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Infectious agents, such as HIV, hepatitis B virus (HBV), hepati-
tis C virus (HCV), malaria, and influenza remain significant public 
health threats, with ~41 million people chronically infected by HIV, 
~331 million infected by HBV, ~148 million infected by HCV, and 
~351 million cases of malaria, according to the Global Burden of 
Disease 2013 study.1 In addition, threats of new influenza pandem-
ics or emerging viruses, such as Ebola and Zika, have created alarm in 
the United States and in many parts of the world. Despite intensive 
research efforts by public and private institutions, there are still no 
vaccines for HIV, HCV, malaria, Ebola, Zika, and many other patho-
gens. Even though there has been enormous progress with antiviral 
therapies for chronic infections, we are still unable to cure HIV and 
HBV, and life- long treatment is needed.

Nevertheless, the knowledge gained in the last two decades 
about the epidemiology, pathobiology, and molecular details of 
many of these infections has been impressive. One of the funda-
mental discoveries (or perhaps, realizations) is that crucial aspects 
of within- host pathogen biology and immunity against pathogens 
depend on the dynamics of the interplay among the agents involved. 
The simple conceptual model that microbes and the immune cells 
that fight them enter the body or in the case of immune cells are 
generated from precursors, replicate, and are lost—due to a myriad 
of complex mechanisms—has been a powerful driving force in our 
understanding of infections. This framework allows us to analyze at 
different levels of detail the life cycle of the cells and microbes in-
volved in any given infection process (Figure 1).

While mathematical modeling of viral infections and immunity has 
a long history, the application of the idea of quantifying the within- 
host dynamics of the pathogen made a major impact in clinical practice 
with the publication of two seminal papers in 19952,3 using modeling 
to show that HIV infection was a very dynamic process, in which virus 
was rapidly replicating and being cleared within infected individuals. 
Before this realization, HIV was thought by many to be a “dormant” 
virus similar to other lentiviruses, because of the observation that 
HIV infection took close to a decade to lead to AIDS and during most 

of this period plasma HIV levels hardly changed. The realization of 
fast (and error prone) HIV replication indicated that drug resistance 
was inevitable, if just one or two drugs were used for which the virus 
could become resistant with one-  or two- point mutations. This lead 
to the conclusion that combination therapy with at least three drugs 
was needed. Modeling of HIV and then of other pathogens elucidated 
various aspects of the dynamics, such as the lifespan of infected cells, 
efficacy of drug treatment, modes of action of treatment, dynamics 
of different populations of infected cells, etc. These insights spanned 
the range of helping to understand basic pathogen biology to influ-
encing clinical decisions. For example, in the case of HCV infection, 
modeling showed how one could estimate the in vivo effectiveness of 
new antivirals with clinical trials that lasted days rather than the pre-
vious standard of 48 weeks.4 This ushered in the clinical evaluation 
of scores of new candidate agents eventually leading to the current 
highly successful interferon- free combination therapies with direct 
acting antivirals (DAAs) that are curing almost all treated patients.

Over the years since these early breakthroughs, modeling has 
taken a prominent place in infectious disease research, as well as im-
munology.5-8 There is now a large community of researchers, both in 
academia and industry, working at the interface of quantitative vi-
rology, immunology, therapeutics and medicine. The purpose of this 
volume is to review research in these areas, to better understand the 
nature of the challenges that treating and curing infections bring, and 
to foster new therapeutic progress. We aimed for this volume to cover 
a broad range of topics exemplifying the impact that modeling has had 
in multiple fields, from molecular aspects of T- cell activation to phylo-
dynamics of viral infections. However, we could not cover every topic, 
and for the most part, the extremely active field of systems immu-
nology, using “big data sets” was not included in the present volume.5 
Our choice was to emphasize mechanistic models of viral infection 
and immunology. Our objective is to promote an interdisciplinary as-
sessment of the state- of- the- art, the future of the field and to explore 
how best to navigate roadblocks and hurdles to fully realize the poten-
tial of modeling of infections for improving human health.

Given the recent history of the field, it is appropriate that this 
volume opens with a modern review of the impact of viral dynamics This article introduces a series of reviews covering the topic of Modeling Viral Infection 

and Immunity appearing in Volume 285 of Immunological Reviews.
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models in the treatment of HIV, including discussion of antiretroviral 
treatment, and also more recent modeling analyses of latency reac-
tivation agents.9 At the same time, one of the greatest challenges 
in the HIV field is understanding the effector immune mechanisms, 
why they fail, what are the correlates of immunity. and how to model 
immune effects. One aspect of this is the subject of the second re-
view, where experiments depleting CD8+ cells in the simian immu-
nodeficiency (SIV)—macaque model are discussed.10 These have led 
to substantial controversy on the interpretation of the ensuing viral 
dynamics, which depend to a large extent on the use of mathemat-
ical models with different assumptions. Next, these general ideas 
from HIV are applied to two other important viruses, HBV and HCV, 
with a contrasting recent history. Chronic HBV is still mostly an in-
curable disease, and the review by Ciupe discusses models of acute 
infection, the virus- host characteristics responsible for transition to 
chronic disease, and the use of optimal control ideas to design drug 
therapy regimes.11 On the other hand, the clinical care of HCV has 
seen an enormous transformation, where DAAs are able to cure a 
large fraction of infected patients with treatments that typically last 
12 weeks or less. Although these have been very successful, there 
may be scope for improving protocols and Raja et al12 discuss the role 
of interferon in HCV treatment with DAAs. Here, it is clear that un-
derstanding the ongoing innate immune response may be critical to 
designing better treatment protocols. The theme of understanding 
the type I interferon response is continued in the review by Talemi 
& Höfer13, where the tug of war between the antiviral interferon 

response and virus replication is described at the single cell level. 
At this level, the response is very heterogeneous and typically only 
10%- 30% of cells in a population uniformly infected by virus express 
interferon- β. The same preoccupation with understanding immune 
mechanisms is clear in the review by Best & Perelson14 on Zika virus 
infection, where identifying and understanding the key mechanisms 
of both innate and adaptive immune control should provide the 
foundation for the development of effective vaccines and antiviral 
therapy. Zika is an emerging disease and it is associated with signifi-
cant risk of morbidity especially for pregnant women and newborns. 
By adapting existing mathematical models of within-host infection 
to this acute virus, it is hoped that it will be possible to understand 
key aspects of the viral life cycle, to predict antiviral efficacy, and to 
define correlates of immunity and pathogenesis.

Another important acute infection that modelers have studied in 
detail is influenza, which can generate both seasonal (relatively mild) 
epidemics and (potentially devastating) pandemics. Smith reviews15 
recent advances in modeling influenza, with the important twist of 
considering coinfections with other microorganisms, especially bac-
terial coinfections, which are thought to be one of the main causes of 
mortality in influenza infection. Because mice represent a reasonable 
small- animal model for this infection, influenza studies and experi-
ments can be designed with modeling in mind. This review discusses 
utilizing model- driven experimental design, which can represent a 
paradigm for other infectious diseases.15 An important aspect of in-
fluenza is that the infection is usually localized in the lungs and Smith 

F IGURE  1 Dynamical models can be powerful tools to understand infectious diseases, immune response, and outcomes of infection. 
Developing models of the dynamics of cell populations or subcellular compartments interacting with pathogens, computing the target cell, 
pathogen, and immune system kinetics under different possible scenarios, and estimating model parameters leads to predictions about the 
course of the disease and clinical outcome. In this volume, there are multiple examples of the state- of- the- art in applying these principles 
to multiple important problems in infectious diseases and immunity. The panels in this figure highlight some of the models and results 
discussed later in this volume
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shows how the virus spreads through the lungs as a function of time 
during infection in mice and raises the issue of to what extent the 
infection is target cell vs innate response limited. More generally, 
taking into account the spatial localization and potential production 
and spread of virus within tissues, both by cell- to- cell infection and 
by cell free virus, is becoming an important area of research (eg,16). 
The next review deals with one such viral infection: herpes simplex 
virus 2 (HSV- 2).17 In this case, it is not just the viral dynamics that are 
modeled, but also viral containment by tissue resident CD8+ memory 
(TRM) T cells. The review by Schiffer et al describes the use of math-
ematical models to correlate large spatial gradients in TRM density 
with the heterogeneity of observed shedding within a single person. 
They also describe how models have been leveraged for clinical trial 
simulation, as well as his future plans “to model the interactions of 
multiple cellular subtypes within mucosa, predict the mechanism of 
action of therapeutic vaccines, and describe the dynamics of three- 
dimensional infection environment during the natural evolution of 
an HSV- 2 lesion”17. A more abstract approach to spatial localization 
of infection and to develop a method to ascertain anatomical colo-
nization pathways is presented in the review by Bons & Regoes18, 
which discusses phylodynamic methods to infer not just migration 
of virus, but also other dynamics characteristics of within- host viral 
expansion.

The two reviews that follow deal with Mycobacterium tuberculo-
sis (Mtb) and malaria. These are two very good examples of how the 
ideas of viral dynamics may be applied to pathogens that are poten-
tially more complex in their life cycles, and (as in these cases) that 
have thwarted our efforts to control them for millennia. Cicchese 
et al19 adopt the very interesting perspective that one mechanism 
that allows long- term control of persistent Mtb infection without 
an overly deleterious immune response is for the immune system 
to balance pro-  and anti- inflammatory cells and signals. Because this 
balance is dynamic, involving continuous feedback, they argue that 
mathematical modeling is the right framework to understand this in-
fection and its control by the immune system. Khoury et al20 review 
work done to date on within host modeling of the blood stage of 
Plasmodium spp. infection. The approach they discuss, centered on 
understanding the complex dynamics of the malaria life cycle and 
the effect of different drugs at different stages, is more reminiscent 
of “traditional viral dynamics models” particularly those that are 
age- structured. It is extremely interesting to see how adaptation of 
those ideas to a new pathogen, with the necessary modifications to 
account for the more complex life cycle, is already bearing novel in-
sights into malaria biology.

The second part of this volume is dedicated to mathematical mod-
els of the immune system, with a particular focus on T- cell biology. 
This is an area of large expansion with many groups and pioneering 
studies in the last two decades or so. This in itself is very interesting, 
because many of the earlier quantitative models in immunology were 
dedicated to B- cell biology, antibody specificity and affinity matura-
tion.21-26 The work reviewed in this second part spans the scales from 
modeling the quantitative aspects of T- cell receptor (TCR) activation, 
focusing on the molecular mechanisms that underpin the exquisite 

sensitivity of this receptor27; to a global theory of T- cell (and B- cell) 
fate decision. The TCR defines the cell specificity and a clonotype 
is the set of cells with the same specificity. There has been a long- 
standing interest in understanding how the diversity of clonotypes 
is maintained, which hinges on knowledge of how many clonotypes 
actually exist. This is a very difficult, nearly impossible, question to 
answer experimentally and mathematical models are essential to an-
alyze this issue. Such models and interpreting experimental results in 
this area are the topics of the review by Lythe & Molina- Paris.28 They 
review statistical and heuristic models of diversity in the T- cell rep-
ertoire, but this is followed by a review of more mechanistic models 
of the biology of naive T cells from birth to maturity.29 These models 
have been developed by integrating modeling and experiments to 
discover a better picture of the life history of T cells, in an exem-
plar long- standing collaboration among the authors of that review. 
A crucial component of understanding T- cell life histories is to have 
a good estimate of the turnover rates of different subsets of cells. 
The review by Borghans et al30 address this issue not only for T cells, 
but also for many other leukocytes, based on state- of- the- art exper-
imental techniques (using deuterium as a label of newly formed DNA 
in replicating cells) and modeling. This provides perhaps one of the 
best examples of experiments that only make sense in the context of 
modeling. In fact, simple observation or description of experimental 
results are very difficult to interpret, and adequate modeling and un-
derstanding of the assumptions involved are crucial for reaching any 
conclusions from the data. The final review by Hodgkin31 proposes 
a unifying concept for cell fate decisions, such as division, death or 
differentiation, based on independent functional components within 
the cell subject to stochastic variation, and influenced by cellular cal-
culus integrating signals reaching the cell. In support of this concept, 
the author reviews a sizable body of work of very quantitative ex-
periments measuring cell division, cell integration of multiple signals 
and mathematical models that provide unifying insights into these 
multiple processes.

The various authors of the reviews in this issue tended to em-
phasize biology and biological implications of mathematical mod-
eling in the various systems. We also asked them to include some 
details of the mathematical approaches used. Thus, one can see 
that although simple ordinary differential equations are the tool 
of choice in most cases, many other mathematical techniques are 
important in modeling pathogens and immune response. These in-
clude the gamut from stochastic models and equations28 to agent- 
based models,19 including partial differential equations,27 and 
probabilistic models.31

Altogether, this volume represents a unique opportunity for 
researchers in a variety of allied fields to learn about the state- of- 
the- art in modeling viral infections and immunity. At the same time, 
one can already see emerging future directions in these fields. More 
complex biological processes, including pathogens with complicated 
life cycles, interactions of both the innate and adaptive immune sys-
tem with pathogens and the effects of coinfections are all areas of 
great research interest and where modeling has only scratched the 
surface.
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