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Functional amyloids produced in bacteria as nanoscale inclusion bodies are intriguing but 

poorly explored protein materials with wide therapeutic potential. Since under physiological 

conditions they release functional polypeptides, these materials could be potentially tailored 

as mimetic of secretory granules for slow systemic delivery of smart protein drugs. To explore 

this possibility, bacterial inclusion bodies formed by a self-assembled, tumor-targeted 

Pseudomonas exotoxin (PE24) have been administered subcutaneously in mouse models of 

human metastatic colorectal cancer, for sustained secretion of tumor-targeted therapeutic 

nanoparticles. These proteins are functionalized with a peptidic ligand of CXCR4, a 

chemokine receptor overexpressed in metastatic cancer stem cells that confers high selective 

cytotoxicity in vitro and in vivo. In mouse models of human colorectal cancer, time-deferred 

anticancer activity is detected after the subcutaneous deposition of 500 μg of PE24-based 

amyloids, which promotes a dramatic arrest of tumor growth in absence of side toxicity. In 

addition, long-term prevention of lymphatic, hematogenous and peritoneal metastases is 

achieved. These results reveal the biomedical potential and versatility of bacterial inclusion 

bodies as novel tunable secretory materials usable in delivery, and they also instruct how 

therapeutic proteins, even with high functional and structural complexity, can be packaged in 

this convenient format.  
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Bacterial inclusion bodies (IBs) are naturally occurring protein clusters commonly observed 

in recombinant bacteria. 1 Being the transgene protein product their main component, they are 

mechanically stable, soft proteinaceous particles 2 in between nano and micro scales (usually 

ranging from 50 to 1500 nm in size). A fraction (about 40 %) of the recombinant protein is 

organized as non-toxic amyloid fibers and the remaining protein component is found in a 

proteinase-K sensitive, functional or quasi-functional form. 3 Since the discovery of the 

biological activity associated to IB protein, 4 IBs have been exploited as self-immobilized 

catalysts for chemical and biotechnology industries 5 and also as protein carriers for 

intracellular delivery of functional proteins, in form of nanopills. 6 This is because IBs tend to 

interact with mammalian cell membranes in absence of toxicity and penetrate exposed cells 

where the embedded protein is functional in both IB-associated and upon eventual release 

from IBs. In materials sciences, IBs have been explored as functional topographies in tissue 

engineering, 7 to simultaneously provide mechanical and biological stimuli to growing cells. 8 

More recently, it has been demonstrated that bacterial IBs can be targeted to specific cell 

types, either by chemical 6a or biological 9 engineering approaches. In addition to this, IBs 

formed by cell-targeted polypeptides (for instance containing a tumor-homing amino acid 

stretch) can release in vivo soluble protein from IB 10 that reaches target organs through the 

blood stream. 11 The delivery of IB protein in vivo appears to be a physiological (secretion-

like) rather than a diffusional chemical process, 10, 12 in which biological factors such as 

chaperones seem to be involved. Such findings have enormous biomedical relevance, as IBs 

might be adapted, as novel smart materials, as an in vivo source of protein drugs for precision 

therapy mimicking the activity of the amyloidal protein granules of the human endocrine 

system. 13 To evaluate the use of bacterial IBs as artificial secretory granules adapted to  

clinical applications, we have designed and generated IBs formed by the modular polypeptide 

T22-PE24-H6 (Figure 1A and Figure S1). In the amino terminus, this protein displays the 

peptide T22, a powerful CXCR4 ligand that allows specific CXCR4+ cell binding and 
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internalization. 14 In previous studies, T22 has been shown as promising to selectively 

internalyze macromolecular complexes into CXCR4-overexpressing cells and therefore useful 

to deliver conventional antitumoral drugs (e.g. fluoroxyuridine) to tumor tissues for the 

targeted destruction of CXCR4+ metastatic foci. 15 PE24 is a domain of the Pseudomonas 

aeruginosa exotoxin, a promising cytotoxic protein drug under clinical trials for cancer 

treatment, mainly in form of immunotoxins. 16 The carboxy terminal H6 is a polyhistidine tail 

that promotes the self-assembling of the building blocks via divalent cation coordination as 

CXCR4-targeted protein nanoparticles of around 50 nm in size. 17 Under repeated intravenous 

administration, these nanoparticles effectively and selectively destroy primary tumor tissues 

in mice models of human colorectal cancer. 17 In this context, we wondered if T22-PE24-H6, 

already confirmed as effective antitumoral drug, could be produced as functional, protein-

releasing IBs for further testing as therapeutic agents in animal cancer models after 

subcutaneous deposition. A sustained release of the protein from implanted repositories 

should prevent high peak levels associated with conventional intravenous injection of 

punctual doses. We also wondered whether the released material, if any, would be organized 

as nanostructured protein oligomers as it occurs with the soluble version of T22-PE24-H6 as 

straightforward recovered from producing bacterial cells.  

The recombinant protein was produced in Escherichia coli Origami B, encoded by a pET22b-

derivative (Figure S1), and whose synthesis was induced by 1 mM IPTG at 37 ºC for 3 h. An 

excellent yield of 70 mg/L cell culture was straightforward observed, what appears as 

promising regarding potential scaling-up or further optimization, if large-scale production 

should be considered in a future. More than 50 % of the protein was found as insoluble 

material (Figure 1B), in form of conventional, pseudoespherical IBs of about 200 nm 

(precisely 207.0 ± 4.9 nm, Figure 1C). When exposed to cultured CXCR4+ HeLa cells, these 

materials resulted toxic (Figure 1G) due to the presence of the PE24 segment. However, IBs 

formed by the closely related T22-GFP-H6 (Figure 1A), used here as non-functional control 
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(the GFP fluorescence, still observable in IBs, does not provoke any known biological 

response) were irrelevant regarding cell viability (Figure S2). Cell death was mediated by 

specific T22-CXCR4 interactions, since the CXCR4 antagonist AMD3100 18 prevented cell 

killing when added to the cultures prior to IB exposure (Figure 1H). Upon purification, PE24-

based IBs were incubated in vitro in physiological buffer for a few days.  

Under this experimental setting, we detected a progressive increase of soluble T22-PE24-H6 

in the supernatant of the suspension (Figure 1D, E) that organized as nanostructured materials 

(Figure 1F). Note that smaller entities, namely monomeric building blocks, were not observed 

in any sampling time, indicating structural and proteolytic robustness of the material. These 

nanoparticles, already detected in the shortest analyzed time (3 h), were morphologically 

indistinguishable from those obtained from straightforward purification of soluble protein 

from producing bacteria (Figure S3),17, 19  although their size was slightly smaller at 

prolonged incubation times. These data were indicative of progressive protein release from 

IBs not linked to any proteolytic event. Such release process,  if sufficiently efficient and 

time-sustained, might have a clinical value.  

In this context, and to explore in detail the potential systemic use of IBs as a novel drug-

releasing material, we administered T22-PE24-H6 IBs to metastatic mouse models derived 

from human colorectal and based onCXCR4+ SW1417-luciferase expressing cells. 15 Note 

that as previous reference, we had determined the biodistribution of a fluorescent protein 

material released from IBs formed by T22-empowered GFP, which followed the expected 

biodistribution and tumor accumulation. 11 Because of such promising data, two different 

doses of the protein material developed here were subcutaneously (SC) injected in the anterior 

flank of mice (Figure 2A), to evaluate the dose-dependence of any potential therapeutic 

effect. The objective of this administration route was to explore the long-term healing effects 

of the material released from the IB reservoirs, in contrast with the short administration 
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intervals between repeated doses applied during the intravenous administration of CXCR4-

targeted toxins.  

A two-dose administration of PE24 IBs (Figure 2A) resulted in a dramatic arrest of primary 

tumor cell growth, which was absolute under 500 μg and milder when immobilizing 200 μg 

IB per dose in the subcutis of the animals (Figure 2B). Growth inhibition of both primary 

tumor and metastatic foci at different organs was determined by reduction of bioluminescence 

emission by SW1417-luciferase expressing cancer cells (Figure 2B, C). The antitumoral effect 

reached in primary tumor was accompanied by a dramatic reduction in metastatic foci during 

treatment time (Table 1). As observed, at the end of the assay, hepatic metastases completely 

disappeared in all treated animals, irrespective of the given dose, a fact that reflects a 

powerful antimetastatic potential of T22-PE24-H6, apart from the known effect on primary 

tumor, never observed before. [17] A dose-independent reduction in the number of animals in 

which metastases were detected was also achieved in other tested tissues (Table 1). The 

obtained data indicated that at a dose of 200 μg, the antimetastatic effect of PE24 probably 

reached a plateau, while the antitumoral effect on primary tumor was still in a dose-dependent 

phase. Mouse necropsies, performed at the end of the experiment, 29 days upon tumor cell 

implantation, followed by histological evaluation of the primary tumor, revealed a dramatic 

increase of apoptotic cells, responsible for the antitumoral and antimetastatic effects, which 

were more intense at the 500 μg dose (Figure 2E). This result was associated with a local 

reduction in the number of CXCR4+ cells in tumor (Figure 2F), the target of T22-PE24-H6. 

All these therapeutic events, including the desired and newly described reduction of 

metastatic foci, occurred in absence of detectable changes in the body weight of treated mice 

(Figure 3A), indicative of a lack of acute systemic toxicity promoted by either the source 

protein material and the released nanoparticles. The absence of side effects was confirmed by 

the lack of histopathological alterations, and by the non-relevant morphological changes in 

major organs such as lung, liver and kidney (Figure 3B). At the injection site (Figure 3C), no 
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edema, material deposition or massive inflammatory cell infiltration were observed, except 

for a slight lymphocyte infiltration at the end of the experiment at the highest used dose (500 

μg). On the other hand, no proteolytic degradation of T22-PE24-H6 was observed during 10 

days of incubation with human sera under physiological conditions (Figure 3 D). Since no 

monomers were detectable during such incubation (Figure 3E), a robust oligomeric 

architecture and proteolytic stability of T22-PE24-H6 nanoparticles, that did not disassemble, 

was fully confirmed. 

To discard that the observed antitumor effects might be linked to protein domains or IB agents 

other than PE24, we tested any potentially residual cytotoxic activity associated to control 

T22-GFP-H6 IBs, formed by the protein construct in which GFP is placed instead PE24. Data 

in Table S1 show the absence of detectable biological effects of this material on primary 

tumor and on organs affected by metastasis. In addition, a biodistribution study of the IB-

released T22-GFP-H6 nanoparticles was performed by measuring the emitted green 

fluorescence (FLI) and GFP protein amounts by Western blot (WB) along time (namely 10 

min, and 2, 5, 10 or 15 days after 1 mg IB injection). As expected, we observed a kinetic 

reduction of the amount of protein by WB and of emitted total fluorescence at the IB injection 

site (Figure S4 A) in parallel to a sustained increase of total FLI in the remote tumor tissue 

(Figure S4 B), without accumulation in liver or kidney at any tested time (not shown). 

However, we were unable to determine the nanoparticle PK by in blood either by WB or by 

FLI emission (because of the high fluorescence background). In contrast, in a prior report, and 

after a single 200 μg intravenous bolus injection of soluble T22-GFP-H6 nanoparticles in the 

same mouse model, we detected full-length protein by WB using an anti-GFP mAb, at 10 

min, in liver and kidney. In there, most likely, the nanoparticles transiently accessed the 

fenestrated vessels, returning to blood without being uptaken. Full-length protein was also 

observed at the injection site within the 2-15 day range (Figure S4 C), but not in tumor and in 

any other tested tissue (not shown). These data might indicate a low sensitivity for FLI or WB 
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for the detection of soluble nanoparticle released from the IBs (its sustained release might 

maintain nanoparticle concentration low in blood, despite of being extended in time). This 

possibility is fully supported by the easy detection within the 0-48 h period, using the same 

FLI and WB techniques, of the full-length protein in blood, and full-length and proteolyzed 

protein in tumor tissue (but not in liver or kidney, except at 10 min). 20   

Taken together, all these observations, including those involving the control T22-GFP-H6 

material in vitro and in vivo, supported the specificity of the treatment and the successful 

targeting of a highly cytotoxic protein, in form of protein-only nanoparticles, from a remote 

implantation site. The data also validated T22-PE24-H6 as a structurally robust anti-

metastatic agent that in an oligomeric form, performed in an excellent way, in form of stable 

CXCR4-targeted nanoparticles and in absence of proteolytic degradation and toxin leakage 

during the circulation and permanence in the blood stream. 

Several types of materials are under exploration as drugs repositories for slow release, 

including hydrogels 21 and a diversity of structured mesoporous composites. 22 These 

materials are loaded with relevant drugs that result mechanically entrapped in the network and 

further released by dilution into the surrounding media. Although they have shown promise in 

cancer treatments, the recalcitrant nature of some of the used scaffolds or matrices, such as 

metals, 23 pose reasonable concerns about their safety after long-term use in complex 

biological systems such as entire organisms. Bacterial IBs composed by the protein drug itself 

as building block, represent a fully biocompatible, protein-only material. Being chemically 

homogeneous, it is progressively disintegrated under physiological conditions or in vivo into 

smaller protein components (here 50 nm-nanoparticles) , probably with the intervention of 

chaperones or other factors present in the extracellular media or in the material itself10, 12 but 

irrespective of any significant proteolytic event. This appears to be the mechanistic 

functioning of secretory granules in the human endocrine system, 13a in which protein 

hormones are released from amyloid-based protein clusters that bacterial IBs effectively 
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mimic. Upon a harsh IB purification protocol from producing bacteria 24 the remaining 

amounts of bacterial cell contaminants are probably kept at sub-toxic levels, since no side 

toxicity in treated animals was observed after a few weeks of treatment (Figure 3). The 

occurrence of bacterial endotoxins in IBs derived from conventional K-12 E. coli strains has 

been roughly estimated to be lower than 0.1 mg of lipopolysaccharide per mg of IB protein 

(not shown). Being insufficient to generate inflammation at the injection site (Figure 3 C), this 

is still an issue to be considered during further IB development. However, since functional 

IBs or IB-like particles have been successfully produced in endotoxin-free strains of E. coli, 25 

in food-grade lactic acid bacteria 26 and also in yeasts, 27 the future clinically-oriented 

development of secretory amyloids must necessarily consider these safer cell factories, 

favourable for the production of protein-based drugs 28 from strategic and regulatory point of 

views. Considering that any IB-forming polypeptide with therapeutic value can also be 

engineered to acquire specific cell targeting, as in the case of T22-PE24-H6, the implantable 

material can be designed for precision medicines such as in cancer treatments. In that case, the 

IB-based platform promotes secretion rather than drug release, acting as a mimetic of the 

endocrine system instead of a conventional drug-release agent. Here, such novel IB-based 

platform shows a predictable sustained release kinetics, which could mainly depend on the 

factor-mediated dissociation constant that generates soluble protein from the aggregated IB 

form. Moreover, the model IBs presented here release soluble nanoparticles that achieve a 

highly selective biodistribution in target tissues. This is in sharp contrast with the 

conventional drug-release agents, which achieve a highly variable drug levels in target tissue 

because of their difficulty in controlling drug release (depending on their excipient 

formulation, interactions with the injection site and degradation during release) and the lack 

of selectivity of the released therapeutic agents. 29 Both aspects are conceptually solved by the 

secretion of soluble, self-assembled nanoparticles from IBs engineered for that purpose. 

Besides this, the abundance of cytotoxic proteins (toxins and venom components) in use or 
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under development for cancer treatments 30 makes bacterial IBs promising particulate 

biomaterials for the development of specific antitumoral products, based on these protein 

toxins or their combinations. The potent antimetastatic properties of the Pseudomonas 

exotoxin PE24 firstly shown here as released from IBs in a CXCR4-targeted form (Figure 2, 

Table 1), and the systemic release of the drug from the implantation site, make the proposed 

IB-based platform especially appealing for the treatment of disseminating forms of cancer 

under fully physiological and biosafe conditions. 
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Experimental section 

Protein design, production, purification and biophysical characterization  

Genes encoding T22-PE24-H6 and T22-GFP-H6 were harbored in Escherichia coli Origami 

B (BL21, OmpT−, Lon−, TrxB−, Gor−, Novagen). GFP in T22-GFP-H6 was used as a control 

of a core peptidic element in the modular protein lacking any relevant biological activity. 

Both proteins were produced as IBs for 3 h at 37 °C upon addition of 1 mM isopropyl-β-d-

thiogalactopyranoside (IPTG). IBs were purified by a protocol for proteins with high tendency 

to become soluble. 24 The amount of protein was quantified by WB using anti-His monoclonal 

antibody (Genscript). The amount of recombinant protein was estimated by comparison with a 

GFP-H6 calibration curve. Far-UV circular dichroism (CD) was measured at 25 ºC in a Jasco 

J-715 spectropolarimeter to collect secondary structure information. Protein concentration 

was adjusted to 0.2 mg/mL in a buffer solution of 166 mM carbonate-bicarbonate at pH 8. CD 

spectra were obtained with a 1 mm pathlength cuvette over a wavelength range of 200-240 

nm at a scan rate of 100 nm/min. A response of 2 s and a bandwith of 1 nm 13 scans were 

accumulated. The spectra were processed through a negative exponential with a sampling 

proportion of 0.1 and 1 polynomial degree. 

 

Ultrastructural characterization  

To study the morphometry of IBs (size and shape), insoluble protein was resuspended in 

phosphate buffered saline (PBS) at 10 mg/ml and sonicated at 10 % amplitude 0.5 s ON/OFF 

for 1 min. High resolution imaging at a nearly native state of protein aggregate suspension at 

0.25 mg/ml was performed with four electron microscopy techniques. For field emission 

scanning electron microscopy (FESEM), microdrops of samples were deposited during 2 min 

on silicon wafers (Ted Pella Inc.), air-dried and observed in a FESEM Merlin (Zeiss) 

operating at 2 kV and equipped with a conventional secondary electron (SE) detector. For 

conventional TEM, microdrops of sample were deposited in two carbon-coated copper grids 
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(300 mesh) during 1 min. One of the grids was air-dried and other was incubated 2 min with 

2% uranyl acetate and air-dried. Both direct deposited and negative stained grids were 

observed with a TEM JEM-1400 (Jeol) operating at 80 kV and equipped with a Orius SC 200 

CCD camera (Gatan Inc.). Finally, for cryo-TEM, a microdrop of sample was deposited in a 

Holey carbon-coated copper grid (400 mesh), cryofixed in liquid ethane with an EM GP 

automatic plunge freezer (Leica), placed in a cryo-transfer specimen holder (Gatan Inc.) and 

observed in a TEM JEM-2011 (Jeol) operating at 200 kV and equipped with a 895 USC 4000 

CCD camera (Gatan Inc.). To study the morphometry of nanoparticles, microdrops of samples 

at 0, 3, 24 and 48 h at 10 mg/ml were deposited during 2 min on silicon wafers (Ted Pella 

Inc.), air-dried and observed in a FESEM Merlin (Zeiss), operating at 1 kV and equipped with 

a high resolution in-lens secondary electron (SE) detector. A quantitative analysis of particle 

size was performed with a total number of 80 T22-PE24-H6 IB and 423 T22-PE24-H6 

nanoparticles using Image J software. 

 

Protein release in vitro 

T22-PE24-H6 purified IBs were resuspended in PBS at 10 mg/ml and incubated at 37 °C. 

Samples were taken at 0, 3, 24, and 48 h and centrifuged for 15 min at 15,000 g and 4 °C. 

Soluble and insoluble fractions were further processed for WB and FESEM imaging. In all the 

cases, pellets corresponding to the insoluble fraction (IBs) were resuspended in PBS at the 

same final volume than their soluble counterpart for comparison.  

 

Functional characterization in vitro 

HeLa cells (ATCC-CCL-2) were cultured at 37 ºC in a 5 % CO2 humidified atmosphere in 

MEM-Alpha media supplemented with 10 % fetal calf serum (Gibco). They were seeded in an 

opaque 96-well plate (3500 cells/well) for 24 h, the media was supplemented with 2 % 

penicillin and streptomycin Sol 10,000 U/ml (Gibco). Next, different concentrations of T22-
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PE24-H6 IBs (namely 10, 100, 1000, 5000 and 10000 nM) and 10000 nM of T22-GFP-H6 

IBs as a control were incubated at 48 h. In addition, in some wells insoluble protein was 

incubated without HeLa cells as a control. The extent of living cells was determined by 

adding of CellTiterGlo Luminescent Cell Viability Assay (Promega) and reading in a 

Multilabel Plater Reader Victor3 (Perkin Elmer). For the CXCR4 specificity assay, the 

CXCR4 antagonist AMD3100 18a, 18c, 31 was added at 1:10 molar ratio 1 hour before the 

incorporation of the protein. Antagonist and protein were incubated in a final volume of 10 µl. 

All soluble protein experiments were done in with six replicates. To calculate the T22-PE24-

H6 IC50 dose, data was fit to a cubit equation, which has been solve by using the Vieta 

formula.  

 

Stability in human serum 

Soluble T22-PE24-H6 nanoparticles (at 1 mg/mL) were incubated with 2 mg/mL of Human 

Serum (Sigma-Aldrich) at 37ºC without agitation for different incubation times (0 h, 1 h, 4 h, 

48 h, 5 d and 10 d) in final volume of 100 µL. All the experimental processes were performed 

in sterile conditions and buffers and solutions were filtered in 0.22 µm. Then, protein integrity 

was measured in Tris-Glycine eXtended Stain-Free Gels (TGX) and by WB (1:5000 Anti-His 

Santa Cruz Biotechnology, ref: sc-57598). The oligomeric structure was determined by 

Dynamic Light Scattering (DLS). 

 

Evaluation of T22-GFP-H6 biodistribution and pharmacokinetics 

 

We used Swiss nude mice (Charles River, L-Abreslle, France) to generate a subcutaneous (SC) 

mouse model by implanting 10 mg of CXCR4+ SW1417 tumor tissue from donor animals in 

the mouse flank. When tumors reached approximately 150 mm3, mice (n=3) were  

subcutaneously administered in the back of the mice (located remote form the tumor) with a 
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single 1,000 μg dose of T22-GFP-H6 bacterial IBs resuspended in a 250 µl saline solution. 

Control mice were administered with the same volume of saline solution. We sacrificed three 

mice per each time point, at 10 minutes and 2, 5, 10 and 15 days after the administration and 

took the tissue that included the injection point, the tumor, the normal liver and kidney to 

measure ex vivo their emitted fluorescence using the IVIS® Spectrum (Perkin Elmer, USA) 

platform. The fluorescent signal (FLI), was first digitalized, displayed as a pseudocolor overlay, 

and expressed as total radiant efficiency [(p/sec/cm2/sr)/μW/cm2]. We also obtained 

approximately 0.5 ml of blood in EDTA-anticoagulated tubes, to measure the exact volume of 

plasma and the emitted fluorescence at each time point. In addition, we cryopreserved samples 

in liquid nitrogen for protein extraction and to measure the amount of T22-GFP-H6 protein by 

WB at the injection point, tumor, liver and kidney as previously described. 20 

 

Evaluation of antitumoral and antimetastatic activity  

To evaluate the effect of IBs material we used human tumor xenograft models. These in vivo 

models have a high degree of correlation between sensitivity of disease-specific human 

xenografts and complete clinical response rates implantation. 32 In addition, the orthotopic 

implantation, which involves injecting cancer lines into the physiologic site corresponding to 

the cancer tissue type are more likely to produce tumor metastases due to the 

microenvironment and the well-defined vessel system of organ. 33 In this context, five-week-

old female Swiss nu/nu mice weighing between 18 and 20 g (Charles River, L-Abreslle, 

France) and maintained in SPF conditions, were used for the in vivo experiment. In vivo 

procedures were approved by the Hospital de Sant Pau Animal Ethics Committee and 

performed according to European Council directives. To generate metastatic CCR cancer 

mouse model, Swiss nude mice were anesthetized with a mixture of ketamine (100 mg/kg) 

and xylazine (10 mg/kg), exteriorizing their cecum by a laparotomy. 2 × 106 CXCR4+ 

SW1417 CRC cells (expressing luciferase, to allow ex vivo bioluminescent identification of 
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metastatic foci in affected organs) were suspended in 50 μl of modified Eagle's medium and 

loaded into a sterile micropipette as described elsewhere. 34 A week before the orthotopic 

implantation, mice were randomly allocated and administered subcutaneously (by deposition), 

in the anterior flank with bacterial T22-PE24-H6 IBs at 200 or 500 μg/dose resuspended in a 

150 µl saline solution (n=5/group/dose) or the control mice (n=5) administered with the same 

volume of saline solution. A dose was given each 10 days and two doses total according to 

previously reported.11 After IB administration, mouse body weights were recorded and whole-

body mice were monitored by bioluminescent image (BLI) twice a week to determine tumor 

progression using the IVIS® Spectrum equipment (PerkinElmer Inc.). At necropsy, BLI was 

recorded ex vivo in primary tumor, mesenteric, liver, diaphragm, lung and kidney organs 

using the IVIS equipment and then, samples were formalin-fixed and paraffin-embedded for 

histology and immunohistochemistry analyses. A control anticancer efficacy experiment was 

performed using the CXCR4+ SW1417 colorectal cancer orthotopic model and following the 

same procedure described above, to assess whether the SC administration of T22-GFP-H6 

bacterial IBs (experimental group, n=6) displayed antitumor or antimetastatic activity as 

compared to vehicle-injected mice (n=6). Mice received a first dose of 500 μg (n=6/group) 

followed by an equal second dose 10 days after. Twelve days after the second dose, mice 

were euthanized and samples of primary tumor, mesenteric, liver, lung and peritoneal 

membrane were collected to perform histopathological analyses, counting the number of 

metastases per organ and their size. 

 

Histopathology and immunohistochemistry analyses 

Four-micrometer-thick sections were stained with hematoxylin and eosin (H&E), and a 

complete histopathological analysis was performed in the target organs and the point of 

injection by two independent observers. The number of apoptotic figures in tumors was 

quantified by counting the number of positive cells per 10 high-power fields (magnification 
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400x). The expression of the CXCR4 was assessed by immunohistochemistry using the 

DAKO immunosystem equipment and standard protocols. A primary antibody against 

CXCR4 (1:300; Abcam) was incubated for 25 min to detect CXCR4 presence in tumor 

tissues. The percentage of CXCR4-expressing cells in relation to the total cell number in each 

primary tumor section (N=5/group) were recorded at 400x magnification.  Representative 

images were taken using Cell^B software (Olympus Soft Imaging v 3.3).  

 

Statistical analyses 

Pairwise comparisons of protein cytotoxicity effect were made with Mann-Whitney U-tests 

and competition assay with Student t-test. Fisher's exact test to detect differences between 

control and experimental groups of affected mice regarding metastatic rates and sizes at the 

different organs. Finally, multiple comparison with Kruskal-Wallis and Mann-Whitney U-

tests were used to compare tumor tissue BLI, the number and size of metastatic foci in the 

affected organs, the number of apoptotic bodies, and the percentage of CXCR4-expressing 

cells. All statistical tests were performed using SPSS version 11.0. All quantitative values 

both in vitro and in vivo experiments were expressed as mean ± standard error (x̅ ± SD). 

Differences among groups were considered significant at p < 0.05. 
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Figure 1. Structural and functional characterization of PE24-based IBs. A. Scheme of the 

modular protein and amino acid sequence of T22-PE24-H6 (left) and of the irrelevant, closely 

related modular protein T22-GFP-H6 (right). B. Immunodetection of T22-PE24-H6 and T22-

GFP-H6 in form of purified soluble protein (S) and IBs, by anti-His WB. M is the molecular 

marker. C. Representative FESEM, TEM (direct deposition and negative staining) and 

cryoTEM images of PE24-based IBs. Size bars represent 200 nm. D. Protein release from 

T22-PE24-H6 IBs at different times (0, 3, 24 and 48 h) determined by WB with 1/4000 anti-

His (Genescript ref. A00186-100). The asterisk shows the full T22-PE24-H6. E. Relative 
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protein amount of in vitro protein release from T22-PE24-H6 IBs at different times (0, 3, 24 

and 48 h) determined by WB with 1/4000 anti-His (Genescript ref. A00186-100) by triplicate. 

F. Representative FESEM images and quantification of T22-PE24-H6 nanoparticles released 

from IBs at different times (0, 3, 24, and 48 h). Size bars represent 200 nm Quantitative data 

were expressed as x̅ ± SD. Relevant statistical differences were expressed as * p < 0.05. D is 

the mean nanoparticle diameter measured over the FESEM images.in each sample. G. 

Viability of cultured HeLa cells exposed to different PE24-based IBs concentrations (10, 100, 

1000, 5000 and 10000 nM). Data was fit to a cubit equation, IC50 dose is 2676 nM H. 

AMD3100-mediated inhibition of cell mortality of cells exposed to T22-PE24-H6 IBs. 

Quantitative data were expressed as x̅ ± SD. Relevant statistical differences were expressed as 

* p < 0.05. 

.   
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Figure 2.  Antineoplastic effect after subcutaneous administration of T22-PE24-H6 

inclusion bodies.  A. Design and administration regime used in the in vivo experiment using 

the CXCR4+ SW1417-derived orthotopic cancer model. A dose of 500 µg or 200 µg was 

given every 10 days period, and two doses total. B. Primary tumor and metastatic growth 

inhibition (C and D) at the different sites as measured by reduction of bioluminescence 

emission by SW1417-luciferase expressing cancer cells. Statistical significances: in tumor 

progression *p = 0.042 and *p = 0.047 between groups at day 13 and 19, respectively; 

*p = 0.035 in primary tumor + lymphatic metastases at necropsy; *p = 0.046 and *p = 0.039  

in lung and peritoneal metastasis groups versus buffer group, respectively.  E. Representative 

images and quantitation of apoptotic figures (white arrows) in primary tumor, detected by 

nuclear condensation or nuclear fragmentation after Hematoxylin-eosin staining at the end of 
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the experiment (n=5 mice/group; 10 fields/mouse as described in material and methods) * 

p =0.040 or ** p =0.009 F. Representative images and quantitations of the reduction of 

CXCR4+ cell fraction in primary tumor assayed by CXCR4 immunodetection at the end of the 

experiment (n=5 mice/group).* p =0.037 and * p =0.038 comparisons between the control 

group and 200 and 500 µg/doses, respectively.  Size bars represent 100 μm. Quantitative data 

were expressed as x̅ ± SD.  
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Figure 3. Lack of toxicity on major organs in T22-PE24-H6 treated mice. A. Lack of 

differences in mouse body weight among tested groups was registered along time in the 

SW1417-derived CCR model (Mean ± SEM, n=5 mice/group) B. Representative images 

showing lack of histopathological alterations in H&E-stained lung, liver and kidney at the end 

of the experiment after the SC administration of a 500 μg dose of T22-PE24-H6. Size bars 

represent 100 μm. C. Histological analysis on skin H&E stained samples in the injection point 

showing no oedema, material deposition or massive inflammatory cell infiltration, except for 

the presence of  lymphocytes (see insert) at the highest 500 µg dose. D. Protein integrity 

during 10 days (d) of incubation in human serum a 37 ºC determined by full protein band 

detection (left) and by anti-His WB (right). The * indicates the expected position of the full-
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length T22-PE24-H6. M is the molecular marker. E. Hydrodynamic size of the protein as 

determined by DLS, upon incubation with sera for different times.  
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Table 1. Reduction of metastatic foci induced by PE24 IBs treatment 

                   

    Lymphatic mets  Hepatic mets   Pulmonary mets  Peritoneal mets 

Groups  Primary  

tumor 

 *Mice 

rate 

------- 

foci # 

 Area 

 (x̅ ± SD; 

µm2) 

 *Mice  

rate 

------- 

foci # 

 Area 

 (x̅ ± SD; 

µm2) 

  *Mice  

Rate 

------- 

foci # 

 Area 

 (x̅ ± SD; 

µm2) 

 *Mice  

Rate 

------- 

foci # 

Area  

(x̅ ± SD; 

 µm2) 

                   

Buffer  5/5  5/5  101267 

± 

105531g,h 

 1/5  26954 

± 

7385 

  3/5  9299 

± 

6839i 

 4/5 350612 

± 

301879k 

    93a, b    4     27c, d    109e, f  

                   

200 μg/ 

dose 

 5/5  2/5  18433 

± 

19219g 

 0/5  0   1/5  11252 

± 

4950j 

 2/5 237312 

± 

505731 

    18a    0     5c    11e  

                   

500 μg/ 

dose 

 5/5  2/5  32616 

± 

23944h 

 0/5  0   1/5  3510 

± 

2974i, j 

 2/5 8722 

± 

13149k 

    13b    0     2d    10f 

 

 

 

Significant differences at ap= 0.030; bp= 0.021; cp= 0.024; dp= 0.012; ep< 0.0001; fp< 0.0001; gp= 0.041; 
hp= 0.045; ip= 0.043; jp= 0.038; kp= 0.010. Fisher's exact test used to detect differences between control 

and experimental groups of affected mice regarding metastatic rates at the different organs. Non-

parametric multiple comparisons were applied to compare the number and size of metastatic foci in the 

affected organs (see M&M). Abbreviation: *Mice rate, mice with tumor foci at the indicated site/total 

number of mice per group; foci#, number of foci in this particular site and group.    
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Bacterial inclusion bodies have been engineered as secretory amyloids for subcutaneous 

implantation and physiological release of antitumoral protein drugs. These granules slowly 

secrete self-assembling, CXCR4-targeted protein nanoparticles based on the Pseudomonas 

exotoxin that selectively destroy metastatic colorectal cancer stem cells, promoting a dramatic 

reduction of metastatic foci in absence of undesired side toxicity. 
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Figure S1: Maps of protein-encoding plasmids for the biological production of T22-PE24-H6 

(left) and T22-GFP-H6 (right). 
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Figure S2: Viability of cultured HeLa cells exposed to 1 µM of T22-GFP-H6 IBs at 

different incubation times (24, 48, 72, 96, 120 and 144 h) compared untreated cells 

(dashed line). The standard deviation is represented by grey lines at each sample. 

Differences between bars are not significant and the observed slight fluctuation of 

data is due to the necessary addition of fresh media at day 4 to keep cell viability 

throughout the experiment. 
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Figure S3: Physicochemical characterization of the modular proteins. A. Mass 

spectroscopy of pure T22-PE24-H6 (Peak: 29386.69 Da) and T22-GFP-H6 (Peak: 31012.59 

Da). B. Hydrodynamic size of T22-PE24-H6 and T22-GFP-H6 determined by DLS. Different 

lines indicate replicas. C. Far UV CD of T22-PE24-H6 and T22-GFP-H6 in carbonate-

bicarbonate buffer at pH 8 measured at 25ºC. 
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Figure S4. Kinetics of disaggregation of T22-GFP-H6 IBs at the injection site and 

nanoparticle uptake in tumor tissue, upon 1 mg single SC T22-GFP-H6 IBs dose. A. 

Reduction in total fluorescence emission (FLI) at the injection site after subcutaneous 

injection of 1 mg of T22-GFP-H6 IBs in CXCR4+ tumor bearing mice (n=3 per point) along 

time. B. Sustained increase of total fluorescence emission (FLI) in tumor tissue of mice (n=3 

per point) after injection of IBs at a remote site along time (0, 2, 5, 10 and 15 days). FLI was 

measured using the IVIS Spectrum equipment. C.  Kinetics of protein reduction at the 

injection site, measured by WB using an anti-GFP mAb along the 0-15 days (d) period, after 1 

mg SC injection of T22-GFP-H6 IBs. Positive Control: Toledo cell line with internalized 

soluble T22-GFP-H6 nanoparticles.   
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Table S1. Lack of antitumor and antimetastatic effect of T22-GFP-H6 IBs in a colorectal cancer 

model * 

 

  Metastatic dissemination  

  Lymphatic Liver Lung Peritoneal  

 

Primary 
tumor  

Total Flux 
[p/s] 

  

 
Foci 
(n) 

Area  
(mean± SD, 

µm
2
) 

 
Foci 
(n) 

Area  
(mean± SD, 

 µm
2
) 

 
Foci 
(n) 

Area 

 (mean± SD, 

µm
2
) 

 
Foci 
(n) 

Area  
(mean± SD, 

µm
2
) 

Buffer 1.41E+08 
a
 81 

56283 
±111849 53 9777±11066 13 4674±6599 33 28323±60145 

T22-GFP-H6 
IBs 2.56E+08

a
 69 

19546± 
42215 40 12882±12958 35 7823±7582 29 134555±276032 

 

* T22-GFP-H6 IBs were administered SC at 500 μg dose x 2 doses at a10-day interval. n=6 mice per 

group. 

** Luminescence emitted by the primary tumor at the end of the experiment as measured using the 

IVIS Spectrum equipment.   

*** Number of metastatic foci counted in 6 not consecutive H&E stained sections of tissues at the 

organs where colorectal cancer disseminates. 

ap=0.064 (Student t test). 

 

 

 


