commonly Rician
distribution of noise in MRI images etc.), they are taken as ideal ones and additional level of artificial
noise is subsequently applied to them for testing the proposed algorithm noise filtration performance.
Obviously, the algorithm can be tested with artificially generated signals as well. This is especially
easy to do with ECG signal generators, both hardware and software ones. Nevertheless, it was decided
to use the real data for all presented tests.

As it was mentioned earlier there are several types of noise contained within the measured 1D
signal or 2D image. To test the algorithm’s performance following types of noise are applied to the
selected datasets. Namely, additive white Gaussian noise and impulse noise for 1D signals and for the
2D images the same types of noise also with added speckle noise. Besides already mentioned additive
white Gaussian noise, it is also speckle noise, Poisson noise and impulse noise. Impulse noise applied
in the 1D case is added via own part of the code. In both presented versions of the algorithm—1D and
2D—the applied amount of the noise level is being varied with use of a for loop to simulate the effect
of dynamical noise intensity. As variables were chosen mean of the Gaussian noise and noise density
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of salt and pepper noise. During the applied for loop both values are being steadily increased. For 2D
signal also a speckle noise is being added, however, in contrast with previously mentioned types,
the speckle noise is set to be constant across the for loop. Speckle noise is described as multiplicative
noise using the Equation (2):

J = I + n ∗ I, (2)

where n is uniformly distributed random noise with mean 0 and variance 0.05. These default
parameters of speckle noise were kept also for the presented algorithm tests.

4. Materials and Methods

In this section, we describe the construction of 2D spatial and 4D response of Wavelet families.
These characteristics reflect the Wavelet response in the form either spatial or volumetric distribution
of evaluating parameters. Spatial characteristics reflect the Wavelet response for a single-intensity
noise and volumetric characteristics contrarily allow for tracking of dynamical effect of the Wavelet
effectivity upon the whole scale of noise intensity.

Presented algorithms (for use with 1D and 2D input) exploits the advantages of Wavelet
transforms over Fourier transform. Wavelet transform is defined as a degree of correlation W(a, b)
between the signal s(x) and the analysing wavelet ψa,b given by the relation (3):

W(a, b) =
∫ ∞

−∞
s(x)ψa,b(x)dx, (3)

where analyzing wavelet ψa,b is described by the Equation (4):

ψa,b =
1√
a
· ψ( x− b

a
), (4)

in which a and b represents scaling and shifting factor, respectively. The function ψ(x) is called mother
wavelet and unlike in Fourier transform the mother wavelets can be given by other functions different
than the goniometric. During the history many mother wavelet types were proposed. In the context of
the presented paper three distinctive families are exploited—Daubechies, Symlet and Coiflet. They
are all representations of Discrete Wavelet Transform (DWT). As the highest available order N of
Coiflet mother wavelet is 5, it is decided that others of the used mother wavelets are also tested up to
this order.

4.1. Data Preparation

The wavelet filter testing was performed in MatLab (MathWorks, Natick, MA, USA) and
conducted as follows. Firstly, we prepared 1D and 2D banks of samples. These consisted of EMG
signal measurements, MRI and CT scans. Signals and images were chosen, representing different
spatial frequencies and levels of native noise. These signals or images were loaded into a multiarray
structure so the algorithm can be tested on each signal or image from the prepared bank of 1D and 2D
inputs. The first for loop simply selected one signal or image after the other. A level below this for
loop is a for loop that varies the level of added artificial noise (as demonstrated in Figure 2). These
procedures are illustrated within the two algorithm schemes for both cases of 1D and 2D input as
shown in Figure 3, described in natural language below the figures as well.

1D signals were degraded by noise in the part of the code which also adds an impulse type of
noise. The parameters over which the for loop is iterated is the signal to noise ratio of the awgn (Add
white Gaussian noise to signal) function and the variance of the impulse noise. Both values were
increased with each iteration of the for loop. Both types of noise were added simultaneously. For 2D
signals, we implemented procedures for adding additive white Gaussian, impulse and speckle noise.
With the for loop, the mean value of the additive white Gaussian noise was iterated together with the
density of the impulse (Salt and Pepper) noise, while the speckle noise was held constant.
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Figure 2. Upper row is showing a CT scan of blood vessel calcification with the native level of noise
(A) used as an input for algorithm testing. Images (B–D) are showing the original image with added
artificial noise for 0.1, 0.2 and 0.5 level (in fact the noise consists of a sum of three noise types, in which
the number means a mean value for additive white Gaussian noise and density for salt and pepper
noise, speckle noise is kept on a constant default value used in MATLAB), respectively. Lower row
shows the example of MRI scan of knee cartilage (E used as an input), again with different consecutive
noise levels of corresponding magnitude (F–H).
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End
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Figure 3. A scheme of a proposed algorithm for 1D and 2D signal (e.g., EMG, CT or MRI) denoising.

4.2. A Quantitative Measures of Wavelet Effectivity

Finally, for each noise level, there are two for loops governing the order of the mother wavelet
and the level of decomposition. For the chosen mother wavelet—Daubechies, Symlet or Coiflet—a
denoising was performed in the MatLab’s Wavelet Toolbox. The filtered image was adjusted with
the use of the image adjust function (linear intensity transformation) contained within the Image
Processing Toolbox. It was found out via testing on the available images that the optimum default
value for the low intensity in the parameters of the image adjust function lies between 0.4 and 0.6,
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which gives the best results for the majority of the images. After this step, three distinctive images are
available—the original input, an image that has an added artificial noise over the original one and
finally the denoised image. Since the comparison between them can be conducted with the use of
several approaches, a benchmark of the denoising is performed. Namely a MSE, Corr and ED or norm,
in the case of 2D matrices described as:

MSE =
1

mn
Σm

i=1Σn
j=1[Xij −Yij]

2, (5)

Corr2D =
ΣiΣj(Xij − X) · (Yij −Y)√

(ΣiΣj(Xij − X)2) · (ΣiΣj(Xij(Yij −Y)2)
. (6)

Euclidean distance = 2
√

Σm
i=1Σn

j=1[Xij −Yij]2, (7)

where Xij and Yij are elements of the two matrices that are being compared and X and Y their mean
values. These functions are compared between the denoised and the original input image, which is
perceived as a gold standard. There is the following relation between the Peak Signal-to-Noise Ration
(PSNR) and MSE:

PSNR = 10 log10(
peakvalue2

MSE
). (8)

For each combination of wavelet transform settings the above mentioned denoise performance
metrics are calculated.

Figures 4 and 5 demonstrate the relationship between the original input image, the image with
added artificial noise and the denoised image. In these specific cases, both variables (mean value of
AWGN and density of salt and pepper noise) governing the amount of an artificial noise were set
to 0.35. Low-in value of the image adjust function was set to 0.45 and 0.4, for CT and MRI image,
respectively. As two specific images are chosen from the range of the batch dataset, the image adjust
function parameter is tweaked to achieve better performance. Algorithms 1 and 2 below describing
procedure for solving a problem, based on conducting a sequence of a denoising for 1D a 2D signals.

Algorithm 1 1D algorithm natural language description
Step 1: load *.mat file with EMG signals from publicly available database
Step 2: For wavelet family Symlet, Dabeuchies and Coiflet test the signal denoising
Step 3: For snr values 0.05:0.05:10; generate artificial noise as a sum of additive white Gaussian noise
(awgn(signal,snr,’measured’)) and impulse noise with variance equal to 1/snr
Step 4: For decomposition level 1:1:5
Step 5: For wavelet type 1:1:5 (e.g., Sym1, . . . , Sym5)
Step 6: Denoise the signal with use of wavelet (noise reduction of the signal based on thresholding of
wavelet coefficients using a global threshold proposed by Donoho et al. [57].)
Step 7: Calculation of MSE—comparison of input and denoised signal
Step 8: Calculation of correlation level—comparison of input and denoised signal
Step 9: Calculation of Euclidean distance between the input and denoised signal
Step 10: Iterate to next wavelet type
Step 11: End for
Step 12: Iterate to next decomposition level
Step 13: End for
Step 14: Iterate to noise level
Step 15: End for
Step 16: Iterate to next wavelet family
Step 17: End for
Step 18: Storing of evaluation matrices for MSE, correlation level and Euclidean distance
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Algorithm 2 2D algorithm natural language description
Step 1:Scan folder for available image files and create multiarray structure of images
Step 2: For wavelet family Symlet, Dabeuchies and Coiflet test the image denoising
Step 3: For var values 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1; generate artificial noise as a sum of
additive white Gaussian noise (imnoise(Input,’gaussian’,var)), speckle noise (imnoise(Input,’speckle’);
and salt and pepper noise (imnoise(Input,’salt & pepper’,var); with AWGN mean value equal to var,
salt and paper noise density equal to var and speckle noise equal to the MATLAB‘s constant default
and add it to all loaded input images
Step 4: For decomposition level 1:1:5
Step 5: For wavelet type 1:1:5 (e.g., Sym1, . . . , Sym5)
Step 6: Denoise the image with use of wavelet (noise reduction of the signal based on thresholding of
wavelet coefficients using a global threshold proposed by Donoho et al. [57].)
Step 7: Calculation of MSE—comparison of input and denoised image
Step 8: Calculation of correlation level—comparison of input and denoised image
Step 9: Calculation of Euclidean distance between the input and denoised image
Step 10: Iterate to next wavelet type
Step 11: End for
Step 12: Iterate to next decomposition level
Step 13: End for
Step 14: Iterate to noise level
Step 15: End for
Step 16: Iterate to next wavelet family
Step 17: End for
Step 18: Storing of evaluation matrices for MSE, correlation level and Euclidean distance

Figure 4. From (A) to (C), the upper row shows the original image, the image with added artificial
noise and the image denoised by the described algorithm. As an input image, a CT scan shown in
Figures 1 and 2 was used. The lower row (D–F) shows plots corresponding to the white line drawn in
the images depicted in the upper row.
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Figure 5. From (A) to (C), the upper row shows the original image, the image with added artificial
noise and the image denoised by the described algorithm. As an input image, an MRI scan shown in
Figures 1 and 2 was used. The lower row (D–E) shows plots corresponding to the white line drawn in
the images depicted in the upper row.

4.3. Spatial and Volumetric Modelling of Wavelet Response

In this section, we closely introduce the proposed model for spatial (2D) and volumetric (4D)
evaluation of Wavelet settings effectivity for data smoothing. As we stated earlier, we propose a
method which aims for the mapping of the Wavelet response distribution for a specific range of the
mother’s wavelets and the decomposition levels. Such an approach has the potential to provide
quantitative visualization of comparison effectivity of various Wavelet settings. This approach brings
novel benefits for the evaluation of Wavelet effectivity via simultaneous analysis of different Wavelet
settings as for the images, corrupted by noise with steady intensity, as well as the noise with dynamic
intensity. This approach allows for tracking Wavelet effectivity over dynamic intensity of image noise,
besides these quantitative distribution characteristics.

Regarding single noise intensity, we propose a 2D characteristic, which is called the spatial 2D
Wavelet map (Figure 6). This map represents a distribution of the Wavelet effectivity measured based
on the quality parameters like is MSE, Euclidean norm and other parameters stated in the Section 4.1.
This distribution of respective parameter provides a visualization in artificial color coding of effectivity
of respective Wavelet family and various decomposition levels (range is specified by user). This method
allows for effectively evaluating individual Wavelets among each other and track their effectivity
as a recommendation tool for selection of the most suitable Wavelet. The spatial modelling scheme
(Figure 6) contains a distribution of elements WAVk,n, where n denotes the Wavelet order and k is a
level of decomposition. This scheme generates a spatial distribution matrix k multiplied by n giving
the Wavelet response for particular Wavelet family. Note that WAVk,n stands for respective evaluation
parameter highlighting a level of difference (similarity) between the respective Wavelet response and
gold standard. Based on the principle of spatial distribution mapping, such an approach can be used
for single noise level evaluation.
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Figure 6. A general Scheme of spatial modelling for 2D distribution of Wavelet response.

The spatial modelling allows only for analysis of the multiple wavelet response for single noise
intensity. This fact may be complication in the case of robustness of Wavelet analysis. In this context,
we understand the Wavelet robustness as a dynamical evolution of change effectivity when the
dynamic intensity noise is present. Therefore, in our analysis, we also propose an extended version of
the spatial modelling in the form of the volumetric (4D) modelling (Figure 7) of the Wavelet response.
This model allows for the dynamic features progress, depending on the noise intensity. As a result of
this approach, we can extract a spatial distribution for any noise level, or track effectivity within the
noise influence. The scheme in Figure 7 represent a general Wavelet response with using evaluation
parameter WAVk,n, depending on the dynamical noise, represented by the parameter η.
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5. Results

Firstly, the construction of the results based on the spatial modelling is shown in Figure 8 is
illustrating the result of achievable correlation level for two specific amounts of noise. Left part of
the figure is showing correlation levels for the image with the noise parameters set as follows—the
Gaussian mean is 0.1 and Salt and pepper density is also 0.1, both noise types are being summed
together. The right part of the picture shows the corresponding matrix for Gaussian mean of 1 and Salt
and pepper density also set to 1, both noise types are again summed together.
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Figure 8. Achievable correlation level for different combinations of Symlet mother wavelet order and
decomposition level for lower (a) and higher (b) amount of added artificial noise

In the next step, 4D matrices containing the information on achievable correlation, mean-squared
error and Euclidean distance are created as a composite of the 3D matrices created for each noise level
(example of such 4D matrix with the achievable correlation level is shown in Figure 9). The element
composition of each 4D matrix is as follows: decomposition level, wavelet order, noise variance, image
No.). By the noise variance it is meant magnitude of either white noise and impulse noise, while in
the first case the noise variance is in the sense of mean value, whereas in the latter one in the sense of
density. Both noise types are summed up and being added to the original input image simultaneously.
As a result for each setting of noise parameters values of the highest achievable correlation, the lowest
mean-squared error and the shortest Euclidean distance can be identified. Correspondingly to those
values, settings for wavelet transform denoising can be assigned, therefore identifying ideal settings
for achieve maximum denoising effect.

Figure 10 shows the plots of maximum achievable correlations for all three analysed wavelet
families regardless of the specific combination of possible wavelet order and decomposition level.
Results corresponds to input images (left plot) and 5 (right plot) from Figure 1. From the results it is
obvious that for the chosen input images the influence of the used wavelet family is rather low. This
correspond also to the results shown in Reference [58], where it is mentioned that the Symlet wavelet
family outperforms the other families, even though the plotted results do not show a significant
difference between the Daubechies and Symlet wavelet families shown in this paper. The Coiflet family
is not included in the mentioned comparison. In the tested MRI image database, the mean difference
from achievable correlation values between input and denoised images is 0.0033 for the Coiflet family,
−0.0024 for Daubechies family and −0.0009 for Symlet family. For the tested CT images the worst
result is also achieved with the Coiflet family with mean difference from achievable correlation is
0.0021, whereas for both Daubechies and Symlet the result is equal to −0.0010. An important variable
is decomposition level and the order of the chosen wavelet family. Typically for the images with lower
amount of noise level the correlation is increasing with the higher decomposition level and after reach
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of its maximum value the achievable correlation starts to decrease. The higher the amount of noise, the
higher decomposition level is desirable.
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Figure 9. Construction of a 4D matrix with achievable correlation level for different combinations of
Symlet mother wavelet order and decomposition level for various amounts of added artificial noise as
a composite of matrices shown as examples in Figure 8.
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Figure 10. Maximum achievable correlation levels with use of three mother wavelet families for two
different input images.

From Figure 10 it is obvious that there exists some noise level threshold value from which
the maximum achievable correlation drops fast to zero. Before reaching this threshold value the
maximum achievable correlation levels are higher than 60%. It is likely that the maximum achievable
correlation would be even better if the low-in value of the increased contrast of the output image is
tuned specifically for each tested image.

Figures 11–13 show the results that are achieved with the database of 60 MRI scans—consecutive
scans of knee cartilage. Firstly, the mean achievable correlations levels are shown (Figure 11), then
the mean achievable MSE (Figure 12) values, and finally the mean Euclidean distance (Figure 13).
Differences among the Daubechies, Symlet and Coiflet families is negligible. In these cases, both
AWGN and Salt and pepper noise were present in the tested images.
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Figure 11. Mean achievable correlation levels for 60 MRI images with use of three mother wavelet
families—from left Daubechies (a), Symlet (b) and Coiflet (c).
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Figure 12. Mean achievable MSE values for 60 MRI images with use of three mother wavelet
families—from left Daubechies (a), Symlet (b) and Coiflet (c).
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Figure 13. Mean achievable Euclidean distances for 60 MRI images with use of three mother wavelet
families—from left Daubechies (a), Symlet (b) and Coiflet (c).

Figures 14–16 show a similar analysis for 15 CT scans of blood vessel calcification. The mean
achievable correlation (Figure 14), mean achievable MSE values (Figure 15) and mean Euclidean
distance (Figure 16) are shown, respectively. The results correspond to those achieved with the MRI
scans. Again, differences among the three tested wavelet families are negligible.
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Figure 14. Mean achievable correlation levels for 15 CT images from 5 patients with use of three mother
wavelet families – from left Daubechies (a), Symlet (b) and Coiflet (c).
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Figure 15. Mean achievable MSE values for 15 CT images from 5 patients with use of three mother
wavelet families – from left Daubechies (a), Symlet (b) and Coiflet (c).
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Figure 16. Mean achievable Euclidean distances for 15 CT images from 5 patients with use of three
mother wavelet families – from left Daubechies (a), Symlet (b) and Coiflet (c).

In the next step, a contribution of each used noise type (AWGN and Salt and Peppers) is
scrutinized. Figures 17 and 18 compare the achievable correlation levels for the single image in
which only a single type of noise is present. As demonstrated in Figure 17, the denoising process is
highly resistant against AWGN. Whereas, as shown in Figure 18, the Salt and Pepper causes a much
faster drop in achieved correlation level. Comparing the Figure 18 with the previous results, it can be
concluded that the major contributor in the drop of the correlation level is specifically the Salt and
Pepper type of noise.

Figures 19–22 also compare the achieved MSE levels and Euclidean distances. From the achieved
results it can be concluded that for Salt and Pepper noise there is almost no difference among the
wavelet families. However, in the presence of AWGN there are observable differences. Especially with
the Coiflet wavelet family, it is seen that the higher values of noise are making the denoise process
performing worse.



Sensors 2020, 20, 5301 15 of 24

0.0

0.1

5

0.2

0.3

0.4

4 5

0.5

N
o

is
e

 v
a

ri
a

n
c
e

0.6

0.7

Achievable correlation level

4

N-level

0.8

3

0.9

Wavelet type db-

1.0

3
2

2
1 1

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(a)

0.0

0.1

5

0.2

0.3

0.4

4 5

0.5

N
o

is
e

 v
a

ri
a

n
c
e

0.6

0.7

Achievable correlation level

4

N-level

0.8

3

0.9

Wavelet type sym-

1.0

3
2

2
1 1

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(b)

0.0

0.1

5

0.2

0.3

0.4

4 5

0.5

N
o

is
e

 v
a

ri
a

n
c
e

0.6

0.7

Achievable correlation level

4

N-level

0.8

3

0.9

Wavelet type coif-

1.0

3
2

2
1 1

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(c)

Figure 17. Achievable correlation levels in the presence of AWGN only for the CT scan from Figure 4
with use of three mother wavelet families—from left Daubechies (a), Symlet (b) and Coiflet (c).
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Figure 18. Achievable correlation levels in the presence of Salt and Pepper noise only for the CT scan
from Figure 4 with use of three mother wavelet families—from left Daubechies (a), Symlet (b) and
Coiflet (c).
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Figure 19. MSE in the presence of AWGN only for the CT scan from Figure 4 with use of three mother
wavelet families—from left Daubechies (a), Symlet (b) and Coiflet (c).
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Figure 20. MSE in the presence of Salt and Pepper noise only for the CT scan from Figure 4 with use of
three mother wavelet families—from left Daubechies (a), Symlet (b) and Coiflet (c).
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Figure 21. Euclidean distance in the presence of AWGN only for the CT scan from Figure 4 with use of
three mother wavelet families—from left Daubechies (a), Symlet (b) and Coiflet (c).
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Figure 22. Euclidean distance in the presence of Salt and Pepper noise only for the CT scan from
Figure 4 with use of three mother wavelet families—from left Daubechies (a), Symlet (b) and Coiflet (c).

Finally, we can return to the 1D examples of EMG signals for which a publicly available database
was used from Reference [56]. The database contains recordings for six types of hand movements.
Each of them has 30 recorded signals, in two channels for each of the 6 type of hand movements.

Unlike the 2D case of MRI and CT scans in the following case the increasing z-coordinate is
showing the signal’s SNR. Also, the increment in the direction of z-axis is finer than in the case of MRI
and CT scans. Figure 23 are demonstrating the mean achievable correlation for all subjects. Unlike
the MRI and CT scans, some differences among the families are observable. The worst performer is
the Coiflet wavelet family. As the achieved MSE values are identical for all tested wavelet families
the plots are not being shown. There is no significant difference among the values between families.
Conversely, there are slight difference as shown on Figure 24 showing the mean Euclidean distances.
Lower Euclidean distances are observed.
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Figure 23. Mean achievable correlation levels of all EMG signal with use of three mother wavelet
families—from left Daubechies (a), Symlet (b) and Coiflet (c).
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Figure 24. Mean achievable Euclidean distances of all EMG signal with use of three mother wavelet
families—from left Daubechies (a), Symlet (b) and Coiflet (c).

In the last part of the quantitative analysis, we provide the results of statistical testing. Within the
statistical testing, we evaluate distribution of evaluation parameters of correlation index, MSE and
Euclidean distance in the sense of normality testing. In the consecutive part, we provide a pair
testing between CT and MR images for individual Wavelet families. This testing has a potential to
objectively evaluate whether respective Wavelet family has statistically significant different effectivity
for various datasets.

Firstly, we provide the testing of normality of evaluation parameters. We used the Chi-squared
test for the normality evaluation for the Salt and Pepper and Gaussian noise (Tables 1 and 2). The tests,
where we dot reject the normality are indicated as green (α > 0.05) and reject normality (α < 0.05),
are red. Normality tests were done on the significance level: α = 0.05. For this test we define the
following hypothesis:

H0: Data comes from normal distribution

HA: NOT H0

Table 1. Distribution of p-values of Chi-squared test normality for the Salt and Pepper noise with
dynamical noise intensity: d = 0.001−0.65.

Wavelet
[Corr|MSE|ED] CT Images MR Images

Daubechies 0.12 0.21 0.18 0.02 0.41 0.21
Symlet 0.03 0.01 0.01 0.04 0.01 0.26
Coiflet 0.21 0.04 0.03 0.01 0.23 0.25

Table 2. Distribution of p-values of Chi-squared test normality for the Gaussian noise with dynamical
noise intensity: µ = 0, σ = 0.01−0.6.

Wavelet
[Corr|MSE|ED] CT Images MR Images

Daubechies 0.09 0.12 0.07 0.04 0.35 0.04
Symlet 0.08 0.11 0.03 0.01 0.11 0.31
Coiflet 0.14 0.08 0.04 0.02 0.17 0.17

Since most of the p-values are less than 0.05, we generally consider the distribution of the
evaluation parameters as not normally distributed. Therefore, we use Mann-Whitney statistical test
for the comparison of evaluation parameters distributions. Based on the p-values, Daubechies wavelet
distribution are mostly normally distributed, when comparing with other wavelets. Thus, we show
the extract (Figure 25) of individual tested Wavelets for correlation index distributions.
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Figure 25. A comparison of distribution of correlation index for CT images, corrupted with Salt and
Pepper noise with dynamic intensity: d = 0.01−0.65: Daubechies family (left), Symlet (middle) and
Coiflet (right).

After the normality evaluation, we performed the statistical testing of average value between the CT
and MR images for all the Wavelets. Since we cannot generally consider all the distributions as normally
distributed, we use the Mann-Whitney tests for the comparison of medians (Table 3). The aim of this
comparison is the robustness evaluation for all the analyzed Wavelet families between CT and MR images.
By this way, we evaluate whether a Wavelet family smoothness, effectivity is stable among different
datasets. For the testing, we define the following hypothesis, where X̃CT, X̃MR represent a median of
respective evaluation parameter (Corr, MSE or ED) for set of CT, respective MR images.

H0: X̃CT = X̃MR

HA: NOT H0

Table 3. Distribution of p-values of Mann-Whitney test for the Gaussian and Salt and Pepper noise.

Wavelet
[Corr|MSE|ED] CT Images MR Images

Daubechies 0.65 0.78 0.03 0.48 0.64 0.02
Symlet 0.04 0.70 0.02 0.02 0.25 0.01
Coiflet 0.01 0.01 0.01 0.01 0.01 0.01

The statistical testing based on the Mann-Whitney test indicates that Daubechies Wavelet is mostly
robust in evaluation parameters for the CT and MR datasets because p-values are mostly greater than
0.05, so we do not reject the null hypothesis, except for the Euclidean distance, where we reject the null
hypothesis and we can conclude that medians are not equal. This testing generally indicates that the
Wavelet effectivity, measured based on the evaluation parameters generally differ for various datasets.

5.1. Time Consumption of Algorithm

One of the important tasks in each algorithm is a time consumption. Such parameter partially
determines the method efficacy. In this section, we provide the results of time consumption for
generating volumetric response of the proposed method. We provide testing on CT and MR images for
Salt and Pepper (Table 4) and Gaussian (Table 5) noise. For each test, we used 30 images. We provide
two tests, we performed testing on PC with the configuration (conf 1): 4-core Intel Core i5-10300H
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processor (2.5 GHz, TB 4.5 GHz, HyperThreading); 8 GB RAM DDR4, and these results we compare
with GPU processing (conf 2) on NVIDIA GeForce RTX 2060 6 GB GDDR6. All the tests are calculated
in seconds. The best results are indicated as green. Based on the experimental results, we found the
less time demanding processing of images, corrupted with Gaussian noise. Among individual Wavelet
families, for Salt and Pepper noise we found Symlet as the least time demanding, contrarily in the case
of Gaussian noise it is Daubechies Wavelets. Generally, this experimental testing well demonstrates
the effect of the possibility of GPU processing, which reduces time consumption.

Table 4. A comparison of time consumption (calculated in seconds) for Salt and Pepper noise for CT
and MR images and individual Wavelet families.

Wavelet Type CT Images|conf 1|conf 2| MR Images|conf 1|conf 2|

Daubechies 1320 941 1281 845
Symlet 1148 847 1041 621
Coiflet 1245 912 1141 697

Table 5. A comparison of time consumption (calculated in seconds) for Gaussian noise for CT and MR
images and individual Wavelet families.

Wavelet Type CT Images|conf 1|conf 2| MR Images|conf 1|conf 2|

Daubechies 945 516 987 541
Symlet 969 547 1011 654
Coiflet 1102 874 989 555

5.2. A Subjective Evaluation of Wavelet Effectivity

The noise is basically often present in diagnostic imaging methods. Nowadays, the research has
tended to focus on importance of noise reducing for example, References [59–61]. In connection with
previous findings, reducing noise from these images is a complex task, but very important. From a
clinical point of view, filtration algorithms must maintain the visibility of the important anatomical
structures during noise removal. Reducing the amount of noise degradation can make the diagnosis
more accurate. In Figure 4, significant suppression of anatomical areas of interest such as the right
renal vein, renal arteries, colonic branches, and marked calcifications in the iliac arteries can be seen.
Consequently, evaluating such an image would be almost impossible. The filtering output significantly
suppresses image noise degradation while maintaining the visibility of the above-mentioned areas
of interest. Sufficiently results are as well obtained from MRI of the knee (see Figure 5). Anatomical
structures such as knee cartilage, lateral meniscus anterior/posterior horn, popliteus tendon and
many others are more likely to be diagnosed. It seems that our method has beneficial and practical
application. Especially with reducing the amount of noise degradation while preserving important
anatomical structures.

6. Summary and Discussion

In this paper, we propose a recommendation method for modeling spatial and volumetric response
of Wavelet settings for various data smoothing. Three different wavelet families (Daubechies, Symlet
and Coiflet) were exploited to denoise 1D and 2D biomedical signals and images—namely EMG
signals, MRI and CT scans. The proposed method is aimed to generate the spatial map of selected
evaluation parameter, showing a distribution of similarity or difference of smoothed data against the
gold standard via spatial Wavelet response. This method identifies more suitable Wavelet’s settings
for particular application of data smoothing. The second part of the proposed method deals with the
volumetric response, in which individual layers correspond with a certain level of dynamical noise
influence. This method is capable of tracking dynamic features and robustness of respective Wavelet’s
settings for particular data. In our analysis, we present the results of the 1D EMG signals and 2D
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data of musculoskeletal images, nevertheless the proposed system is generally applicable for various
signals and images.

It was found out that the MR and CT scans have similar behaviour in the sense of achievable
denoising effect. Generally, the chosen wavelet family, out of the three tested, has rather insignificant
influence on the achieved result in both MRI and CT scans, respectively. The major contributor in the
image degradation is Salt and Pepper noise. At some level of added Salt and Pepper noise all three
wavelet families are starting to be identically ineffective. Our analysis offers a comparison of three
various Wavelet families. In order to identify statistically significant differences among individual
Wavelet settings, we also present the statistical testing based on Mann-Whitney test, comparing
medians of the response for Gaussian and Salt and Pepper noise. Based on this testing, Daubechies
Wavelet appears to be mostly robust in evaluation parameters, except for Euclidean distance. One of the
significant attributes of this algorithm is time consumption, showing a certain view on the method’s
effectivity. We compared computing on processor with GPU processing for Salt and Pepper and
Gaussian noise. While for the Salt and Pepper noise we evaluated Symlet as the most effective,
for Gaussian noise Daubechies appear as the most effective. The experimental results also point out on
the fact that GPU processing reaches better results from the view of time consumption.

The proposed method shows a distribution of selected evaluation parameters. Thus, this method
can predict more suitable Wavelet settings and its robustness for particular application. One of
the limitations can be classification of a specific Wavelet. Adding a classification procedure,
which would autonomously recognize the most suitable Wavelet would contribute to performance of
the proposed method. Since we simultaneously process a big amount of data (types of Wavelets and
decomposition levels), we should be aware of higher time consumption requirements. On the other
hand, GPU processing enables better performance with reduced time consumption, which optimizes
method’s effectivity. We should also mention that the evaluation system is based on the comparison
against the gold standard images as a reference, which may be limitation for some application. Another
possible source of limitation is that the data was provided from public databases. However, these
data were used for initial testing of the proposed methodology, which was fully sufficient. We are
currently working on testing on self-measured data. In the contrast with the aforementioned limitations,
the proposed method significantly contributes to Wavelet evaluation via multiple Wavelet response
with the potential of simulate Wavelet response. Furthermore, the proposed system is versatile and
can be used for any form of signals and images.

7. Conclusions

This paper presents the aspects of the spatial and volumetric modelling of the Wavelet family
response for three tested Wavelet families. Such approaches allow for analyzing and evaluating the
most appropriate Wavelets from respective family to be used for data smoothing. Also, volumetric
modelling enables tracking the dynamical features of selected Wavelets upon the dynamical effect.
The proposed method generates the spatial map of respective evaluation parameter distribution,
showing the similarity or difference of respective Wavelet settings against the gold standard images.
In our analysis, we use correlation index as a parameter of similarity, MSE and ED as difference
parameters. The second part of the proposed system enables tracking and extraction features of
individual Wavelets when dynamical noise is present. This approach allows for the simulation of the
robustness of respective settings within the data degradation.

In our analysis, we provide testing of the proposed spatial and volumetric response on CT and
MR blood vessels and musculoskeletal images, as well as 1D EMG signals. In order to test robustness of
individual Wavelet settings, we bring a comparative analysis of additive Gaussian and Salt and Pepper
noise to evaluate differences in Wavelet response. In this context, we provide the statistical analysis of
statistical testing of the Wavelet response for individual noise models between CT and MR images.
Since we cannot ensure the data normality based on the Chi-squared test, we use Mann-Whitney
tests to evaluate differences for individual Wavelet families. The statistical testing based on the
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Mann-Whitney tests indicates that the Daubechies Wavelet is mostly robust in evaluation parameters
for the CT and MR datasets because the p-values are mostly greater than 0.05, except for the Euclidean
distance. We also provide an analysis of time consumption, representing time demands for generating
a Wavelet response. Based on the experimental results it seems that GPU processing allows for the
reduction of time consumption. We also note differences in the time consumption between Salt and
Pepper and Gaussian noise. In this context, the application of Gaussian noise enables the reduction of
time consumption.

The proposed model enables the computing of simultaneous Wavelet features for various
Wavelets and its decomposition levels via spatial and volumetric responsive models. Besides certain
limitations such is time consumption or evaluation against gold standard, the proposed method
brings valuable simultaneous prediction for multiple Wavelet settings, which predicts the Wavelet
efficacy and robustness. In the future time, it would be worth extending the proposed method about
the classification procedure based on a matrix decomposition. Such improvement would enable
classify a finite range of the most suitable Wavelet settings from others based on objective parameters.
This would make a completely autonomous system for the most Wavelet settings recommendation.
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The following abbreviations are used in this manuscript:

CT Computed tomography
MR Magnetic resonanceEMG
EMG Electromyography
MSE Mean Squared Error
ED Euclidean distance
Corr Correlation index
AWGN Additive White Gaussian Noise
NLM filter Non Local Mean filter
MRF Markov Random Field
BLS-GSM Bayes Last Square Gaussian Scale Mixture
FT Fourier transform
FFT Fast Fourier transform
DCT Discrete cosine transform
ECG Electrocardiography
DWT Discrete Wavelet Transform
PSNR Peak Signal-to-Noise Ratio
SNR Signal-to-Noise

References

1. Goyal, B.; Dogra, A.; Agrawal, S.; Sohi, B.; Sharma, A. Image Denoising Review: From Classical to
State-of-the-Art Approaches. Inf. Fusion 2020, 55, 220–244. [CrossRef]

2. Yang, H.Y.; Wang, X.Y.; Niu, P.P.; Liu, Y.C. Image Denoising Using Nonsubsampled Shearlet Transform and
Twin Support Vector Machines. Neural Netw. 2014, 57, 152–165. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.inffus.2019.09.003
http://dx.doi.org/10.1016/j.neunet.2014.06.007
http://www.ncbi.nlm.nih.gov/pubmed/25000463


Sensors 2020, 20, 5301 22 of 24

3. Buades, A.; Coll, B.; Morel, J.M. A Review of Image Denoising Algorithms, with a New One. Multiscale
Model. Simul. 2005, 4, 490–530. [CrossRef]

4. Elad, M.; Aharon, M. Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries.
IEEE Trans. Image Process. 2006, 15, 3736–3745. [CrossRef]

5. Ling, L.; Yan, R.; Li, X.; Liu, Y. From Heuristic Optimization to Dictionary Learning: A Review and
Comprehensive Comparison of Image Denoising Algorithms. IEEE Trans. Cybern. 2014, 44, 1001–1013.
[CrossRef]

6. Buades, T.; Lou, Y.; Morel, J.; Tang, Z. A Note on Multi-Image Denoising. In 2009 International Workshop on
Local and Non-Local Approximation in Image Processing; IEEE: Tuusula, Finland, 2009; pp. 1–15.

7. Yan, R.; Shao, L.; Liu, L.; Liu, Y. Natural Image Denoising Using Evolved Local Adaptive Filters.
Signal Process. 2014, 103, 36–44. [CrossRef]

8. Chandra, T.B.; Verma, K. Analysis of Quantum Noise-Reducing Filters on Chest X-Ray Images: A Review.
Measurement 2020, 153, 107426. [CrossRef]

9. Latha, S.; Samiappan, D.; Kumar, R. Carotid Artery Ultrasound Image Analysis: A Review of the Literature.
Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2020, 234, 417–443. [CrossRef]

10. Zhang, C.; Du, F.; Zhang, Y. A Brief Review of Image Restoration Techniques Based on Generative Adversarial
Models. In Advanced Multimedia and Ubiquitous Engineering; Park, J.J., Yang, L.T., Jeong, Y.S., Hao, F., Eds.;
Springer: Singapore, 2020; Volume 590, pp. 169–175.

11. Yadav, S.P.; Yadav, S. Image Fusion Using Hybrid Methods in Multimodality Medical Images. Med. Biol.
Eng. Comput. 2020, 58, 669–687. [CrossRef]

12. Li, S.; Li, F.; Tang, S.; Xiong, W. A Review of Computer-Aided Heart Sound Detection Techniques.
Biomed. Res. Int. 2020, 2020, 1–10. [CrossRef]

13. Charmouti, B.; Junoh, A.K.; Mashor, M.Y.; Ghazali, N.; Wahab, M.A.; Wan Muhamad, W.Z.A.; Beroual, A.
An Overview of the Fundamental Approaches That Yield Several Image Denoising Techniques. Telkomnika
(Telecommun. Comput. Electron. Control) 2019, 17, 2959. [CrossRef]

14. Vanus, J.; Fiedorova, K.; Kubicek, J.; Gorjani, O.M.; Augustynek, M. Wavelet-Based Filtration Procedure for
Denoising the Predicted CO2 Waveforms in Smart Home within the Internet of Things. Sensors 2020, 20, 620.
[CrossRef] [PubMed]

15. Mgaga, S.S.; Khanyile, N.P.; Tapamo, J.R. A Review of Wavelet Transform Based Techniques for Denoising
Latent Fingerprint Images. In 2019 Open Innovations (OI); IEEE: Cape Town, South Africa, 2019; pp. 57–62.

16. Tsagkatakis, G.; Aidini, A.; Fotiadou, K.; Giannopoulos, M.; Pentari, A.; Tsakalides, P. Survey of
Deep-Learning Approaches for Remote Sensing Observation Enhancement. Sensors 2019, 19, 3929. [CrossRef]
[PubMed]

17. Kollem, S.; Reddy, K.R.L.; Rao, D.S. A Review of Image Denoising and Segmentation Methods Based on
Medical Images. Int. J. Mach. Learn. Comput. 2019, 9, 288–295. [CrossRef]

18. Mafi, M.; Martin, H.; Cabrerizo, M.; Andrian, J.; Barreto, A.; Adjouadi, M. A Comprehensive Survey on
Impulse and Gaussian Denoising Filters for Digital Images. Signal Process. 2019, 157, 236–260. [CrossRef]

19. Bhujle, H.V.; Vadavadagi, B.H. NLM Based Magnetic Resonance Image Denoising—A Review. Biomed. Signal
Process. Control 2019, 47, 252–261. [CrossRef]

20. Thanh, D.; Surya, P.; Hieu, L.M. A Review on CT and X-Ray Images Denoising Methods. Informatica 2019,
43, 151–159.doi:10.31449/inf.v43i2.2179. [CrossRef]

21. Katiyar, A.; Katiyar, G. Denoising of Images Using Neural Network: A Review. In Advances in System
Optimization and Control; Singh, S.N., Wen, F., Jain, M., Eds.; Springer: Singapore, 2019; Volume 509,
pp. 223–227.

22. Muhd Suberi, A.A.; Wan Zakaria, W.N.; Nazari, A.; Tomari, R.; Nik Fuad, N.F.; Hj Mohd, M.N.
Comparative Performance of Filtering Methods for Reducing Noise in Ischemic Posterior Fossa CT Images.
Procedia Comput. Sci. 2019, 157, 55–63. [CrossRef]

23. Hu, Q.; Hu, S.; Zhang, F. Multi-Modality Medical Image Fusion Based on Separable Dictionary Learning
and Gabor Filtering. Signal Process. Image Commun. 2020, 83, 115758. [CrossRef]

24. Duarte-Salazar, C.A.; Castro-Ospina, A.E.; Becerra, M.A.; Delgado-Trejos, E. Speckle Noise Reduction in
Ultrasound Images for Improving the Metrological Evaluation of Biomedical Applications: An Overview.
IEEE Access 2020, 8, 15983–15999. [CrossRef]

http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.1109/TIP.2006.881969
http://dx.doi.org/10.1109/TCYB.2013.2278548
http://dx.doi.org/10.1016/j.sigpro.2013.11.019
http://dx.doi.org/10.1016/j.measurement.2019.107426
http://dx.doi.org/10.1177/0954411919900720
http://dx.doi.org/10.1007/s11517-020-02136-6
http://dx.doi.org/10.1155/2020/5846191
http://dx.doi.org/10.12928/telkomnika.v17i6.11301
http://dx.doi.org/10.3390/s20030620
http://www.ncbi.nlm.nih.gov/pubmed/31979168
http://dx.doi.org/10.3390/s19183929
http://www.ncbi.nlm.nih.gov/pubmed/31547250
http://dx.doi.org/10.18178/ijmlc.2019.9.3.800
http://dx.doi.org/10.1016/j.sigpro.2018.12.006
http://dx.doi.org/10.1016/j.bspc.2018.08.031
https://doi.org/10.31449/inf.v43i2.2179
http://dx.doi.org/10.31449/inf.v43i2.2179
http://dx.doi.org/10.1016/j.procs.2019.08.141
http://dx.doi.org/10.1016/j.image.2019.115758
http://dx.doi.org/10.1109/ACCESS.2020.2967178


Sensors 2020, 20, 5301 23 of 24

25. Rodrigues, C.; Assis Peixoto, Z.M.; Magalhaes Freitas Ferreira, F. Ultrasound Image Denoising Using Wavelet
Thresholding Methods in Association with the Bilateral Filter. IEEE Lat. Am. Trans. 2019, 17, 1800–1807.
[CrossRef]

26. Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features:
A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [CrossRef] [PubMed]

27. Omer, A.A.; Hassan, O.I.; Ahmed, A.I.; Abdelrahman, A. Denoising CT Images Using Median Based Filters:
A Review. In Proceedings of the 2018 International Conference on Computer, Control, Electrical, and
Electronics Engineering (ICCCEEE), Khartoum, Sudan, 12–14 August 2018; pp. 1–6.

28. Singpurwalla, N.D.; Polson, N.G.; Soyer, R. From Least Squares to Signal Processing and Particle Filtering.
Technometrics 2018, 60, 146–160. [CrossRef]

29. Li, S.; Yang, Z.; Li, H. Statistical Evaluation of No-Reference Image Quality Assessment Metrics for Remote
Sensing Images. ISPRS Int. J. Geo-Inf. 2017, 6, 133. [CrossRef]

30. Bhargava, S.; Somkuwar, A. Estimation of Noise Removal Techniques in Medical Imaging Data—A Review.
J. Med. Imaging Health Inf. 2016, 6, 875–884. [CrossRef]

31. Li, J.; Choi, S.; Joshi, A.A.; Wisnowski, J.L.; Leahy, R.M. Temporal Non-Local Means Filtering for Studies of
Intrinsic Brain Connectivity from Individual Resting fMRI. Med. Image Anal. 2020, 61, 101635. [CrossRef]

32. Leal, N.; Zurek, E.; Leal, E. Non-Local SVD Denoising of MRI Based on Sparse Representations. Sensors
2020, 20, 1536. [CrossRef]

33. Obuchowicz, R.; Oszust, M.; Bielecka, M.; Bielecki, A.; Piórkowski, A. Magnetic Resonance Image Quality
Assessment by Using Non-Maximum Suppression and Entropy Analysis. Entropy 2020, 22, 220. [CrossRef]

34. Rajaguru, H.; S R, S.C. Efficient Denoising Framework for Mammogram Images with a New Impulse
Detector and Non-Local Means. Asian Pac. J. Cancer Prev. 2020, 21, 179–183. [CrossRef]

35. Liang, H.; Zhao, S. Salt and Pepper Noise Suppression for Medical Image by Using Non-Local Homogenous
Information. In Cognitive Internet of Things: Frameworks, Tools and Applications; Lu, H., Ed.; Springer
International Publishing: Cham, Switzerland, 2020; Volume 810, pp. 189–199.

36. Multi-Focus Image Fusion Using Non-Local Mean Filtering and Stationary Wavelet Transform. Int. J. Innov.
Technol. Explor. Eng. 2019, 9, 344–350. [CrossRef]

37. Urciuoli, A.; Buono, A.; Nunziata, F.; Migliaccio, M. Analysis of Local-and Non-Local Filters for
Multi-Polarization SAR Coastline Extraction Applications. In Proceedings of the 2019 IEEE 5th International
Forum on Research and Technology for Society and Industry (RTSI), Florence, Italy, 9–12 September 2019;
pp. 28–33.

38. Shim, J.; Yoon, M.; Lee, Y. Feasibility of Fast Non Local Means Filter in Pediatric Chest X-Ray for Increasing
of Pulmonary Nodule Detectability with 3D Printed Lung Nodule Phantom. J. Radiol. Prot. 2019, 39, 872–890.
[CrossRef] [PubMed]

39. Qian, Q.; Wang, B.; Hu, X.; Xiang, M. Coherent Markov Random Field-Based Unreliable DSM Areas
Segmentation and Hierarchical Adaptive Surface Fitting for InSAR DEM Reconstruction. Sensors 2020,
20, 1414. [CrossRef]

40. Fan, C.; Wang, Q. Research on Image Segmentation Method Using a Structure-Preserving Region
Model-Based MRF. Clust. Comput. 2019, 22, 15329–15334. [CrossRef]

41. Li, D.; Yan, S.; Cai, X.; Cao, Y.; Wang, S. An Integrated Image Filter for Enhancing Change Detection Results.
IEEE Access 2019, 7, 91034–91051. [CrossRef]

42. Pfister, L.; Bresler, Y. Learning Filter Bank Sparsifying Transforms. IEEE Trans. Signal Process. 2019, 67, 504–519.
[CrossRef]

43. Liu, Z.; Ma, Y.; Fan, F.; Ma, J. Nonuniformity Correction Based on Adaptive Sparse Representation Using
Joint Local and Global Constraints Based Learning Rate. IEEE Access 2018, 6, 10822–10839. [CrossRef]

44. Vafa, A.P.M.Q.; Karimi, P.; Khavasi, A. Recent Advances in Spatial Analog Optical Computing. In Proceedings
of the 2018 Fifth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), Tehran,
Iran, 18–20 December 2018; pp. 6–11.

45. Cheng, J.Y.; Hanneman, K.; Zhang, T.; Alley, M.T.; Lai, P.; Tamir, J.I.; Uecker, M.; Pauly, J.M.; Lustig, M.;
Vasanawala, S.S. Comprehensive Motion-Compensated Highly Accelerated 4D Flow MRI with Ferumoxytol
Enhancement for Pediatric Congenital Heart Disease: Motion-Compensated Accelerated 4D Flow. J. Magn.
Reson. Imaging 2016, 43, 1355–1368. [CrossRef]

http://dx.doi.org/10.1109/TLA.2019.8986417
http://dx.doi.org/10.1016/j.ijrobp.2018.05.053
http://www.ncbi.nlm.nih.gov/pubmed/30170872
http://dx.doi.org/10.1080/00401706.2017.1341341
http://dx.doi.org/10.3390/ijgi6050133
http://dx.doi.org/10.1166/jmihi.2016.1797
http://dx.doi.org/10.1016/j.media.2020.101635
http://dx.doi.org/10.3390/s20051536
http://dx.doi.org/10.3390/e22020220
http://dx.doi.org/10.31557/APJCP.2020.21.1.179
http://dx.doi.org/10.35940/ijitee.A4123.119119
http://dx.doi.org/10.1088/1361-6498/ab2755
http://www.ncbi.nlm.nih.gov/pubmed/31167171
http://dx.doi.org/10.3390/s20051414
http://dx.doi.org/10.1007/s10586-018-2592-2
http://dx.doi.org/10.1109/ACCESS.2019.2927255
http://dx.doi.org/10.1109/TSP.2018.2883021
http://dx.doi.org/10.1109/ACCESS.2018.2799606
http://dx.doi.org/10.1002/jmri.25106


Sensors 2020, 20, 5301 24 of 24

46. Parchami, M.; Zhu, W.P.; Champagne, B.; Plourde, E. Recent Developments in Speech Enhancement in the
Short-Time Fourier Transform Domain. IEEE Circuits Syst. Mag. 23, 16, 45–77. [CrossRef]

47. Bhongade, S.; Kourav, D.; Rai, R.K.; Sontakke, T. Review on Image Denoising Based on Contourlet Domain
Using Adaptive Window Algorithm. In Proceedings of the 2013 International Conference on Machine
Intelligence and Research Advancement, Katra, India, 21–23 December 2013; pp. 412–415.

48. Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A Tutorial on Speckle Reduction in Synthetic Aperture Radar
Images. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–35. [CrossRef]

49. Kamble, V.M.; Parlewar, P.; Keskar, A.G.; Bhurchandi, K.M. Performance Evaluation of Wavelet, Ridgelet,
Curvelet and Contourlet Transforms Based Techniques for Digital Image Denoising. Artif. Intell. Rev. 2016,
45, 509–533. [CrossRef]

50. Jain, P.; Tyagi, V. A Survey of Edge-Preserving Image Denoising Methods. Inf. Syst. Front. 2016, 18, 159–170.
[CrossRef]

51. Yin, H.; Gong, Y.; Qiu, G. Fast and Efficient Implementation of Image Filtering Using a Side Window
Convolutional Neural Network. Signal Process. 2020, 176, 107717. [CrossRef]

52. Sun, H.; He, Z.; Zi, Y.; Yuan, J.; Wang, X.; Chen, J.; He, S. Multiwavelet Transform and Its Applications in
Mechanical Fault Diagnosis—A Review. Mech. Syst. Signal Process. 2014, 43, 1–24. [CrossRef]

53. Mohan, J.; Krishnaveni, V.; Guo, Y. A Survey on the Magnetic Resonance Image Denoising Methods. Biomed.
Signal Process. Control 2014, 9, 56–69. [CrossRef]

54. Ebadi, L.; Shafri, H.Z.M.; Mansor, S.B.; Ashurov, R. A Review of Applying Second-Generation Wavelets for
Noise Removal from Remote Sensing Data. Environ. Earth Sci. 2013, 70, 2679–2690. [CrossRef]

55. Meziani, F.; Debbal, S.M.; Atbi, A. Analysis of Phonocardiogram Signals Using Wavelet Transform. J. Med.
Eng. Technol. 2012, 36, 283–302. [CrossRef]

56. Sapsanis, C.; Georgoulas, G.; Tzes, A.; Lymberopoulos, D. Improving EMG Based Classification of Basic
Hand Movements Using EMD. In Proceedings of the 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5754–5757.

57. Donoho, D. De-Noising by Soft-Thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [CrossRef]
58. Agarwal, S.P. Singh, O.; Nagaria, D. Analysis and Comparison of Wavelet Transforms For Denoising MRI

Image. Biomed. Pharmacol. J. 2017, 10, 831–836. [CrossRef]
59. Zotin, A.; Simonov, K.; Kapsargin, F.; Cherepanova, T.; Kruglyakov, A.; Cadena, L. Techniques for Medical

Images Processing Using Shearlet Transform and Color Coding. In Computer Vision in Control Systems-4;
Favorskaya, M.N., Jain, L.C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 136,
pp. 223–259.

60. Aja-Fernández, S.; Vegas-Sánchez-Ferrero, G. Noise Filtering in MRI. In Statistical Analysis of Noise in MRI;
Springer International Publishing: Cham, Switzerland, 2016; pp. 89–119.

61. Gai, S.; Zhang, B.; Yang, C.; Yu, L. Speckle Noise Reduction in Medical Ultrasound Image Using Monogenic
Wavelet and Laplace Mixture Distribution. Digit. Signal Process. 2018, 72, 192–207. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MCAS.2016.2583681
http://dx.doi.org/10.1109/MGRS.2013.2277512
http://dx.doi.org/10.1007/s10462-015-9453-7
http://dx.doi.org/10.1007/s10796-014-9527-0
http://dx.doi.org/10.1016/j.sigpro.2020.107717
http://dx.doi.org/10.1016/j.ymssp.2013.09.015
http://dx.doi.org/10.1016/j.bspc.2013.10.007
http://dx.doi.org/10.1007/s12665-013-2325-z
http://dx.doi.org/10.3109/03091902.2012.684830
http://dx.doi.org/10.1109/18.382009
http://dx.doi.org/10.13005/bpj/1174
http://dx.doi.org/10.1016/j.dsp.2017.10.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Recent Work
	Data Analysis
	Materials and Methods
	Data Preparation
	A Quantitative Measures of Wavelet Effectivity
	Spatial and Volumetric Modelling of Wavelet Response

	Results
	Time Consumption of Algorithm
	A Subjective Evaluation of Wavelet Effectivity

	Summary and Discussion
	Conclusions
	References

