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Abstract

Chronic migraine is a neurological disorder characterized by 15 or more headache days per month of which at
least 8 days show typical migraine features. The process that describes the development from episodic migraine
into chronic migraine is commonly referred to as migraine transformation or chronification. Ample studies have
attempted to identify factors associated with migraine transformation from different perspectives. Understanding
CM as a pathological brain state with trigeminovascular participation where biological changes occur, we have
completed a comprehensive review on the clinical, epidemiological, genetic, molecular, structural, functional,
physiological and preclinical evidence available.
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Background
Migraine is a neurological disorder characterized by at-
tacks of throbbing headache and neurological symptoms
such as nausea, vomiting, hypersensitivity to environmen-
tal stimuli and mood changes. The development and
course of migraine differs from patient to patient, where a
subset of patients experience an increase in frequency over
a period of months or years [1]. This process may lead to
a chronic form of migraine that, according to the Inter-
national Classification of Headache Disorders (ICHD-3)
[2], is called chronic migraine (CM). This form of mi-
graine is characterized by 15 or more headache days per

month of which at least 8 days per month show typical
migraine features, for at least 3 months. In 1982, Mathew
et al. reported a series of patients with a clear-cut past his-
tory of distinct attacks of migraine whose headaches
evolved over the years into a daily or near daily problem
[3]. He was the first who proposed the term “transformed
migraine”.
Migraine transformation or chronification clinically

represents a more or less consistent increase in migraine
frequency until, in most of the cases, it develops into a
constant migraineur state with very frequent, disabling
headache with associated symptoms, increased use of
acute medication, high medical care and reduced quality
of life. Headache interferes with life, work and results in
a high burden of the disease.
The estimated prevalence of CM worldwide ranges

widely between 0.9% to 5% [4]. CM prevalence is three
times more common in women than men (18.9% vs.
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9.8%) and presents two peaks between ages of 18–29
and 40–49 years-old [5, 6]. The development from EM
to CM is estimated to occur in approximately 2.5% of
the patients with EM per year, while only a limited pro-
portion with CM revert back to EM [5, 7].
Underlying this process, central and peripheral neuro-

logical functional and even structural changes are occur-
ring. Many studies tried to identify factors associated
with migraine transformation utilizing different
approaches. To establish the clinical risk factors for
chronification and the structural or functional neuro-
logical changes that occur in patients who evolve to CM
studies should include large migraine cohort studies with
long-term follow-up. Due to the evident complexity of
these studies, the majority of studies have tried to ad-
dress this question with retrospective approaches or by
comparing cohorts of EM and CM patients.
A better understanding of these underlying patho-

physiological changes in light of the accompanying clin-
ical developments, could possibly help us to discover
new disease markers, or even future treatment targets.
Subsequently, the objective of this review is to present
the current knowledge on clinical and pathophysiological
signatures of CM in an attempt to unify the two differ-
ent perspectives.

Clinical characteristics
The development into CM does not occur in all patients
with EM [8]. Therefore, identifying risk factors associ-
ated with migraine transformation/chronification may
provide crucial information in understanding the under-
lying mechanisms [7]. Epidemiologic studies have de-
scribed clinical factors that are more common in CM
patients compared to EM patients [9, 10]. Although it
has been described a statistically relevant association be-
tween CM and demographic, lifestyles, comorbidities or
other migraine features [5], the underlying pathophysio-
logical mechanisms remain to be elucidated.
Clinical risk factors for migraine transformation can

be divided into non-modifiable and modifiable risk fac-
tors. Non-modifiable risk factors mainly include sociode-
mographic features. Modifiable factors, which can
provide targets for intervention, include lifestyle factors,
headache features and comorbidities [7, 9].

Demographic factors
The most important non-modifiable risk factors for de-
veloping CM include age, sex, race, socioeconomic and
educational status [11].
Women tend to have a greater risk for chronification

than men, even when adjusting the data for medication
use and headache frequency [12, 13]. Additionally, ac-
cording to the American Migraine Prevalence and Pre-
vention (AMPP) Study [14] and the International

Burden of Migraine Study (IBMS) [15] both EM and
CM are more common among women and young adults.
Surprisingly, a recent study found that the typical risk
factors (demographics, headache features, and comor-
bidities) predicted the chronification in men less
accurately. This implies that prognostic factors of chron-
ification might not be as well understood in men than in
women [16]. Similar sex correlations also seem to exist
in the adolescent population, since the incidence of
chronic daily headache and frequent migraine is higher
in girls than in boys [17, 18].
A pattern of increasing CM prevalence with age from

18 to 50 year-old has been observed for both males and
females [6]. Regarding race, although both CM and EM
respondents were more likely to be Caucasian, a larger
proportion of CM patients was Caucasian [9, 19, 20].
Less well characterized is the relation between lower

education status and CM. The majority of studies have
found that patients with CM have lower levels of educa-
tion compared to EM [5, 19, 21]. However, the AMPP
and IBMS studies found no significant difference with
regard to level of education [9, 15]. Furthermore, CM
patients were less likely to be employed full time, and
more likely to be occupationally disabled [9, 15, 19]. In
the same study differences regarding marital status have
also been reported, although the majority of both groups
were married and there were not any group with a con-
clusive higher risk [9]. Relating to these characteristics
in adolescents with CM, high prevalence of chronic daily
headache (CDH), a diagnosis partially including CM pa-
tients, has been shown to be associated with lower
household economic status and acute family financial
distress [17]. On the other hand, the Frequent Headache
Epidemiology study could not confirm any correlation
between onset of CDH and age, sex, marital status, edu-
cational level, and race [22]. Although numerous studies
have found that CM patients tend to have lower levels of
education than EM patients, no definitive conclusion
can be drawn due to replication issues.

Lifestyle
The identification of modifiable risk factors may provide
targets for future interventions in order to avoid chroni-
fication. Among these are caffeine misuse, body weight
gain, and sleep disorders [7].
It has been shown that inappropriate high caffeine con-

sumption increase the risk of progression into CM [23]. In
fact, subjects with CDH were more likely to have been
high caffeine consumers before the onset of CDH [23].
Comprehensive studies have investigated the associ-

ation between migraine and obesity. Some population
studies show a strong positive association between obes-
ity and headache frequency in obese women [24, 25].
Moreover, a recent meta-analysis of available
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observational studies suggests an increased risk of having
chronic migraine in obese and pre-obese patients com-
pared with normal weight subjects [26]. This association
seems to also exist between body weight and other non-
migraine headaches which questions whether there is a
direct causal link between body weight and CM.
Poor sleep quality and sleep disorders are considered

risk factors for migraine transformation. The Chronic Mi-
graine Epidemiology and Outcomes (CaMEO) study
showed that CM patients more frequently reported sleep
apnea or were more likely to be at “high risk” for sleep
apnea than EM patients [27]. CM patients showed poorer
sleep quality compared to EM patients with higher rates
of sleep disturbance, snoring, shortness of breath, somno-
lence and sleep adequacy [27]. The relationship between
obstructive sleep apnea and migraine progression are not
clearly understood but some physiological changes as fluc-
tuations in intracranial and arterial pressure during snor-
ing, hypoxia, hypercapnia, fragmentation of sleep and
increased muscle activation during awakening during
apnea may underlie this relationship [28].
For the evidence set out before, lifestyle most likely

plays a role in migraine chronification. Consequently,
dietary measures to minimize caffeine consumption and
weight gain, exercise and sleep regulation strategies
should be considered for prevention of migraine
transformation.

Comorbidities
Patients with CM significantly more often reported co-
morbidities than patients with EM such as psychiatric
disorders, head and neck injuries, cardiovascular disease,
metabolic syndrome, asthma, sleep apnea and other pain
syndromes [5, 7, 29]. If untreated, these comorbidities
can increase the risk for migraine chronification and
migraine-related disability, leading to a decrease in the
quality of life and adversely affect the treatment out-
comes [28, 30, 31].
In the CaMEO study furthermore it was shown that

all comorbidity classes were associated with a statistically
significant risk of progression to CM. However, the
group of subjects with the most comorbidities were ap-
proximately 5 times more likely to progress to CM than
subjects of the fewest comorbidities class [32].
Psychiatric comorbidity is particularly relevant in the

group of patients with CM. CM is more common in
women with severe depressive disorders [28, 31], and
has been shown to be strongly associated with moderate
and severe depression [29]. These associations are also
highly relevant in the larger picture, as the effects of de-
pression, anxiety and obesity are additive [5].
A variety of psychological and personality traits are

also discussed as risk factors of migraine progression.
Major life changes, such as divorce, marriage, or change

of employment status, can exacerbate symptoms and
headache frequency, increasing the risk of chronification
[33]. Also, posttraumatic stress disorder [34] and certain
personality profiles, particularly obsessive-compulsive,
dependent, avoidant, and passive-aggressive are of prog-
nostic significance [35].
Chronic pain disorders, including fibromyalgia, back

pain, and neck pain, are more common in people with
CM than EM [36]. Non-cephalic pain may be used to
identify people with EM at risk of the onset of CM and
people with CM at risk of persistent CM [36].
Finally, cardiovascular disorders including heart

disease/angina, stroke and cardiovascular risk factors in-
cluding high blood pressure and high cholesterol oc-
curred with greater frequency in CM than EM patients
[9, 20].

Headache features and treatment
Headache frequency is one of the most important risk
factor for progression from EM into CM [8]. The risk in-
creases with increase of headache frequency in a non-
linear fashion, where a minimum of 3 headaches per
month was associated with an elevated risk for new-
onset of chronic headache [22]. Although the threshold
for CM has been set at 15 headache days/month, a clin-
ical study [10], showed that patients suffering from 10 or
more headache days per month showed less clinical dif-
ferences with CM patients than those with lower fre-
quencies suggesting that chronification is already
notable in patients with high frequency EM.
One of the most interesting headache features in CM

patients is cutaneous allodynia. This reflects the percep-
tion of pain in response to non-noxious stimuli and may
be considered a clinical marker for central sensitization
[37]. Cutaneous allodynia affects 63% of migraineurs in
the population and is associated with frequency, severity,
disability, and associated symptoms of migraine [38]. In
a prospective study [39] allodynia was an independent
predictor for increase in number of migraine days and
migraine chronification. This also has therapeutic impli-
cations. Migraine patients who describe the presence of
allodynia during their attacks, should be treated within
30min from attack onset with triptans [40].
Other well-known and established risk factors for mi-

graine transformation is medications disuse that includes
medications overuse and ineffective treatment of mi-
graine attacks. Symptomatic medication overuse is be-
lieved to play a major role in progression from EM to
CM. Acute medication overuse is defined as intake of
analgesics on 10–15 days per month. It can cause
rebound-drug-induced headache, therefore transforming
self-limited headaches, and particularly migraine, into
chronic headache [41]. The counter-proof of this con-
cept is that withdrawal from the overused medication
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leads to lower headache frequency and less disability
[42]. Among overused drugs, opioids and barbiturates
are associated with dose-dependent increased risk of
new-onset CM, while triptans induce migraine progres-
sion only in those with high frequency at baseline, but
not overall. Nonsteroidal anti-inflammatory drugs
(NSAIDs) protect against migraine progression unless
individuals have 10 or more headache days per month
[26]. The most effective way to prevent medication over-
use headache is to identify patients at risk and to edu-
cate them about the use of acute medication. The risk is
higher in patients with frequent headaches, use of opi-
oids and tranquilizers and comorbid anxiety and depres-
sion [41].
On the other side, ineffective treatment, and the con-

sequent insufficient acute pain relief, can also lead to
central sensitization, which can further lower the thresh-
old of migraine attacks and promote chronification. In-
adequate acute treatment efficacy was also associated
with an increased risk of new-onset CM [43]. Patients
using NSAIDs and simple analgesics were less likely to
be in the high treatment efficacy categories than patients
who used triptans [43]. Moreover, acute treatment is less
effective in patients with CM than in patients with EM,
patients with more severe attacks, allodynia, comorbid
depression and medication overuse headache [44]. For
this reason, rapid and complete treatment of the mi-
graine attack is a crucial intervention to prevent mi-
graine transformation.

Genetics and epigenetics
Genetic factors seem to be a component in determining
the risk of developing EM with and without aura [45].
However, the role of a genetic influence on the progres-
sion of EM into CM remains to be elucidated [46]. The
number of studies that specifically assess genetics in CM
is very low and the relevance of their findings has to be
interpreted with caution.
According to the scarce studies published on the pos-

sible genetic link to migraine chronification, three groups
of genes have been proposed: genes potentially linked to
migraine or pain progression, genes potentially linked to
addiction and analgesic overuse, and other genes involved
in neuronal hyperexcitability or oxidative stress [47].
Catechol-O-methyltransferase (COMT) polymorphisms
could be implicated in the predisposition to chronic pain
conditions [48]. Previous reports indicate that COMT
polymorphisms are associated with susceptibility to EM
[48], but no specific studies in CM have been conducted.
A variety of potential candidate genes in drug addiction
have been shown to possibly play a role in migraine
chronification, especially in patients with analgesic over-
use [47]. It is remarkable that some of these genes in-
volved in serotonergic and dopaminergic pathways, also

have been described to play a role in migraine pathophysi-
ology [49, 50]. Oxidative stress is a subject increasing in
popularity regarding its relation to the pathophysiology of
migraine. However, a study that investigated 10 polymor-
phisms in 8 oxidative stress-related genes in a small popu-
lation of CM patients did not detect a relationship with
CM [51]. However, as migraine is considered a complex
disease with multifactorial inheritance, Genome-Wide As-
sociation Study (GWAS) seems a more appropriate ap-
proach to study migraine genetic background. To date, 4
GWAS studies [52–55] and 3 meta-analyzes [56, 57] have
been performed in EM patients leading to the identifica-
tion of 44 single nucleotide polymorphisms (SNPs) on 38
distinct genomic loci associated with migraine, mainly in-
volved in vascular and neural function [58]. Although the
number of SNPs identified as associated with EM has
steadily increased, our knowledge of CM genetics remains
considerably poor. Studies on the genetic association of
several SNP tests failed to provide significant genetic risk
factors for the development of CM. The first comprehen-
sive study on genetic association in CM and high-
frequency migraine, tested 144 SNPs from 48 genes in
1019 patients with CM or high-frequency migraine, with-
out finding significant associations [52]. Since CM is a
complex disease with a probable poligenic background,
more genetic variants are likely to contribute to the sus-
ceptibility of the disease, suggesting that a large number of
patients and controls are needed to achieve sufficient
power to detect a genetic association.
In recent years it seems increasingly clear that epigen-

etic processes play an important role in a wide variety of
multifactorial diseases, including migraine. Although to
date, there are not specific studies in CM patients, there
is some evidence that neuronal activity occurring during
cortical spreading depression, may cause epigenetic
changes involved in neuronal plasticity, neuroprotection
[59] and regulation of basal synaptic activity [60]. It is
therefore conceivable that increased neuronal activity in
patients with high frequency migraine may alter the
cerebral epigenome, thereby promoting subsequent at-
tacks of migraine and creating a cycle in which the epi-
genetic programming of genes and pathways underlying
excitability are altered towards a more sensitive baseline
[61]. Some of the SNPs associated with migraine in-
volved genes related to epigenetic processes, as well as
epigenetic regulation of the Calcitonin Gene-Related
Peptide (CGRP) gene. This evidence have given import-
ance to the role of epigenetic processes in the patho-
physiology and chronicity of migraine [62, 63].

Molecular research and biomarkers
Biomarkers are defined as physical signs or laboratory
measurements associated with a biological process with
a diagnostic or prognostic utility [64]. Molecular
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biomarker levels can be measured in body fluids. Thus,
on the one hand diagnostic biomarkers signal a patho-
genic process and are linked to disease risk and on the
other hand severity and therapeutic biomarkers indicate
a treatment response and may predict the efficacy of an
intervention [65].
Even though several studies have been done to find

biomarkers in migraine [66], currently, there are no ac-
cepted biological markers for the diagnosis of migraine.
The well-known marker CGRP is abundant in the body
and has a wide distribution throughout the central and
peripheral nervous systems [67]. It is known that CGRP
plays an important role in the pathophysiology of mi-
graine [68]. CGRP is a neuropeptide widely expressed in
trigeminovascular system as well as numerous central
nervous system sites associated with pain processing and
migraine symptoms [68]. Furthermore, It plays a key role
in the development of peripheral sensitization and
enhanced abnormal pain sensitivity through a central
pronociceptive role [69]. Elevated interictal CGRP levels
have been proposed as a possible diagnostic biomarker
for CM [70, 71]. Moreover, not all studies show a con-
sistent increase in interictal serum CGRP levels in CM
patients compared to EM patients or healthy controls
[72]. Nonetheless, it has been shown that serum CGRP
levels are associated with the response to treatment with
Onabotulinumtoxin type A [73], which leads to a con-
troversial discussion of a potential valuable biomarker
for predicting treatment efficacy. Although the instability
and short-life of the peptide and the variable detection
methods complicates reliable and feasible measurement
[68]. Even though CGRP may also contribute to the de-
velopment of peripheral and central sensitization [74,
75], further research is necessary to confirm the poten-
tial of CGRP as biomarker in CM [66].
A second neuropeptide that is proposed as a bio-

marker for CM is Vasoactive Intestinal Peptide (VIP).
Just like CGRP, VIP is released in the trigeminovascular
system. Interictal serum levels of VIP have been found
to be significantly increased in CM patients compared to
healthy controls [73, 76] and, even though VIP serum
levels seemed to be elevated compared to EM patients,
this was not significant [76]. Furthermore, serum levels
of VIP have been correlated with cranial autonomic
parasympathetic symptoms in patients with CM [77].
Responders to Onabotulinum toxin type A had signifi-
cantly higher VIP levels than non-responders. However,
these results showed poor specificity [73]. In contrast to
CGRP and VIP, another neuropeptide the “Pituitary Ad-
enylate Cyclase-activating Peptide (PACAP), that is also
released in the trigeminovascular system, was not altered
during the interictal phase in CM patients [78].
It is known that some adipokines (such as leptin and

adiponectin), interleukin 6 (IL-6) and tumor necrosis

factor alpha (TNF-α), can act as mediators of inflamma-
tory processes linked to persistence and progression of
migraine [79]. Inflammatory mediators may decrease the
threshold for the onset of a migraine attack and may
also contribute to central sensitization as in the case of
other pro-inflammatory cytokines [80–82]. Moreover,
increased serum leptin was detected in CM patients
[83]. Leptin levels are correlated with body mass index
and TNF-α and IL-6 [75, 81]. Furthermore, serum total
adiponectin and high molecular weight adiponectin
levels were higher in CM [84], and were also elevated in
both EM and CM interictal periods [84, 85]. Further evi-
dence for the importance of adipokines in CM stems
from the fact that CM seems to occur with higher inci-
dence in obese people, with the risk of EM to CM pro-
gression being three or five times greater than in normal
weight subjects [86]. Levels of the proinflammatory cyto-
kine TNF-α have been found to be increased in cerebro-
spinal fluid (CSF) in treatment-resistant CM patients
[87], while levels of somatostatin and glial cell line-
derived neurotrophic factor (GDNF) were decreased in
the CSF of patients with CM [88].
Another possible biomarker for CM is glutamate. Glu-

tamate levels in the CSF are higher in patients with CM
compared to controls [89], and glutamate levels mea-
sured in saliva have been found to be significantly in-
creased in CM patients compared to patients with EM
[90]. Moreover, prophylactic treatment using topiramate,
amitriptyline, flunarizine or propranolol reduced plasma
glutamate levels along with a reduction in the number of
headache days per month, with no differences among
the types of prophylaxis [91]. Therefore, glutamate could
serve as a potential biomarker for CM.
Some other studies for migraine biomarkers include

serotonin, S100β, neurokinin A and substance P. How-
ever, most of these studies focus on EM and results
seem to be inconsistent [92–96].
Migraine-specific biomarkers are needed not only for

the improvement of therapeutic approaches, but also for
the development of new and personalized treatments.
Multiple potential biomarkers for CM have been investi-
gated so far, but further controlled clinical trials are still
needed to investigate both their diagnostic and thera-
peutic value.

Neurophysiology
Neuronal activity in migraine has been widely character-
ized through electrophysiological studies, which assess
the brain spontaneous activity and evaluate its response
to different stimuli [97]. Between them, evoked poten-
tials to different sensory modalities (in particular som-
atosensory and visual), transcranial magnetic stimulation
and magnetoencephalography studies have shown the
most relevant findings [98]. Notwithstanding, the
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pathophysiology of migraine still remains not fully
understood. Data from different studies are often diffi-
cult to compare because of methodological differences,
patient’s heterogeneity and different points of evaluation
thought the cycle of the migraine attack.
Neurophysiological studies have investigated the cor-

tical excitability state in migraine, so-called migraine
cortical “dysexcitability” [99]. Different pathophysio-
logical mechanisms might coexist in migraine, possibly
being either expression of increased cortical responsivity
or compensatory mechanisms seeking to stabilize the
cortical excitability level [100].
Experimental data form EM patients have shown that

electrophysiological features of the migraineur’s brain
fluctuates in relation with the cyclical recurrence of the
migraine attack. Habituation is defined as a decremental
response to repeated stimulations. Electrophysiological
techniques in EM revealed interictal deficient habitu-
ation of any kind of sensory responses (except for olfac-
tory stimulation) attributed to abnormal thalamo-
cortical interactions that normalizes during the migraine
attack [101]. Studies with repetitive transcranial mag-
netic stimulation (rTMS) have also reported interictal
paradoxical cortical responses in reaction to both de-
pressing or enhancing rTMS stimulation that changes
up to the bending point of an attack when cortical
responsivity behaves differently [102].
Compared to EM, CM patients have lower pain

thresholds as measured on quantitative thermal and
mechanical sensory test [103]. Studies using blink reflex
showed a remote effect of C fiber activation by capsaicin
that suggests impaired diffuse noxious inhibitory control,
that selectively inhibits action of nociceptive neurons lo-
cated in the nucleus of the descending trigeminal tract
by remote noxious stimuli, in CM but not in EM [104].
But one of the most reproducible underlying features in
CM is an increased cortical excitability that has been
demonstrated by different study methods. Magnetic vis-
ual evoked responses in CM patients demonstrate lower
phosphene thresholds, decreased cortical inhibition [105,
106] and persistent ictal-like excitability pattern of the
visual cortex between migraine attacks which may impli-
cate central inhibitory dysfunction [107]. The response
pattern of the visual cortex in patients with CM is simi-
lar to that found during a migraine attack in patients
with EM, both normal with regard to habituation and
abnormal regarding amplitude of the evoked response
after a low number of stimuli [107]. But habituation def-
icit reappears in CM patients who remitted to EM, sug-
gesting that visual cortical excitability reflect the clinical
status of migraine [108]. Similarly, it has been showed
that response pattern of the somatosensory cortex to re-
peated somatosensory evoked potentials in CM patients
is similar to that found during a migraine attack in EM

patients: both habituates normally but with an initial
sensitization response. Sensory sensitization may be ex-
plained by connections between the thalamus and cortex
intensified in CM compared to EM between attacks
[109]. These data support the fact that thalamocortical
dysfunction might be associated with a progressive ex-
tension of an acute electrophysiological alteration up to
a basal modification of neuronal activity.
In CM patients, rTMS applied to the primary motor

cortex showed inhibitory responses resembling that ob-
served in EM patients with high attack frequency evalu-
ated interictally, and in patients in the ictal state, what
may also be an expression of reduced inhibitory homeo-
static responses [100].
Differences between episodic and CM may not be

principally confined to the number of headache days per
month, but instead reflect a more profound patho-
physiological distinction [110]. Taken together, neuro-
physiological data can be considered as robust evidence
for the cycling functional brain alterations as a promin-
ent features of migraine pathophysiology, but mecha-
nisms underlying progression are still unknown and
whether the diffuse excitability change of CM brain is
the cause or the consequence of migraine chronification
process is not elucidated yet [109].

Animal models
CM is classified as a single entity, so, specific animal
models that mimic CM features have been developed to
test preventative medications and investigate patho-
physiological mechanisms of migraine transformation.
Currently, there are several methods to induce headpain
in animals but, because of the complexity of migraine,
there is no unique animal model that replicates all com-
ponents of CM, and current models focus on reprodu-
cing single phenotypic or endophenotypic features. It is
possible to model CM using repeated stimuli that acti-
vates trigeminal nociceptors representing the episodic
nature of migraine attacks. This includes epidural appli-
cation of an inflammatory soup and intravenous infusion
of glyceryl trinitrate (GTN) [111]. Transgenic animal
models of CSD induction had not been completely vali-
dated for CM study. As mentioned before, one of the
main features of migraine chronification is the
sensitization of the trigeminothalamic pathways. Allody-
nia is a common symptom of migraine that has been
correlated with central and peripherical sensitization,
increased migraine frequency ant thus, chronification
[112]. Due to its clinical translation in humans, trigemi-
nal mechanical sensitivity measurement in animals using
von Frey hair stimulation in facial or paws is considered
one of the best strategies to determine pain sensitization,
although nociceptive-related behavioral changes can be
used [111].
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Current animal models to study CM includes a mouse
model involving the repeated intraperitoneal administra-
tion of GTN resulting in acute hyperalgesia, and a
chronic basal hyperalgesia reduced by topiramate, but
not sumatriptan that persists after the cessation on GTN
[113]. Another model is based on repeated application
of inflammatory soup onto the dura mater that induces
allodynia and increase of nociceptive-related behavior
that reduces after zolmitriptan administration [114].
A GTN model has been used to identify genes and

biological processes impacted by chronification com-
pared to controls. Differential gene expression in trigem-
inal ganglion and nucleus accumbens in response to
NTG treatment has been demonstrated, including genes
linked to glutamatergic and dopaminergic synapses and
rhythmic process among others that could be involved
in CM pathophysiology [115].
CM animal models have shown increased CGRP gene

expression in rodents pain processing areas such as tri-
geminal nucleus caudalis [116, 117]. GTN induced
model showed that animal behavioral changes in pain
perception correlated with an increased gene expression
of CGRP in the medulla-pons region, cervical spinal
cord and trigeminal ganglia [118], while it has not been
demonstrated after acute GTN administration [119],
supporting CGRP contribution in central sensitization.
The BBB permeability during migraine attacks has

been widely discussed, and there is data that supports
[120, 121] and contradicts BBB disruption [122, 123] in
EM but little is known about BBB permeability in CM
patients. One study used the inflammatory soup rat
model of trigeminal allodynia, to determine the impact
of repeated dural inflammatory stimulation on BBB per-
meability. and demonstrated a significant increase in
BBB permeability and astrocyte and microglial activation
in the trigeminal nucleus caudalis during the chronic
phase after repeated infusion [124]. These findings could
be in line with inflammatory pain states producing sig-
nificant changes in the BBB permeability but need fur-
ther confirmation [125].
In animals, chemical activation and sensitization of

meningeal sensory neurons can lead to activation and
sensitization of central trigeminal neurons that receive
convergent input from the dura and skin [126]. Continu-
ous stimulation of trigeminal neurons during repeated
migraine attacks lead to changes in activity of intracellu-
lar signalling molecules that are relevant to pain and in-
crease expression of inflammatory cytokines in the
trigeminovascular system, thereby promoting the chroni-
fication process [127]. Using inflammatory models the
findings indicate that inflammatory pathways and over-
expression of CGRP in nociceptive neurons, could par-
ticipate in the generation of pain hypersensitivity [128].
Transgenic mice sensitized to CGRP through elevated

expression of a CGRP receptor could be used in the fu-
ture to test the hypothesis of chronic CGRP-induced
neurogenic neuroinflammation [129]. Furthermore, the
central sensitization phenomenon underlines connectiv-
ity changes through synaptic plasticity. Actually, a rat
model based on repeated stimulations with inflammatory
soup has showed that central sensitization correlates to
an increase of the synaptic efficiency through NR2B-
pTyr expression. This protein has been already related
to the regulation of the synaptic plasticity in the central
sensitization in this CM rat model [130].
Preclinical research with animal models has provided

valuable information about the mechanism of action on
preventive treatments. Treatments that have proved effi-
cacy in migraine patients, have been shown to prevent
mechanical hyperalgesia in animal models [113, 131]. For
example, botulinum toxin could act peripherally inhibiting
the release of a variety of neurotransmitters which are
known to be key signaling molecules in CM including
CGRP [132, 133], so animal pre-treatment with botulinum
toxin can prevent mechanical sensitization inhibiting
mechanical nociception in peripheral trigeminovascular
neurons [134]. For example, the mechanism of action of
noninvasive vagus nerve stimulation for migraine treat-
ment have also been investigated in the inflammatory
soup model showing a decrease in periorbital sensitivity
after de vagal stimulation [135].
In summary, only a few CM models are available today

that can mimicmigraine features observed in accordance
with clinical findings. However, as these animal models
for long-term activation of the trigeminovascular system
can only show unique phenotypical features of CM, like
allodynia or photophobia so, it is important to stress that
these are not a model of the migraine spectrum. Ideally,
specific models should be able to show the broad
spectrum of symptoms developed by migraine patients.

Neuroimaging
Migraine is thought to conform a disease spectrum with
symptoms gradually evolving from the episodic to
chronic forms that is characterized by several neuro-
physiological changes. Increasingly more studies suggest
that these changes may be evaluated using neuroimaging
techniques, which try to understand central underlying
pathophysiological mechanisms [136, 137]. Changes
shown by these studies may reflect chronic pain suscep-
tibility or be a consequence of recurrent migraine at-
tacks [138, 139].
Structural differences measured on magnetic reson-

ance imaging (MRI) have been found between migraine
patients and normal healthy controls [140]. Some neuro-
imaging studies performed in EM patients have shown
structural differences correlated with headache fre-
quency, that could be understood as indirect markers of
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migraine chronification. Patients with a high frequency
of migraine attacks have thicker somatosensory cortex,
anterior cingulate cortex and the inferior temporal gyrus
compared with patients with a low frequency of attacks
[141]. The frequency of migraine attacks was also corre-
lated with cortical thickness in the left middle frontal
gyrus and in the left central sulcus [142].
Studies performed specifically in CM patients have

shown volumetric changes in amygdala, putamen, hippo-
campus and brainstem areas [138, 143]. The volume of
hippocampus and amygdala seems to change with head-
ache frequency. The hippocampus is thought to be in-
volved in a maladaptive stress response, while the
amygdala plays a central role in emotions, fear condi-
tioning, processing of prolonged nociceptive inputs, and
development of sensitization. Compared to healthy con-
trols grey matter volume of the amygdala and putamen
is increased in CM patients [138]. Another study also
shows an increasing in volume of the hippocampus and
left amygdala that positively correlates with frequency
followed by a decrease when the headache becomes
chronic [144]. Patients with smaller hippocampus may
have a higher vulnerability to stress, stress related disor-
ders and persistent pain [144].
Taken together, these structural differences seem con-

sistent enough that a model can be performed to accur-
ately differentiate between chronic, episodic and healthy
controls [145].
Structural differences have also been found in the peri-

aqueductal gray (PAG) of CM patients. PAG is a struc-
ture that plays an important role in the modulation of
nociceptive stimuli from the trigeminal nucleus and it is
considered a key structure of migraine. The volume of
periaqueductal gray matter is increased in EM patients
in comparison to healthy controls but decreases again in
CM patients [110]. It has also been demonstrated the
presence of iron accumulation in the PAG as well as in
the red nucleus in CM patients compared to EM pa-
tients. This accumulation can be due to recurrent at-
tacks with secondary damage since biomarkers of
endothelial dysfunction endothelial and blood brain bar-
rier (BBB) molecular disruption are also elevated in this
group. This could lead to progressive dysfunction and
chronification, but this stays speculative since iron accu-
mulation increases with age, while migraine decreases
with age [146].
Another common structural finding in migraine patients

are white matter lesions (WML) [147]. The presence of
WML has been related to disease duration and the attack
frequency [148] but there are no specific studies that evaluate
the evolution of WML during transformation from episodic
to CM. Studies using diffusion tensor imaging (DTI) did not
find differences between chronic and EM patients due to
microstructural white matter changes [149].

A promising way to explore the underlying anatomy
and pathophysiology regarding the chronification of mi-
graine is functional MRI. Functional MRI is an import-
ant tool to study both brain structure and brain function
in one single technique [150]. Recent studies point to a
key role for the brainstem and hippocampus in the first
phase of a migraine attack [151]. The limbic system, on
the other hand, seems to have an important role in pain
networks in CM [140].
The amygdala (part of the limbic system) has a

uniquely increased connectivity with several parts of the
brain in patients with CM. This finding has not been
replicated in patients with EM, suggesting an important
limbic pain network dysfunction specifically in migraine
but not seen in other chronic pain syndromes [152]. The
hypothalamus shows stronger activation in the CM pa-
tient than in EM patients in response to painful trigemi-
nal stimulation but also during a migraine attack [153].
The posterior part of the hypothalamus seems to be in-
volved in the acute pain stage, while the anterior part
seems to be involved in the attack generation and preic-
tal phase and also migraine frequency, suggesting that it
plays an important role in chronification [153]. This is
supported by the fact that there is an increased connect-
ivity between the anterior hypothalamus and spinal tri-
geminal nucleus in the CM compared to the episodic
group [154]. A study that have compared EM and CM
patients using resting state technique, points to stronger
connectivity in the pain matrix of CM patients that
might play a role in migraine chronification [155].
At this stage, there is still a far way to go until we find

a neuroimaging marker for CM. Although, the results
from neuroimaging studies in CM provide light to which
structures or networks could be involved in the chronifi-
cation process.

Conclusions
CM patients show differences compared to EM patients
and controls. EM patients with clinical factors associated
to chronification may be on a higher risk for transform-
ation, so it is important to screen for clinical risk factors
as well as educate and treat modifiable factors in order
to prevent transformation. Although studies using differ-
ent approaches have demonstrated functional and struc-
tural differences between CM and EM patients, key
structures and networks involved in the chronification
phenomena, and the pathophysiology of migraine trans-
formation are not fully understood. The changes shown
may reflect migraine transformation susceptibility or be
a consequence of recurrent migraine attacks. Taking this
into account, the findings in this review do seem to
point towards general changes in excitability of the cen-
tral and peripheral nervous system. For example, in-
creased levels of glutamate in the CSF, central
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sensitization, altered habituation to sensory stimuli, im-
paired cortical inhibition and furthermore when investi-
gating magnetic visually evoked responses, and even
predicting the state of chronification based on structural
imaging, are all compatible with a hypothesis of central
and peripheral altered excitability being pivotal changes
happening in CM. Whether this would be part of the
cause for, or a consequence of chronification remains to
be elucidated.
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