

2020

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Applying TSR techniques over large test suites

João Pedro Pereira Becho

Mestrado em Engenharia Informática

 Especialização em Engenharia de Software

Dissertação orientada por:

Prof. Doutor Rui André Oliveira

Acknowledgments

First of all, I would like to thank my advisor, Professor Rui Oliveira, for guiding me
through all these months, for always being available to help me whenever I needed, for
giving me tips and advice on how to overcome my obstacles, both curricular and personal.
I would also like to thank Professor Frederico Cerveira, from the University of Coimbra,
for his cooperation in this project, for providing support and for being available to help
me during this journey.

Thanks to all the researchers I contacted when I needed their support during the
study of some tools, namely Andrea Stocco from the University of Washington, Profes-
sor José Campos, from the University of Lisbon, and Yves Ledru, from the Laboratoire
d’Informatique de Grenoble.

To my parents, who have always patiently waited for me to achieve my goals, and
for always being understanding and supportive, and for giving me all the opportunities I
needed, and to my brother and sister, who have always been by my side.

I would also like to thank the people that went through this with me, for being with
me since my bachelor degree and for all the good times we passed at FCUL, namely João
Batista, Francisco Araújo, Nuno Rodrigues, Tiago Correia, João Pinto and Nuno Burnay.

To my friends from Santarém, for always being with me, even if we don’t see each
other very often anymore, for always supporting me and for always helping me make
the right decisions in life, namely Kiko Antunes, Sofia Claro, Leonardo Ricardo, Patrı́cia
Guilherme, Gonçalo Alves, Edmundo Marvão. A special thanks to Mariana Gaspar Fer-
nandes, for always pushing me, for always taking the time to help me when I was blocked,
even when you were busy with your own thesis, for the days in “caleidoscopio” or Mc-
Donald’s procrastinating while observing pigeons.

To Francisco Picado and ’padrinho’ João Pedro Almeida, thank you for all the mo-
ments we had, the dinners, board games, long conversations, exchange of ideas, and for
being there since the beginning of this long journey.

Finally, to my girlfriend Rita Beja, for being one of the main reasons I was able to
finish this thesis, for never giving up on me and always giving me strength to continue.
You were my most present companion throughout all this work. It was a long (“muito
longa”) ride, and I’m really happy I had you by my side since the very beginning. For all
the smiles, all the tears, all the moments, and all those clichés stuff you make so real, I
will always be grateful to you.

Thank you all.

i

To Lola, for all the fun but frustrating moments

Resumo

Com o aumento da necessidade de garantir a qualidade do software criado atualmente,
tem sido cada vez mais indispensável dedicar parte do tempo de desenvolvimento (por
vezes mais de metade) a testar o código desenvolvido.

Apesar da elevada importância desta tarefa, é uma atividade que algumas vezes é
ignorada ou negligenciada, devido a ser um trabalho por vezes monótono e cansativo.

Esta é uma área bastante explorada por investigadores que tentam, de diversas manei-
ras, automatizar algum deste processo e, também, reduzir o tempo e recursos necessários
para efetuar esta tarefa. Nomeadamente, considera-se a proposta de técnicas de redução
de testes e ferramentas que as implementem, com o objetivo de agilizar esta tarefa, elimi-
nando casos de testes desnecessários sem comprometer a cobertura dada pelo conjunto de
testes original, bem como técnicas de prioritização de testes, que reorganizam conjuntos
de testes com o objetivo de executar os mais relevantes (de acordo com um determinado
critério) primeiramente, aumentando assim a sua capacidade de atingir algum objetivo.

Neste contexto, destacam-se os testes de regressão, que permitem testar alterações
ao software, verificando se as funcionalidades antigas continuam a funcionar com as
alterações feitas. Salientam-se estes testes na medida em que são considerados o tipo de
testes de software mais cansativo, comportando elevados custos e não evidenciando ga-
nho claros a curto-prazo e, consequentemente, beneficiando particularmente das técnicas
descritas anteriormente.

Com o surgimento destas técnicas, é inevitável surgirem algumas comparações, ten-
tando escolher as que melhor se adequam a diferentes necessidades. O objetivo deste
trabalho consiste em dar resposta a duas questões, particularmente interessantes dado o
estado de arte atual: “Qual a melhor ferramenta de redução de testes?”(de acordo com
parâmetros pré-definidos) e “Se uma ferramenta de prioritização de testes for modificada,
pode substituir de forma eficiente uma ferramenta de redução de testes?”.

Para realizar a presente dissertação, foi estudado um grupo de ferramentas de redução
de testes, de forma a ter uma melhor noção do estado de arte atual. Apesar de inicial-
mente terem sido encontradas onze ferramentas que poderiam vir a ser usadas com este
propósito, os testes realizados, assim como as propriedades de algumas ferramentas, res-
tringiram a utilização da maioria delas, Assim, foram consideradas três ferramentas: Evo-
Suite, Testler e Randoop. De forma a tornar o objetivo deste trabalho mais enriquecido,

v

foi também estudada uma ferramenta de prioritização de testes, Kanonizo.

Para respondermos às questões apresentadas, foi desenvolvida uma ferramenta que
integra o conjunto de ferramentas de redução de testes seleccionado e que, dado um con-
junto de projetos open-source, aplica as técnicas destas ferramentas a cada um destes,
efetuando assim a redução dos seus testes. Seguidamente, a ferramenta desenvolvida uti-
liza a ferramenta de prioritização Kanonizo para obter uma lista dos vários testes, ordena-
dos consoante a sua importância; finalmente, são eliminados os testes menos importantes,
segundo um valor pré-definido.

De seguida, utilizando uma ferramenta de análise de código, neste caso a OpenClover,
são recolhidas métricas referentes a cada conjunto de testes, para os projetos originais e
igualmente para cada um dos reduzidos. Estas são depois utilizadas para avaliar a eficácia
da redução para cada ferramenta.

A eficácia da redução pode ser influenciada por diversos fatores. No caso da nossa fer-
ramenta, foram considerados o tamanho do ficheiro de testes, o número de testes, o tempo
de execução dos mesmos, a percentagem de cobertura total do código e a percentagem
de cobertura de “ramos”no código. Por este motivo, decidiu-se adotar uma metodologia
de Multi-Criteria Decision-Making, mais especificamente a Analytic Hierarchy Process
que, segundo diversos critérios e valores de importância definidos entre eles, deduz a pri-
oridade que cada critério deve ter ao tentar atingir um objetivo comum, isto é, que peso
tem cada critério no cálculo da pontuação de cada ferramenta.

Após a finalização e aperfeiçoamento da ferramenta, foram realizadas experiências
que nos permitiram analisar a eficácia de cada ferramenta. Dada a facilidade de configuração
da ferramenta, foram efetuadas diversas análises às reduções efetuadas pelas ferramentas,
alterando a importância de cada critério considerado, visando verificar de que maneira
estes influenciavam a escolha da melhor ferramenta.

As pontuações de cada ferramenta de redução foram calculadas para seis cenários
diferentes: um que replicasse as necessidades do ”mundo real”, dando portanto mais
importância ao tempo de execução dos testes e cobertura atingida do que à dimensão dos
testes em si; e um focando toda a importância para cada um dos sub-critérios definidos.
Cada um destes cenários foi feito duas vezes - uma com os testes gerados pelo EvoSuite, e
outra com os testes já existentes - com o objetivo de averiguar se as ferramentas de redução
teriam um comportamento semelhante na presença de testes gerados automaticamente ou
por humanos.

Ignorando a ferramenta de prioritização, e tendo em conta o facto de que a EvoSuite
só poderia ser usada com testes gerados por si mesma, a ferramenta de redução que teve
uma melhor pontuação foi a Testler, o que responde à nossa primeira questão do estudo.

Quanto à segunda questão, apesar dos resultados terem mostrado indubitavelmente
que a Kanonizo obteve pontuações melhores que as outras ferramentas analisadas, esta
é uma questão suscetı́vel à influência de diversos fatores. No contexto das experiências

vi

efetuadas, podemos dizer que a Kanonizo pode substituir qualquer uma das ferramentas
de redução e, confiando nas pontuações, fazer um trabalho mais eficaz. No entanto, num
contexto mais abrangente, torna-se difı́cil responder a esta questão sem considerar um
número mais elevado de ferramentas de redução de testes. Para mais, dependendo do
algoritmo utilizado na ferramenta de prioritização, a redução feita por nós pode não ter
qualquer critério (no caso de algoritmos random), o que faria essencialmente com que
estivéssemos a apagar métodos aleatoriamente, podendo causar grandes perdas em termos
de cobertura de código.

Quando falamos de “substituir”uma ferramenta de redução por uma de prioritização
com uma abordagem semelhante à nossa, é melhor utilizar algoritmos de prioritização
que visem algum critério, como dar prioridade a testes que cubram, por exemplo, linhas
de código ainda não cobertas, por exemplo, aumentando assim a probabilidade dos testes
menos importantes serem redundantes e, consequentemente, apagados.

Esta ferramenta foi desenvolvida de modo a que fosse facilmente modificável e ex-
pansı́vel, oferecendo assim uma maneira fácil para integrar novas ferramentas de redução
de testes, permitindo realizar novas comparações à medida que estas ferramentas fo-
rem surgindo. Para além disso, destaca-se também a simplicidade da configuração dos
critérios a ter em conta quando calculamos a pontuação de cada ferramenta, e o va-
lor que estes têm em comparação com os outros, possibilitando facilmente o cálculo de
pontuações tendo em conta diversos cenários.

Ao longo deste trabalho, o maior problema encontrado foi o estudo das ferramentas
de redução. Para além de algumas não serem open-source, muitas das que eram não iam
de encontro aos nossos requisitos para integração na ferramenta, quer por linguagem de
programação, quer por abordagem seguida, e muitas vezes a documentação encontrada
estava desatualizada ou errada, dificultando todo o processo.

Palavras-chave: Teste de software, Redução de testes, Otimização de testes

vii

Abstract

With the growing need to assure the quality of the software created nowadays, it has
become increasingly necessary to devote part of the development time (sometimes as
much as half) to testing the developed code.

Despite the high importance of this task, it is an activity that is sometimes ignored and
neglected, due to it being, occasionally, a monotonous and tiring job.

This is an area thoroughly investigated by researchers who try to automate some parts
of this process, while also reducing the time and resources required for this task. In par-
ticular, we highlight the proposal of test reduction techniques and tools that implement
them, with the goal of detecting unnecessary test cases without compromising the cover-
age given by the original test suite.

The main objective of this work consists in answering two questions: “What is the
best Test Suite Reduction tool?” (according to some criterion) and “Can a Test Case Pri-
oritization tool be adapted to effectively replace a Test Suite Reduction tool?”. To answer
these questions, we developed a framework that integrates a set of Test Suite Reduction
and Test Cases Prioritization tools, with the possibility to integrate more, and that uses
them, given a set of open source Java projects, to apply each of its techniques.

We then gather test execution data about these projects and compare them to compute
a score for each Test Suite Reduction tool, which is used to rank them.

This score is achieved by applying a Multi-Criteria Decision-Making methodology,
the Analytic Hierarchy Process, to weigh several chosen code metrics on the final score.

To answer the second question we integrated a Test Case Prioritization tool into our
framework, with which we will get a list of the less important test cases, that we will then
remove, simulating a reduction.

Keywords: Software testing, Test suite reduction, Test suite optimization

ix

Contents

List of Figures xv

List of Tables xvii

Acronyms xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Contributions . 2
1.4 Document organization . 3

2 Related work 5
2.1 Test Suite Reduction . 5

2.1.1 Test Suite Reduction techniques 6
2.1.2 Classification of techniques . 6
2.1.3 Test Suite Reduction tools . 10

2.2 Test Case Prioritization . 14
2.2.1 Test Case Prioritization techniques 15
2.2.2 Test Case Prioritization tools . 17

2.3 Code metrics . 18
2.4 Multiple-Criteria Decision-Making . 18

2.4.1 Analytic Hierarchy Process . 18
2.4.2 Normalizing values . 19

3 Selected frameworks and tools 21
3.1 Initial set of Test Suite Reduction tools 21

3.1.1 ATAC . 21
3.1.2 RUTE-J . 23
3.1.3 Randoop . 24
3.1.4 Open-SourceRed . 25
3.1.5 MINTS . 26

xi

3.1.6 GZoltar . 27
3.1.7 EvoSuite . 27
3.1.8 Testler . 28
3.1.9 JTOP . 29
3.1.10 TOBIAS . 29
3.1.11 TEMSA . 30

3.2 Final set of Test Suite Reduction tools 31
3.3 Test case prioritization tool: Kanonizo 31

4 Design 33
4.1 Initial approach . 33
4.2 Case studies . 35
4.3 Code analysis tools . 36

4.3.1 JaCoCo . 36
4.3.2 OpenClover . 37
4.3.3 Chosen tool . 37

4.4 Code metrics processing and tools evaluation 37
4.5 Final concept . 38

5 Implementation 41
5.1 Code structure . 41
5.2 Framework modifiability and configuration 46

5.2.1 Modifiability of the framework 47
5.3 Analytic Hierarchy Process implementation 48
5.4 Modified Test Suite Reduction Tools . 48
5.5 Problems found . 49

6 Results 51
6.1 Testing environment . 51
6.2 Experiments and results . 51

6.2.1 Generating, reducing and analyzing tests 52
6.2.2 Calculating scores . 54

6.3 Discussion . 65

7 Conclusion 69
7.1 Results . 69
7.2 Problems . 70
7.3 Future work . 70

Bibliography 71

xii

A Selected frameworks and tools 79

B Implementation 81

C Results 89

xiii

List of Figures

2.1 General hierarchical model. 19

3.1 ATAC workflow. 22
3.2 RUTE-J Graphic User Interface. 24

4.1 Overview of our initial approach. 34
4.2 Overview of our midterm approach. 34
4.3 Hierarchy model for our AHP approach 38
4.4 Final approach for framework . 39

6.1 Chart for real world scenario results (EvoSuite Run). 56
6.2 Chart for real world scenario results (Normal Run). 56
6.3 Chart with specific criterion results (EvoSuite Run). 59
6.4 Chart with specific criterion results (Normal Run). 60

B.1 Package pt.ul.di.fc.pei42103 class diagram. 83
B.2 Package pt.ul.di.fc.pei42103.clover class diagram. 84
B.3 Package pt.ul.di.fc.pei42103.tools class diagram. 85
B.4 Package pt.ul.di.fc.pei42103.ahp class diagram. 86
B.5 Package pt.ul.di.fc.pei42103.utils class diagram. 87

xv

List of Tables

2.1 Summary of the taxonomy of some existing TSR tools. 14
2.2 Test Case Prioritization Techniques. 15
2.3 Fundamental scale of importance. 20
2.4 Normalization techniques. 20

4.1 Case studies projects. 36

6.1 Execution times each tool took for each project (with EvoSuite). 52
6.2 Execution times each tool took for each project (without EvoSuite). . . . 52
6.3 Kanonizo algorithms total executing time. 53
6.4 Test execution data gathered by OpenClover (EvoSuite run). 54
6.5 Test execution data gathered by OpenClover (Normal run). 54
6.6 Scores for real-world scenario. 57
6.7 Scores for file size scenario. 61
6.8 Scores for number of test cases scenario. 61
6.9 Scores for time scenario. 62
6.10 Scores for percentage of branch coverage scenario. 63
6.11 Scores for percentage of total coverage scenario. 64
6.12 Scores with changed project weights. 65
6.13 Average scores in both runs. 66
6.14 Average scores of Kanonizo variations in both runs. 67

C.1 Example of the results table. 89
C.2 Criteria Pairwise Comparison Matrix (real-world scenario). 89
C.3 Sub-criteria Pairwise Comparison Matrices (real-world scenario). 89
C.4 Criteria Pairwise Comparison Matrices (focused sub-criteria). 90
C.5 Sub-criteria Pairwise Comparison Matrices (focused sub-criteria). 90

xvii

Glossary

Test Suite A set of Test Cases.

Test Case A set of instructions executed to verify a functionality of a software applica-
tion.

xix

xx

Acronyms

AHP Analytic Hierarchy Process. , 5, 18, 20, 37, 41, 43, 44, 47, 57

ILP Integer Linear Programming. , 10, 13, 26

MCDM Multi-Criteria Decision Making. , 3, 5, 18, 20, 37, 57

TCP Test Case Prioritization. , 2, 3, 5, 14, 15, 17, 25, 31, 33, 39, 66, 69, 70

TSR Test Suite Reduction. , 2, 3, 5, 6, 9, 10, 13, 14, 17, 21, 25, 26, 28, 31, 33, 38, 39,
41, 46, 47, 48, 55, 63, 66, 69, 70

xxi

Chapter 1

Introduction

In this chapter, an introduction to the topic of this dissertation will be given, presenting the
reasons that motivated its development and explaining what are the goals to be achieved
as well as the contribution given by this work. The structure of the remaining chapters of
the document is provided at the end.

1.1 Motivation

The inclusion of a testing stage in the software development process has proven to be a
fundamental requirement for the industry over the years, and nowadays it takes up ap-
proximately 50% of the time and more than half of the development costs of a system [1],
since it is this activity that will ensure the quality and reliability of our software. This
stage is already defined in several software development models, such as the waterfall
model or test driven development.

Poor management of this stage can - and most likely will - cause the software im-
plementation to fail, i.e., to deviate from the expected behavior. The existence of such
failures becomes more serious when we talk about critical software systems (hospitals,
military, space exploration, ...), where the existence of problems in software may trans-
late into major economic or commercial image damage, or even loss of human lives [2].

As the software is developed and changed, it may be necessary to implement new test
cases, either to test new functionalities or to have test suites that offer a better coverage of
the code. Testing allows us to assure the quality of our software during development, or
after a modification [3] (e.g. implementation of a new functionality). In other words, after
making any changes to the software, in addition to creating test cases that cover the newly
written code, one must also run all the previously created test cases in order to ensure that
the last changes did not have a negative impact on what was originally made and tested.

Obviously, it is to be expected that as the software grows, so do the test suites associ-
ated with it. This results in ever-increasing software under test and test cases to run, which
translates into more time and more resources spent on this task, making regression testing

1

Chapter 1. Introduction 2

one of the most costly types of software testing [4]. These tests focus on verifying that a
new functionality does not modify the expected behavior of the previously implemented
functionalities.

For these reasons, regression tests are often research targets with the aim of developing
methodologies to reduce their high costs. With this problem in mind, several methodolo-
gies began to emerge to try to cover the cost of this stage of development [5, 6, 7, 8].

One of these methodologies is the application of Test Suite Reduction (TSR), or Test
Suite Minimization, techniques, which will be one of the focus of this work, and which
aim to reduce the size of test suites, usually by identifying and eliminating redundant test
cases, converting the original test suite into a reduced one [7], thus saving execution time
and facilitating the maintenance of these tests, preferably without compromising their
effectiveness in detecting bugs.

Another one of these methodologies, and also the focus of this work, although not so
thoroughly, is the application of Test Case Prioritization (TCP) techniques. As opposed
to TSR, Test Case Prioritization (TCP) will not reduce the suite, but will reorganize it into
a more efficient one, which will prioritize the most likely test cases to identify a fault [9].

1.2 Goals

The main goal of this work is to carry out an experimental study that allows us to compare
different techniques for reducing test suites along with some to prioritize test cases. In
order to complete this goal, a set of tools was studied and a subset of those was selected
to conduct this study. The criteria to filter these tools will be explained further ahead in
this dissertation. Using these tools and test suites from several open-source projects, the
efficiency of the reduced test suites will be measured - through a selected set of metrics -
and compared between each reduced suite generated by each tool.

To simplify this analysis, and also as a goal of this work, a tool was developed that
facilitates the execution of the previous selected tools, and provides a comparative report
between the efficiency of the original and reduced test suites.

With the accomplishment of this work, we intend to answer two questions: First,
which of the Test Suite Reduction tools that we used is the best, according to some set
of criteria. Second, if we take a Test Case Prioritization tool and apply some kind of cut
(for instance, erase the least important 30% test cases in a test suite), will the TCP tool be
more efficient than the Test Suite Reduction ones?

1.3 Contributions

The main contribution of this work is an experimental approach that compares and eval-
uates a set of TSR and TCP tools, regarding their performance in the task of test suite

Chapter 1. Introduction 3

reduction.
This approach was also implemented in the form of an open source modular frame-

work that integrates a set of predefined TSR and TCP tools that reduces the test suites of
given projects. Using a code analysis tool, it then extracts a set of code metrics, which
are then aggregated through a Multi-Criteria Decision Making (MCDM) methodology to
ease the comparison and evaluation of the tools.

The framework offers the possibility to configure its execution, whether by easily
adding or removing other available tools (as long as they respect the requirements and
with a small programming effort), as well as the code metrics measured (as long as they
are offered by the used code coverage tool).

1.4 Document organization

The remaining chapters of this dissertation are organized as follows:

• Chapter 2 - Related work: in this chapter, a state of the art analysis will be made,
considering the related work, focusing on the techniques used to reduce test suites,
as well as the categorization of such techniques and the main existing tools that
implement them. In a more summarized way it will also be given an explanation
about existing TCP techniques and tools, along with a brief explanation of the code
metrics commonly used to study the efficiency of Test Suite Reduction, and a brief
study on MCDM;

• Chapter 3 - Selected frameworks and tools: in this chapter, we detail the work
done and problems found with each studied TSR tool and TCP tool. We also define
the choices, and rationale behind them, to form the final set of tools to integrate in
our framework;

• Chapter 4 - Design: in this chapter, an overview of the general approach of our
framework and its evolution throughout time will be made. We will also detail the
choices made regarding the implementation of our framework, such as the code
analysis tool to choose, how to process the metrics measured and how to use them
to achieve the answer to our goals;

• Chapter 5 - Implementation: in this chapter, the implementation of our framework
will be described, explaining its structure and summarizing each part of the code
and its purpose, as well as the changes we made to the necessary integrated tools;

• Chapter 6 - Results: in this chapter, we will explain the conducted experiments, as
well as the results obtained by them and a discussion regarding them;

Chapter 1. Introduction 4

• Chapter 7 - Conclusion: in this chapter, a summary of the results will be given, as
well as the possible future work to be made, related to this work, and the topic it
presents. We also describe the problems found during this work.

Chapter 2

Related work

The study of the state of the art carried out in the first months of the work focused mainly
on three aspects: the proposed TSR techniques and the existing tools that implement some
of these techniques, an overview of existing TCP techniques, and the metrics that could
be used to evaluate the efficiency of these techniques.

A brief study on MCDM and some of its approaches, specifically the Analytic Hierar-
chy Process (AHP), was also conducted and will be described in the end of this chapter.

2.1 Test Suite Reduction

Test Suite Reduction allows a more efficient and easier test suite maintenance, which
in turn reduces the cost of the testing phase of software development, although in this
process the ability to detect faults may be compromised [10].

These techniques work by identifying and erasing test cases that became obsolete
or redundant, usually by some change in the code, e.g. the implementation of a new
functionality or the modification of an old one [5, 11, 12].

According to M. Harrold et al. [11], the problem of Test Suite Reduction can be
formally defined as the following:

Given:

• TS - a test suite;

• r1, r2, ..., rn - set of test case requirements that must be met to ensure the desired
test coverage of the program;

• T1, T2, ..., Tn - subsets of TS, each associated with one of the ri, with 1 ≤ i ≤ n,
such that any test case tj ∈ Tt can be used to test ri.

Problem:

• Find a set of test cases in TS that satisfy all ri.

5

Chapter 2. Related work 6

2.1.1 Test Suite Reduction techniques

There are several techniques proposed and thoroughly studied [3, 4, 5, 8, 11, 13].
Binkley et al. [3] suggest that a TSR technique should have the following characteris-

tics:

• Inclusiveness, i.e. the reduced test suite must provide the same test coverage as the
original test suite, according to some criteria.

• Precision, i.e. the algorithm should be able to find a subset of minimum, or approx-
imate minimum, test cases.

• Efficiency, i.e. the reduction is only worth if the cost of the analysis needed to
perform it is less than what we saved by reducing the test suite.

• Generality, i.e. the technique should be applicable to a comprehensive set of pro-
grams.

2.1.2 Classification of techniques

According to Alian et al. [13], we can classify TSR techniques into eight categories:

• Requirement based

Some of the proposed techniques solve the problem of TSR by looking at test re-
quirements rather than test cases. These techniques usually provide a good reduc-
tion in the percentage of redundant tests, but on the other hand they are generally
more time consuming.

Fraser et al. [14] propose a technique of this category that consists of choosing
subsets of test cases that meet the requirements. A model-checker then receives as
input a finite state model and a temporal logic property that will result in a coun-
terexample if the property is not met.

Chen et al. [15] propose a technique that uses a requirement relation graph to
optimize the set of requirements, by applying graph contraction methods.

Chapter 2. Related work 7

• Genetic algorithm:

As already mentioned, one of the software testing problem lies in the effort, time
and cost required to develop good test suites. In an attempt to reduce this prob-
lem, the use of evolutionary algorithms, in particular genetic algorithms, has been
researched in order to automatically generate test cases.

The techniques of this category take, as the initial population, the existing test cases,
using them to create the next generations by using mutation, crossover and fitness
functions that use the information collected after the tests are executed (for example,
information on test coverage) and generate the next populations until they find the
minimized test suite. Although this method reduces the number of test cases and
the runtime of the test suite, there is still some work to be done in relation to the
ability to detect faults [16].

Nachiyappan et al. [17] propose a genetic algorithm technique, in which the ini-
tial population is based on test history, i.e. the tests’ previous execution time and
coverage, and the fitness function depends on these values.

You and Lu [18] propose a technique that reduces a test suite taking into account
the tests’ execution time that follows the generic implementation of a genetic algo-
rithm. The initial population is generated according to a proposed representation
scheme, and parent selection, crossover and mutation is then applied as to generate
better candidates, according to a fitness function that uses tests’ execution time as
an evaluation.

Mohapatra and Pradhan [19] propose a genetic algorithm technique that generates
the initial population by using a binary matrix with columns representing test cases
and rows the test requirements to be met. It then uses single point crossover and
mutation until it can achieve a subset of the initial test suite that covers all the
specified requirements.

Ma et al. [20] propose a technique that uses test history according to covered blocks
of code, i.e. sequence of statements, to generate the initial population. Selection,
crossover and mutation are then applied to evolve the individuals until one who
achieves the desired coverage with minimal cost is found.

• Clustering:

The techniques of this category, as the name implies, take advantage of well-known
clustering techniques, but lack the ability to detect faults.

Wang et al. [21] propose a technique that divides test cases into clusters according
to their similarity in profiling. It provides improvements by making three types of
profiles: File execution sequence, function call sequence, and function call tree.

Chapter 2. Related work 8

Subashini and JeyaMala [22] propose the use of data mining approach on clustering,
joining the redundant and similar test cases into clusters, and reducing the testing
effort by testing these clustered test cases in turn of the whole test suite. A similar
approach is also proposed by Parse et al. [23].

• Fuzzy logic:

The techniques in this category are based on the use of fuzzy logic, i.e., logic based
on true values (as opposed to boolean logic - 0 or 1), thus allowing to optimize
test suites not only for one objective, but several (multi-objective selection criteria).
These techniques reduce the size and execution time of the tests.

Haider et al. propose several techniques using fuzzy logic. In [24] the technique
consists of an expert system that uses a technique based on a defined objective
function, similar to human judgement, using a classification based on fuzzy logic.

In [25] they study some computational intelligence based approaches such as evolu-
tionary computation, fuzzy logic and neural networks, and conclude that only fuzzy
logic is adequate for test regression. Finally, in [26] they propose an approach that
extracts the optimization parameters from the test cases, develops a model for the
problem under testing and optimizes the test suite using fuzzy logic.

• Coverage based:

Something that should always be considered when reducing a test suite is the cov-
erage provided by the tests. These techniques ensure that the given tests, even when
reduced, cause the program to be tested to run according to most of the run paths
(paths that the program flow takes from start to finish) defined for that program.
The rate of reduction of test cases is quite high, but the type of coverage chosen
may be inefficient depending on the size of the software under test.

Murphy [27] proposes an example of a coverage-based technique, which consists
of an algorithm that covers all attainable states. It focuses on path coverage as it
generates test cases by accessing the source code. It then identifies test cases that
cover all sub-paths in the program based on code implementation, and removes any
test cases that cover already covered sub-paths.

Pringsulaka and Daengdej [28] propose a technique called coverall algorithm, that
uses algebraic conditions to define the values of some variables. This will limit the
values within a definite range, which in turn results in fewer test cases to process.

Roongruangsuwan and Daengdej [29] propose a technique using case based reason-
ing [30]. This technique defines three methods: Test Case Complexity for Filtering,
that finds a complexity for each test case, determined by the number of test cases
in a test suite related to the average, and then removes the test cases with fewer

Chapter 2. Related work 9

complexity; Test Case Impact for Filtering, that is similar to the previous one, with
the difference that it measures the impact of each test case, which is related to the
faults found by a test case; and Path Coverage for Filtering, which removes the test
cases that achieve less coverage.

Khan and Nadeem [31] propose a technique called TestFilter. This technique finds
a weight for each test case, which is related to the requirements they cover. The
test cases are then assigned to the reduced test suite, starting from the one with the
higher weight value, until all requirements are met.

• Program slicing:

This methodology works by identifying parts of a program that are relevant to the
values of a predefined set of variables at some point in the program. A slice of the
program is built by removing all parts of the program that are irrelevant to these
values. These techniques reduce the size of the test suite and its execution time, but
there is still some study to be done on the ability to detect faults.

Arasteh [32] proposes an example of a technique that uses program slicing, which
focuses on parts of the code that have a significant impact on its output, while those
parts of the program that have no effect are eliminated from the testing process.

Binkley [33] proposes an algorithm that identifies test cases that produce the same
output when executed on a given program, before and after a modification, as well
as the existing test cases that test the new components added after a modification,
thus avoiding the rerunning of tests that produce the same output and providing a
more efficient test suite.

• Greedy algorithm:

Techniques in this category generally select the test case that satisfies the maximum
number of unsatisfied requirements, and make a random choice if there is a tie.
Provides a significant reduction in test cases, although the random choice on those
specific situation is not ideal.

Tallam [34] proposes a technique in which the test cases are considered objects and
the requirements their attributes. Using concept analysis frameworks, the maximum
groupings of objects and attributes are identified and called contexts. Reduction
rules are used to reduce the size of the context table by applying object and attribute
reduction rules.

Xu et al. [35] propose a weighted greedy algorithm. This algorithm determines if a
test case covers all of the testing requirements, selecting it for the reduced suite if it
does. If not, it eliminates the redundant test cases, updating the set of test cases and
the uncovered requirements until all requirements are met. Zhang et al. [36] apply
this technique to JUnit test suites while studying a set of existing TSR techniques.

Chapter 2. Related work 10

• Hybrid algorithm:

Some algorithms try to reduce the number of test cases using more than one type
of technique, for example, the combination of genetic algorithms and the greedy
algorithm. These techniques provide a significant reduction in the number of test
cases, but are also highly complex.

Suri [37] proposes a technique that combines genetic algorithms and colonies of
artificial bees. Colonies consists of three groups of bees: employed, onlookers and
scouts. By using bees as agents, the algorithm can exploit the minimum set of test
cases.

Sampath et al. [38] suggest the standardization of the use of hybrid criteria by
proposing three ways to combine criteria: Rank, which combines criteria by order
of importance and applies them in series, i.e. when the first criteria fails, the sec-
ond one is applied; Merge, which combines criteria simultaneously; and Choice,
which applies the criteria in a series but, unlike rank, follows some criterion for the
selection, for instance, the code coverage.

Yoo and Harman [39] introduce a hybrid multi-objective genetic algorithm. It uses
a modified version of the greedy algorithm that uses knowledge about the cost of
the test cases regarding computational effort and statement coverage.

2.1.3 Test Suite Reduction tools

In order to ease the whole method of Test Suite Reduction, several researchers proposed
and developed tools and frameworks that allowed to speed up this process [5].

Tool classification

With the increase of research in this area, and the constant development of TSR tools, it
became necessary to have a way to classify them.

Khan et al. [5] proposed a categorization of the existing tools, based on the following
parameters:

• Approach type

This parameter represents the main category of approaches taken to conduct reduc-
tion on test suites, and is divided into four attributes: coverage-based, search-based,
Integer Linear Programming (ILP) and Similarity-based.

Coverage-based approaches are based on the use of greedy algorithms in order to
select test cases that cover a maximum number of instructions from the program
to be tested. In search-based, search algorithms, such as genetic algorithms, are
used to find several test cases from an initial population. ILP based finds a minimal

Chapter 2. Related work 11

solution to the problem of TSR based on the defined objectives and constraints.
Finally, the similarity-based try to solve this problem by making use of similarity
matrices for all pairs of test cases.

• Testing paradigm

Represents the programming paradigm associated with the language in which the
tool was implemented. It is divided into three attributes: structured, object-oriented
and aspect-oriented.

The structured ones were developed using a language that allows a type of struc-
tured programming, using the flow control and divides the code by procedures and
functions. Object-oriented were written in languages that allow the use of object-
oriented programming, which generally treats the data as if they were objects. Fi-
nally, aspect-oriented were implemented using languages in which aspect oriented
programming can be practiced, which aims to increase and improve the modularity
of the written code.

• Optimization type

Represents the amount of tool optimization goals, which can be either single-objective
or multi-objective. Single-objective only focuses on generating a reduced test suite
or calculating the effectiveness of fault detection. On the other hand, the multi-
objective ones focus on both objectives.

• Coverage source

Splits into source code and test execution profile. Source code determines the re-
duced suite by choosing test cases that cover as many elements of the program’s
source code as possible. The test execution profile captures the test execution pro-
files by running the test suite and then the tool determines the representative test
cases based on the coverage score achieved by the execution profiles.

• Execution platform

Defines the number of servers required to run the tool to determine the reduced
suite. This parameter is divided into single server and multiple server. The main
improvement brought by multiple servers is the ability to divide a problem into
smaller problems, in this case, divide a test suite into small test suites that are then
run on each server, accelerating the process of reducing test suites.

Chapter 2. Related work 12

• Computational mode

Represents the type of processing supported by the tool. Splits into online and
offline. The online type receives several small test suites sequentially to produce
the reduced suite, while the offline type receives the entire suite in order to find an
optimal solution.

• License type

Defines the type of license of the tool, which can be commercial, academic research
or free. Commercials can be purchased through some form of payment, academic
research is developed by laboratories or academic research groups and is usually
accessible in the academic field and free is available to any user, without any kind
of payment.

• Evaluation

Represents the type of evaluation used to evaluate the tool and is divided into in-
ternal and external. While the internal ones were evaluated by their designers and
developers, in the same environment in which they were developed, the external
ones are evaluated outside their development environment.

• Customizability

Defines the ease of any user in modifying the tool and categorizes itself in full,
partial and in support for customizability. The tools considered full allow any type
of change made, and are usually those that provide the source code. The partial only
admit minor changes, for example the integration of the tool in other developed
software. No support does not allow any kind of modification.

• Support

Represents the availability of support provided for the tool, i.e. the existence of
documentation, or whether the executable or the source code is available.

In addition to these parameters, the tools can also be organized into five different
classes, which defines the paradigm where these tools will be most useful:

• Randomized unit testing

Tools that focus on unit tests, in which random elements are involved in the selec-
tion of parameters or methods to be tested, which allows the generation of different
test cases in an easy and fast way, facilitating the discovery of faults in the code.

This methodology is propitious to the generation of very similar test cases, creating
some redundancy and therefore raising the need to reduce them.

Chapter 2. Related work 13

• User session testing

In case of software with a high degree of interactivity, which requires constant
interaction from the user, as is the case of web applications, it becomes necessary
to take a different approach when we want to test them.

In these cases, the users’ session data, for example, a sequence of users’ actions, is
usually used to test the software. However, it is very likely that this data is highly
redundant.

These tools intend to reduce this degree of redundancy present in this data.

• Re-targeted compilers testing

When there is a need to redesign a processor, it is also indispensable to build new
compilers for these processors. An efficient approach to this task is reusing the
existing compilers. Generally, a large number of test cases are generated using
source code employing grammatical coverage criteria.

The tools in this class focus on back-end testing of a compiler to reduce the test
suite.

• Integer linear programming

This approach allows for the determination of optimal solutions based not only
on the reduction of the test suite while maintaining the coverage of the original
suite, but also on other objectives, such as minimizing the suite execution time and
maximizing the fault detection capability.

The tools of this class formulate the problem of Test Suite Reduction through a ILP
problem.

• Automated fault-localization

These tools focus on finding the exact location of a gap in the software to be tested,
trying to improve the effectiveness of this process.

Existing tools

Table 2.1, based on the one prepared by Khan et al. [5], presents some developed tools and
frameworks and their taxonomy, i.e., the class and some parameters of each, considered
the ones with most potential to use in this work.

The support and customizability parameters were merged and presented in the ‘avail-
ability’ column, considering that if a tool has full customizability, it is because its source
code (Src) is available. If it has partial customizability, it has an executable (Exe) available
and if it has no customizability, then it has no source code or executable available. The

Chapter 2. Related work 14

AvailabilityClass Tool Approach type Doc Src Exe
ATAC [40] Coverage-based 3 3 3

Rostra [41] Coverage-based 7 7 7

Raspect [42] Coverage-based 7 7 7

RUTE-J [43] Coverage-based 3 3 3

Randoop [44] Coverage-based 3 3 3

GenRed [45] Coverage-based 7 7 7

JTOP [46] - 3 7 3

TOBIAS [47] Coverage-based 3 7 3

TEMSA [48] Search-based 3 7 3

Open-SourceRed [49] Coverage/Search-based 3 3 3

EvoSuite [50] Coverage/Search-based 3 3 3

Randomized
Unit-testing

Testler [51] Similarity-based 3 3 3

UsbRed [52] Similarity-based 7 7 7User session
testing CPUT [53] Coverage-based - - -

RTL [54] Coverage-based - - -Retargeted
compilers PLOOSE [55] Coverage-based - - -

MINTS [56] ILP-based 3 3 3Integer Linear
Porgramming EDTSO [57] ILP-based - - -

SrTC [58] Coverage-based - - -
JINSI [59] Coverage-based - - -

Automated
fault-

localization GZoltar [60] Coverage-based 3 3 3

Table 2.1: Summary of the taxonomy of some existing TSR tools.

documentation (Doc) column represents the availability of any written documentation for
each tool.

The tools in bold represent those that were primarily selected for use in the devel-
opment of this work. The criteria for this selection will be elaborated further in this
dissertation.

The ones that do not have any information in the availability column, marked with
an hyphen (-), represent the situation where no documentation has been found, or was
found written in a foreign language (other than English), or no executable or source code
capable of producing an executable binary was found, whereas the (7) means it was not
available and (3) means the opposite.

2.2 Test Case Prioritization

As opposed to TSR, Test Case Prioritization techniques do not discard test cases. How-
ever, they reorganize them in a more efficient order that can achieve some goal related to
the software under test in the fastest way possible [6, 7, 61, 62].

These goals can be quite diverse, and depend on what the testers want to achieve when

Chapter 2. Related work 15

they execute their tests. Usually, some of these objectives are: increasing the rate of fault
detection, increasing the rate of detection of high-risk faults, increasing the probability
of finding bugs related to specific changes in the code, increasing the coverage of the
software under test or increasing confidence in the reliability of the system [63].

Rothermel et al. [6] define the TCP problem as such:
Given:

• TS - a test suite

• PT - the set of all permutations of TS

• f - a function from PT to R, the set of Real numbers

Problem:

• Find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)].

2.2.1 Test Case Prioritization techniques

Elbaum et al. [9] suggest and use a set of TCP techniques, taking advantage of some
already defined by Rothermel et al. [6, 63].

These techniques are divided in three groups: the comparator group, the statement
level group and the function level group.

Table 2.2 is based on the one from [9], and shows a brief description of each technique.
After the table, each group will be described, as well as a more extensive description of
each technique.

Group Name Prioritization goal

Comparator
random random order
optimal maximize rate of fault detection

Statement-level

st-total maximize coverage of statements
st-addtl maximize coverage of statements not yet covered
st-fep-total maximize probability of exposing faults
st-fep-addtl maximize probability of faults, considering previous test cases

Function-level

fn-total maximize coverage of functions
fn-addtl maximize coverage of functions not yet covered
fn-fep-total maximize probability of exposing faults
fn-fep-addtl maximize probability of faults, considering previous test cases
fn-fi-total maximize probability of fault existence
fn-fi-addtl maximize probability of fault existence, considering previous test cases
fn-fi-fep-total maximize combined probabilities of fault existence and fault exposure
fn-fi-fep-addtl maximize combined probabilities of fault existence and exposure, considering previous coverage
fn-diff-total maximize probability of fault existence
fn-diff-addtl maximize probability of fault existence, considering previous test cases
fn-diff-fep-total maximize combined probabilities of fault existence and fault exposure
fn-diff-fep-addtl maximize combined probabilities of fault existence and exposure, considering previous coverage

Table 2.2: Test Case Prioritization Techniques.

• Comparator group

The techniques in this group were considered in [9, 63] to allow a comparison for
the study being conducted in these papers. These are the simpler techniques.

Chapter 2. Related work 16

– random: Not as much of a technique as the others, this one is simply a ran-
dom ordering of the test cases, with no goal in mind, and only serves as an
experimental control.

– optimal: This technique is also used as a comparison, and consists of ordering
the test cases in the optimal order to detect faults earlier. This was possible in
[9] because the programs used had known faults and it was known which test
cases could trigger each fault. In the real world, when working with software
for which there are no known faults, such technique is near impossible to
replicate.

• Statement Level group

These techniques focus on coverage and fault detection regarding the statements of
the software under test, and have goals related to those.

– st-total: This technique tries to order the test cases in an order that will give
the most coverage of the program’s statements in the less time possible. To
achieve this, it uses program instrumentation.

– st-addtl: This technique is similar to the previous one, but uses information
about the coverage obtained so far to determine the statements that were not
yet covered. To achieve this, a test case that covers the most statements is
selected, the not covered statements are updated, and it repeats this process
until all statements are covered by at least one test case.

– st-fep-total: This technique tries to order the test cases according to an award
value, assigned to each test case, defined by Elbaum et al. [9]. This award
value equals the Fault-Exposing Potential of the test case, and is the sum of
all mutation scores, which in turn is the ratio, for each test case, of mutants of
each statement exposed by that test case, to total mutants of that statement.

– st-fep-addtl: Similar to the previous technique, this one takes into account
each test case already executed. When a test case is executed, the award values
of other test cases that cover the same statements as the former. After this, the
next test case is selected and the process repeats itself until all test cases have
been ordered.

• Function Level group

These techniques are similar to the ones that belong in the statement level group,
but now regarding the functions of the software under test.

As the number of functions in a software will usually be much smaller than the num-
ber of statements, these techniques are less expensive than the ones in the statement
level group, although they may not be the most efficient in exposing faults.

Chapter 2. Related work 17

– fn-total: This technique, similarly to st-total, orders the test cases according
to the total number of functions executed by each of them.

– fn-addtl: Similar to fn-total, with the addition of considering the functions that
are yet to be executed, analogously to st-addtl with the statements.

– fn-fep-total: Similar to sn-fep-total, but adapting the fault-exposing potential
to the function-level in a method analogous to the one in sn-fep-total but using
functions instead of statements.

– fn-fep-addtl: This technique enhances fn-fep-total in the same way sn-fep-
addtl enhances sn-fep-total.

– fn-fi-total: This technique orders the test cases similarly to fn-total. For each
test case, a sum of Fault Index is calculated and assigned to it, which then
serves as a comparator to sort the test cases. Fault index is used to measure
the fault proneness of a function in the program.

– fn-fi-addtl: This technique is analogous to fn-fi-total, but uses a set of functions
that were previously called by executed test cases. When all the functions are
in that set, it is emptied. After that, the sum of the fault indexes are calculated
for each test case, not counting the ones from functions that are on the set of
covered functions.

– fn-fi-fep-total: This technique is a combination of fn-fi-total and fn-fep-total,
as the method is the same and is considered the product of the fault index and
fault-exposure potential, which is then summed for each test case and used in
the sorting.

– fn-fi-fep-addtl: Analogous with the previous technique, with the difference
that the values for the functions already called are reset.

– fn-diff-total / fn-diff-addtl / fn-diff-fep-total / fn-diff-fepp-addtl: These tech-
niques works the same way as fn-fi-total / fn-fi-addtl / fn-fi-fep-total / fn-fi-fep-
addtl, respectively, but use data collected by the Unix command diff, when
applied to each function of the program in two different versions.

2.2.2 Test Case Prioritization tools

Since the main focus of our work was the TSR methodology, the study conducted on
TCP tools was less thorough. As such, we only considered two TCP: Kanonizo [64] and
Ekstazy [65]. Seeing that Ekstazy was only available as binary and Kanonizo provided
four different techniques of prioritization, we opted to pick the latter, which will be further
described in the next chapter.

Chapter 2. Related work 18

2.3 Code metrics

The metrics that may be considered most important in the case of TSR are the size of the
reduced suite, and the ability to detect faults [36].

The size of a test suite, which allows us to define the percentage of reduction in its
size, can be defined, for instance, in relation to lines of code, which is regarded as the
most commonly used code metric [66].

The fault detection capability of a test suite, which is useful for comparing the number
of faults found by the original suite and the reduced one, can be measured to analyze the
efficiency of the reduced test suite in favor of the original one.

In addition to these metrics, it may also be interesting to analyze some metrics related
to the source code as well as the execution of the test suite, to study its efficiency, for
instance the number of methods covered per class in comparison to the total number of
methods per class, or the execution time of the test suite.

2.4 Multiple-Criteria Decision-Making

Multi-Criteria Decision Making (MCDM), or Multi-Criteria Decision Analysis, is a disci-
pline of Operational Research that defines methods considering several criteria to achieve
a solution to a problem, generally the choice of the best alternative among many. Al-
though, above this, it is a specific perspective to deal with specific problems [67].

According to Belton et al. [68], it seeks to integrate objective measurement with
value judgment and make subjectivity explicit. In other words, it helps us structure and
understand the problem, and its priorities and objectives.

There are several methods of multiple-criteria decision-making [69], but we focused
on the one that would be used in this work: the Analytic Hierarchy Process [70].

2.4.1 Analytic Hierarchy Process

The Analytic Hierarchy Process is a method that aims to structure the problems’ criteria
hierarchically. As Figure 2.1 depicts, and Saaty [70] denotes, the general decision prob-
lem will descend from a main focus or objective, which is then divided in criteria, which
in turn are divided into subcriteria, that define the aspects one should have in considera-
tion when making the decision, and lastly, the alternatives taking into account. The goal
of this process is to obtain the priorities that each subcriteria will have when taking the
main focus into account.

Chapter 2. Related work 19

Figure 2.1: General hierarchical model.

Saaty [71] states that the steps to obtain these priorities are, briefly speaking, as fol-
lows:

• Define the problem;

• Structure the decision hierarchically;

• Construct a set of pairwise comparison matrices to obtain the priorities;

• Use the priorities of each level to weigh the priorities of the level immediately
below. Repeat this process until there are no more levels.

The pairwise comparison matrices are build by assigning to each column i and each
row j one of the criteria (in one level), where the value (i, j) will represent the importance
of criteria i in accordance to criteria j. Naturally, when i = j that value is 1.

According to [71], to compare two criteria i and j, one must answer the question
“How much more is the i criteria important than the j criteria?”. The values should be
assigned in accordance to the ones shown in Table 2.3, based on the ones from [71, 72].

Once one has the pairwise comparison matrix for a set of criteria, the next step would
be to find the geometric mean for each row, sum up all of them, and divide each by the
total sum, which will give us, per row, the priority of the criteria assigned to that row, i.
e., the weight one specific criteria has on the decision.

2.4.2 Normalizing values

Since the criteria can be of any nature, it is natural that the values assigned to each one
can have different units of measure, and can have different orders of magnitude. As such,

Chapter 2. Related work 20

Intensity of
Importance Definition Explanation

1 Equal importance Two activities contribute equally to the objective

3 Moderate importance
Experience and judgement slightly favour one
activity over another

5 Strong importance
Experience and judgement strongly favour
one activity over another

7
Very strong or
demonstrated importance

An activity is favoured very strongly over
another, its dominance demonstrated in practice

9 Extreme importance
The evidence favouring one activity over
another is one of the highest possible
order of affirmation

2, 4, 6, 8 Intermediate values

Reciprocals
of above
(1 / x)

If activity i has one of the above
non-zero numbers assigned
to it when compared with activity j,
then j has the reciprocal
value wen compared with i

A reasonable assumption

1.1-1.9 If the activities are very close

May be difficult to assign the best value
but when compared with other contrasting
activities the size of the small numbers would
not be too noticeable, yet they can still indicate
the relative importance of the activities

Table 2.3: Fundamental scale of importance.

it is essential to have a way to normalize these values, i.e., transform them into a common
numeric range, so that we can aggregate them into a final score [73].

There are some different normalization techniques that can be applied to MCDM, and
therefore to AHP [73, 74, 75].

According to [73], the best technique to use in the AHP, is the Linear: max, followed
by the application of Linear: sum to normalize the values, with their formulas for benefit
and cost criteria presented in Table 2.4.

Technique Condition of use Formula

Linear: Max
Benefit criteria nij = rij/rmax

Cost criteria nij = 1− rij/rmax

Linear: Sum
Benefit criteria nij = rij/

m∑
i=1

rij

Cost criteria nij =
1/rij

m∑
i=1

1/rij

Table 2.4: Normalization techniques.

We can describe a benefit criteria as one in which an higher value means an higher
reward, and a cost criteria the opposite: an higher value means a lower reward.

Chapter 3

Selected frameworks and tools

When the related work study was finished, there was a need to filter out the tools and
frameworks that were not usable in this work.

This chapter will explain the rationale behind the chosen tools, describe the work
made with each one of those tools, along with the difficulties found.

3.1 Initial set of Test Suite Reduction tools

As Table 2.1 shows, twenty-one TSR tools were initially considered for this work. These
tools were part of the state of the art study phase, and would then be integrated into the
developed framework, so we tried to thouroughly study each of them, to learn how they
worked and how could we integrate them in our framework.

Consequently, the tools in which developers did not provide any executable were dis-
carded, as well as those in which no information about that was found.

As it could be necessary to change these tools, to facilitate their integration into the
framework to be developed, it would also be important to have access to their source-code,
so all those tools that did not have available source code were also discarded,

Taking these decisions into account, the tools initially selected to be integrated in
the framework were ATAC [40], RUTE-J [43], Randoop [44], Open-SourceRed [49],
EvoSuite [50], Testler [51], MINTS [56] and GZoltar [60].

It is important to notice that, although only those that provided source code were con-
sidered, the tools that provided an executable were also tested, to determine if they could
be useful for this work without undergoing changes, these being JTOP [46], TOBIAS [47]
and TEMSA [48].

3.1.1 ATAC

ATAC is a tool developed by Horgan and London [40]. This tool analyses the coverage
achieved by tests on C and C++ programs, which helps its user to program a more com-
plete test suite. This is achieved essentially by three steps: the instrumentation of the

21

Chapter 3. Selected frameworks and tools 22

source-code to be tested, which is achieved via the ATAC compiler, atacCC, with the goal
to gather several data regarding the program execution; the execution of the tests, which
will allow the information gathering; and the coverage analysis, which will use the gath-
ered information to provide the tester with useful information about the executed tests,
such as line and branch coverage.

Since our interest is the reduction of a test suite, and not exactly test management,
we can replace the last step with the test minimization one, using the files generated by
the execution of the tests to try and present a minimum list of test cases that achieve the
maximum coverage possible.

Figure 3.1 illustrates the whole process. The elements that belong to the instrumenta-
tion step are underlined in green, the ones that belong to the execution of tests in blue and
the ones from the coverage analysis and test minimization in red.

Figure 3.1: ATAC workflow.

Work done

To test this tool, its tutorial1 was followed. It consists of a small word counting program
written in C that receives text documents - to count the words from - as input. The input
used was fairly simple. It consisted of three text documents provided with the source code
of ATAC.

1https://invisible-island.net/atac/

https://invisible-island.net/atac/

Chapter 3. Selected frameworks and tools 23

As Figure 3.1 depicts, we first compiled the program using the ATAC compiler, and
then executed the program with the input given. This generated a trace file, as well as
.atac files for each source code file, which were next used as input to the command atac to
generate the report that showed us how good the tests were, in terms of coverage, C-uses
and P-uses. If given as input to the command atacMin, a minimal set of test names is
given as output, that ideally has the same coverage as all the tests, thus discarding the
redundant ones.

Problems

As we will see along this chapter, in the end the overwhelming majority of the tools were
written in Java, and worked with JUnit tests, and as such we discarded ATAC from our
work, as it was developed in C.

3.1.2 RUTE-J

RUTE-J, Randomized Unit Testing Engine for Java, was developed by Andrews et al. [43]
in an effort to solve some of the most common problems in randomized unit testing, such
as the correct definition of arguments, whether they are scalar or complex, and specifying
correct behaviour of tests.

To work with RUTE-J, the user must write a Test Fragment Collection, which is essen-
tially a java class that extends the RUTE-J class TestFragmentCollection that will contain
test fragments, methods whose names have “tf ” as prefix and that denote a base for the
test cases that will be generated by RUTE-J (generally, one test fragment per each method
under test).

Once we have the Test Fragment Collection set up, we must run RUTE-J UnitDriver,
which in turn will initialize a graphical user interface, where the user can generate test
cases for the executed test fragment collection. The interesting part here is when RUTE-
J finds a failing test case and halts the generation, giving the user the opportunity to
minimize the failed test case, discarding the unnecessary statements to achieve the fail
state.

Work done

To test RUTE-J, we followed the tutorial of RuteMoneyTest.java provided in the RUTE-J
1.2 source code, with the explanation in its readme file. We executed RUTE-J on Rute-
MoneyTest, a Test Fragment Collection, and were able to randomly generate test cases for
the test fragments provided in that class, in which we see the name of the test fragment
(without the prefix) and the parameters used, and if it passed or not, as shown in Figure
3.2.

Chapter 3. Selected frameworks and tools 24

Problems

Although the approach to minimize the failing test cases provided by RUTE-J was inter-
esting, the extra effort it needed, such as the writing of a Test Fragment Collection, in
other words, the impossibility of using existing test suites, made us discard this tool in
the end, even though there was some thought on a possibility of somehow converting a
standardized JUnit test suite into a Test Fragment Collection.

Figure 3.2: RUTE-J Graphic User Interface.

3.1.3 Randoop

Randoop was developed by Pacheco and Ernst [44], and is a tool that generates JUnit test
cases and also provides the reduction of failing test cases.

To generate test cases, Randoop uses feedback directed random testing [76], a tech-
nique that gathers feedback from the execution of tests as they are generated, so that it
can generate better and more reliable tests. The functionality that is of interest to us is
the minimization of failing test cases, in which Randoop receives as input a JUnit test
suite and tries to reduce every test that fails by analyzing each of its statements, and then
providing a simplification to it, not compromising the output of the test.

The simplifications made to a statement can be, at least, one of the following:

• If a statement is represented by null, it is removed;

• Replacing the right hand side expression with 0, false or null, according to the left
hand side expression;

Chapter 3. Selected frameworks and tools 25

• Replacing the right hand side expression with a calculated value obtained from a
passing assertion;

• Removing the left hand assignment of a statement.

Given a JUnit file suite.java and the class files of the units tested by suite.java, we can use
the Randoop minimize command to reduce the tests in this file, which will be saved in a
new file named suiteMinimized.java, so that the original tests are not lost.

Work done

We tried the minimize command with the test suites provided with lambdaj2.4.12 project
and got a minimized suite for each JUnit file. There were some changes we had to make
to the Randoop source code, which will be discussed in Chapter 5.

Problems

In some of the minimized tests, Randoop erased important “import” statements, which
caused some compilation errors in the minimized suite.

3.1.4 Open-SourceRed

Open-SourceRed is a framework developed by Kauffman and Kapfhammer [49] that im-
plements TSR and TCP algorithms. It consists of two tools, Proteja and Modificare.

Proteja is written in Java and collects coverage information on some software by run-
ning its JUnit test suites, outputting some coverage reports and files, which are then used
as input in Modificare, to run the reduction and prioritization algorithms.

Modificare is written in R and reads the reports generated by Proteja to apply one of
the six implemented TSR and TCP algorithms: random, adaptive random, greedy, hill
climbing, simulated annealing, and genetic.

Work done

We followed the tutorials provided in the readme files of Proteja3 and Modificare4, using
the example Sudoku project provided in the source code of Proteja. First we had to
configure Proteja, specifying the source code and test suites, then waiting for it to run
and use its output as input in Modificare. The algorithm suggested in the tutorial was the
random.

In the end, Modificare presented a list with the test cases reorganized, which in turn
could be saved into a file that could again be used in Proteja to run again and gather new
coverage information.

2https://github.com/mariofusco/lambdaj
3https://github.com/kauffmj/proteja
4https://github.com/kauffmj/modificare

https://github.com/mariofusco/lambdaj
https://github.com/kauffmj/proteja
https://github.com/kauffmj/modificare

Chapter 3. Selected frameworks and tools 26

Problems

As we have learned, Modificare only needs the coverage reports to apply its algorithms.
This means that no source code is analyzed by Modificare itself, and theoretically, if we
have other program written in another language and are able to generate reports with the
format required by Modificare, we can use it to to apply TSR and TCP techniques. This
also means that it is impossible for Modificare to generate any kind of test suites in the
form of files, since its output is meant to be used directly on Proteja, so we can gather more
coverage information. This, and our preference to keep the tools under study written in
java and specifically for JUnit tests, made us discard this framework.

3.1.5 MINTS

MINTS is a tool developed by Hsu and Orso[56] in C++ that deals with multi-objective
reduction TSR problems. It models the multi-objective problem as an ILP problem and
then uses renowned ILP solvers to solve the problem, thus achieving a reduced test suite.

MINTS receives a set of test-related data, that can be coverage or fault detection rate
data, and a set of minimization criteria, that must be specified by the testers. This min-
imization criteria consists of two parts: a set of criteria that acts as a constraint for the
minimization, i.e., the minimization of the test execution times; and a minimization policy
that defines how the different criteria should be combined to achieve the optimal solution.

This input is given as a set of text files: one priority file, at least one batch file, at
least one relative criteria file, at least one absolute criteria file, and at least one rela-
tive criterion file.

The priority file contains a path to a batch file for each line. The first line of the
batch file contains the number of test cases in the test suite we wish to optimize, the
second line is a path to a relative criteria file, the third line is the number of absolute
criteria to be considered, and the fourth and last line is the path to the absolute criteria
file. The relative criteria file contains a path to a relative criterion file for each line. The
relative criterion file contains the weight assigned to this criterion in the first line, and the
coefficients of this criterion in the second line. Finally, the absolute criteria file contains
information about the absolute criteria considered in the problem. Each absolute criterion
is specified by three lines: the first one denotes the binary operator of the criterion, the
second one the right hand side value of the criterion and the last one the left hand side.

Work done and problems

We tried to reproduce the example given in the readme file that was provided in the source
code of MINTS, but failed to put any of the compatible solvers into use, or in some cases
to find them available.

Chapter 3. Selected frameworks and tools 27

Despite theoretically being possible to use JUnit test suites since the input received
are text files containing criteria and test data, the unavailability of the ILP solvers and the
difference of the input, such as its configurability in terms of criteria and policies used
and the need of test-related data, caused us to discard MINTS in the end.

3.1.6 GZoltar

GZoltar is a tool developed by Campos et al. [60] and is available as a command line
interface, Ant task, Maven plugin and Eclipse plugin. Its most important feature is the
generation of fault detection reports and, when integrated with Eclipse, interactive and
intuitive graphics, that aid the testers in identifying several faults in shorter time.

At the time of this work we struggled to find information about the test reduction
functionality. After sudying the source code of all GZoltar components, we contacted
the main developer, who notified us that this functionality was only implemented in the
Eclipse plugin, which had some usability and installation issues, and so its development
was incomplete and not actively maintained. Given the circumstances, we discarded this
tool too.

3.1.7 EvoSuite

EvoSuite was developed by Fraser and Arcuri [50]. It implements search-based and muta-
tion techniques to generate test suites as small as possible and that achieve high coverage
according to some criterion.

To generate test suites, EvoSuite only needs the bytecode of the specific class it will
generate tests for and its dependencies. After analyzing and instrumenting the bytecode,
it will generate a test suite maximizing branch coverage.

While generating the tests, EvoSuite uses a search-based approach, considering a pop-
ulation of candidate solutions and generating new solutions by reproduction of the best
individuals, according to some fitness function. In the case of EvoSuite, the candidate
solutions are test suites, each of them with a set of test cases. The reproduction of two
candidates is done by exchanging some of their test cases between each other. In addition
to this, mutation in the candidates is also employed, by adding, removing or changing
individual statements or parameters in some test cases. The fitness function in EvoSuite
is defined according to some coverage criterion, as branch coverage.

Work done

The work done with EvoSuite was straightforward. We followed the tutorial provided in
its website for the command line interface5. This consisted in setting up a small simple

5http://www.evosuite.org/documentation/tutorial-part-1/

http://www.evosuite.org/documentation/tutorial-part-1/

Chapter 3. Selected frameworks and tools 28

project with only a java class representing a Stack, and using EvoSuite to generate a test
suite for this class.

Since our idea was to have tools that reduced existing test suites, we faced a minor
setback with EvoSuite, as it only reduced its generated test suites. Therefore we also
thoroughly studied a major part of its source code, so we could try to better understand
the whole EvoSuite process. EvoSuite had an internal representation for the test suites it
generated, so our first thought was to try to convert existing test suites into this internal
representation and then use the reduction process on them. This did not work as the Object
that represented the test suites contained some more information defined in generation
time.

Our solution to this problem was to use the tests generated by EvoSuite before and
after it performed the reduction, and use the not reduced tests as input to the other TSR
tools, thus changing the approach of our framework. Therefore we had to change the
EvoSuite source code. All these changes are described and discussed more thoroughly in
Chapter 5.

3.1.8 Testler

Testler was developed by Vahabzadeh and Stocco [51], and implements a fine-grained
minimization technique to achieve Test Suite Reduction. It analyzes the behaviour of the
test cases at statement level to infer a model that represents the relationship between the
test statements and test states, which is the information about a test at the time of each
statement executed, such as the defined variables, their values and the production method
calls. Based on this model, Testler can detect any fine-grained redundancy between test
cases in the same test suite, and reorganizes the suites so that it removes these redundan-
cies.

There are four steps to achieve Test Suite Reduction with Testler. The first one is to
configure Testler, this can be done in the class ca.ubc.salt.model.utils.Settings, where the
user can specify the path to the system under test, a java project. The second step is to ex-
ecute the instrumenter, which will create a copy of the original project, but with its source
code instrumented. The next step is executing the command mvn test on the instrumented
project, which will generate some trace files, which are XML files containing information
about the test run. The last step is to execute a merger class provided by Testler, that will
process the data on the trace files and create another project, copied from the original but
with the reduction applied in its test suites.

Work done

We followed the steps given in the readme file provided with Testler source code. We
tried Testler in a set of Maven projects, which was the same used by the developers in the

Chapter 3. Selected frameworks and tools 29

study conducted by Vahabzadeh et al. [51]. We later decided to use this set of projects
as the study case of our own framework. A detailed information about these projects is
given in the next chapter. This experiment revealed some issues to us that we dealt with
by changing the source code of Testler. The description of these issues is given next, and
the changes made to the source code will be described in Chapter 5.

Problems

Testler was the tool that caused more problems. To try it, the steps described in the readme
file provided with Testler were followed. However, the file was outdated and mentioned a
class that had some compilation errors, therefore being impossible to carry out the given
tutorial. We then contacted one of the developers, who helped us by providing some
updated information.

The last step, which was executing the merger class to create the reduced test suite,
caused an out of memory error in some of the projects. In some cases, the problem was
caused by insufficient memory on the testing machine; in others, it was when Testler tried
to load the trace files’ content into a String. In the bigger projects, some trace files could
take as much space as 3 Gigabytes or more, and so it was impossible to store its content
in a single String object.

After solving this issue, the reduced test suites obtained had some compilation errors,
such as the use of variables that were not declared or wrong method calls (with wrong
parameters), which needed the user intervention.

Despite this, we managed to solve most of the problems and used Testler in our study.

3.1.9 JTOP

JTOP is tool developed by Zhang et al. [46]. It is built as a Eclipse plugin that helps
managing JUnit test suites by statically analyzing the software under tests and conducting
test reduction, prioritization and selection.

Since JTOP was only available as an Eclipse plugin, we tried to find its source code,
so that we can use its tests reduction functionality in our framework, but we did not find it.
As such, the only way to use this tool was through Eclipse and we had no way to automate
its test reduction process to integrate it in our framework, so no further experimentation
was conducted with this tool.

3.1.10 TOBIAS

TOBIAS was developed by Dadeau et al. [47] and is available in a website 6. Its main
functionality is combinatorial test suite generation, which receives an input file from the
user, written in a specific language to be interpreted by TOBIAS. This file describes the

6http://tobias.liglab.fr/

http://tobias.liglab.fr/

Chapter 3. Selected frameworks and tools 30

methods the test suite should test, and the inputs it should use to do it. Since TOBIAS
generates these test suites combinatorially, it is safe to assume that the number of test
cases generated could be excessive and, potentially, with too many redundant test cases.
To mitigate this, TOBIAS employs some reduction mechanisms.

Work done

We contacted the developer about the possibility to get the source code for TOBIAS, but
the answer was negative. While we were waiting for an answer, we tried the available
tutorial to try to better understand the TOBIAS process. Using an input file provided in
the aforementioned website. The content of the file is displayed in A.1.

This file contains a call to the constructor of the type that will be tested, calls to each
of the methods that should be tested, and a set with values to use when calling these
methods.

After uploading the file to the website, the user must input his/her e-mail address,
where the the test suite will be received, and can also specify the version of JUnit of the
generated test suite.

The generated file is received shortly after via e-mail, and its test cases are a combi-
nation of the methods called with the inputs specified.

Problems

Since the tool used a specific language developed for its use as input, and was mainly used
to generate tests and had no source code available, which could have make it possible to
isolate the test reduction functionality and use it in existing test suites, we decided not to
use this tool.

3.1.11 TEMSA

TEMSA (TEst Minimization using Search Algorithms) was developed by Wang et al.
[48] and is a web-based application available at its website7.

The user must give a XML file as input, according to some specific XML schema
downloadable in the website, that specifies the features and test cases to test a product.
TEMSA then applies some cost measures, like Overall Execution Time, and effectiveness
measures, like fault detection capability or test minimization percentage, that can also be
set by the user in the website. Based on this input, it then generates a set of XML files
representing the minimized test suite.

7http://zen-tools.com/TEMSA/

http://zen-tools.com/TEMSA/

Chapter 3. Selected frameworks and tools 31

Problems

We tried to follow the instructions that are available in the website, but could not upload
any input file to the server. When we tried to upload some file, the website would just put
a placeholder path in the “input file” field and would not actually upload our file. We also
tried to contact the developer to get the source code but got no answer, so we could not
use this tool either.

3.2 Final set of Test Suite Reduction tools

While we studied the initial set of TSR tools, we were also defining a set of characteristics
for the tools that we want to integrate to have. In order to be able to make the most
impartial and equal comparison, we decided that we should integrate only tools that were
written in Java and, more importantly, that could reduce JUnit test suites. For this reason,
and taking into account all the problems reported in the last section, the final set of TSR
tools contained Evosuite, Testler and Randoop.

At this point, we thought about the studied TCP techniques and how they would per-
form comparatively to the TSR ones. As such, we decided to enrich the main objective of
this work by adding a second goal, described in the first chapter. Our idea was to integrate
a TCP tool to get reorganized test suites, followed by the removal of the less important
test cases, according to some cut value. The chosen tool for this goal and the work done
with it is described in the next section.

3.3 Test case prioritization tool: Kanonizo

Kanonizo8 was developed by Paterson and implements several algorithms to achieve TCP
on test suites, receiving as input the path to the folder containing the byte code of the
system under test, the algorithm to use, and a set of some optional parameters.

After execution, Kanonizo generates several reports, the most interesting being the
ordering one, a comma-separated values file containing a header as the first line, and
each following line a test case name, the class it belongs to, its execution time, whether
it passed or not, and the total number of covered lines, sorted by descending order of
importance, according to the chosen Kanonizo algorithm.

Algorithms

Kanonizo implements several algorithms from a lot of methodologies. Random search
and genetic algorithm are search-based; random, greedy, additional greedy and schwa

8https://github.com/kanonizo/kanonizo

https://github.com/kanonizo/kanonizo

Chapter 3. Selected frameworks and tools 32

work at the test case level; marijan, huang, cho and elbaum are history-based, meaning
that they need an history file as input. A brief description of each algorithm is given next:

• Random: reorganizes the test cases by a random order;

• Greedy: prioritizes test cases that cover the maximum number of lines;

• Huang: prioritizes tests according to the severity of its failures;

• Schwa: prioritizes tests according to the likelihood of each class and method con-
taining a fault;

• Marijan: prioritizes test cases by processing an history file with information related
to previous test executions;

• Random search: uses a fitness function to determine the important tests according
to a criterion;

• Elbaum: prioritizes tests that have not failed in a long time;

• Additional greedy: Similar to greedy, but excludes the already covered lines;

• Cho: prioritizes tests according to the number of consecutive fails;

• Genetic algorithm: prioritizes tests by applying mutations and crossovers between
individuals (test cases).

Since our framework will execute tests for the first time, we had to discard the history-
based algorithms. Schwa needed a lot of additional configuration as input, as well as
Python9 installed on the system, so we also discarded this algorithm, as well as the genetic
algorithm, as it did not seem to work.

The chosen algorithms to use with Kanonizo were Random, Random search, Greedy
and Additional greedy.

Work done

We tried Kanonizo with one of the projects used in Testler and later in our own study. The
behaviour was the expected one and it generated the needed reports.

In order to conduct the study we wanted for this work, we programmed additional be-
haviour to the Kanonizo tool. Using the ordering reports generated, the goal was to reduce
a given test suite by erasing the least important test cases of each test suite, according to
some given cut off value. Details of this implementation are given in Chapter 5.

9https://www.python.org/

https://www.python.org/

Chapter 4

Design

Along with the work described in the last chapter, we started planning and designing the
solution to our problem of finding the best TSR tools and techniques.

This chapter will explain the decisions made about the implementation of our frame-
work, such as the technologies, tools to be used, as well as the evolution of the approach
from the beginning to the end.

4.1 Initial approach

The initial approach was thought as a framework that integrated several TSR tools, and
that would use them to reduce a set of test suites, obtaining a different set of test suites for
each tool used.

Therefore, the indispensable aspects of the basic idea behind our framework would be
that its input would be a set of test suites, its output a set of reduced test suites for each
TSR tool implemented, and data about those suites.

As learned during the work described in the last chapter, not every TSR tool had as
input the same format of test suites, same for the output. Therefore it would be needed
some sort of converter from a standardized format of test suites to each specific format
for each TSR tool for the input, and vice versa for the output, as well as some interface to
extract the code metrics to analyse the original test runs vs. the reduced test runs. Figure
4.1 shows the initial approach for the implementation of the framework.

As we defined our working set of TSR tools, we made changes to the initial approach
of our framework. Since the final selected tools no longer had different kinds of input
formats, the initial thought of a converter normalizing all the input was discarded. Fur-
thermore, since we were going to use the Evosuite tool to also generate tests, its behaviour
was going to be somewhat different than the one of the others TSR tools. We also added
the TCP tool Kanonizo.

Figure 4.2 depicts our approach after the study and decision of the TSR to integrate.

33

Chapter 4. Design 34

Figure 4.1: Overview of our initial approach.

Figure 4.2: Overview of our midterm approach.

Chapter 4. Design 35

To implement our framework, we decided to use Java1 since all the TSR and TCP tools
focused were also developed in Java. Furthermore it is a language with a great amount of
support in the web, it is platform independent and it has a lot of libraries available.

At this point, we needed to figure out which open-source projects should be used to
conduct this study, and define the way to collect their test suites data and what to do with
it. These steps are discussed in the next sections.

4.2 Case studies

Although we wanted our sample to be large and heterogeneous, in order to conduct a more
vast and complete study, there were some properties that we wished to maintain, and as
such, all the projects used were Maven Java projects, with JUnit test suites.

Since Vahabzadeh et al. [51] used a set of projects as a case study with these prop-
erties, we decided to use a subset of it as the case study of our work, those projects be-
ing commons-lang2, commons-email3, pmd-core4, tudu-lists5, lambdaj6, jfreechart7, java-
library8, crunch-core9, crunch-kafka10, tika-xmp11 and xml-sec12.

As we can see in Table 4.1, this set of projects is quite diverse dimension-wise, since it
has number of lines of code (LOC) ranging from 1,644 to 221,637 and number of classes
from 10 to 637. This allows us to verify if the tools that we will integrate work well
when applied on test suites with different sizes (since the size of the test suite is directly
influenced by the number of classes, as we are using EvoSuite to generate them).

We can also notice, by the number of dependents taken from each project’s github
repository, that we have a wide range of other projects that depend on the ones we will
test, meaning that these are active and useful projects.

1https://www.java.com
2https://github.com/apache/commons-lang
3https://github.com/apache/commons-email
4https://github.com/pmd/pmd/tree/master/pmd-core
5https://github.com/jdubois/Tudu-Lists
6https://github.com/mariofusco/lambdaj
7https://github.com/jfree/jfreechart
8https://github.com/urbanairship/java-library
9https://github.com/apache/crunch/tree/master/crunch-core

10https://github.com/apache/crunch/tree/master/crunch-kafka
11https://github.com/apache/tika/tree/master/tika-xmp
12https://github.com/apache/santuario-java

https://www.java.com
https://github.com/apache/commons-lang
https://github.com/apache/commons-email
https://github.com/pmd/pmd/tree/master/pmd-core
https://github.com/jdubois/Tudu-Lists
https://github.com/mariofusco/lambdaj
https://github.com/jfree/jfreechart
https://github.com/urbanairship/java-library
https://github.com/apache/crunch/tree/master/crunch-core
https://github.com/apache/crunch/tree/master/crunch-kafka
https://github.com/apache/tika/tree/master/tika-xmp
https://github.com/apache/santuario-java

Chapter 4. Design 36

Project Dimension # Dependents Version % Branch
Coverage

% Total
Coverage

Tests’
Runtime

(s)LOC # Classes # Test
Classes

commons-lang 78 000 151 172 121 866 3.7 40.11 76.97 10.14
commons-email 6 182 23 26 14 219 1.5 60.84 94.45 17.55
pmd-core 48 221 350 102 160 6.20 22.99 47.70 16.36
tudu-lists 4 497 49 20 0 3.0 23.67 45.41 0.21
lambdaj 8 325 95 61 3 813 2.4.1 36.03 77.27 1.85
jfreechart 221 637 637 350 6 213 1.6.0 3.20 55.71 2.26
java-library 36 298 437 157 9 2.1.0 25.06 74.32 5.03
crunch-core 37 954 297 185 6 0.15.0 18.08 34.51 2.64
crunch-kafka 2 449 14 16 6 0.15.0 51.43 86.90 0.23
tika-xmp 1 644 10 2 97 1.18 34.54 68.47 0.09
xml-sec 70 530 392 198 1 745 2.0.8 35.98 65.64 20.81

Table 4.1: Case studies projects.

4.3 Code analysis tools

In order to conduct our comparative analysis, we needed to gather some test execution
data, so we could compare the one from the original test execution with the reduced ones.
Hence we searched for code analysis tools and considered JaCoCo13 and OpenClover14.

These tools instrument the source code of a project so they can gather a set of infor-
mation, generally configurable, about its execution.

4.3.1 JaCoCo

JaCoCo is a tool that provides code coverage analysis on several coverage metrics, such
as instruction, branch, line and method coverage. It only needs the bytecode of the system
under test and generates coverage reports in different formats like HTML, XML and CSV.
It is available as an Ant task, a Maven plugin and a command line interface.

We carried out a simple example with the Maven plugin (version 0.8.6). First of all
we had to configure JaCoCo on the System Under Test. This can be made by adding the
JaCoCo plugin in the pom.xml file, and configure it with two executions: one that will be
made before the execution of the tests, that will generate the execution data; and another
after the tests, that will generate the code coverage report. After this, we must configure
the Maven surefire plugin so that we make sure the JaCoCo agent will be executed when
we are running the test suites.

JaCoCo gathers information about several code metrics, such as the number of in-
struction, branches, lines and methods missed and covered and saves them in a report
with the specified format.

13https://www.jacoco.org/
14https://openclover.org/

https://www.jacoco.org/
https://openclover.org/

Chapter 4. Design 37

4.3.2 OpenClover

OpenClover, similarly to JaCoCo, is a code coverage analysis tool. It provides the mea-
sure of more than twenty metrics, with the ability for the user to define its own code
metrics. Some of it are the cyclomatic complexity, which can roughly be described as
the number of unit test cases to fully cover a certain piece of software[77], the covered
methods, branches and statements, with the option to be presented as a percentage or raw
value, the execution time for the running tests, among others. It also gives the possibility
to generate reports in several formats, such as HTML, XML, PDF, JSON and simple text.
It also has a lot of possibilities of integration, being available as a Maven plugin, Ant task,
Gradle plugin and Eclipse plugin. OpenClover can, and must, be configured directly in
the project’s pom file, along with an additional report configuration XML file, where the
user specifies the metrics that should be measured.

We tried a simple example with the Maven plugin (version 4.3.1) available in the
OpenClover source code, where the pom file was already configured and there was an
available report configuration file.

4.3.3 Chosen tool

In the end we chose OpenClover as the code coverage analysis tool to use in our frame-
work, as it offered more generated reports formats and had the possibility of gathering
data about more code metrics than JaCoCo.

We defined the code metrics to analyze to be the cyclomatic complexity, covered
branches, methods and statements, total branches, methods and statements, and total
percentage covered for the source code, and not commented lines of code, test suites’
execution time, number of passing, failing and total tests, and size of file in bytes, for the
tests source code.

4.4 Code metrics processing and tools evaluation

Now that we had defined the process to obtain the coverage information about the original
and reduced test suites, we needed to define a way to compare them in order to evaluate
the tools according to these metrics.

Our main idea was to use these metrics to compute a score for each tool, which will
then be used to compare them. We decided to use the AHP, a MCDM approach, that was
detailed before in Chapter 2.

Figure 4.3 defines the hierarchy model for our approach. It descends from the Score
we want to obtain for each pair (Tool, Case Study), then we chose the three main criteria
to evaluate each tool: Dimension, Time and Coverage, since these ones represented the
values we were measuring with OpenClover. Finally we divided Dimension in sub-criteria

Chapter 4. Design 38

file sizes and number of test cases, Time in test suites’ execution time, and Coverage in
percentage of branches covered and percentage of total coverage. The alternative scenar-
ios would be each of the tools integrated. We chose not to take the time each tool took
to reduce the tests into account for the calculation of the score, as this would be an unfair
evaluation, since EvoSuite takes time to also generate the test suites.

Figure 4.3: Hierarchy model for our AHP approach

As such, given:

• T the set of tools integrated,

• ti ∈ T , 1 ≤ i ≤ |T | an integrated tool,

• P the set of projects to be tested,

• pj ∈ P , 1 ≤ j ≤ |P | a project to be tested,

• si,j, 1 ≤ i ≤ |T |, 1 ≤ j ≤ |P | the score ti got for pj

The final score for tool ti, Si, 1 ≤ i ≤ |T |, will be computed by calculating the average
of all scores si,j, 1 ≤ j ≤ |P |.

4.5 Final concept

Having made all these decisions we were now ready to start the implementation of our
framework, which will be described in the next chapter. We also defined the functional
requirements of the framework as such:

• Executes a given test suite and collects coverage and execution data about it;

Chapter 4. Design 39

• Reduces the given test suite at least as many different times as the number of TSR
tools integrated;

• Executes the reduced test suites, collecting the same data about them as the original
ones;

• Conducts a comparative analysis using the collected data and a multi-criteria decision-
making approach;

• Ranks the integrated TSR and TCP tools.

The framework configuration will be centralized in a configuration XML file.
Figure 4.4 depicts an high-level view of the final approach for our framework. The

basic concept is the same as the one from the initial and middle approaches, but now with
clearer information about its execution flow for each tested project.

We also thought about implementing the possibility for the user to choose whether
to use the EvoSuite generated test suites or the ones provided with the source code of
the tested project, making it possible for the framework to use existing test suites and
removing the dependence on EvoSuite.

Figure 4.4: Final approach for framework

Input and Output

Our framework will receive a set of Maven java projects, with its paths specified in the
configuration file. These projects must follow the standard Maven directory structure, as

Chapter 4. Design 40

some relative paths are assumed along the execution of the framework (for instance, the
path where the source files or test files are).

As output, the framework will:

• create, for each project, n +m ∗ k copies of the project where n is the number of
integrated tools (except for Kanonizo), m is the number of Kanonizo algorithms
used and k is the number of cut off values defined. Each one of these copies has the
reduced test suites in turn of the original;

• generate, for each project, the same amount of comparison reports (one for each
copied project). These reports are CSV files where each pair of rows represent a
source class and the information gathered according to the metrics measured by
OpenClover, defined in this chapter, as well as the reduced version of that class. In
the end of these files, the same information is presented for the test classes as well;

• generate a single CSV file where each row represents a tool and the scores it
achieved for each tested project, as well as the total score for this tool. The tools
are sorted in descending order by score.

The first two outputs are merely auxiliary files to achieve the interesting output of the
framework, which is the file containing the ranking of the analyzed tools.

Chapter 5

Implementation

The last part of this work was to implement the framework that would allow us to make
the comparative analysis between the selected tools.

This chapter explains in detail the implementation process of our framework, such as
its code organization, the role of each developed class in the framework, how we handle
its configuration, as well as the modifications we had to make in each tool to seamlessly
integrate it in our framework, and all the problems found along the way.

5.1 Code structure

The behaviour of our framework can be divided into three parts: code analysis, tool ex-
ecution, and score computation. This division is well explicit in the code structure, as it
is divided in packages that separates each function. The code is organized between four
packages, all subpackages from the main package pt.ul.fc.di.pei42103. Package clover
contains classes related to the work done by OpenClover for code analysis; package tools
contains the classes that represent each of the integrated TSR tool and Kanonizo; pack-
age ahp has classes that implement the AHP; and package utils contains several utilities
classes.

For better understanding of the code structure, some class diagrams were also made,
as we can see in Figures B.1, B.2, B.3, B.4 and B.5. The class diagram was split into
five parts, so it was possible to show detailed information in each package, as well as a
general view of the whole framework.

A description of each class from each package will be given next.

41

Chapter 5. Implementation 42

Package pt.ul.fc.di.pei42103

• Main

This is the main class of our framework. It starts by loading the configuration
values set by the user in the configuration file. Then, for each project, it does a pre-
processing job that prepares this project for the experiment. This includes modify-
ing its pom to include the needed plugins to execute OpenClover, and make copies
of its structure in which the reduced test suites will be saved. It then uses EvoSuite
to generate test suites, uses OpenClover on both the original and the EvoSuite-
reduced suites, writes the comparative report for EvoSuite and project, and, finally,
computes the score that EvoSuite got for the project. If the user sets the configura-
tion file to not use EvoSuite, this step is skipped.

Following this, it will, for each integrated tool, reduce the original tests suites, use
OpenClover on the reduced suites and write the comparative report for this tool and
project, as well as computing the score that the tool got for the project.

The next step, if Kanonizo is set in the configuration file, is repeating the same
process for Kanonizo, which is treated as several tools, according to the algorithms
and cut off values defined by the user in the configuration.

Finally, the execution times that each tool took to reduce each project are displayed
in the output, and a CSV file containing the sorted tools by final score obtained.

If, for some reason, something fails, the framework skips the execution of a tool in
some project, and continues executing for the rest.

Package pt.ul.fc.di.pei42103.clover

• CloverRunner

This is a simple class that contains the command to run OpenClover and a method
to execute it given a project root path.

• TestReportRow

The objects from this class represent a row in the comparative report with the data
gathered with OpenClover for the test classes. Hence, this class has fields that
represent the metrics measured, as well as a boolean that indicates if this class
belongs to the original or the reduced suites, and appropriate getters and setters.

• SrcReportRow

Similarly with TestReportRow, the objects from this class represent a row in the
comparative report for source classes. It has fields that represent the metrics mea-
sured.

Chapter 5. Implementation 43

• ReportRowBuilder

This class contains methods that receive the information from the OpenClover re-
ports and creates SrcReportRow and TestReportRow objects.

• CloverReportReader

This class contains methods that read the OpenClover reports and create lists of
SrcReportRow and TestReportRow from it, which will then be used to write the
comparative reports.

Package pt.ul.fc.di.pei42103.tools

• TSRTool

This is an abstract class that all the integrated tools must extend. Along with specific
fields for the name and path to jar, it also contains methods for the general behaviour
of a tool, like creating a copy of the current project to save the reduced suite and
appropriate getters and setters.

• EvoSuite

This class calls the main method from the EvoSuite class of EvoSuite, passing it the
appropriate arguments. After its execution, it makes some changes to the generated
test suites, which will be explained further ahead in the EvoSuiteHelper class.

• Testler

This class reproduces the Testler process studied in Chapter 3. It calls the Instru-
menter class, runs the command mvn test in the instrumented project, and finally it
runs the BackwardTestMerger class.

• Randoop

This class calls the main method from the Main class of Randoop, passing the
appropriate arguments.

• Kanonizo

This class will call the main method from the Main class of Kanonizo for each
algorithm set in the configuration file. Then, it will process the Kanonizo reports
with the test cases orderings and, for each cut off value, will copy the test suite into
a new directory and erase the least important test cases in each class, according to
the cut off value.

Chapter 5. Implementation 44

Package pt.ul.fc.di.pei42103.ahp

• Criterion

The objects of this class represent a criterion that belongs to the AHP. It is a simple
encapsulation class containing the name of the criterion, its priority, a list of its
sub-criteria and a list of its importance related to other criterion.

• PairwiseComparisonMatrix

The objects of this class represent the pair-wise comparison matrices used to com-
pute the priorities of criteria within the AHP, as depicted in Chapter 2.

Given a list of criterion, it will build the pairwise comparison matrix between them
and compute the priority for each criterion. It has a method that returns the com-
puted priorities.

• Ahp

This class deals with the calculation of a score. It receives a list of all the most
high-level criteria, and computes the priorities for all of them and their sub-criteria,
using PairwiseComparisonMatrix. It has a method that returns the score according
to these priorities and the metrics retrieved from the source code.

• Score

This class follows the singleton pattern and encapsulates a map of String, represent-
ing a tool’s name, to a list of pairs of String and double, that represent the scores
that the tool got for each project.

It features methods to put a score a certain tool got for a project in the map, as well
as getting a score by a tool’s and project’s name. It also provides a method to get a
sorted list by score with all the tools and the final scores they got.

Package pt.ul.fc.di.pei42103.utils

• Pair

This is a simple class that encapsulates two objects of two different types.

• Subject

The objects of this class represent the subjects of the experiment, in other words,
the projects to be tested. It has fields to represent its name, path to root and its
importance to the calculation of the final score of a tool, getters and setters, as well
as a method to prepare a project for the experiment, in this case, the addition of
information to its pom.

Chapter 5. Implementation 45

• Triple

An utility class that encapsulates three Strings defining the name of a tool, a subject
and a criterion. It is used to simplify the saving of measured metrics.

• Logger

This class is a simple logging class, with methods to print information or error
messages to both the System.out and a file.

• CommandRunner

This class contains a method to execute a command through the ProcessBuilder
java class. It is used in the framework to execute OpenClover, as well as some of
the tools.

• EvoSuiteHelper

The tests generated by EvoSuite are meant to execute in a predefined environment
and depend on some EvoSuite classes. In order to have regular JUnit tests we
identified all the changes we would need to do in these tests and implemented this
class to rewrite the test classes with these changes. Given a path to the tests folder,
this operation will remove all the scaffolding files generated by EvoSuite, rearrange
the way the tests deal with thrown exceptions, remove all the imports and statements
related to EvoSuite, and replace all the calls and initializes to Mock objects from
EvoSuite to their Java API counterparts.

• TestlerSuiteHelper

The test cases generated by testler were always written in a single line, and since
most of them had compilation errors, this made it very difficult to identify and solve
all these errors. This class rewrites these tests with the appropriate line breaks and
indentation, and solves a common compilation error found, which was the use of a
variable not previously defined.

• FileUtils

This class contains methods that make operations with files, that will be used in the
framework to write the comparative reports, change project’s pom files, erase test
methods and copying directories.

• XMLUtils

This class has methods that help with the parsing of the OpenClover XML reports.

• Configuration

This class contains all the configuration information defined by the user in the con-
figuration file (which content will be detailed in the next section). It sets all of

Chapter 5. Implementation 46

its fields when the class is loaded, and it provides getters so that it can be used
throughout the whole framework.

5.2 Framework modifiability and configuration

One of the goals with the implementation of this framework was for it to be as easy as pos-
sible to modify. We achieved this by centralizing all of this information in a configuration
XML file.

Before using our framework, the user must set a group of configurations required for
its execution, that must all be defined in this file, that is saved in the src/main/resources
folder of the project. An example to the content of this file can be seen in B.1. The needed
configurations are as follows:

• Mode of execution: We implemented two modes of execution in the framework,
which the user can specify by their names: full and analyze. Full mode is the one
specified in the description of the Main class in the previous section. The analyze
mode assumes that the reductions were already made and that the comparative re-
ports already exist, and therefore it will load the information stored in these reports
to compute the scores for each tool. We chose to implement this mode to facilitate
the testing of the framework, so that we could analyze how the criteria and impor-
tances between them influenced the score of each tool, without the need to re-run
all of the framework behaviour, since it was a long process.

• Reduced Projects Path: The path where the reduced projects would be saved,
which will be the original project with reduced test suites by some tool. If this path
is path, given a tool name t and a project name p, the framework will use this path
to copy the project to be tested to a folder denoted by the path path/p/t. In Kanonizo
case, given an algorithm a and cut off value c, the framework will copy the project
to be tested into all the combinations of path/p/Kanonizo/a/c.

• Reports path: The path where the comparative reports with the OpenClover gath-
ered data will be saved. Given a project name p and a tool name t, a report will be
named as p t report.csv. In Kanonizo case, given an algorithm a and a cut off value
c, the file will be named p kanonizo#a#c report.csv.

• Output path: The path where the output CSV file will be saved. This file will be
named as ReductionScores.csv.

• Evosuite usage: A simple true or false value to indicate if the framework should
use EvoSuite or not.

Chapter 5. Implementation 47

• Kanonizo usage: The user can define if the framework will use Kanonizo or not,
the same way as EvoSuite.

• Integrated tools: The set of TSR tools that the framework integrates and will use
for the experiment (besides EvoSuite and Kanonizo).

• Projects to be tested: The set of projects to be used in the experiment, specified
by their name, path to the root folder and relative weight to the final score. Since
not all the projects have the same importance, as some of them are widely used and
others not so much, the score that a tool gets for a less important project should not
contribute to the final score as much as a score that a tool gets for a more important
project. As such, the user can define, for each project, the weight, as a natural
number, that the scores for this project will weigh in the calculation of a final score
for a tool.

• Criteria for AHP: The set of criteria that will be used for the AHP to determine
the score for a tool, along with the values of importance between them.

5.2.1 Modifiability of the framework

As time passes, the development of other TSR tools is imminent. In order to keep this
framework relevant in the study of these tools, we implemented it in such a way that it pro-
vides a rather easy way of integrating new tools. To do so, the user must provide a tool’s
name in the configuration file, and code a class in the package pt.ul.fc.di.pei42103.tools
that extends the class TSRTool, where the behaviour of this new tool will be implemented.
Through Java Reflection the tool will then be loaded in the same way as the ones imple-
mented by default.

Regarding EvoSuite, the user can disable its use. In this case, the framework will use
the existing test suites for each project. As for Kanonizo, in addition to the possibility of
disabling its use, the user can also specify the algorithms that should be used, as well as
the cut off values for the reduction.

The set of projects to use in the experiment is really simple to modify too, since it is
only necessary to change the configuration file accordingly, providing that the path given
exists.

As for the criteria used to compute the tools’ score, the user can also add new ones or
modify the existing ones, such as the values of the importance between them, by following
the structure presented in the configuration file, which contributes to getting different
evaluations for each tool, considering the specified criteria. Additionally, if there is a new
Criterion added, the user must also code the way to calculate its values in the AHP class,
method saveValues.

Chapter 5. Implementation 48

5.3 Analytic Hierarchy Process implementation

When the framework starts, it loads the criteria from the specification in the configura-
tion file and computes the priority for each base-level criteria (in our case being file size,
number of test cases, test suites’ execution time, percentage of branch covered and per-
centage of total coverage), as it is defined in the AHP. The next step would be, using the
measured values for each criterion and tool, to deduce the pairwise comparison matrix
between the alternatives (the reduction tools), and compute their priorities, which would
then be used to rank the tools. However, we decided to diverge from the AHP in this step,
as we wanted the scores of each tool to be independent from one another. Instead, we use
the sub-criteria priorities and the values measured for the criteria for each tool to compute
the scores for each tool.

For each criterion, the values are a combination of the measurement of the related
metric for the original test suites and the reduced one, in such a way that, for:

• Cost criteria (such as file size, number of test cases and test suites’ execution time):
we take voriginal and vreduced and calculate (1 − vreduced

voriginal
) ∗ 100. In the case that

voriginal is 0, we define the whole value to be 0.

• Benefit criteria (such as percentage of branch coverage and percentage of total cov-
erage): we take voriginal and vreduced and calculate (vreduced

voriginal
) ∗ 100. In the case that

voriginal is 0, we define the whole value to be 0.

Once we collect all these values, we normalize them for each pair (Project, Criterion),
so that we can relate each value obtained for the different tools, for the same project and
criterion. We normalize them applying the formula vi

vmax
, where vi is the value obtained

for a given tool, in the pair (Project, Criterion), and vmax is the maximum value from all
the values for this criterion in this project.

The final step in getting the score is multiplying each of these values for the respective
criteria priority obtained, and sum the results obtained for each criterion. This ensures that
the score for a given tool will always be a value between 0 and 1. In addition, the closer it
is to 1, the better, so we can rank the TSR tools by sorting the scores by descending order.

5.4 Modified Test Suite Reduction Tools

In order to seamlessly integrate the tools in our framework, we needed to change or add
some code to their source code, sometimes just so its execution could provide us the
results we needed, and others to correct some errors from the tools themselves.

Chapter 5. Implementation 49

EvoSuite

The original EvoSuite (version 1.0.7 used in this work) takes as parameters (for the exe-
cution profile we needed) the flag -target and the path to a project’s bytecode. Since we
changed EvoSuite so it produced two sets of test suites, we modified it to accept extra
arguments that represented the path in which to save the original test suites, and the path
in which to save the reduced test suites.

We then modified the EvoSuite class TestSuiteGenerator, so that it saves the generated
test suite before and after reduction, saving each one in the paths given as an argument.

Testler

The original Testler (version 0.0.1 used in this work) has all of its configuration hard-
coded in its Settings class, such as the project, instrumented project and merged project
paths. Since we needed to use Testler for a lot of different projects within the same
execution, we changed this so that these values were passed as arguments to its classes.

As stated in Chapter 3, there was a problem with Testler when we tried to reduce some
bigger projects, since in those cases they generated trace files with more than 3Gb, which
caused an out of memory error. To solve this we changed the way Testler processed these
trace files, instead of loading the file content to a single String object, we changed it to
load its content to a LinkedHashSet, where each entry would be a line of the file. We
then proceeded to make all the necessary alterations to Testler source code to integrate
this change. After these changes we ran Testler on a set of projects we had already tested,
and confirmed that the results were the same, as a way to evaluate if these changes had
altered the output in any way.

Randoop

The original Randoop (version 4.1.2 used in this work) saves the reduced suites with the
suffix Minimized in their name. This caused the command mvn test to not find any test
cases (since by default it looks for classes ending in ‘Test’), so we changed that suffix
to MinimizedTest. We also modified the code so it would save the reduced test suites to
another path, given as an argument, as opposed to the default one, that was the original
test suite’s path.

5.5 Problems found

The main problems found related to the implementation were the integration of the reduc-
tion tools into our framework, as we can see in the last section since all of them had to
suffer modifications.

Chapter 5. Implementation 50

The biggest problem we dealt with was with Testler, as it was little documented and
the tests it generated always had some kind of compilation errors. Since we wanted our
framework to execute automatically without any user interaction, we tried to implement
some ways to solve those errors with the class TestlerSuiteHelper, but there can be some
errors that this class does not solve, since there are always errors specific to each project
code.

For the sake of our experiment, this kind of errors were solved manually, and Testler
was left as a part of our framework. However, this means that the user must intervene in
order to solve the errors in the reduced test suites.

Chapter 6

Results

When the development of the framework was finished, we conducted a series of experi-
ments in order to answer the questions made at the beginning of this work and to analyze
the influence each criteria had on the final score for each tool.

Each experiment was repeated twice, one using tests generated by EvoSuite, and an-
other with the test suites that come included with each studied project (henceforth referred
to as EvoSuite run and Normal run, respectively). With this, we intend to analyze if the
use of automatically generated tests influence the efficiency of the tested tools.

After generating the OpenClover reports, when then proceeded to configure the cri-
teria (the values of importance between them) to analyze the change this caused in the
scores of each tool.

The next sections describe the working environment, the obtained results, and a dis-
cussion regarding these results.

6.1 Testing environment

All the experiments were done within the same environment: a laptop with a processor
Intel Core i7 7700HQ and 16Gb RAM with Windows 10. The whole framework was im-
plemented and tested using Eclipse IDE1, version 4.8.0, and using Java version 1.8.0 231
and Maven version 3.5.3.

6.2 Experiments and results

We can separate each experiment in two parts (same as our framework’s process): the
first one is the generation and reduction of test suites, with their subsequent analysis; the
second one is the interpretation of the test suites’ analysis, and calculation of scores for
each tool.

1https://www.eclipse.org/

51

https://www.eclipse.org/

Chapter 6. Results 52

It is important to note that we configured Kanonizo to use four algorithms and cut off
values of 10, 15, 20, 25 and 30, and to remember that each of this combination is treated
as a separated test suite “reduction” tool.

6.2.1 Generating, reducing and analyzing tests

This part of the experiment is just the generation and preparation of data. We can compare
the times each tool took to reduce the test suites of each project.

Tables 6.1 and 6.2 show the execution times for each tool across all projects, for the
EvoSuite run and the Normal one, respectively. In Table 6.1, the column “Total (w/o
EvoSuite)” shows us the executing times without considering the time took by EvoSuite,
so it is possible to compare them with the ones from the Normal Run. The Kanonizo
column represents every execution of Kanonizo with all the configured algorithms and
appliances of cut off values.

Project Execution time (hh:mm:ss)

EvoSuite Testler Randoop Kanonizo Total Total
(w/o EvoSuite)

commons-lang 04:10:26 00:38:30 00:09:31 00:29:30 05:27:47 01:17:31
commons-email 00:14:07 00:11:00 00:00:12 00:08:37 00:33:56 00:19:49
pmd-core 07:06:57 07:36:50 00:06:28 00:33:44 15:23:59 08:17:02
tudu-lists 00:43:59 00:31:03 00:00:28 00:05:59 01:21:29 00:37:30
lambdaj 01:50:06 01:10:42 00:01:19 00:13:48 03:15:55 01:25:49
jfreechart 03:31:54 00:45:32 00:00:09 00:18:16 04:35:51 01:03:57
java-library 03:26:49 00:37:12 00:03:28 00:22:10 04:29:39 01:02:50
crunch-core 01:40:13 00:51:07 00:01:34 00:14:02 02:46:56 01:06:43
crunch-kafka 00:02:50 00:04:31 00:00:05 00:06:20 00:13:46 00:10:56
tika-xmp 00:00:54 00:00:11 00:00:01 00:06:24 00:07:30 00:06:36
xml-sec 09:47:21 01:10:42 00:15:40 07:01:11 18:14:54 08:27:33

Total 32:35:36 13:37:20 00:38:55 09:40:01 56:31:52 23:56:16

Table 6.1: Execution times each tool took for each project (with EvoSuite).

Project Execution time (hh:mm:ss)
Testler Randoop Kanonizo Total

commons-lang 00:09:55 00:00:24 00:28:03 00:38:22
commons-email 00:08:26 04:55:31 00:23:29 05:27:27
pmd-core 00:03:42 00:29:56 00:06:17 00:39:55
tudu-lists 00:04:27 00:00:34 00:06:04 00:11:05
lambdaj 00:01:06 00:06:03 00:07:44 00:14:53
jfreechart 00:48:03 01:18:48 00:25:24 02:32:15
java-library 00:26:47 02:29:15 00:17:45 03:13:47
crunch-core 00:02:39 00:08:58 00:09:42 00:21:19
crunch-kafka 00:02:32 00:06:49 00:26:47 00:36:08
tika-xmp 00:00:14 00:04:04 00:03:26 00:07:44
xml-sec 00:18:17 00:20:20 00:07:46 00:46:23

Total 02:06:08 10:00:42 02:42:27 14:49:17

Table 6.2: Execution times each tool took for each project (without EvoSuite).

Chapter 6. Results 53

As we can see from the tables, the EvoSuite run took more time than the one without
it (even discarding the EvoSuite execution times). Aside from Randoop, all the others
tools took longer to execute with automatically generated tests.

A possible explanation for this can be the difference in the size of test suites in both
experiments. All the test suites generated by EvoSuite are, approximately, 15.95 Mb with
16910 test cases in total, while the original test suites are 9.4 Mb with 9834 test cases in
total, as inferred from the values shown in Tables 6.4 and 6.5. As the integrated tools work
directly on the test suites, their size can influence the time needed for the tool to complete
the reduction. However, Randoop took approximately 9 hours and 20 minutes longer
reducing the original test suites than the EvoSuite ones. This can be because Randoop
only reduces failing tests. Since the EvoSuite ones are executed while being generated to
try and generate passing test cases, it would be expected for them to have fewer failing
tests.

Regarding Kanonizo, Table 6.3 shows us the times Kanonizo took to execute each of
the algorithms across all projects. These values do not consider the time took reducing
the suites and running OpenClover on the reduced suites, which are considered in the
Kanonizo column of Tables 6.1 and 6.2. We notice that the algorithm that took longer was
Random Search in both runs, executing for 7 minutes and 1 second in the EvoSuite Run,
and 6 minutes and 50 seconds in the Normal Run, in contrast with the other algorithms,
where they all took less than a minute to execute.

EvoSuite Run
Algorithm Random Random Search Greedy Additional Greedy
Total time

(hh:mm:ss) 00:00:32 00:07:01 00:00:15 00:00:28

Normal Run
Algorithm Random Random Search Greedy Additional Greedy
Total time

(hh:mm:ss) 00:00:32 00:06:50 00:00:11 00:00:16

Table 6.3: Kanonizo algorithms total executing time.

Tables 6.4 and 6.5 show the cumulative data gathered by OpenClover for each one of
the original projects (before reduction) and for all the considered metrics, in both runs.
The values that contribute to this cumulative data will be the voriginal in the formula ap-
plied to calculate the comparative values between the original and the reduced test suites,
seen in Section 5.3.

Chapter 6. Results 54

EvoSuite Run

Projects FileSize
(bytes)

Test
Cases

Test Suites’
Exec. Time (s)

Branch
Cov. (%)

Total
Cov. (%)

commons-email 123808 143 0.926 20.854 16.468
commons-lang 5471991 5541 5.794 59.078 83.353

crunch-core 413051 424 0.595 3.503 5.794
crunch-kafka 15676 24 0.25 2.806 5.953

java-library 1671313 1620 5.36 16.836 36.293
jfreechart 71087 51 0.626 0.761 2.971

lambdaj 680351 795 0.781 17.812 42.718
pmd-core 3155247 3589 11.324 21.99 42.361
tika-xmp 1197 2 0.015 0 0.580
tudu-lists 221805 252 0.281 22.959 29.323

xmlsec 4124237 4469 80.508 23.009 38.262

Table 6.4: Test execution data gathered by OpenClover (EvoSuite run).

Normal Run

Projects FileSize
(bytes)

Test
Cases

Test Suites’
Exec. Time (s)

Branch
Cov. (%)

Total
Cov. (%)

commons-email 191814 187 10.139 40.11178571 76.976746
commons-lang 2617380 4032 17.553 60.8388125 94.45088

crunch-core 270600 330 2.64 18.07762069 34.51355
crunch-kafka 32356 55 0.23 51.42538462 86.90779

java-library 730171 678 5.029 25.0566895 74.324326
jfreechart 2447639 2175 2.261 33.204961 55.711197

lambdaj 160660 265 1.846 36.02743802 77.27039
pmd-core 466264 1009 16.356 22.9977561 47.707268
tika-xmp 16766 33 0.09 34.54 68.471954
tudu-lists 63491 50 0.208 23.6727451 45.41258

xmlsec 2451059 1020 20.811 35.97684086 65.64482

Table 6.5: Test execution data gathered by OpenClover (Normal run).

6.2.2 Calculating scores

From the moment we have the reduced suites and the comparative reports, we can use
them to generate different results, according to the configured values of importance be-
tween each criteria and sub-criteria.

We wanted to carry out a comprehensive study, that analyzed the tools in several con-
texts and regarding different necessities. As such, we generated results for a configuration
that tried to replicate a real-world scenario, and a configuration focusing each of the base-
level criteria: File size, Number of test cases, Test suites’ execution time, Percentage of
branch coverage and Percentage of total coverage.

These results are shown next. The following tables represent a summarized table from
the one generated by our framework, presenting only the tool and its final score, whereas
in the framework output we can see the score obtained in each project, besides the final
one (an example of this can be seen in C.1).

Besides this, we also established a baseline score in each scenario. This value rep-

Chapter 6. Results 55

resents the score of a tool that does not perform any reduction. As such, applying the
formula specified in Section 5.3 of this document, we will have voriginal = vreduced. This
causes the benefit criteria values to be 100, and the cost criteria ones to be 0 in all scenar-
ios. The baseline score is influenced by the weights of each criteria. We can then use this
default value to evaluate if a tool is of any use in a given scenario, by comparing its score
with the baseline one.

Replicating a real-world necessity

As we saw in Chapter 2, the use of Test Suite Reduction is many times associated with
the fact that the testing stage is long and costly, so we tried to evaluate the tools by giving
greater importance to Time, high importance to Coverage and the lowest importance to
Dimension. The pairwise comparison matrices can be seen in C.2 and C.3.

Table 6.6 shows the obtained scores for each tool in the EvoSuite and Normal runs.
Figure 6.1 and Figure 6.2 provide us a visual representation of the obtained scores for
each tool for this scenario in the form of a chart, for EvoSuite Run and Normal Run, re-
spectively. For better presentation, the kanonizo name was removed from the axis values,
being represented only with the algorithm and cut off value (e.g. random#10).

Comparing both tables, we can see that, for the EvoSuite run, the scores range be-
tween 0.57 and 0.83, approximately. For the Normal run, the scores range between 0.56
and 0.82, approximately. This similarity in the scores’ range shows us that the general
behaviour of the tools in both runs does not have a great difference, meaning that, in gen-
eral, the tools have the same efficiency when reducing tests coded by humans, as well as
automatically generated tests.

As for the tools compared, Testler and Randoop were ranked as the worst ones in both
runs, with the biggest difference being the several combinations of Kanonizo. EvoSuite
came up as the third best tool to reduce its own generated tests, having a score really
close to the seconds best. We can also notice that, in both tables, the worst Kanonizo
combinations - henceforth denoted by (Kanonizo, algorithm, cut off value) - are the ones
with the lowest cut off values. Additionally, we can verify that every tool got a greater
score than the baseline.

We can now use these values and compare them with experiments in which we change
the importance of each sub-criteria and analyze how it influences the scores of each tool,
which we will show next.

Chapter 6. Results 56

Figure 6.1: Chart for real world scenario results (EvoSuite Run).

Figure 6.2: Chart for real world scenario results (Normal Run).

Chapter 6. Results 57

EvoSuite Run Normal Run
Tool Algorithm Cut off Score Tool Algorithm Cut off Score

Kanonizo Random Search 30 0.83444 Kanonizo Random 30 0.82875
Kanonizo Random Search 25 0.82338 Kanonizo Additional Greedy 25 0.81676

EvoSuite 0.82227 Kanonizo Random Search 25 0.81664
Kanonizo Additional Greedy 20 0.81469 Kanonizo Random Search 20 0.80687
Kanonizo Additional Greedy 30 0.80751 Kanonizo Random Search 30 0.80494
Kanonizo Additional Greedy 15 0.80366 Kanonizo Random 25 0.8039
Kanonizo Greedy 30 0.78591 Kanonizo Additional Greedy 30 0.79447
Kanonizo Random 30 0.77183 Kanonizo Greedy 25 0.79134
Kanonizo Greedy 25 0.76982 Kanonizo Random 20 0.78337
Kanonizo Random 15 0.74349 Kanonizo Greedy 20 0.77041
Kanonizo Additional Greedy 10 0.74295 Kanonizo Greedy 30 0.7386
Kanonizo Greedy 20 0.73113 Kanonizo Additional Greedy 15 0.73717
Kanonizo Random 25 0.72421 Kanonizo Additional Greedy 20 0.72834
Kanonizo Random Search 20 0.72291 Kanonizo Random Search 10 0.72668
Kanonizo Random 20 0.72126 Kanonizo Random Search 15 0.72
Kanonizo Additional Greedy 25 0.70652 Kanonizo Additional Greedy 10 0.70977
Kanonizo Greedy 10 0.70131 Kanonizo Random 15 0.7041
Kanonizo Random Search 15 0.69871 Kanonizo Greedy 10 0.69483
Kanonizo Random 10 0.69019 Kanonizo Greedy 15 0.69044
Kanonizo Random Search 10 0.6811 Kanonizo Random 10 0.653
Kanonizo Greedy 15 0.66897 Testler 0.63351

Testler 0.60783 Randoop 0.568
Randoop 0.57772 Baseline 0.29464
Baseline 0.29464

Table 6.6: Scores for real-world scenario.

Focusing specific criterion

We made an evaluation focusing on each of the sub-criteria we evaluated (File size, num-
ber of test cases, test suites’ execution time, percentage of branch covered and percentage
of total coverage). Our goal with these different configurations was to find the best tools
specific for each of these metrics and to compare the obtained values with the previously
obtained. The pairwise comparison matrices of these experiments all follow the templates
shown in Table C.4 and Table C.5, in which the Evaluated criteria is the focused criteria,
and the Other criteria are the remainder. For instance, if we want to evaluate the better
tool in reducing the file size of the test suites, we will define the importance of the Di-
mension criteria related to Time and Coverage to be 9 in both. Additionally, we would
define the importance of File size sub-criteria related to Number of test cases to be 9. All
the other criteria and sub-criteria will have the same importance between them.

As this is done using a MCDM approach, this obviously means that the values mea-
sured for all the other metrics will also be taken into account, although to a minimum,
when computing the value of the final score for each tool. By applying the AHP, this
would mean that the evaluated sub-criteria will have a weight of 73.(63)% in the final
score (0.9 from the file size and number of tests pairwise comparison matrix * 0.(81)
from the dimension-time-coverage one), unless it is the evaluated time, given that it is the
only sub-criteria of Time, it will not share the weight of Time with any other sub-criteria,
and so it will have a weight of 81,(81)%.

Finally, we verify that the established score for the baseline is the same between the

Chapter 6. Results 58

scenarios that focus on cost criteria (0.0909) and between the scenarios that focus on
benefit criteria (0.81818). This was expected, since the weight for the focused criterion
will always be the same. Additionally, the lower value of the cost criteria can be explained
by the fact that file size, number of test cases and test suites’ execution times values will
be 0, as explained previously, and will therefore weigh more on the final score, bringing
it to a final value closer to 0. Contrarily. for the cost criteria we have a score closer to 1.

Figure 6.3 and Figure 6.4 present a chart, for EvoSuite Run and Normal Run respec-
tively, that makes a global appreciation of the results obtained for each tool across all the
specific criteria.

We will make an analysis for each of the criteria measured, where we show the tables
with the scores for each one, and finish with a general analysis comparing all of the
obtained results.

• Dimension

Tables 6.7 and 6.8 show the results obtained for the sub-criteria of Dimension.

Regarding file size, we can see that EvoSuite was by far the better tool for the
EvoSuite run, while (Kanonizo, Random, 30) was the better tool for the Normal
run. We can also notice that the kanonizo combinations are ordered by cut off value,
which was expected since a greater cut off value means a smaller file size, therefore
a bigger score on file size reduction. A noticeable difference is the position of
Randoop in the two runs. As suggested above, the fact that Randoop did better
in the normal run might be due to the lack of failing test cases compared with the
Normal run.

Testler’s low scores regarding this criterion might seem odd, since its premise is
merging several test cases into one. However, what Testler does is marking the
merged test cases with the annotation “@Ignore”, and so it creates a new big test
case, increasing the value of the file sizes.

EvoSuite’s big divergence between its score and the other tools’ can be explained
by the fact that in almost every test case it will make reductions, drastically reducing
the file sizes.

As for the number of test cases, we can see that, similarly with the file size case,
the Kanonizo combinations are sorted by cut off value, for the same explanation we
gave before. As expected, Randoop is the least efficient tool for this criterion, since
the number of test cases will always be the same in the reduced suite. We can see
that Testler got a better position comparing with file size, since now the test cases
with “@Ignore” are not considered towards the test cases counting.

We can also see that every tool got a better score than the baseline. This was ex-
pected since the baseline assumes that the file size stays the same. However, regard-
ing file size, we see that Testler (that increases the file size) still got a better score.

Chapter 6. Results 59

Figure 6.3: Chart with specific criterion results (EvoSuite Run).

Chapter 6. Results 60

Figure 6.4: Chart with specific criterion results (Normal Run).

Chapter 6. Results 61

This is explained by the contribution of the other criterions, which is also taken into
account, as stated before. Similarly, this also explains the better score of Randoop
for the test cases scenario.

EvoSuite Run Normal Run
Tool Algorithm Cut off Score Tool Algorithm Cut off Score

EvoSuite 0.93398 Kanonizo Random 30 0.7353
Kanonizo Random Search 30 0.57147 Kanonizo Greedy 30 0.73096
Kanonizo Additional Greedy 30 0.56384 Kanonizo Random Search 30 0.71527
Kanonizo Greedy 30 0.5567 Kanonizo Additional Greedy 30 0.70228
Kanonizo Random 30 0.54271 Kanonizo Random 25 0.70197
Kanonizo Random Search 25 0.5241 Kanonizo Greedy 25 0.66706
Kanonizo Greedy 25 0.51078 Kanonizo Random Search 25 0.64501
Kanonizo Additional Greedy 25 0.50872 Kanonizo Additional Greedy 25 0.63875
Kanonizo Random 25 0.49528 Kanonizo Greedy 20 0.57652
Kanonizo Additional Greedy 20 0.4749 Kanonizo Random 20 0.57287
Kanonizo Random Search 20 0.46224 Kanonizo Random Search 20 0.55658
Kanonizo Greedy 20 0.45622 Kanonizo Additional Greedy 20 0.54036
Kanonizo Random 20 0.44443 Randoop 0.53326
Kanonizo Additional Greedy 15 0.42083 Kanonizo Greedy 15 0.46718
Kanonizo Random Search 15 0.40746 Kanonizo Random 15 0.46001
Kanonizo Greedy 15 0.39863 Kanonizo Random Search 15 0.45852
Kanonizo Random 15 0.39807 Kanonizo Additional Greedy 15 0.44952
Kanonizo Additional Greedy 10 0.36707 Kanonizo Greedy 10 0.40555
Kanonizo Greedy 10 0.36496 Kanonizo Random Search 10 0.39566
Kanonizo Random Search 10 0.36176 Kanonizo Random 10 0.39525
Kanonizo Random 10 0.35269 Kanonizo Additional Greedy 10 0.39253

Testler 0.25189 Testler 0.25468
Randoop 0.1936 Baseline 0.0909
Baseline 0.0909

Table 6.7: Scores for file size scenario.

EvoSuite Run Normal Run
Tool Algorithm Cut off Score Tool Algorithm Cut off Score

Kanonizo Random Search 30 0.81463 Kanonizo Greedy 30 0.89492
Kanonizo Additional Greedy 30 0.81034 Kanonizo Random 30 0.88764
Kanonizo Greedy 30 0.80876 Kanonizo Random Search 30 0.87769
Kanonizo Random 30 0.80345 Kanonizo Additional Greedy 30 0.87563

EvoSuite 0.76059 Kanonizo Random 25 0.84423
Kanonizo Random Search 25 0.72044 Kanonizo Greedy 25 0.82153
Kanonizo Greedy 25 0.71203 Kanonizo Random Search 25 0.79657
Kanonizo Random 25 0.70491 Kanonizo Additional Greedy 25 0.79491
Kanonizo Additional Greedy 25 0.70373 Kanonizo Greedy 20 0.69857
Kanonizo Additional Greedy 20 0.61217 Kanonizo Random Search 20 0.69122
Kanonizo Greedy 20 0.59915 Kanonizo Random 20 0.67098
Kanonizo Random Search 20 0.59862 Kanonizo Additional Greedy 20 0.65624
Kanonizo Random 20 0.59619 Kanonizo Greedy 15 0.54777

Testler 0.51984 Kanonizo Random Search 15 0.54405
Kanonizo Additional Greedy 15 0.49851 Kanonizo Random 15 0.52299
Kanonizo Random 15 0.48822 Kanonizo Additional Greedy 15 0.52253
Kanonizo Random Search 15 0.4841 Kanonizo Greedy 10 0.4366
Kanonizo Greedy 15 0.48007 Kanonizo Random Search 10 0.43592
Kanonizo Additional Greedy 10 0.3976 Kanonizo Additional Greedy 10 0.43194
Kanonizo Greedy 10 0.39298 Kanonizo Random 10 0.42709
Kanonizo Random 10 0.38956 Testler 0.37637
Kanonizo Random Search 10 0.38921 Randoop 0.21983

Randoop 0.17433 Baseline 0.0909
Baseline 0.0909

Table 6.8: Scores for number of test cases scenario.

Chapter 6. Results 62

• Time

Table 6.9 shows the results when focusing the test suites’ Execution time sub-
criterion.

In the case of test suites’ execution time, it could be expected that Testler and Ran-
doop could achieve a better score, as they effectively reduce the test cases. However,
the raw cut made by Kanonizo was enough to achieve the best reduction on the test
suites’ execution time.

EvoSuite Run Normal Run
Tool Algorithm Cut off Score Tool Algorithm Cut off Score

Kanonizo Random Search 30 0.79258 Kanonizo Random 30 0.78711
EvoSuite 0.78763 Kanonizo Random Search 25 0.77092

Kanonizo Random Search 25 0.77418 Kanonizo Additional Greedy 25 0.7683
Kanonizo Additional Greedy 20 0.76266 Kanonizo Random Search 30 0.76082
Kanonizo Additional Greedy 30 0.75473 Kanonizo Random 25 0.75566
Kanonizo Additional Greedy 15 0.74761 Kanonizo Random Search 20 0.75261
Kanonizo Greedy 30 0.72863 Kanonizo Additional Greedy 30 0.74382
Kanonizo Random 30 0.71238 Kanonizo Greedy 25 0.74007
Kanonizo Greedy 25 0.70597 Kanonizo Random 20 0.72269
Kanonizo Random 15 0.6722 Kanonizo Greedy 20 0.70899
Kanonizo Additional Greedy 10 0.66892 Kanonizo Greedy 30 0.6786
Kanonizo Greedy 20 0.65634 Kanonizo Additional Greedy 15 0.65721
Kanonizo Random 25 0.65149 Kanonizo Additional Greedy 20 0.65185
Kanonizo Random Search 20 0.64634 Kanonizo Random Search 10 0.64249
Kanonizo Random 20 0.64555 Kanonizo Random Search 15 0.63732
Kanonizo Additional Greedy 25 0.6267 Kanonizo Additional Greedy 10 0.62007
Kanonizo Greedy 10 0.61829 Kanonizo Random 15 0.61663
Kanonizo Random Search 15 0.61523 Kanonizo Greedy 10 0.60465
Kanonizo Random 10 0.60335 Kanonizo Greedy 15 0.60289
Kanonizo Random Search 10 0.59248 Kanonizo Random 10 0.54954
Kanonizo Greedy 15 0.57954 Testler 0.52768

Testler 0.50142 Randoop 0.50781
Randoop 0.45305 Baseline 0.0909
Baseline 0.0909

Table 6.9: Scores for time scenario.

Chapter 6. Results 63

• Coverage

Tables 6.10 and 6.11 show the results for the sub-criteria of Coverage.

We can see that the better tools for each run stay the same in both scenarios, being
EvoSuite for the EvoSuite run and (Kanonizo, Random, 30) for the Normal run.

Once again we see Testler and Randoop at the bottom of the table, but with scores
closer to some of the Kanonizo combinations, as opposed to what we verified in
some of the other scenarios where they both had the lowest scores. In general
this means that every tool got a good performance when maintaining the coverage
obtained by the original test suites.

Regarding the percentage of branch coverage scenario, we see that approximately
half of the tools have a lower score than the baseline in the EvoSuite run. This tells
us that in this specific scenario, those tools did not bring any improvement to the
test suites, which is normal, since the decrease of coverage is a known issue of Test
Suite Reduction (TSR).

EvoSuite Run Normal Run
Tool Algorithm Cut off Score Tool Algorithm Cut off Score

EvoSuite 0.87329 Kanonizo Random 30 0.92671
Kanonizo Random Search 30 0.84363 Kanonizo Random 25 0.92493
Kanonizo Random Search 25 0.84354 Kanonizo Additional Greedy 25 0.92067
Kanonizo Greedy 30 0.84055 Kanonizo Additional Greedy 30 0.91882
Kanonizo Additional Greedy 30 0.83793 Kanonizo Random Search 25 0.91827
Kanonizo Greedy 25 0.83637 Kanonizo Random Search 30 0.91531
Kanonizo Additional Greedy 20 0.83471 Kanonizo Random Search 20 0.91512
Kanonizo Additional Greedy 15 0.82685 Kanonizo Random 20 0.91505
Kanonizo Greedy 20 0.82674 Kanonizo Greedy 25 0.91278
Kanonizo Random 30 0.82516 Kanonizo Greedy 30 0.90874
Kanonizo Random Search 20 0.82493 Kanonizo Greedy 20 0.90778
Kanonizo Additional Greedy 25 0.8227 Kanonizo Additional Greedy 15 0.90536

Baseline 0.81818 Kanonizo Random Search 15 0.90505
Kanonizo Random 25 0.81811 Kanonizo Additional Greedy 20 0.90485
Kanonizo Additional Greedy 10 0.81505 Kanonizo Random Search 10 0.90166
Kanonizo Random Search 15 0.81473 Kanonizo Random 15 0.90031
Kanonizo Random 20 0.81451 Kanonizo Additional Greedy 10 0.89996
Kanonizo Random 15 0.81291 Kanonizo Greedy 10 0.89561
Kanonizo Greedy 10 0.80997 Kanonizo Greedy 15 0.89334
Kanonizo Random Search 10 0.80713 Kanonizo Random 10 0.89284
Kanonizo Random 10 0.80663 Testler 0.86143
Kanonizo Greedy 15 0.80354 Baseline 0.81818

Randoop 0.79073 Randoop 0.71218
Testler 0.77056

Table 6.10: Scores for percentage of branch coverage scenario.

Chapter 6. Results 64

EvoSuite Run Normal Run
Tool Algorithm Cut off Score Tool Algorithm Cut off Score

EvoSuite 0.93304 Kanonizo Random 30 0.92435
Kanonizo Additional Greedy 30 0.9 Kanonizo Random 25 0.91693
Kanonizo Random Search 25 0.89846 Kanonizo Additional Greedy 25 0.91692
Kanonizo Random Search 30 0.89497 Kanonizo Additional Greedy 30 0.91475
Kanonizo Greedy 30 0.89392 Kanonizo Random 20 0.91253
Kanonizo Additional Greedy 20 0.89164 Kanonizo Random Search 20 0.91124
Kanonizo Greedy 25 0.89161 Kanonizo Random Search 25 0.91087
Kanonizo Additional Greedy 15 0.88539 Kanonizo Greedy 25 0.9083
Kanonizo Random 30 0.88496 Kanonizo Random Search 30 0.90827
Kanonizo Additional Greedy 25 0.88201 Kanonizo Additional Greedy 15 0.90631
Kanonizo Greedy 20 0.88141 Kanonizo Additional Greedy 20 0.90406
Kanonizo Random Search 20 0.88047 Kanonizo Greedy 20 0.90404
Kanonizo Additional Greedy 10 0.87577 Kanonizo Random 15 0.90127
Kanonizo Random 25 0.87499 Kanonizo Additional Greedy 10 0.90125
Kanonizo Random 20 0.87315 Kanonizo Random Search 15 0.90123
Kanonizo Random 15 0.87284 Kanonizo Random Search 10 0.90091
Kanonizo Random Search 15 0.87114 Kanonizo Greedy 30 0.89938
Kanonizo Greedy 10 0.86589 Kanonizo Greedy 10 0.89289
Kanonizo Random 10 0.86464 Kanonizo Random 10 0.89243
Kanonizo Random Search 10 0.86379 Kanonizo Greedy 15 0.89134
Kanonizo Greedy 15 0.86097 Testler 0.85772

Randoop 0.84898 Baseline 0.81818
Testler 0.82834 Randoop 0.73104

Baseline 0.81818

Table 6.11: Scores for percentage of total coverage scenario.

Overall, comparing the results obtained for each criteria and the ones from the real
world scenario, we see that the tools that obtained the best scores in the latter: (Kanonizo,
Random search, 30) for EvoSuite run, (Kanonizo, random, 30) for Normal run; reflect
the ones we got in the specific criterion scenarios, since, in the case of the EvoSuite run,
(Kanonizo, Random search, 30) obtained the best score for 2 out of the 5 criteria, and
the second best for another 2; in the case of the Normal run, (Kanonizo, Random, 30)
obtained the best score in 4 out of 5 categories.

Changing the project’s weight

Besides the described experiments, we also tried to change each project weight on the
final score, to see if this influenced the ranking of the tools. We wanted to replicate the
projects usefulness in this weight, and as such we defined the weight as the number of
dependents (seen in Table 4.1). The results are shown in Table 6.12.

As the project with the greatest number of dependents was commons-lang by a wide
margin, the results we see here reflect the scores obtained when reducing this project.

Judging by all the results, we can also assume that the studied tools worked similarly
in both runs, and, as such, the fact that the tests are automatically generated or written by
humans probably have no influence in the general efficiency of these tools.

Chapter 6. Results 65

EvoSuite Run Normal Run
Tool Algorithm Cut off Score Tool Algorithm Cut off Score

Kanonizo Greedy 30 0.917864205 Kanonizo Greedy 20 0.836798281
Kanonizo Greedy 25 0.901134847 Randoop 0.830177957
Kanonizo Additional Greedy 30 0.900890049 Kanonizo Greedy 30 0.824732249
Kanonizo Greedy 20 0.88595514 Kanonizo Greedy 25 0.821115728
Kanonizo Random Search 25 0.881493084 Kanonizo Random Search 20 0.803329693
Kanonizo Random Search 30 0.878056736 Kanonizo Random Search 25 0.797382353
Kanonizo Additional Greedy 25 0.871722278 Kanonizo Random Search 30 0.792960079
Kanonizo Additional Greedy 15 0.842900159 Kanonizo Additional Greedy 30 0.78878095
Kanonizo Greedy 15 0.842759073 Kanonizo Greedy 15 0.782450928
Kanonizo Random Search 20 0.836249533 Kanonizo Random Search 15 0.77842572
Kanonizo Additional Greedy 20 0.835796222 Kanonizo Greedy 10 0.759499704

EvoSuite 0.829700137 Kanonizo Random 30 0.756159272
Kanonizo Random Search 15 0.820821786 Kanonizo Random 25 0.75443151
Kanonizo Random 30 0.803754629 Kanonizo Additional Greedy 25 0.736019717

Testler 0.779436033 Kanonizo Random 20 0.730513078
Kanonizo Random 15 0.755862711 Kanonizo Additional Greedy 15 0.712528468
Kanonizo Random 20 0.75386665 Kanonizo Random Search 10 0.709789467
Kanonizo Random 25 0.741018508 Kanonizo Additional Greedy 10 0.706911089
Kanonizo Additional Greedy 10 0.734939692 Kanonizo Random 10 0.706339709
Kanonizo Random Search 10 0.728486757 Kanonizo Random 15 0.698103489
Kanonizo Greedy 10 0.720150547 Kanonizo Additional Greedy 20 0.673654884
Kanonizo Random 10 0.692061793 Testler 0.388814691
Randoop 0.325831898 Baseline 0.29464
Baseline 0.29464

Table 6.12: Scores with changed project weights.

6.3 Discussion

Our main goal for this work was to answer two questions: “What is the best Test Suite
Reduction tool?” (according to some criterion) and “Can a Test Case Prioritization tool be
adapted to effectively replace a Test Suite Reduction tool?” (according to some criterion
and threshold value).

Table 6.13 shows us the average of scores obtained in both runs for each tool. We
chose to agglomerate all the Kanonizo’s variations into the same row, for better visualiza-
tion. After conducting several experiments, we can safely say that the tool that was more
efficient was Kanonizo in the Normal Run, having an average score difference of 0.16295
to Testler’s and of 0.20283 to Randoop’s.

As for the EvoSuite Run, we see that the order between Kanonizo, Testler and Ran-
doop is maintained. However, EvoSuite has the greatest average score, having a difference
of 0.1538 to Kanonizo’s, 0.27802 to Testler’s and 0.3454 to Randoop’s. Although Evo-
Suite has a greater average score than Kanonizo, we must notice that in three out of six
scenarios of our exeperiment - real-world, number of test cases and execution time - some
variation of Kanonizo was better than EvoSuite, and that the average score of Kanonizo
is heavily influenced by the lowest scores obtained in its less efficient variations. Taking
these factors into account, and considering that the real-world scenario is undoubtedly
more common than any other one, and that EvoSuite only reduces tests generated by it,
we could argue that there is a variation of Kanonizo that is more efficient than EvoSuite,
for a real-world usage.

Considering just Test Suite Reduction tools, Testler achieved a greater score than Ran-

Chapter 6. Results 66

EvoSuite Run Average
Score Normal Run Average

Score
EvoSuite 0.8518 Kanonizo 0.74818

Kanonizo 0.69800 Testler 0.58523
Testler 0.57998 Randoop 0.54535

Randoop 0.50640

Table 6.13: Average scores in both runs.

doop in both runs, which is no surprise, since Randoop only focuses on failing test cases.
On average, we see that Testler got a score that exceeds the Randoop’s score by 14.53%
in the EvoSuite run, and by 7.31%, approximately, in the Normal run.

It is important to notice that we could only use EvoSuite to reduce tests generated by
it, which could influence its effectiveness, since its reduction is made considering test data
gathered in generation time. If EvoSuite had the same performance reducing original test
suites, we could say that it was the best TSR tool, compared to Testler and Randoop.

Regarding our second question, and speaking in the context of our experiments, all
Kanonizo combinations were better than any reduction tool in the normal run, and aside
from EvoSuite and Testler in one scenario (number of test cases), the same happened in
the EvoSuite run. Table 6.14 shows us the average score obtained for each Kanonizo
variation, in both runs. It is clear that, of all the cut off values tried, the 30% one was the
best, as the three best variations in both runs had a cut off value of 30%, representing a
considerable reduction in the test suite size without compromising the coverage obtained.
As for the chosen algorithm, the one that achieved a better score on average was the Ran-
dom Search for the EvoSuite run, with a value of 0.79195, and Random for the Normal
run, with a value of 0.84831. Although we could argue that the results obtained by Ran-
dom are too volatile, and we could consider Random Search to be more trustful, with an
average score of 0.83038 in the Normal run.

Looking at Chapter 2, we said that the TSR tools should have a set of characteristics:
inclusiveness, precision, efficiency and generality. Since Kanonizo is not a TSR tool, and
it was our changes that made it possible to use it as such, we would like to analyze if its
behaviour confirms these properties, using the results gathered for each of the scenarios.
As for inclusiveness, we saw that all combinations of Kanonizo reductions achieved a
good branch coverage, not perfect but still better than Testler and Randoop. Regarding
precision, since the Kanonizo reductions are made in a rather raw method, and we can
always set a greater cut off value, this property does not apply to this tool. For efficiency,
since the Kanonizo execution times are near Testler’s or Randoop’s, it is safe to say that
it has this characteristic. Lastly, regarding generality, we can say that Kanonizo also has
this property since we tested it on a very comprehensive set of programs (11 projects in
each run, which gives us 22 differents sets of test suites).

Chapter 6. Results 67

EvoSuite Run Normal Run
Algorithm Cut off Average Score Algorithm Cut off Average Score

Random Search 30 0.79195 Random 30 0.84831
Additional Greedy 30 0.77906 Random Search 30 0.83038

Greedy 30 0.76908 Additional Greedy 30 0.82496
Random Search 25 0.76402 Random 25 0.8246

Random 30 0.75675 Random Search 25 0.80971
Greedy 25 0.73776 Additional Greedy 25 0.80939

Additional Greedy 20 0.7318 Greedy 30 0.80853
Random 25 0.7115 Greedy 25 0.80685

Additional Greedy 25 0.7084 Random Search 20 0.77227
Additional Greedy 15 0.69714 Random 20 0.76292

Greedy 20 0.69183 Greedy 20 0.76105
Random Search 20 0.68925 Additional Greedy 20 0.73095

Random 20 0.68252 Additional Greedy 15 0.69635
Random 15 0.66462 Random Search 15 0.69436

Random Search 15 0.64856 Random 15 0.68422
Additional Greedy 10 0.64456 Greedy 15 0.68216

Greedy 15 0.63195 Random Search 10 0.66722
Greedy 10 0.62557 Additional Greedy 10 0.65925

Random 10 0.61784 Greedy 10 0.65502
Random Search 10 0.61591 Random 10 0.63503

Table 6.14: Average scores of Kanonizo variations in both runs.

Having these aspects in mind, with the tools we compared, we can clearly say that the
TCP tool is a viable option, and could even replace the TSR tools if we were to remove the
least important test cases from each test suite. However, this depends on the tool that is
used. For instance, using Kanonizo with the random algorithm, we are blinding removing
test cases, since the ordering of the test cases is completely random, and there is always a
risk of removing test cases that are more important than others. As such, it is preferable
to use a prioritization algorithm that prioritizes tests according to some criterion, as this
is more similar with some of the TSR approaches.

Chapter 7

Conclusion

In this chapter, a summary about the whole work done is presented, regarding the ob-
tained results, the problems found throughout this work and the future work we could do
regarding this framework and study.

As we stated before, our main objective with this work was to answer two questions:
“What is the best Test Suite Reduction tool?” and “Can a Test Case Prioritization tool be
adapted to effectively replace a Test Suite Reduction tool?”. The framework was designed
with the first question in mind since the very beginning, and later with the second one
too. As such, we tried to implement it while always thinking in the best way to make it
extensible to other tools, projects and criteria.

As far as we know, the development of this framework, with all of its functionalities,
is something that has not been done yet. The possibility to compare a set of reduction
tools, and even the study about the efficiency of the TCP tool with a cut on the test suites,
is important to the actual state of the art, since in the last years there has been a huge
increase in software development, with the growing need to spend less and less time
testing it. This calls for a need to know which are the better tools to reduce the time spent
testing. Although this framework works, its usability depends on the correctness of the
integrated tools, which is the field that gave us more trouble.

7.1 Results

With the several experiments we conducted, described in the last chapter, we found the
answer to the questions we proposed to answer in the beginning of this work. The results
showed us that some Kanonizo variation performed better than the other considered tools
in all scenarios, which gives us the confidence to state that a TCP tool can apply a reduc-
tion in a more effective way than some TSR tools, when we filter out some of the most
unimportant test cases. We also verified that our changed Kanonizo complies with three
out of the four presented characteristics that every TSR tool should have.

Regarding just the TSR tools, we noticed that EvoSuite got the best score in all sce-

69

Chapter 7. Conclusion 70

narios. Since it can only reduce its own generated tests, it is also important to notice that
Testler got the best score when compared to Randoop.

7.2 Problems

One of the biggest problems faced in this work was choosing and integrating the TSR
tools to conduct the experiment. As we saw in Chapter 3, there are a lot of tools that are
simply not made available by the developers, and some that are available but only in a
specific platform, like as a web application or an IDE plugin. Those that were available,
sometimes did not work as expected and were not actively maintained by their developers,
and had little to no documentation, which delayed the whole process of understanding
how it worked, and why it did not work when it was giving problems.

Most of the studied tools had reduction integrated as a part of a bigger function, for
instance, the automatic generation of test suites. This was a problem, given that our
interest was in the reduction of existing test suites. As such, we can say that although
there are a lot of research being done in this area, there are some lack of robust and
supported TSR tools and frameworks, that focus entirely on this function, as is the case
of Testler (besides all the problems found).

This all had a negative impact in the duration of this work, since we had to adapt to
the very few options we had available and try and get the maximum number of tools to
work. Hence the creation of a second goal with the TCP tool.

7.3 Future work

As for future work, there are some additions to the framework that could be done.
For instance, the integration of other code analysis tools, besides OpenClover, and give

the user the option to choose which one to use. This could also make for an interesting
comparative study about the way the analysis of each one of these tools influence the final
score obtained for a TSR tool. In addition to this, we could also implement other methods
to compute the score for each tool, aside from AHP.

Apart from this, there is always the option of integrating future TSR tools, which is
easily done through the configuration file.

Finally, we expect to publish a paper where we make an analysis of the results obtained
from our study and to make the implemented framework available online as an open
source project.

Bibliography

[1] R. Ramler and K. Wolfmaier, “Economic perspectives in test automation: Balancing
automated and manual testing with opportunity cost,” in Proceedings of the 2006
International Workshop on Automation of Software Test, AST ’06, (New York, NY,
USA), p. 85–91, Association for Computing Machinery, 2006.

[2] “10 historical software bugs with extreme consequences
- pingdom royal.” https://royal.pingdom.com/

10-historical-software-bugs-with-extreme-consequences/.
Accessed: 23-08-2019.

[3] D. Binkley, “The application of program slicing to regression testing,” Information
and Software Technology, vol. 40, no. 11, pp. 583–593, 1998.

[4] X.-y. Ma, B.-k. Sheng, and C.-q. Ye, “Test-suite reduction using genetic algorithm,”
in Advanced Parallel Processing Technologies (J. Cao, W. Nejdl, and M. Xu, eds.),
(Berlin, Heidelberg), pp. 253–262, Springer Berlin Heidelberg, 2005.

[5] S. U. R. Khan, S. Peck Lee, R. Ahmad, A. Akhunzada, and V. Chang, “A survey
on test suite reduction frameworks and tools,” International Journal of Information
Management, vol. 36, pp. 963–975, 12 2016.

[6] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold, “Prioritizing test
cases for regression testing,” IEEE Transactions on Software Engineering, vol. 27,
pp. 929–948, Oct 2001.

[7] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritiza-
tion: A survey,” Software Testing, Verification and Reliability, vol. 22, 03 2012.

[8] J. A. Jones, M. Harrold, and I. Computer Society, “Test-suite reduction and priori-
tization for modified condition/decision coverage,” IEEE Transactions on Software
Engineering, vol. 29, 06 2003.

[9] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization: a family
of empirical studies,” IEEE Transactions on Software Engineering, vol. 28, pp. 159–
182, Feb 2002.

71

https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/
https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

Bibliography 72

[10] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test set mini-
mization on fault detection effectiveness,” in 1995 17th International Conference on
Software Engineering, pp. 41–41, April 1995.

[11] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for controlling the size of
a test suite,” in Proceedings. Conference on Software Maintenance 1990, pp. 302–
310, Nov 1990.

[12] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical studies of
test-suite reduction,” Softw. Test., Verif. Reliab., vol. 12, pp. 219–249, 2002.

[13] M. Alian, D. Suleiman, and A. Shaout, “Test case reduction techniques - sur-
vey,” International Journal of Advanced Computer Science and Applications, vol. 7,
pp. 264–275, 06 2016.

[14] G. Fraser and F. Wotawa, “Redundancy based test-suite reduction,” in Proceedings
of the 10th International Conference on Fundamental Approaches to Software En-
gineering, FASE’07, (Berlin, Heidelberg), p. 291–305, Springer-Verlag, 2007.

[15] Z. Chen, B. Xu, X. Zhang, and C. Nie, “A novel approach for test suite reduc-
tion based on requirement relation contraction,” in Proceedings of the 2008 ACM
Symposium on Applied Computing, SAC ’08, (New York, NY, USA), p. 390–394,
Association for Computing Machinery, 2008.

[16] R. Singh and M. Santosh, “Test case minimization techniques : A review,” IJERT,
vol. 2, pp. 1048–1056, 12 2013.

[17] S. Nachiyappan, A. Vimaladevi, and C. B. SelvaLakshmi, “An evolutionary algo-
rithm for regression test suite reduction,” in 2010 International Conference on Com-
munication and Computational Intelligence (INCOCCI), pp. 503–508, 2010.

[18] L. You and Y. Lu, “A genetic algorithm for the time-aware regression testing re-
duction problem,” in 2012 8th International Conference on Natural Computation,
pp. 596–599, 2012.

[19] S. K. Mohapatra and M. Pradhan, “Finding representative test suit for test case re-
duction in regression testing,” in 2015 International Conference on Computer, Com-
munication and Control (IC4), pp. 1–6, 2015.

[20] Xue-ying MA, Zhen-feng He, Bin-kui Sheng, and Cheng-qing Ye, “A genetic algo-
rithm for test-suite reduction,” in 2005 IEEE International Conference on Systems,
Man and Cybernetics, vol. 1, pp. 133–139 Vol. 1, 2005.

[21] R. Wang, B. Qu, and Y. Lu, “Empirical study of the effects of different profiles on
regression test case reduction,” IET Software, vol. 9, no. 2, pp. 29–38, 2015.

Bibliography 73

[22] B. Subashini and D. JeyaMala, “Reduction of test cases using clustering technique,”
in International Journal of Innovative Research in Science, Engineering and Tech-
nology, 2014 International Conference on Innovations, vol. 3, pp. 1993–1996, 2014.

[23] S. Parsa, A. Khalilian, and Y. Fazlalizadeh, “A new algorithm to test suite reduction
based on cluster analysis,” in 2009 2nd IEEE International Conference on Computer
Science and Information Technology, pp. 189–193, 2009.

[24] A. Haider, S. Rafiq, and A. Nadeem, “Test suite optimization using fuzzy logic,”
2012 International Conference on Emerging Technologies, pp. 1–6, 2012.

[25] A. A. Haider, A. Nadeem, and S. Rafiq, “Computational intelligence and safe reduc-
tion of test suite,” in 2013 IEEE 9th International Conference on Emerging Tech-
nologies (ICET), pp. 1–6, 2013.

[26] A. A. Haider, A. Nadeem, and S. Rafiq, “On the fly test suite optimization with
fuzzyoptimizer,” in 2013 11th International Conference on Frontiers of Information
Technology, pp. 101–106, 2013.

[27] C. Murphy, Z. Zoomkawalla, and K. Narita, “Automatic test case generation and test
suite reduction for closed-loop controller software,” 01 2013.

[28] P. Pringsulaka and J. Daengdej, “Coverall algorithm for test case reduction,” in 2006
IEEE Aerospace Conference, pp. 8 pp.–, 2006.

[29] S. Roongruangsuwan and J. Daengdej, “Test case reduction methods by using cbr,”
CEUR Workshop Proceedings, vol. 646, pp. 75–82, 01 2010.

[30] I. Watson and F. Marir, “Case-based reasoning: A review,” The Knowledge Engi-
neering Review, vol. 9, no. 4, p. 327–354, 1994.

[31] S. Khan, A. Nadeem, and A. Awais, “Testfilter: A statement-coverage based
test case reduction technique,” in 2006 IEEE International Multitopic Conference,
pp. 275–280, 2006.

[32] B. Arasteh, “Using program slicing technique to reduce the cost of software testing,”
Journal of Artificial Intelligence in Electrical Engineering, vol. 2, pp. 24–33, 11
2013.

[33] D. W. Binkley, “Semantics guided regression test cost reduction,” IEEE Trans. Soft-
ware Eng., vol. 23, pp. 498–516, 1997.

[34] S. Tallam and N. Gupta, “A concept analysis inspired greedy algorithm for test suite
minimization,” SIGSOFT Softw. Eng. Notes, vol. 31, p. 35–42, Sept. 2005.

Bibliography 74

[35] S. Xu, H. Miao, and H. Gao, “Test suite reduction using weighted set covering
techniques,” in 2012 13th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 307–
312, 2012.

[36] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical study of junit test-
suite reduction,” in Proceedings of the 2011 IEEE 22nd International Symposium on
Software Reliability Engineering, ISSRE ’11, (USA), p. 170–179, IEEE Computer
Society, 2011.

[37] B. Suri, I. Mangal, and V. Srivastava, “Regression test suite reduction using an hy-
brid technique based on bco and genetic algorithm,” Special Issue of International
Journal of Computer Science & Informatics (IJCSI), pp. 2231–5292, 01 2011.

[38] S. Sampath, R. Bryce, and A. M. Memon, “A uniform representation of hybrid cri-
teria for regression testing,” IEEE Transactions on Software Engineering, vol. 39,
no. 10, pp. 1326–1344, 2013.

[39] S. Yoo and M. Harman, “Using hybrid algorithm for pareto efficient multi-objective
test suite minimisation,” Journal of Systems and Software, vol. 83, no. 4, pp. 689 –
701, 2010.

[40] J. R. Horgan and S. London, “A data flow coverage testing tool for c,” in [1992] Pro-
ceedings of the Second Symposium on Assessment of Quality Software Development
Tools, pp. 2–10, May 1992.

[41] Tao Xie, D. Notkin, and D. Marinov, “Rostra: a framework for detecting redun-
dant object-oriented unit tests,” in Proceedings. 19th International Conference on
Automated Software Engineering, 2004., pp. 196–205, 2004.

[42] T. Xie, J. Zhao, D. Marinov, and D. Notkin, “Detecting redundant unit tests for
aspectj programs,” in 2006 17th International Symposium on Software Reliability
Engineering, pp. 179–190, 2006.

[43] J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li, “Tool support for randomized unit
testing,” in Proceedings of the 1st International Workshop on Random Testing, RT
’06, (New York, NY, USA), p. 36–45, Association for Computing Machinery, 2006.

[44] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random testing for java,”
in Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems and Applications Companion, OOPSLA ’07, (New York, NY,
USA), p. 815–816, Association for Computing Machinery, 2007.

Bibliography 75

[45] H. Jaygarl, K. Lu, and C. K. Chang, “Genred: A tool for generating and reduc-
ing object-oriented test cases,” in 2010 IEEE 34th Annual Computer Software and
Applications Conference, pp. 127–136, 2010.

[46] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei, “Jtop: Managing junit test
cases in absence of coverage information,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE ’09, (USA),
p. 677–679, IEEE Computer Society, 2009.

[47] F. Dadeau, Y. Ledru, and L. Du Bousquet, “Directed random reduction of combi-
natorial test suites,” in Proceedings of the 2nd International Workshop on Random
Testing: Co-Located with the 22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2007), RT ’07, (New York, NY, USA), p. 18–25,
Association for Computing Machinery, 2007.

[48] S. Wang, S. Ali, and A. Gotlieb, “Cost-effective test suite minimization in product
lines using search techniques,” Journal of Systems and Software, vol. 103, pp. 370 –
391, 2015.

[49] J. M. Kauffman and G. M. Kapfhammer, “A framework to support research in and
encourage industrial adoption of regression testing techniques,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation, pp. 907–
908, April 2012.

[50] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for object-
oriented software,” in Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering, ESEC/FSE
’11, (New York, NY, USA), pp. 416–419, ACM, 2011.

[51] A. Vahabzadeh, A. Stocco, and A. Mesbah, “Fine-grained test minimization,” in
Proceedings of the 40th International Conference on Software Engineering, ICSE
’18, (New York, NY, USA), pp. 210–221, ACM, 2018.

[52] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A. Souter Greenwald, “Ap-
plying concept analysis to user-session-based testing of web applications,” IEEE
Transactions on Software Engineering, vol. 33, pp. 643–658, Oct 2007.

[53] S. Sampath, R. C. Bryce, S. Jain, and S. Manchester, “A tool for combination-based
prioritization and reduction of user-session-based test suites,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM), pp. 574–577, 2011.

[54] G. Woo, H. S. Chae, and H. Jang, “An intermediate representation approach to re-
ducing test suites for retargeted compilers,” in International Conference on Reliable
Software Technologies, pp. 100–113, Springer, 2007.

Bibliography 76

[55] H. S. Chae, G. Woo, T. Y. Kim, J. H. Bae, and W.-Y. Kim, “An automated approach
to reducing test suites for testing retargeted c compilers for embedded systems,”
Journal of Systems and Software, vol. 84, no. 12, pp. 2053 – 2064, 2011.

[56] H.-Y. Hsu and A. Orso, “Mints: A general framework and tool for supporting test-
suite minimization,” in Proceedings of the 31st International Conference on Soft-
ware Engineering, ICSE ’09, (USA), p. 419–429, IEEE Computer Society, 2009.

[57] D. Li, C. Sahin, J. Clause, and W. G. J. Halfond, “Energy-directed test suite opti-
mization,” in 2013 2nd International Workshop on Green and Sustainable Software
(GREENS), pp. 62–69, 2013.

[58] X. Zhang, Q. Gu, X. Chen, J. Qi, and D. Chen, “A study of relative redundancy in
test-suite reduction while retaining or improving fault-localization effectiveness,” in
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, (New
York, NY, USA), p. 2229–2236, Association for Computing Machinery, 2010.

[59] M. Burger and A. Zeller, “Minimizing reproduction of software failures,” in Pro-
ceedings of the 2011 International Symposium on Software Testing and Analysis,
ISSTA ’11, (New York, NY, USA), p. 221–231, Association for Computing Ma-
chinery, 2011.

[60] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: An eclipse plug-in for test-
ing and debugging,” 2012 27th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2012 - Proceedings, 09 2012.

[61] R. Mukherjee and K. S. Patnaik, “A survey on different approaches for software test
case prioritization,” Journal of King Saud University - Computer and Information
Sciences, 2018.

[62] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng, “Test case prioritiza-
tion approaches in regression testing: A systematic literature review,” Information
and Software Technology, vol. 93, pp. 74 – 93, 2018.

[63] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold, “Test case prioriti-
zation: an empirical study,” in Proceedings IEEE International Conference on Soft-
ware Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business Change’
(Cat. No.99CB36360), pp. 179–188, Aug 1999.

[64] D. Paterson, G. Kapfhammer, G. Fraser, and P. McMinn, “Using controlled numbers
of real faults and mutants to empirically evaluate coverage-based test case prioritiza-
tion,” in 2018 IEEE/ACM 13th International Workshop on Automation of Software
Test (AST), pp. 57–63, May 2018.

Bibliography 77

[65] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight test selection,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
vol. 2, pp. 713–716, May 2015.

[66] P. Meirelles, C. Santos Jr., J. Miranda, F. Kon, A. Terceiro, and C. Chavez, “A study
of the relationships between source code metrics and attractiveness in free software
projects,” in 2010 Brazilian Symposium on Software Engineering, pp. 11–20, Sep.
2010.

[67] S. Greco, J. Figueira, and M. Ehrgott, Multiple criteria decision analysis. Springer,
2016.

[68] V. Belton and T. Stewart, Multiple criteria decision analysis: an integrated ap-
proach. Springer Science & Business Media, 2002.

[69] M. Velasquez and P. Hester, “An analysis of multi-criteria decision making meth-
ods,” International Journal of Operations Research, vol. 10, pp. 56–66, 05 2013.

[70] R. Saaty, “The analytic hierarchy process—what it is and how it is used,” Mathe-
matical Modelling, vol. 9, no. 3, pp. 161 – 176, 1987.

[71] T. L. Saaty, “Decision making with the analytic hierarchy process,” International
journal of services sciences, vol. 1, no. 1, pp. 83–98, 2008.

[72] M. Martı́nez, D. D. Andrés, and J.-C. Ruiz, “Gaining confidence on dependabil-
ity benchmarks’ conclusions through ”back-to-back” testing (practical experience
report),” in Proceedings of the 2014 Tenth European Dependable Computing Con-
ference, EDCC ’14, (USA), p. 130–137, IEEE Computer Society, 2014.

[73] N. Vafaei, R. A. Ribeiro, and L. M. Camarinha-Matos, “Normalization techniques
for multi-criteria decision making: analytical hierarchy process case study,” in doc-
toral conference on computing, electrical and industrial systems, pp. 261–269,
Springer, 2016.

[74] A. Çelen, “Comparative analysis of normalization procedures in topsis method:
With an application to turkish deposit banking market,” Informatica, Lith. Acad.
Sci., vol. 25, pp. 185–208, 2014.

[75] A. Jahan and K. L. Edwards, “A state-of-the-art survey on the influence of normal-
ization techniques in ranking: Improving the materials selection process in engi-
neering design,” Materials & Design (1980-2015), vol. 65, pp. 335 – 342, 2015.

[76] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed random test
generation,” in 29th International Conference on Software Engineering (ICSE’07),
pp. 75–84, May 2007.

Bibliography 78

[77] A. H. Watson, D. R. Wallace, and T. J. McCabe, Structured testing: A testing
methodology using the cyclomatic complexity metric, vol. 500. US Department of
Commerce, Technology Administration, National Institute of . . . , 1996.

[78] Y. Ledru, “Tobias : a tool for combinatorial testing.” http://tobias.liglab.
fr/. Accessed: 22-10-2018.

[79] “Atac – automatic test analysis for c programs.” https://

invisible-island.net/atac/. Accessed: 17-11-2018.

http://tobias.liglab.fr/
http://tobias.liglab.fr/
https://invisible-island.net/atac/
https://invisible-island.net/atac/

Appendix A

Selected frameworks and tools

group SimpleSequence [us= t r u e] {
P u r s e p = new P u r s e () ;
p . c r e d i t ([1 0 , 50 , 0]) ;
p . d e b i t ([5 , 1 5]) ;
p . g e t B a l a n c e () ;
}

Listing A.1: Tobias input file example

79

Appendix B

Implementation

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<c o n f i g>

<mode>F u l l< / mode>

<!−− The p a t h where t h e r e d u c e d p r o j e c t s w i l l be w r i t t e n −−>
< r e d u c e d P r o j e c t s P a t h>D:\Reduced\< / r e d u c e d P r o j e c t s P a t h>

< r e p o r t s P a t h>< / r e p o r t s P a t h> <!−− The p a t h where t h e r e p o r t s w i l l be
w r i t t e n −−>

<o u t p u t P a t h>D:\Es tudo< / o u t p u t P a t h> <!−− The p a t h where t h e o u t p u t
w i l l be saved −−>

<e v o s u i t e> f a l s e< / e v o s u i t e> <!−− s h o u l d use e v o s u i t e −−>

<k a n o n i z o> <!−− Kanonizo c o n f i g u r a t i o n −−>
<use> t r u e< / u se> <!−− s h o u l d use k a n o n i z o −−>
<a l g o r i t h m s> <!−− a l g o r i t h m s t o use −−>

<a l g o r i t h m use =” t r u e ”>random< / a l g o r i t h m>
<a l g o r i t h m use =” f a l s e ”>g re ed y< / a l g o r i t h m>
<a l g o r i t h m use =” f a l s e ”>r andomsea rch< / a l g o r i t h m>
<a l g o r i t h m use =” f a l s e ”>a d d i t i o n a l g r e e d y< / a l g o r i t h m>

< / a l g o r i t h m s>
<c u t O f f s> <!−− p e r c e n t a g e s t o c u t t h e t e s t S u i t e s −−>

<c u t O f f>15< / c u t O f f>
<c u t O f f>20< / c u t O f f>
<c u t O f f>25< / c u t O f f>

< / c u t O f f s>
< / k a n o n i z o>

<!−− The TSR t o o l s t o run i n t h e e x p e r i m e n t −−>
<TSRtools>

< t o o l>
<name>T e s t l e r< / name>
< j a r>p a t h / t o / j a r< / j a r> <!−− o p t i o n a l −−>

< / t o o l>
< t o o l>

<name>Randoop< / name>
< j a r>p a t h / t o / j a r< / j a r>

81

Appendix B. Implementation 82

< / t o o l>
< / TSRtools>

<!−−
The v a l u e s o f ’ i m p o r t a n c e ’ must be g i v e n as a
compar i son between c r i t e r i a and a c c o r d i n g t o
t h e s e v a l u e s :

1 − Equal i m p o r t a n c e
3 − Moderate i m p o r t a n c e
5 − S t r o n g i m p o r t a n c e
7 − Very s t r o n g i m p o r t a n c e
9 − Extreme i m p o r t a n c e

2 , 4 , 6 , 8 v a l u e s can be used f o r
i n t e r m e d i a t e i m p o r t a n c e v a l u e s

i f X has an i m p o r t a n c e z r e l a t e d t o Y,
t h e n Y s h o u l d have an i m p o r t a n c e 1 / z r e l a t e d t o X
−−>

<ahp>
< c r i t e r i a>

<name>Dimension< / name>
<i m p o r t a n c e>2< / i m p o r t a n c e>
<i m p o r t a n c e>1 / 2< / i m p o r t a n c e>
< s u b c r i t e r i a>

< c r i t e r i a>
<name>F i l e S i z e< / name>
<i m p o r t a n c e>1< / i m p o r t a n c e>

< / c r i t e r i a>
< c r i t e r i a>

<name># of T e s t Cases< / name>
<i m p o r t a n c e >1< / i m p o r t a n c e>

< / c r i t e r i a>
< / s u b c r i t e r i a>

< / c r i t e r i a>
< c r i t e r i a>

<name>Coverage< / name>
<i m p o r t a n c e>1 / 2< / i m p o r t a n c e>
<i m p o r t a n c e>1 / 5< / i m p o r t a n c e>
< s u b c r i t e r i a>

< c r i t e r i a>
<name>% Branches Covered< / name>
<i m p o r t a n c e>1< / i m p o r t a n c e>

< / c r i t e r i a>
< c r i t e r i a>

<name>% T o t a l Coverage< / name>
<i m p o r t a n c e>1< / i m p o r t a n c e>

< / c r i t e r i a>
< / s u b c r i t e r i a>

< / c r i t e r i a>
< c r i t e r i a>

<name>Time< / name>
<i m p o r t a n c e>2< / i m p o r t a n c e>
<i m p o r t a n c e>5< / i m p o r t a n c e>
< s u b c r i t e r i a>

Appendix B. Implementation 83

< c r i t e r i a>
<name>T e s t s E x e c u t i o n Time< / name>

< / c r i t e r i a>
< / s u b c r i t e r i a>

< / c r i t e r i a>
< / ahp>

<p r o j e c t s> <!−− The s u b j e c t s o f t h e e x p e r i m e n t −−>
<p r o j e c t>

<name>p r o j e c t n a m e 1< / name>
<pathToPom>Pa th / t o / pom / 1< / pathToPom>
<we ig h t>1< / w e i gh t> <!−− Weight f o r t h e f i n a l s c o r e −−>

< / p r o j e c t>
<p r o j e c t>

<name>p r o j e c t n a m e 2< / name>
<pathToPom>Pa th / t o / pom / 2< / pathToPom>
<we ig h t>1< / w e i gh t>

< / p r o j e c t>
<p r o j e c t>
<name>p r o j e c t n a m e 3< / name>
<pathToPom>Pa th / t o / pom / 3< / pathToPom>
<we ig h t>1< / w e i gh t>

< / p r o j e c t>
< / p r o j e c t s>

< / c o n f i g>

Listing B.1: config.xml

Figure B.1: Package pt.ul.di.fc.pei42103 class diagram.

Figure B.2: Package pt.ul.di.fc.pei42103.clover class diagram.

Appendix B. Implementation 85

Figure B.3: Package pt.ul.di.fc.pei42103.tools class diagram.

Appendix B. Implementation 86

Figure B.4: Package pt.ul.di.fc.pei42103.ahp class diagram.

Appendix B. Implementation 87

Figure B.5: Package pt.ul.di.fc.pei42103.utils class diagram.

Appendix B. Implementation 88

Appendix C

Results

commons-email commons-lang crunch-core crunch-kafka java-library lambdaj jfreechart pmd-core tika-xmp tudu-lists xmlsec Total
Weights 1 1 1 1 1 1 1 1 1 1 1

kanonizo#randomsearch#30 0.77603 0.89226 0.44499 0.90908 0.81879 0.90985 0.79976 0.93381 0.81474 0.95290 0.92666 0.83444
kanonizo#randomsearch#25 0.77902 0.90606 0.46529 0.90961 0.79417 0.89968 0.60661 0.92067 0.90740 0.93194 0.93679 0.82338

EvoSuite 0.99645 0.79803 0.34112 0.57145 0.97995 1.00000 0.93222 0.69066 0.87051 0.90696 0.95761 0.82227
kanonizo#additionalgreedy#20 0.46740 0.88963 0.97222 0.93806 0.81073 0.89379 0.57739 0.92895 0.72208 0.89315 0.86818 0.81469
kanonizo#additionalgreedy#30 0.51277 0.97088 0.94745 0.81430 0.82063 0.91027 0.43568 0.95390 0.81474 0.88996 0.81201 0.80751
kanonizo#additionalgreedy#15 0.48187 0.89311 0.92807 0.67808 0.73559 0.88867 0.65881 0.91892 0.90740 0.92604 0.82373 0.80366

kanonizo#greedy#30 0.50720 0.98494 0.47113 0.97855 0.79789 0.90055 0.60565 0.94308 0.72208 0.99401 0.73994 0.78591
kanonizo#random#30 0.49980 0.83796 0.42394 0.74282 0.78521 0.93987 0.71916 0.98021 0.72208 0.95328 0.88579 0.77183

kanonizo#greedy#25 0.50194 0.96298 0.46637 0.78798 0.81108 0.88745 0.62109 0.83004 0.81474 0.90902 0.87532 0.76982
kanonizo#random#15 0.47100 0.79078 0.35195 0.79155 0.77621 0.93316 0.57435 0.89387 0.81474 0.89830 0.88250 0.74349

kanonizo#additionalgreedy#10 0.46732 0.77139 0.92732 0.88160 0.48661 0.87572 0.51070 0.65375 0.81474 0.91910 0.86424 0.74295
kanonizo#greedy#20 0.49810 0.95149 0.40594 0.88791 0.78818 0.88168 0.65600 0.81616 0.90740 0.94467 0.30495 0.73113

kanonizo#random#25 0.49744 0.76971 0.48363 0.84763 0.81936 0.93102 0.58954 0.96540 0.90740 0.33866 0.81646 0.72421
kanonizo#randomsearch#20 0.48835 0.88847 0.43931 0.85898 0.32636 0.90550 0.54311 0.91288 0.72208 0.94705 0.91989 0.72291

kanonizo#random#20 0.47828 0.80140 0.45019 0.83730 0.77496 0.93926 0.30908 0.94229 0.62942 0.92274 0.84899 0.72126
kanonizo#additionalgreedy#25 0.47054 0.95821 0.94379 0.83828 0.50875 0.32006 0.47509 0.94095 0.62942 0.95930 0.72738 0.70652

kanonizo#greedy#10 0.46692 0.75151 0.32540 0.88964 0.30958 0.88644 0.53992 0.88693 0.90740 0.90194 0.84873 0.70131
kanonizo#randomsearch#15 0.44899 0.87576 0.40357 0.80759 0.63525 0.88194 0.56966 0.89508 0.44410 0.93286 0.79104 0.69871

kanonizo#random#10 0.39615 0.73548 0.41658 0.82353 0.60746 0.87204 0.33694 0.75542 0.90740 0.81598 0.92512 0.69019
kanonizo#randomsearch#10 0.39131 0.76880 0.40169 0.80839 0.47085 0.88278 0.58583 0.89070 0.53676 0.92590 0.82906 0.68110

kanonizo#greedy#15 0.41386 0.90686 0.42085 0.90036 0.76695 0.83741 0.66604 0.28839 0.72208 0.87448 0.56135 0.66897
Testler 0.41290 0.83816 0.37256 0.29464 0.71884 0.72157 0.46661 0.86981 0.25878 0.80273 0.92958 0.60783

Randoop 0.28130 0.30561 0.37256 0.58420 0.61543 0.83804 0.32877 0.79294 0.44313 0.87373 0.91918 0.57772

Table C.1: Example of the results table.

Coverage Time Dimension
Coverage 1 1/3 7

Time 3 1 9
Dimension 1/7 1/9 1

Table C.2: Criteria Pairwise Comparison Matrix (real-world scenario).

File size # Test cases % Branch coverage % Total coverage
File size 1 1/5 % Branch coverage 1 1/7

Test cases 5 1 % Total coverage 7 1

Table C.3: Sub-criteria Pairwise Comparison Matrices (real-world scenario).

89

Appendix C. Results 90

Evaluated
criteria

Other
criteria

Other
criteria

Evaluated
criteria 1 9 9

Evaluated
criteria 1/9 1 1

Evaluated
criteria 1/9 1 1

Table C.4: Criteria Pairwise Comparison Matrices (focused sub-criteria).

Evaluated
sub-criteria

Other
sub-criteria

Other
sub-criteria

Other
sub-criteria

Evaluated
sub-criteria 1 9

Other
sub-criteria 1 1

Other
sub-criteria 9 1

Other
sub-criteria 1 1

Table C.5: Sub-criteria Pairwise Comparison Matrices (focused sub-criteria).

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Goals
	Contributions
	Document organization

	Related work
	Test Suite Reduction
	Test Suite Reduction techniques
	Classification of techniques
	Test Suite Reduction tools

	Test Case Prioritization
	Test Case Prioritization techniques
	Test Case Prioritization tools

	Code metrics
	Multiple-Criteria Decision-Making
	Analytic Hierarchy Process
	Normalizing values

	Selected frameworks and tools
	Initial set of Test Suite Reduction tools
	ATAC
	RUTE-J
	Randoop
	Open-SourceRed
	MINTS
	GZoltar
	EvoSuite
	Testler
	JTOP
	TOBIAS
	TEMSA

	Final set of Test Suite Reduction tools
	Test case prioritization tool: Kanonizo

	Design
	Initial approach
	Case studies
	Code analysis tools
	JaCoCo
	OpenClover
	Chosen tool

	Code metrics processing and tools evaluation
	Final concept

	Implementation
	Code structure
	Framework modifiability and configuration
	Modifiability of the framework

	Analytic Hierarchy Process implementation
	Modified Test Suite Reduction Tools
	Problems found

	Results
	Testing environment
	Experiments and results
	Generating, reducing and analyzing tests
	Calculating scores

	Discussion

	Conclusion
	Results
	Problems
	Future work

	Bibliography
	Selected frameworks and tools
	Implementation
	Results

