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Simple Summary: A reliable sperm motility exam is important for semen analysis and breeding
soundness examination. Different parameters can affect the Computer Assisted Sperm Analysis
(CASA) motility results. Today, new high-resolution cameras and different chambers are introduced
to CASA systems, and protocol optimization is required to render the estimation results for donkey
sperm. The objective of this study is the optimization of the conditions used for donkey semen
motility analysis with CASA-Mot by defining the optimum frame rate for different chamber types.
Additionally, to study the effect of different chamber types, chamber field and sperm dilution on the
sperm kinematic parameters with higher frame rates are examined.

Abstract: In order to optimize the donkey sperm motility analysis by the CASA (Computer Assisted
Sperm Analysis)-Mot system, twelve ejaculates were collected from six jackasses. Capillary loaded
chamber (CLC), ISAS®D4C depths 10 and 20 µm, ISAS®D4C Leja 20 and drop displacement chamber
(DDC), Spermtrack® (Spk) depths 10 and 20 µm were used. Sperm kinematic variables were
evaluated using each chamber and a high-resolution camera capable of capturing a maximum
of 500 frames/second (fps). The optimum frame rate (OFR) (defined according to curvilinear
velocity—VCL) was dependent on chamber type. The highest OFR obtained was 278.46 fps by
Spk20. Values for VCL, straight-line velocity (VSL), straightness (STR), amplitude of lateral head
displacement (ALH) and beat cross frequency (BCF) were high in DDC and 10 µm depth. In both
DDC 10 and 20 µm, the sperm velocities (VCL, VSL, VAP) and ALH values decreased significantly
from the centre to the edges, while Wobble and BCF increased. No defined behavior was observed
along the CLC. However, all the kinematic variables had a higher value in a highly concentrated
sample, in both chamber types. In conclusion, analyzing a minimum of nine fields at 250 fps from the
centre to the edges in Spk10 chamber using a dilution of 30 × 106 sperm/mL offers the best choice for
donkey computerised sperm motility analysis.

Keywords: frame rate; drop displacement chambers; capillary loaded chambers; chamber depth;
field; sperm dilution
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1. Introduction

The domestic donkey (Equus asinus) is one of the two domestic species of the genus Equus
along with the horse (Equus caballus) [1]. In developed zones, donkeys have suffered a significant
decrease due to industrialization and mechanization of agriculture. However, in recent years, there has
been an increase in donkey product interest: milk, meat or skin [2]. Donkey farming is expanding
and the research interest about donkey production and reproduction optimization is increasing [3,4].
This implies a more complete knowledge of their semen quality and general reproductive characteristics
especially for achieving a productive-assisted reproduction [5].

Semen quality can be defined upon certain criteria performing certain tests, such as motility,
concentration and morphology [5–7]. Nonetheless, from all those tests, sperm motility is commonly
considered the most significant parameter for breeding soundness examination [8,9]. Usually, motility is
analysed subjectively looking for just the total and progressive motility, but in the last few decades,
an objective method—CASA (Computer Assisted Sperm Analysis)—was introduced and is now
available and used widely by veterinarians and laboratories [10]. CASA-Mot technology is based on
the computational reconstitution of sperm trajectory from image sequences; the last ones are captured
by a video camera mounted on a microscope. Then, the sperm sequences are automatically analysed
by the computer in a concise time [11]. Moreover, CASA-Mot systems provide a battery of kinematic
quantitative parameters that define the sperm cell motility rather than the progressivity [12].

A critical review of the literature revealed that no standard practices have been embraced or
recommended by professional societies in the case of donkey samples and thus, no defined protocols are
followed within or across CASA-Mot instruments [13]. In fact, in other species, it has been proved that
the accuracy and the sensitivity of the measurements obtained with CASA-Mot systems can be affected
by different factors, such as the mathematical algorithms, suspending medium, sample concentration,
frame rate, chamber type and depth, hardware, and instrument settings [14]. Usually, for the donkey
semen assessment within CASA, we use the same setting and protocol as horses. However, comparative
studies in both species have identified differences in reproductive strategy as well as in the sperm
form and function [15,16]. Effectively, the donkey testis is bigger and has been proved to have more
efficient spermatogenesis than a stallion [17–20]. In effect, donkey sperm heads are smaller with a
larger mid-piece than the stallion resulting in differences in motility patterns [21]. It was reported
that donkey spermatozoon is faster than the horse when using the same CASA set up [22]. However,
we need to consider those differences in the definition of the most adequate setting when analysing
donkey sperm.

On the other hand, in recent years, the development of high-resolution cameras, the improvement
of informatic systems and the development of specific chambers to analyze sperm motility have changed
the published data completely on sperm motility patterns in different species by CASA-Mot systems.

The objective of this study was to standardise the method of sperm motility assessment in the
donkey, by first defining the optimal frame rate (OFR) based on VCL (curvilinear velocity) data for
different counting chambers for the use in CASA-Mot system. Secondly, we analyse the kinematic
variables at OFR in different chamber types and depths (including the considered counting area).
Finally, an investigation of the effect of semen dilution on donkey sperm motility parameters is
carried out.

2. Materials and Methods

2.1. Animals Used and Ethics Statement

The experiment was carried out on six Catalan donkeys with two ejaculates for each one. All males
were aged between 3 and 20 years old and they are known for their successful fertility. Animals involved
in the study were housed at the Equine Reproduction Service, Autonomous University of Barcelona
(Bellaterra, Cerdanyola del Valles, Spain) at a Europe-approved equine semen collection centre
(authorization number: ES09RS01E). The centre operates under strict protocols of animal welfare
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and health control. All jackasses were semen donors, which were housed in an individual paddock
at the centre. Semen has been collected under CEE health conditions (free of Equine Arteritis,
Infectious Anaemia and Contagious Metritis). It is important to note that the service runs under the
Catalonia Regional Government’s approval (located in Spain) and no manipulations to the animals
other than semen collection were carried out. The Ethics committee of this institution indicated that no
further ethical approval was required. Additionally, all the animals received a standard diet (with
mixed hay and basic concentrate) and were provided with water ad libitum. Three times a week,
donkeys underwent regular semen collection once a day under the same conditions and samples were
collected throughout the year.

2.2. Semen Preparation

The semen was collected manually using an artificial Hannover vagina (Minitüb GmbH, Tiefenbach,
Germany) with an in-liner nylon filter to eliminate the gel fraction. Once semen collected, the volume
was recorded, then was immediately diluted 1:5 (v/v) in a skim-milk-based semen extender (Kenney) [23]
and allowed in 50 mL conical tubes. Morphological abnormalities and viability were determined
by bright field microscopy (mag. ×1000) when examining 200 cells after smear staining with
Eosin–Nigrosin. Total sperm concentrations were determined using a Neubauer Chamber (Paul
Marienfeld GmbH and Co. KG, Lauda-Königshofen, Germany); counting was performed in triplicate
using a phase-contrast microscope (mag. ×20).

2.3. Semen Dilution

The sperm concentration of semen diluted previously was reevaluated and adjusted to obtain two
groups: the first one with a high concentration (80 × 106 spz/mL) and the second, low concentrated,
(30 × 106 spz/mL) in order to analyze the effect of concentration on sperm motility.

2.4. Counting Chambers and Loading Technique

Five commercial counting chambers (all from Proiser R + D S.L., Paterna, Spain) were used:
(1) three disposable, capillary loaded chambers ISAS®D4C having a fixed cover-slide attached by
glue, ISAS®D4C10, ISAS®D4C20 (hereafter D4C10 and 20) of 10 and 20 µm depth (Figure 1a) and
ISAS®D4C20L (hereafter D4CL20) of 20 µm depth (Figure 1b). (2) two reusable drops displacement
chambers Spermtrack® (Proiser R + D, Paterna, Spain) having a separate cover slide, Spermtrack®10
and Spermtrack®20 (hereafter Spk10 and 20) of 10 and 20 µm depth (Figure 1c).

The samples were well homogenized just before being charged in the chambers. All chambers
were loaded with the adequate technique and quantity (Figure 1) of semen as recommended by the
manufacturer. When using the Spermtrack® chambers, the covers were rapidly but gently put in place
to achieve a homogenous distribution of the sample. The other chambers were loaded by depositing
the sperm sample in the loading area. Then, the sperm travels by capillarity into the different areas of
the chamber. Chambers were maintained on a thermo-plate for 15 s at 37 ◦C to prevent heat shock and
allowing the fluid to cease permitting correct observation. For the analysis, the order of chambers used
was randomized to avoid the effect of incubation time.

To study the effect of the field location on sperm motility, 7 fields were identified longitudinally in
D4C10 and 20 (Figure 1c). However, in D4C20L two captures were made in each zone A, B and C from
the proximal position to the distal position as presented in Figure 1b. Finally, in Spermtrack® chamber
different fields were captured from the center to the edges as shown in Figure 1c. An average of 500
sperm was captured per field.
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Figure 1. The different chambers types and forms used and the filed analyzed. (a): Disposable 
chamber D4C10, D4C20. (b): Disposable chamber D4C20L and (c): Reusable chambers SpK10, SpK 20. 
The arrow demonstrates the place of drop deposition. Numbers (1–7) and characters (A, B, C) inside 
the chambers demonstrate different capture fields. 

2.5. CASA-Mot Analysis 

Objective motility assessment was performed using ISAS® v1.2 CASA-Mot system (Proiser R + 
D, Paterna, Spain) combined with a UOP200i microscope (Proiser R + D) equipped with a negative 
phase contrast 10× objective (AN 0.25) and an MQ003MG- CM digital camera (Proiser R + D S.L.) 
which was capable of capturing a maximum frame rate of 500 per second. The final resolution was 
0.48 µm/pixel in both x- and y-axis. The system was set with particle area between 4 and 70 µm2 and 
connectivity set value of 6 µm. All samples analysis was performed by the same technician to avoid 
errors related and biases. 

Sequences were captured at 500 fps and recorded during 3 s in different fields. For the study, 
these original videos were later segmented into 25, 50, 100, 150, 200 and 250 fps working videos, using 
the following command: [echo off: set fps = 25, 50, 75, 100, 150: for %%i in (.Ä*.avi) do (set fname = 
%%~ni) & call: encodeVideo; goto eof: encodeVideo: ffmpeg.exe -i%fname%.avi -r %fps% -clibx264 -
preset slow -qp 0”%fname%_(%fps%fps).avi”; goto eof]. 

The following kinematic parameters were considered for this study: the sum of the distances 
between each measured sperm position divided by the analysis time (VCL, µm/s), the straight-line 
distance between the first and last sperm position divided by the analysis time (VSL, µm/s), the 
average path velocity is the time-averaged velocity of a sperm head along its average path (VAP, 
µm/s), the wobble is a measure of oscillation of the actual path about the average path (WOB = 
VAP/VCL, dimensionless), the straightness is a measure of the linearity of the average path (STR = 
VSL/VAP, dimensionless), the linearity of forward progression, the linearity of the curvilinear path 
(LIN = VSL/VCL, dimensionless), the average distance of the sperm head from the average sperm-
swimming path where the average path (ALH, µm) and the beat cross frequency the number of lateral 
oscillatory movements of the sperm head around the mean trajectory (BCF, Hz). 
  

Figure 1. The different chambers types and forms used and the filed analyzed. (a): Disposable chamber
D4C10, D4C20. (b): Disposable chamber D4C20L and (c): Reusable chambers SpK10, SpK 20. The arrow
demonstrates the place of drop deposition. Numbers (1–7) and characters (A, B, C) inside the chambers
demonstrate different capture fields.

2.5. CASA-Mot Analysis

Objective motility assessment was performed using ISAS® v1.2 CASA-Mot system (Proiser R + D,
Paterna, Spain) combined with a UOP200i microscope (Proiser R + D) equipped with a negative phase
contrast 10× objective (AN 0.25) and an MQ003MG- CM digital camera (Proiser R + D S.L.) which was
capable of capturing a maximum frame rate of 500 per second. The final resolution was 0.48 µm/pixel
in both x- and y-axis. The system was set with particle area between 4 and 70 µm2 and connectivity set
value of 6 µm. All samples analysis was performed by the same technician to avoid errors related
and biases.

Sequences were captured at 500 fps and recorded during 3 s in different fields. For the study,
these original videos were later segmented into 25, 50, 100, 150, 200 and 250 fps working videos,
using the following command: [echo off: set fps = 25, 50, 75, 100, 150: for %%i in (.Ä*.avi) do (set
fname = %%~ni) & call: encodeVideo; goto eof: encodeVideo: ffmpeg.exe -i%fname%.avi -r %fps%
-clibx264 -preset slow -qp 0”%fname%_(%fps%fps).avi”; goto eof].

The following kinematic parameters were considered for this study: the sum of the distances
between each measured sperm position divided by the analysis time (VCL, µm/s), the straight-line
distance between the first and last sperm position divided by the analysis time (VSL, µm/s),
the average path velocity is the time-averaged velocity of a sperm head along its average path
(VAP, µm/s), the wobble is a measure of oscillation of the actual path about the average path (WOB
= VAP/VCL, dimensionless), the straightness is a measure of the linearity of the average path (STR
= VSL/VAP, dimensionless), the linearity of forward progression, the linearity of the curvilinear
path (LIN = VSL/VCL, dimensionless), the average distance of the sperm head from the average
sperm-swimming path where the average path (ALH, µm) and the beat cross frequency the number of
lateral oscillatory movements of the sperm head around the mean trajectory (BCF, Hz).

2.6. Calculating the Optimum Frame Rate

Optimal frame rates were determined from the VCL of the sperms using point-to-point
reconstructions of their trajectories at each tested FR. For this, the results were subjected to exponential
regression analysis:

y = β.α exp (−β/x) (1)
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where y is the VCL, x is the FR, α is the asymptotic level, β is the rate of increase to the asymptote and
exp based on the natural logarithm. The biological meaning of the formulae is that the asymptotic
level (α) represents the maximum achievable when the FR is above the threshold value. The threshold
level is conventionally calculated as the FR needed to obtain 95% of the maximum value. The rate of
the approach to the asymptote represents the dependence on the curve on the FR; a higher value of β
indicates high growth of the VCL as FR increases and vice versa. There is no substantial increase in the
VCL with the increase of FR which represents α the asymptotic value (at least 95% of the maximum
VCL has been achieved). The rate of approach to the asymptote represents the dependence of the curve
on the FR, thus, a high β value indicates an increase in VCL with increasing FR and vice versa.

Although, the maximum image captured by the camera was 500 f/s. There is no software that
can analyse the huge amount of data generated by capture frequency higher than 250 f/s. Therefore,
given the OFR for all the studied chambers was either virtually identical to 250 f/s or >250 f/s.
The following experiments were performed at 250 f/s for every chamber.

2.7. Statistical Analysis

The data obtained for the analysis of all sperm variables were first assessed for normality and
homoscedasticity by using Shapiro–Wilk and Levene tests respectively. A normal probability plot was
used to assess normal distribution. In trying to obtain a normal distribution, data were transformed
using acrsine square root (acrsin

√
x) before repeated-measures ANOVA was run. An ANOVA was

applied to evaluate statistical differences in the distributions of observation (individual spermatozoa)
within disposable and reusable counting chambers and then a generalized linear model (GLM)
procedure was used to determine the effects on the mean kinematic values defining the different fields
of disposable counting chambers ISAS®D4C depth. Differences between means were analyzed by a
Bonferroni test. The statistical model used was:

Xijk = µ + Ai + Bj + AB (ij) + εijk (2)

where Xijk = the measured sperm motility variable, µ = the overall mean of variable x, Ai = the effect
of depth, Bj = the effect of the counting chamber; AB (ij) = the effect of the interaction depth-counting
chamber; and εijk = the residual.

Results are presented as mean ± standard error of the mean (SEM) Statistical significance was
considered at p < 0.05. All calculations were performed using the IBM SPSS V.23.0 package for Windows
(IBM Inc., Chicago, IL, USA).

3. Results

3.1. Optimum Frame Rate in Different Chambers

The OFR was calculated for each chamber type (Figure 2). The higher OFR found was obtained by
means of reusable chambers. However, OFR was higher in the chamber of 20 µm in depth compared
to 10 µm in depth whatever the chamber type. Therefore, the highest value of the OFR was in Spk20
(278.4 fps) while the lowest was in D4C20L (225.3 fps) as presented in Table 1.

The OFR of all the chambers was between 225 f/s and 278 f/s. Thus, all the subsequent experiments
were performed at 250 f/s for every chamber assuring a reliable measurement for sperm kinematic
parameters in donkey semen.

Sperm trajectory showed a different form as the FR increase. At a higher FR, the trajectory showed
a much higher oscillation that was not possible to appreciate at lower FR as shown in Figure 3.
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Table 1. Optimum frame rate calculated to have the threshold level for different chambers types and depths. Curvilineal velocity of donkey sperm for the optimal
frame rate (VCLα) and with different frames rates (25–250) calculated based on α and β values.

Chamber Type Chamber n α SEMα β SEMβ VCLα VCL25 VCL50 VCL100 VCL150 VCL200 VCL250

Disposable

D4C10 14,451 247.6 0.97 18.43 0.31 229.79 118.46 171.26 205.92 218.97 225.8 230.00
D4C20 64,732 252.96 0.62 23.64 0.25 230.30 98.26 157.65 199.7 216.07 224.75 230.13
D4C20L 76,812 225.71 0.49 21.18 0.18 207.72 96.74 147.76 182.62 195.98 203.02 207.37

Reusable

Spk10 105,679 255.01 0.55 24.23 0.19 231.89 96.74 157.07 200.13 216.97 225.91 231.45
Spk20 172,918 278.46 0.46 31.80 0.15 248.36 78.04 147.41 202.60 225.26 237.52 245.20

n: number of spermatozoa analyzed; α = asymptote of curvilinear velocity; β = rate of increase; SEM = standard error of the mean; VCL = curvilinear velocity (µm/s). D4C10, D4C20:
Disposable chambers 10 µm and 20 µm depth. D4C20L: Leja disposable chamber 20 µm depth. Spk10, Spk20: Reusable chambers (Spermtrack®) 10 µm and 20 µm depth.
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3.2. Effect of Chamber Type and Depth on Sperm Kinematic Parameters

The analysis of sperm kinematic parameters (VCL, VSL, VAP, LIN, STR, ALH) was generally
characterized by a significantly higher value in reusable chambers compared to disposable chambers
(p < 0.05). On the contrary, WOB and BCF were lower in reusable chamber Spk.

Then, when comparing the motility parameters in different depths for the same type and design
chamber, a disposable D4C chamber of 10 µm depth reveals a higher value for the VAP, LIN, WOB and
BCF rather than the D4C 20 µm depth chamber. Nevertheless, ISAS®D4C20L reusable chamber had
the lowest value for all kinematic parameters except for WOB, STR and LIN which showed a higher
value compared to D4C 20 µm (Table 2).

Table 2. Motility parameters (mean ± SEM) of donkey spermatozoa determined by CASA system using
disposable and reusable chambers obtained at 250 frames.

Chambers
Disposable Reusable

D4C D4C D4CL Spk Spk

Depth 10 µm 20 µm 20 µm 10 µm 20 µm

VCL 227.91 ± 1.19 d 238.16 ± 0.83 c 223.77 ± 0.77 d 260.47 ± 0.78 b 268.07 ± 0.54 a

VSL 70.19 ± 0.67 c,d 71.16 ± 0.45 c 68.93 ± 0.42 d 83.57 ± 0.45 a 80.46 ± 0.3 b

VAP 181.57 ± 0.8 a 177.18 ± 0.52 b 168.15 ± 0.5 c 183.8 ± 0.48 a 181.66 ± 0.33 a

LIN 29.82 ± 0.27 a,b 28.3 ± 0.18 c 29.32 ± 0.19 b 30.23 ± 0.18 a 28.46 ± 0.12 a,b

STR 37.67 ± 0.38 d 38.09 ± 0.25 d 39.06 ± 0.24 c 42.61 ± 0.23 a 41.47 ± 0.16 b

WOB 79.1 ± 0.19 a 73.72 ± 0.13 c 74.39 ± 0.15 b 70.19 ± 0.13 d 67.5 ± 0.09 e

ALH 1.17 ± 0.01 e 1.26 ± 0.01 c 1.22 ± 0.01 d 1.39 ± 0.01 b 1.44 ± 0.0049 a

BCF 42.58 ± 0.2 a 40.35 ± 0.14 c 38 ± 0.14 d 40.79 ± 0.12 b 39.96 ± 0.08 c

SEM: Standard Error of the Mean; VCL (µm/s) curvilinear velocity; VSL (µm/s) straight line velocity; VAP (µm/s)
average path velocity; LIN (%) linearity; STR (%) straightness; WOB (%) wobble; ALH (µm) amplitude of lateral
head displacement; BCF (Hz) beat-cross frequency. Disposable chambers D4C 10 µm and 20 µm depth. Reusable
chambers. Spk 10 µm and 20 µm depth. a,b,c,d Within columns, rates with different superscripts differed (p < 0.05).

3.3. Effect of the Capture Field Inside the Counting Chamber

In D4C10, there was no clear tendency observed in the kinematic parameters as the spermatozoids
travel from the point of deposition to the last field. However, the velocities (VCL, VSL, VAP) and BCF
were higher in the last field while LIN increased along the counting way (form field 1 to 7) (Table 3).

The same results were found in the D4C20 chamber; we can observe an oscillatory change along
the counting way. However, we observed a reduction in the velocity value (VCL, VSL, VAP) and the
linearity in the last field (Table 3).

Regarding the D4C20L chamber, the highest values for all kinematic parameters (exception from
the WOB) were observed closer to the point of deposition. However, the sperm had the lowest
kinematic values in the middle of the chamber. The only value that showed no changes in the three
counting zones was the BCF (Table 4).

Finally, in the reusable chambers, Spk spermatozoa showed similar behavior for both depths.
In both Spk10 and 20 the sperm velocities (VCL, VSL, VAP) and ALH, values decreased significantly
from the centre to the edges, while WOB and BCF increased (p < 0.05). Yet, VAP and LIN showed the
highest value in the second counting ring in Skp20 (Table 5).
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Table 3. CASA motility parameters (mean ± SEM) in different fields of disposable chamber ISAS®D4C10 and 20 µm depth.

Chamber VCL VSL VAP LIN STR WOB ALH BCF

D4C10

1 237.0 ± 3.3 a 71.96 ± 1.69 b 186.6 ± 2.71 a 28.94 ± 0.56 b,c 37.37 ± 0.71 b,c 77.73 ± 0.39 b 1.20 ± 0.01 a 41.26 ± 0.67 a

2 226.9 ± 3.1 a,b,c 66.70 ± 1.59 b 180.39 ± 2.56 a,b 28.03 ± 0.53 c 35.51 ± 0.67 c 78.79 ± 0.37 a 1.18 ± 0.01 a 41.62 ± 0.63 a

3 218.56 ± 4.22 c,d 66.62 ± 2.16 b 177.59 ± 3.47 a,b,c 29.63 ± 0.72 b,c 36.63 ± 0.91 b,c 80.53 ± 0.5 a 1.14 ± 0.01 a 42.02 ± 0.86 a

4 233.54 ± 3.11 a,b 71.18 ± 1.6b 183.96 ± 2.56 a,b 29.66 ± 0.53 b 37.63 ± 0.67 b 78.58 ± 0.37 a,b 1.2 ± 0.01 a 41.99 ± 0.63 a

5 218.26 ± 4.22 c,d 67.45 ± 2.16 b 177.22 ± 3.47 a,b,c 30.46 ± 0.72 a,b 37.76 ± 0.91 b 80.63 ± 0.5 a 1.14 ± 0.01 a 42.34 ± 0.86 a

6 212.65 ± 4.09 d 69.66 ± 2.1 b 170.19 ± 3.37 c 31.97 ± 0.7 a 40.27 ± 0.88 a 79.41 ± 0.49 a 1.12 ± 0.01 a 40.91 ± 0.83 a

7 252.96 ± 16.8 a 93.72 ± 8.61 a 198.38 ± 13.83 a 35.64 ± 2.87 a 45.5 ± 3.61 a 78.06 ± 1.99 a,b 1.23 ± 0.06 a 43.78 ± 3.42 a

D4C20

1 238.94 ± 2.64 b 68.96 ± 1.32 c 171.01 ± 2.04 b 26.99 ± 0.4 c 37.94 ± 0.51 b 70.54 ± 0.27 c 1.29 ± 0.01 b 38.41 ± 0.48 c

2 215.94 ± 2.58 c 65.06 ± 1.29 d 162.94 ± 1.99 c 28.2 ± 0.39 b 37.66 ± 0.5 b 74.28 ± 0.26 a 1.17 ± 0.01 d 36.79 ± 0.46 d

3 241.81 ± 2.51 b 70.26 ± 1.26 b,c 180.81±1.94 a 27.7 ± 0.38 b,c 37 ± 0.48 b 74.31 ± 0.26 a 1.27 ± 0.01 b 40.52 ± 0.45 b

4 243.05 ± 2.38 b 72.97 ± 1.19 b 182.02±1.84 a 28.35 ± 0.36 b 37.88 ± 0.46 b 74.47 ± 0.24 a 1.27 ± 0.01 b 40.88 ± 0.43 b

5 244.19 ± 2.71 b 73.77 ± 1.36 b 182.1±2.09 a 28.7 ± 0.4 b 38.39± 0.52 b 73.99 ± 0.28 a 1.28 ± 0.01 b 39.7 ± 0.49 b,c

6 253.55 ± 3.51 a 78.47 ± 1.76 a 184.84±2.72 a 30.13 ± 0.53 a 41.1 ± 0.68 a 72.75 ± 0.36 b 1.33 ± 0.01 a 41.51 ± 0.63 a

7 222.69 ± 3.91 c 63.82 ± 1.96 d 169.34 ± 3.02 b,c 26.61 ± 0.59 c 34.95 ± 0.75 c 74.77 ± 0.4 a 1.22 ± 0.01 c 38.54 ± 0.71 c

SEM: Standard error of the mean; VCL (µm/s) curvilinear velocity; VSL (µm/s) straight line velocity; VAP (µm/s) average path velocity; LIN (%) linearity; STR (%) straightness; WOB (%)
wobble; ALH (µm) amplitude of lateral head displacement; BCF (Hz) beat-cross frequency. Disposable chambers D4C 10 µm and 20 µm depth. Reusable chambers. Different letters of the
alphabet within columns indicate significant differences between different fields (p < 0.05).

Table 4. CASA motility parameters (mean ± SEM) in different fields of disposable chamber ISAS®D4C20L.

Capture Fields VCL VSL VAP LIN STR WOB ALH BCF

A 227.53 ± 1.89 a 70.55 ± 0.95 a 169.65 ± 1.49 a 29.54 ± 0.3 a 39.71 ± 0.38 a 74.03 ± 0.19 b 1.24 ± 0.01 a 38.6 ± 0.37 a

B 219.63 ± 1.65 b 65.43 ± 0.83 b 164.74 ± 1.3 b 28.28 ± 0.26 b 37.83 ± 0.33 b 74.12 ± 0.17 b 1.21 ± 0.01 b 37.68 ± 0.32 a

C 222.51 ± 1.5 b 69.13 ± 0.76 a 167.8 ± 1.19 a,b 29.52 ± 0.24 a 39.1 ± 0.3 a 74.58 ± 0.16 a 1.21 ± 0.01 b 37.91 ± 0.29 a

SEM: Standard error of the mean; VCL (µm/s) curvilinear velocity; VSL (µm/s) straight line velocity; VAP (µm/s) average path velocity; LIN (%) linearity; STR (%) straightness; WOB (%)
wobble; ALH (µm) amplitude of lateral head displacement; BCF (Hz) beat-cross frequency. Different letters of the alphabet within columns indicate significant differences between different
fields (p < 0.05). Capture fields for semen analysis proximal (A), medium (B), distal (C) as described in Figure 1.
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Table 5. Mean (±SEM) of sperm kinetic parameters (VCL, VSL, VAP, LIN, STR, WOB, ALH and BCF) in donkey semen in reusable chamber Spermtrack® (SpK) 10 and
20 µm depth.

Chamber and Capture Field VCL VSL VAP LIN STR WOB ALH BCF

SpK10

A 274.11 ± 2.31 a 88.37 ± 1.28 a 188.94 ± 1.69 a 30.33 ± 0.36 a,b 43.8 ± 0.48 a 68.53 ± 0.22 b 1.45 ± 0.01 a 41.35 ± 0.39 a

B 257.82 ± 1.24 b 81.41 ± 0.69 b 182.23 ± 0.91 b 29.6 ± 0.19 b 41.61 ± 0.26 b 70.3 ± 0.12 a 1.38 ± 0.0045 b 39.84 ± 0.21 b

C 257.6 ± 1.63 b 83.48 ± 0.91 b 182.8 ± 1.2 b 30.69 ± 0.25 a 43.07 ± 0.34 a 70.53 ± 0.15 a 1.37 ± 0.01 b 40.3 ± 0.28 b

SpK20

A 271.45 ± 1.76 a 82.66 ± 0.93 a 177.73 ± 1.25 b 28.08 ± 0.26 b 42.47 ± 0.34 a 64.84 ± 0.15 c 1.47 ± 0.01 a 38.54 ± 0.29 b

B 271.84 ± 1.11 a 81.69 ± 0.59 a 183.81 ± 0.79 a 28.71 ± 0.16 a 41.89 ± 0.22 a 67.51 ± 0.1 b 1.45 ± 0.0041 b 39.42 ± 0.18 a

C 263.56 ± 1.05 b 77.72 ± 0.56 b 180.56 ± 0.74 b 27.94 ± 0.15 b 40.27 ± 0.21 b 68.18 ± 0.09 a 1.42 ± 0.0038 c 39.54 ± 0.17 a

SEM: Standard error of the mean; VCL (µm/s) curvilinear velocity; VSL (µm/s) straight line velocity; VAP (µm/s) average path velocity; LIN (%) linearity; STR (%) straightness; WOB (%)
wobble; ALH (µm) amplitude of lateral head displacement; BCF (Hz) beat-cross frequency. Different letters of the alphabet within columns indicate significant differences between different
fields (p < 0.05). Capture fields for semen analysis central field (A), medium field (B), border field (C) as described in Figure 1.
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4. Discussion

In the present study, we attempted to standardize the technique used for the motility assessment
of donkey sperm using high-resolution cameras and specific chambers.

The first step was to define the OFR for sperm kinematic analysis. Our work evidenced a direct
positive relationship between capture frequency and VCL. Thus, capture frequency is the number of
captures that permit the tracking of the sperm from one dot to another, hence we can reconstruct the
sperm trajectory while VCL is the speed of the sperm (sperm trajectory/time) and dependent on sperm
trajectory. As demonstrated in this study using non-linear regression, we could calculate the maximum
frames needed, defined as OFR representing the threshold (α) where more captures will lead to the
same sperm path. The OFR for the donkey sperm was different between chambers with a higher value
in Spermtrack® (278 fps) having a VCL of 248.36 µm/s. The lower frames were needed in the D4C20L
chamber (225.7 fps). It has been noted in other studies in horses that the calculated OFR (309 fps) with
a VCL is remarkably superior compared to the donkey (not published). Contrarily to what was found
with lower frames (25 fps), the VCL was higher in donkeys compared to the horse [22]. This can be
explained by the loss of information with a lower frame. It is believed that donkey sperm is faster
than a stallion, but the current study showed less VCL with higher VSL and a straighter trajectory in
donkey than the horse. Thus, this explains the lower OFR found in the horse compared to the donkey.
Additionally, in recent studies, while using a high-performance camera and the same study design,
depending on each species that the sperm shows non-linear trajectory will need more captures to
define the correct track. This explains the differences obtained in the calculation of the OFR in the bull
(256 fps) [24], the boar (212 fps) [25], and the salmon (250 fps) [26].

It was also found that the OFR is dependent on the chamber type and depth. In fact, the sperm
motion or the flagellar beat is affected by the space where it is placed. In a similar study designed for
bulls [24], this was also found in a different frame for different chambers.

The second step was to analyse the sperm behavior in different chamber types. As we can observe,
the kinematic parameters were high in the reusable chamber compared to disposable chambers, except
that the BCF and WOB values were higher in the disposable chamber. In fact, the same results were
observed for VC, VSL and VAP on different species like horses, bulls, boars and bucks. Yet, the other
parameters were variable depending on the species [24,27–32]. Those differences could be explained
by the loading technique that could generate physical forces on the spermatozoa affecting its motility.
As well, it was showed the existence of a certain interaction between sperm and ions of the glass
mounted on the chamber, which would be toxic in certain species [14]. Furthermore, the chamber’s
designs can exercise a certain force and affect sperm movement as seen in the D4C20L chamber where
donkey sperm showed the lowest values for all kinematic parameters compared to other chambers
which could be due to turbulence created inside this chamber [14]. The same results were found for
the bull [33]. All these effects, as we can see, are specific to each species. So, it is essential to take these
parameters into account for each species when choosing the chamber for sperm motility analysis.

The results of our study additionally demonstrated that the depth of the counting chamber
influenced kinematic values. In fact, comparing the chambers of the same type for a different depth,
we can observe that donkey sperm had greater VAP, VSL, LIN, STR, WOB and BCF in a narrow chamber
of 10 µm rather than 20 µm chamber while VCL and ALH were greater in 20um chamber. The same
result was found in other species such as the goat [27]. In the Belgian Blue bull and the Limousine
bull breed [24], D4C10, 20 µm depths were used. This kind of linear motility movement is defined by
low lateral amplitude and a high straight-line velocity. In actuality, it was found that this movement
was essential for the sperm migration from the cervix to the uterus and then to the oviduct [34,35].
Moreover, this movement was also observed in the seminal plasma and the uterine fluids, with a low
concentration of glucose. However, a study on the boar [36], the Holstein bull breed [24] and the
stallion [29] determined that the sperm was faster (high VCL, VSL and VAP) with higher index values
in the deepest chamber 20 µm. Yet, it has also been suggested that sperm kinematics are unaffected
by the chamber depth [13]. Looking at the studies referred to above, it was observed that the frame
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rate setting and the chambers used to achieve different depths were not identical in all other respects.
Therefore, differences in sperm kinematics could not be attributed solely to a chamber depth. A study
conducted by [36], using lensless microscopy, showed that the kinetic parameters of boar semen in
the deepest chambers of 100 µm increase significantly. Considering all these parameters discussed
previously, it was demonstrated that the sperm behave differently depending on the chamber’s depth
and the species. It is important to contemplate that there is a possibility that in the OFR with a higher
chamber depth (more than the size of the sperm), the sperm will show different behavior.

To the best of our knowledge, this is the first work that studies the effect of the chamber field in
the analysis of donkey sperm. The semen analysis demonstrated that the zone analysis in the chamber
had a significant effect on the kinematic outcomes. The analysis in D4C10 rectangular chamber showed
that the sperm increased in velocity as the drop moved to the last field. However, it was observed that
the sperm lost its linearity. On the contrary, it was demonstrated that in the D4C20 chamber, the sperm
showed opposite comportment for the velocity parameters. The same outcome was found in the fox
samples [37] using the same chambers. It was suggested that the Segre–Silderberg effect altered the
sperm movement as a consequence of the hydrodynamic drive of the fluid within the capillary-loaded
chambers [38]. In this case, it affected the sperm tail [30,32] and the vitality [33]. In fact, we can observe
that the results were emphasised in a narrow chamber when observing the sperm of the donkey. In the
circle form chamber, Spermtrack®, the drop is moved by the force of the coverslip. In our study, it was
found that when the drop moves from the centre to the edges, the motility decreased in both chambers’
depth, but the linearity increased. This result could be explained by the force of the fluid in the centre,
which is generated by the cover that moves the sperm forward increasing the linearity but affecting
the velocity. A similar result was found in the ram using a slide-coverslip [27,32]. However, [39]
when using a Makler® for the bull sperm, no differences between the centre and the edges could be
determined [39]. As we can see, this could implicate the biology or metabolism of each species which
behave differently [40].

Finally, it is important to also consider the dilution rate which had a direct effect on sperm motility
parameters as observed in our study. The sperm velocity (VAP and VCL) and the progressiveness
(BCF, STR and LIN) values were higher in the high-density sample (80 × 106 sperm/mL) compared
to a low density (30 × 106 sperm/mL) sample for all the chambers. As previously reported in many
studies, the semen concentration could affect sperm motility parameter values recorded by CASA [41].
The same results were found for different studies in dogs [42] and bulls [43] with a higher initial sperm
concentration resulted in an increase in sperm velocity (VAP, VSL and VCL) and progressiveness.
This difference can be related to the “dilution effect” referring to the detrimental effect on sperm quality,
motility and resistance to a cold shock when adding a high volume of diluent of raw semen. The dilution
effect was observed in a low sperm concentration (i.e., <20 × 106 sperm/mL) and demonstrated in
various species [44–46]. Nevertheless, a study on horses [45,47,48] and humans [49] using a lower
sperm density (2.5 × 106 sperm/mL) revealed higher motility parameters due to the minor effect
that the “dilution effect” had on the sperm motility comparatively to other species. We propose a
concentration of 80 × 106 sperm/mL for further experiments in the study of the donkey when using a
narrow chamber of 10 µm and especially in a disposable chamber. Usually, at high concentrations, the
sperm aggregates affecting the CASA system results. This was reported for a concentration higher
than 100 × 106 sperm/mL [32]. Yet, in the present study, with a concentration of 80 × 106 sperm/mL,
the videos were clear, and the trajectories were defined correctly. On the other hand, in reusable
chambers, we recommend using a lower concentration since the concentration of 80 × 106 sperm/mL
was too dense. Nonetheless, when using the playback facility for sperm tracking, the result showed
a wrong trajectory reconstruction due to erroneous head detection in following frames, collision,
and cross-tracks. Essentially, a different sperm concentration was proposed for CASA evaluation for
different species [43,50,51] such as the horse where the concentration used is between (25 × 106 and
50 × 106 sperm/mL) [46,52]. The differences in the sperm concentration suggested for the analysis,
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in different studies, that it is likely due to the different usage of CASA devices and chambers and it is
directly related to the species-specificities.

In the present study, a classical skim-milk extender (Kenney extender) was used. Rota et al. [53],
by means of a previous CASA system, observed an effect of extender on sperm motility patterns of
Amiata donkey spermatozoa. Further studies are needed to better understand the changes in motility
patterns of donkey spermatozoa caused by semen extenders, with different composition and fluidity
and using new CASA devices and chambers.

5. Conclusions

Each species, including horse and donkey, has its own sperm motility patterns; as a result,
each species needs its own CASA system analysis conditions. These conditions are changing according
to the constant improvement of related technologies. Current and new high-resolution video-cameras,
informatic software and hardware-increased capacities (but limited) or new specific chambers to
analyse sperm motility are changing previously defined sperm motility patterns. Then, to define
the OFR, the kinds and depths of analysis chambers or the sample dilution are very important to
more accurately describe the species-specific sperm motility. Thus, when examining the motility of
donkey sperm, the 250 fps in Spk10 chamber and analyzing a minimum of nine fields considering
all the capture area (centre and edges) and means determined at a concentration 30 × 106 sperm/mL
represents an excellent choice.
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10. Broekhuijse, M.L.W.J.; Šostarić, E.; Feitsma, H.; Gadella, B.M. Additional value of computer assisted semen
analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology
2011, 76, 1473–1486. [CrossRef]

11. Holt, W.V.; Cummins, J.M.; Soler, C. Computer-assisted sperm analysis and reproductive science; a gift
for understanding gamete biology from multidisciplinary perspectives. Reprod. Fertil. Dev. 2018, 30, 3–5.
[CrossRef]

12. Yániz, J.L.; Silvestre, M.A.; Santolaria, P.; Soler, C. CASA-Mot in mammals: An update. Reprod. Fertil. Dev.
2018, 30, 799–809. [CrossRef]

13. Canisso, I.F.; Panzani, D.; Miró, J.; Ellerbrock, R.E. Key Aspects of Donkey and Mule Reproduction. Vet. Clin.
N. Am. Equine Pract. 2019, 35, 607–642. [CrossRef]

14. Bompart, D.; García-Molina, A.; Valverde, A.; Caldeira, C.; Yániz, J.; De Murga, M.N.; Soler, C. CASA-Mot
technology: How results are affected by the frame rate and counting chamber. Reprod. Fertil. Dev. 2018, 30,
810–819. [CrossRef]

15. Contri, A.; Gloria, A.; Robbe, D.; De Amicis, I.; Carluccio, A. Characteristics of donkey spermatozoa along
the length of the epididymis. Theriogenology 2012, 77, 166–173. [CrossRef]

16. Quartuccio, M.; Marino, G.; Zanghì, A.; Garufi, G.; Cristarella, S. Testicular Volume and Daily Sperm Output
in Ragusano Donkeys. J. Equine Vet. Sci. 2011, 31, 143–146. [CrossRef]

17. Carluccio, A.; Panzani, S.; Contri, A.; Bronzo, V.; Robbe, D.; Veronesi, M.C. Influence of season on testicular
morphometry and semen characteristics in Martina Franca jackasses. Theriogenology 2013, 79, 502–507.
[CrossRef]

18. Gacem, S.; Papas, M.; Catalan, J.; Miró, J. Examination of jackass (Equus asinus) accessory sex glands
by B-mode ultrasound and of testicular artery blood flow by colour pulsed-wave Doppler ultrasound:
Correlations with semen production. Reprod. Domest. Anim. 2020, 55, 181–188. [CrossRef] [PubMed]

19. Moustafa, M.N.K.; Sayed, R.; Zayed, A.E.; Abdel-Hafeez, H.H. Morphological and Morphometric Study of
the Development of Seminiferous Epithelium of Donkey (Equus asinus) from Birth to Maturity. J. Cytol. Histol.
2015, 6, 1.

20. Rota, A.; Puddu, B.; Sabatini, C.; Panzani, D.; Lainé, A.L.; Camillo, F. Reproductive parameters of donkey
jacks undergoing puberty. Anim. Reprod. Sci. 2018, 192, 119–125. [CrossRef]

21. Miró, J.; Flotats, A.; Rivera, M.; Ocaña, M.; Taberner, E.; Peña, A.; Rigau, T. OC3 Morphometry Characterisation
of Catalan Donkey Spermatozoa and Identification of Sperm Morphometric Subpopulations. Reprod. Domest.
Anim. 2006, 41, 103. [CrossRef]

22. Miró, J.; Lobo, V.; Quintero-Moreno, A.; Medrano, A.; Peña, A.; Rigau, T. Sperm motility patterns and
metabolism in Catalonian donkey semen. Theriogenology 2005, 63, 1706–1716. [CrossRef] [PubMed]

23. Kenney, R.M. Minimal contamination techniques for breeding mares: Techniques and priliminary findings.
Proc. Am. Assoc. Equine Pract. 1975, 21, 327–336.

24. Bompart, D.; Vázquez, R.F.; Gómez, R.; Valverde, A.; Roldán, E.R.S.; García-Molina, A.; Soler, C. Combined
effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and
kinematics. Anim. Reprod. Sci. 2019, 209, 106169. [CrossRef]

25. Valverde, A.; Madrigal, M.; Caldeira, C.; Bompart, D.; de Murga, J.N.; Arnau, S.; Soler, C. Effect of frame rate
capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analysed
with a CASA-Mot system. Reprod. Domest. Anim. 2019, 54, 167–175. [CrossRef]

26. Caldeira, C.; Hernández-Ibáñez, S.; Valverde, A.; Martin, P.; Herranz-Jusdado, J.G.; Gallego, V.; Asturiano, J.F.;
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