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Abstract: Field mapping and information on agricultural landscapes is of increasing importance for
many applications. Monitoring schemes and national cadasters provide a rich source of information
but their maintenance and regular updating is costly and labor-intensive. Automatized mapping of
fields based on remote sensing imagery may aid in this task and allow for a faster and more regular
observation. Although remote sensing has seen extensive use in agricultural research topics, such as
plant health monitoring, crop type classification, yield prediction, and irrigation, field delineation and
extraction has seen comparatively little research interest. In this study, we present a field boundary
detection technique based on deep learning and a variety of image features, and combine it with
the graph-based growing contours (GGC) method to extract agricultural fields in a study area in
northern Germany. The boundary detection step only requires red, green, and blue (RGB) data and
is therefore largely independent of the sensor used. We compare different image features based
on color and luminosity information and evaluate their usefulness for the task of field boundary
detection. A model based on texture metrics, gradient information, Hessian matrix eigenvalues,
and local statistics showed good results with accuracies up to 88.2%, an area under the ROC curve
(AUC) of up to 0.94, and F; score of up to 0.88. The exclusive use of these universal image features
may also facilitate transferability to other regions. We further present modifications to the GGC
method intended to aid in upscaling of the method through process acceleration with a minimal effect
on results. We combined the boundary detection results with the GGC method for field polygon
extraction. Results were promising, with the new GGC version performing similarly or better than
the original version while experiencing an acceleration of 1.3x to 2.3% on different subsets and input
complexities. Further research may explore other applications of the GGC method outside agricultural
remote sensing and field extraction.

Keywords: field extraction; field boundary detection; deep learning; multilayer perceptron; active
contours; growing snakes; graph-based growing contours

1. Introduction

Field mapping is a topic of increasing relevance. Knowledge of field sizes, shapes, and distributions
is valuable for a wide variety of topics, ranging from precision agriculture to biodiversity mapping,
agricultural policy, yield estimation, and cropland classification [1-3]. Today, monitoring is mostly based
on field campaigns, administrative maps, and manual airborne or satellite imagery interpretation [1].
However, such approaches are time-consuming and costly, and require manual interpretation. Regularly
updated and standardized national cadasters, such as the Land Parcel Identification Systems or the
Integrated Administration and Control Systems promoted by the European Union, can mitigate this
but are still prone to subjective interpretation in the mapping process and difficulty of evaluating
information [1,4—6]. Furthermore, financial and labor limitations often hamper timely updates.
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Remote sensing promises to alleviate these issues through regular large-scale observations of
agricultural landscapes and much lower cost thanks to increasing amounts of freely accessible data.
As a result, earth observation data has seen extensive use in agricultural applications over the years,
covering topics such as crop type classification, plant health monitoring and stress detection [7-12]).
The topic of field boundary detection and field extraction, however, has received relatively little interest
so far.

Field boundary detection is commonly tackled through edge detection, -clustering,
and segmentation techniques, as well as machine learning classifications such as random forest [13-16].
Other approaches include the use of image characteristics such as texture and statistical modeling [2,17].
Frequently, separation of individual fields is performed via segmentation of pixels or clusters of pixels,
ultimately limiting the accuracy of extracted fields.

Simultaneously, artificial intelligence methods, such as artificial neural networks (NNs),
have frequently proven their merits in the context of edge detection, classification,
and segmentation [12,18-20]. Recently, research has focused on convolutional NNs that were also
applied to field boundary detection [21-24]. Neural networks have the advantage of being capable of
extracting highly non-linear relationships and have proven to be highly capable in different classification
tasks. However, a drawback often noted is the difficulty of transferring results obtained in one region
or on a specific dataset to another.

In a previous publication, we presented a full workflow combining agricultural field boundary
detection and polygon extraction steps [25]. Starting from image pre-processing and enhancement,
we combined edge detection, contour detection, and, finally, field polygon extraction. We used a
newly developed, modified growing contours method, called graph-based growing contours (GGC),
to extract complex networks of contours present in agricultural field boundaries. This method is
flexible regarding the input information used and proved to be promising in extracting field boundaries,
even in rather complex environments.

However, this process is naturally dependent on the quality of the field boundary map used
as an input. Despite extensive pre-processing and image enhancing, contours in the previous study
were often heterogeneous in strength, and it proved to be difficult to create a reliable boundary map
for the subsequent field polygon extraction steps. This necessitated optimization of local parameter
settings to achieve comparable results in different parts of an image. Further, we had to resort to small
step sizes in the extraction procedure, resulting in longer processing time and hampering scale-up to
larger scenes.

To address these drawbacks and enable large-scale applications of our methodology, in this study
we explore an improved boundary detection approach. We decided to use multilayer perceptron
neural networks (MLP-NNs) and aimed to develop a structure with a high potential of performing well
under different environments and in different locations [26]. Following an extensive literature review,
we selected a large number of potentially useful input features for successful agricultural boundary
detection using MLP-NNs. We explored the usefulness of different features based on various image
characteristics and developed a boundary detection model based on study areas located in the east of
the state of Schleswig-Holstein, Germany. By limiting our analysis only to the red, green, and blue
(RGB) bands of Sentinel-2 (5-2), we wanted to demonstrate the use of only the most basic imagery,
making our approach largely independent of the sensor.

We further introduce an improved version of the previously presented GGC algorithm with
scalability in mind. We apply both versions of the GGC algorithm to the obtained boundary maps and
analyze results of the boundary detection and the extracted polygons, as well as processing speed of
the different GGC algorithms.

The paper is structured as follows. In Section 2, we describe the study area and the data we used.
Section 3 presents the methodology, including image feature preparation, input selection, and model
training. Section 4 shows results of the boundary detection and performance of subsequent polygon
extraction. Section 5 discusses results and Section 6 summarizes the most important findings.
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2. Data and Materials

2.1. Study Areas

We obtained data from two study areas in the state of Schleswig-Holstein, Germany (see Figure 1).
Both were predominantly used for agricultural purposes. Field sizes were rather heterogeneous in
both regions, ranging from below 1 ha up to about 75 ha. Fields, especially in study area 1, were often
irregular in shape. The landscape structure is a mixture of agricultural areas with small forests,
grasslands, and smaller urban agglomerations.

9°46'E 9°48'E 9°50'E 9°52'E 9°54'E
|

54°40N -

54°38'N

53°34'N

54°36'N 18

53°32'N
54°34'N

Figure 1. Maps of study areas 1 (left) and 2 (right).

The study areas are located in the so-called “Schleswig-Holsteinisches Hiigelland”, a hilly but
low-elevation region along the coast of the Baltic Sea in northern Germany that forms one of three
large landscape zones in the state of Schleswig-Holstein. The climate is temperate/oceanic with warm
summers and wet winters (Cfb in the Koeppen-Geiger climate classification) [27].

Farming in the region is rain-fed and highly industrialized. Common agricultural crops include
cereals such as wheat and barley but also maize and rapeseed [28].

2.2. Satellite Imagery

We used Sentinel-2 Level-2A atmospherically corrected imagery. For each study area,
we considered observations over the 2019 growing season (March to October) and selected those with
no cloud cover over the respective study area. We considered three observation times in early (March),
mid (June), and late (September) growing season. To allow for high spatial detail and independence of
very specific wavelength bands, we used only 10-m-resolution red, green, and blue (RGB) bands.

Pre-processing included filtering of each band to reduce noise and remove undesired features.
Considering our interest in field boundaries, we opted for using bilateral filtering rather than traditional
Gaussian smoothing. The bilateral filter is an edge-preserving filter balancing similarity in the spatial
and spectral domains to smooth the image while still conserving strong edges [29]. The filtered
images were then transformed from RGB to CIELAB color space to separately observe information on
luminosity (I) and color (a, b) in the images.
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2.3. Reference Data

We used cadastral data as a reference [30]. This data, however, represented purely administrative
borders and needed manual updating based on field surveys and recent satellite imagery to accurately
represent conditions in 2019. We omitted fields that were not clearly discernable in S-2 imagery,
e.g., very small or thin and elongated fields. Table 1 contains some general information about the
study areas.

Table 1. Field statistics in the two regions of interest based on the updated reference datasets.

Study Area Total Extent Field Sizes Field Count
1 ~13.5 X 12.4 km? ~0.9to 75 ha ~1400
2 ~9.2 X 7.5 km? ~0.8 to 50 ha ~600

3. Methodology

The flowchart in Figure 2 demonstrates the structure of our methodology. The pre-processing
(green) was discussed in Section 2.2. In this chapter, we start with describing the image features we
obtained in Section 3.1 (blue), followed by the boundary detection model development, including feature
selection and hyperparameter tuning (yellow), in Section 3.2. Finally, we describe the modified GGC
method and the field polygon extraction process (grey) in Section 3.3.
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Figure 2. Flowchart of the methodology. Different stages highlighted in colors: pre-processing in green,

image feature preparation in blue, boundary detection model development in yellow, and contour
detection and field polygon extraction in grey.

3.1. Image Feature Preparation

We undertook an extensive literature review on topics of edge detection, boundary detection,
and segmentation, and selected a set of potentially useful input features for field boundary detection.
We distinguished applications on the luminosity (1) and the color channels (a, b) in the CIELAB color
space. Table 2 provides an overview of all inputs we considered. In the following sub-sections,
we briefly describe the concepts behind the features and how we obtained them. In the text, we also
refer to features and feature groups by their numbers in Table 2 as F1, F2, G1, G2, etc. All inputs were
scaled linearly to a range of 0 to 1 based on the overall minima and maxima observed.
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Table 2. Overview of features and respective feature groups considered for boundary detection.

Feature Group Feature
Gl image gradient (1) F1 gradient magnitude (1)
G2 image gradient (a, b) F2 gradient magnitude (a, b)
G3 local statistics (1) F3 variance (1)
F4 skewness (1)
F5 kurtosis (1)
G4 local statistics (a, b) F6 variance (a, b)
F7 skewness (a, b)
F8 kurtosis (a, b)
G5 Hessian matrix (1) F9 eigenvalue along ridge (1)
F10 eigenvalue across ridge (1)
Go6 Hessian matrix (a, b) F11 eigenvalue along ridge (a, b)
F12 eigenvalue across ridge (a, b)
G7 texture metrics (1) F13 contrast (1)
F14 correlation (1)
F15 asm (1)
F16 homogeneity (1)
G8 texture metrics (a, b) F17 contrast (a, b)
F18 correlation (a, b)
F19 asm (a, b)
F20 homogeneity (a, b)
G9 angular dispersion (1) F21 modified angular dispersion (1)
G10 angular dispersion (a, b) F22 modified angular dispersion (a, b)
G11 homogeneity measures (1) F23 PEG (1)
F24 QEG (1)
G12 homogeneity measures (a, b) F25 PEG (a, b)
F26 QEG (a, b)
G13 local cues (1) F27 brightness gradient (1)
F28 texture gradient (1)
G14 local cues color (a, b) F29 color gradient (a, b)

3.1.1. Image Gradient

The image gradient is the first derivative of the image and highlights discontinuities. To obtain
gradient magnitude (F1, F2), we first applied the Sobel operator in both x- and y-directions:

-1 0 1 1 2 1
Ke={ -2 0 2}, K,={ 0 0 0 1)
-1 0 1 -1 -2 -1

We then obtained gradient magnitude g based on the following formula:

g:J@+@ )
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where I and I, are the gradient images in x- and y-direction. For the application on color layers (F2),
we summed up the individual gradient images I, and I, before calculating magnitude and direction
from the result.

3.1.2. Local Statistics

We calculated local statistics for each pixel based on a 5 x 5 kernel neighborhood (F3-F8).
We considered three statistical measures: variance and the third and fourth standardized moments,
skewness and kurtosis [31].

The variance is defined as the spread of values in a (normal) distribution:

N
1 2
o> =5 l;‘(xi — 1) 3)

where x;, ..., x, are the sampled values, u is the mean of the sample, and N is the sample size.

Skewness refers to the asymmetry of a distribution. A negative skewness means the tail of the
distribution to the left is longer and the distribution “leans to the right”; a positive skewness represents
a longer tail to the right and the distribution “leans to the left”. We used the Fisher-Pearson coefficient
formula to obtain skewness in the local sample [31]:

N (i)’

~ i=1~ N
T (4)

where ¢ is the standard deviation.

Kurtosis describes the shape of a distribution in terms of its “curvedness”, i.e., how convex
or concave the shape of the underlying distribution is. We used the following formula to calculate
kurtosis [31]:

N (i)t
=" ®)
o)

In the case of application to color channels, we considered the maximum of the two results (F6-F8).

3.1.3. Hessian Matrix

Following concepts described in Meijering et al., Ando, and Sato et al., we used the Hessian matrix
of the image to obtain information on ridge-like structure strength and orientation [32-34].
The Hessian matrix of a 2D image I(x) is given by:

i P
X oxd
Vix)=| % 7 (©)
Iyox A7
where %, etc. are the partial second derivatives of the image I. Following the descriptions by

Sato et al., we obtained the eigenvectors ¢; (x) and ey (x) of V? I(x) and their corresponding eigenvalues
Aq and A; [34]. The eigenvector with the higher eigenvalue represents the direction in which the second
derivative is maximal. In the case of a line-like structure, the eigenvalue across the line (or across ridge)
is high and the eigenvalue along the line is low.

We use the eigenvalues along and across the ridge (F9-F12) as potential inputs to the model.

3.1.4. Second-Order texture Metrics

The concept of the grey-level co-occurrence matrix (GLCM) and the derived second-order texture
metrics was first introduced by Haralick et al. as a means to quantify the texture of imagery for
classification [35]. The GLCM refers to a matrix capturing the spatial relationship of values in a raster
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by counting how often two values occur together (“co-occurrence”) considering different directions
(horizontal, vertical, two diagonals) and different distances (steps apart).

At first, a quantization is performed in which the image values are assigned to a fixed number
of gray levels. We performed quantization error minimization to reduce the data to 32 grey levels.
We considered four second-order texture metrics: contrast, correlation, angular second momentum
(ASM), and homogeneity (“inverse difference moment” in the original paper) (F13-F20):

Contrast = P (i~ j)2 (7)

N-1N-1 )j— i
Correlation = Z Z P;; M (8)
0 j=0 2\( ;2
== (Gi )(‘7]‘)
N-1N-1
ASM = P )
i=0 j=0
Homogeneity = (10)
121‘]21 1+ (i—j

where i and j are two quantization values (or coordinates in the GLCM), P; ; is the probability value
of the cell (i, j), N is the number of columns and rows in the GLCM (i.e., the number of grey levels),
and y;, pj, 0, 0j are the means and standard deviations of the marginal distributions of P; ;.

We considered all four possible angles (0°, 45°, 90° and 135°) with a maximum of two steps in the
5 x 5 neighborhood. Final texture metrics for each pixel were obtained as the mean of all outputs of
the process. In case of color layers, we took the mean of the resulting metrics in the two channels.

3.1.5. Angular Dispersion

Following the concept of angular dispersion introduced by Gregson and the fractional anisotropy
described in Aganj et al., we calculated a modified angular dispersion metric similar to the local
anisotropy we used for seed point selection in our previous study [25,36,37]. The concept is based
on the observation that gradient direction tends to be homogeneous along edges or boundaries in
an image while they are heterogeneous (“dispersing”) if no clear boundary is present or boundary
directions are changing, for example, at crossings of multiple edges or along sharp curves.

To approximate this, we consider the mean direction of gradient angles and the normal to
it. By projecting all gradient direction vectors onto the two main directions, we calculate angular
dispersion as follows:

. 1 . I .
min( L4 1970fopen il L6 170 o001 )

Idisp = (11)

— - : : .
max( Z‘O ”prO]vmenn vi”/ ZO ”PVO]U,WM (% ”)

where Uyyeqn and vyorm represent the mean directional and normal vectors, v; describes a given local
gradient direction vector, and I is the number of all sampled vectors. If the total magnitude of vectors
projected in the mean and the normal direction is identical, we obtain a value of 0 (low dispersion);
if the two total magnitudes differ largely, we obtain a value close to 1 (high dispersion).

We consider gradient directions in a 3 X 3 pixel neighborhood (F21-F22).
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3.1.6. Homogeneity Measures

Ando presented an approach for edge and corner detection based on gradient covariance [33].
The cross-correlation matrix is given as:

4hs o1l 2]

Syx SW

where Syy, Syy, etc. refer to the cross-correlations of the image derivatives f; and f,. Based on these
cross-correlations, he defines two homogeneity measures:

(Sxx - Syy)z + 4S§y

Pgg = (13)

(Sxx + Syy)z + O‘%G
4(SxSyy - 2))

Q =
* (Sxx + Syy)z + GéG

(14)

with U%G being a small constant to avoid division by zero at completely flat areas in the image. The two
measures show different behaviors: while Pgg reaches 1 where grayness varies one-dimensionally,
i.e., near edges or ridges in the image, Qr¢ reaches 1 where grayness variation is omnidirectional,
i.e., at centers of circular symmetry or corners (F23-F26). For color images, we used the maximum of
the two color results.

3.1.7. Local Cues

Martin et al. presented a set of local cues based on brightness, color, and texture information
to observe boundaries in images [38]. Their reasoning is that different types of boundaries exist
in images. Traditional image gradient approaches only observe sharp changes in image intensities,
so their techniques aim to provide gradient information on color and texture as well (F27-F29).

They achieve this by transforming RGB images to the CIELAB color space and separating the
luminosity (1) from the color bands (a, b). To obtain local gradient information, luminosity values
in a local disk centered on each pixel and divided into two halves along a diameter are sampled.
A dissimilarity between the two halves indicates the presence of a strong gradient and thereby a
possible boundary. First, histograms of values in each disk half are created by sampling a kernel
density estimate of the sampled values. The gradient is then obtained as the x? distance between the

two histograms:
2

2(p, ) = 1 i (pi = 1) 5)
e 2 & pita

with P and Q referring to the two distributions and p; and g; being the sampled probabilities. Local color
gradients are obtained in the same fashion by applying the same procedure to both color channels and
then adding the two marginal gradients to a joint gradient.

In the case of texture, the approach is based on what the authors refer to as “textons”. At first,
a filter bank of 13 different filters is applied to the neighborhood of each pixel. The filters contain a
difference of Gaussian filters, as well as a set of elongated, oriented even- and odd-symmetric Gaussian
second derivative filters. The responses of all filters are then clustered via k-means to obtain the
so-called textons. The rest of the procedure is similar to the brightness and color gradients: textons are
assigned to bins in a histogram and the local texture gradient is derived as the y? distance between the
two histograms of the disk halves.

In all three cases (brightness, color, and texture) the final gradient is obtained by taking the
maximum gradient observed in 16 orientations in the range [-7, ]. As we did not train a separate
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classifier as in the original paper, we computed textons on individual image subsets. Due to the limited
amount of data, we observed that a reduced number of 32 clusters (versus 64 in the original paper)
was preferable.

3.2. Boundary Detection

3.2.1. Dataset Preparation

To create the training data, we considered areas in proximity to our reference data as a possible
input. Boundary samples were taken from the rasterized polygon boundaries of the reference
data and non-boundary samples were considered from a distance of up to 8 pixels from the
boundaries. We avoided selecting non-boundary samples in the vicinity of the boundaries within a
two-pixel-wide buffer to enhance the sample set. Datasets were balanced to contain 50% boundary
and 50% non-boundary samples and then randomly split into calibration (60%, 310,928 samples),
validation (20%, 103,642 samples) and test (20%, 103,642 samples) sets.

3.2.2. Model Development Setup

We used fully-connected MLP-NNs for boundary detection. We considered the task of boundary
detection as a binary classification problem, distinguishing any type of field boundary pixel as
represented by the reference data from any type of non-boundary pixels. This results in a rather
heterogeneous non-boundary class, as agricultural fields, nearby forests, urban agglomerations, streets,
etc. may end up being selected as non-boundary examples. Using additional classes by distinguishing
different kinds of land cover may have been advantageous in terms of classification accuracy but was
not considered in order to achieve a result that can serve as a direct input to the subsequent field
extraction steps. The output node was scaled using a sigmoid function.

We used the stochastic gradient descent optimizer (SGD) with momentum of 0.9 to train the model
using the log loss function [39,40]:

N
Hy(q) = —x Y v log(p(y) + (1= y:) - Tog(1 - p(y1) (16)
i=1

where p(y;) is the predicted probability (output value between 0 and 1) and y; is the class label of the given
sample point (0 or 1). The smaller the resulting log loss value, the better the prediction. Theoretically,
log loss can become infinitely large when the prediction is worse than a purely random guess.

3.2.3. Input Feature Selection

As seen in Table 2, we obtained a total of 29 input features. We categorized them into 14 groups
based on concept (see Section 3.1) and on image information used (luminosity vs. color). For each
feature, we considered values from the three observation times in April, June, and September.

Feature selection was performed through quality ranking. We first trained a default model of
topology x-30-1 with each set of input feature groups for 10,000 epochs and ranked results from best
(1) to worst (max) based on validation loss. The overall rank of each input feature group was obtained
by summing up the ranks of all test runs involving the respective feature group. For example, if the
test run ranked 1 was based on groups 2, 3, and 7, then the total score of all three groups would be
increased by 1. As a result, we obtained an overall ranking that represents the relative performance of
each group in all test runs with the lowest total rank number representing the best-performing group.

We started with single groups as inputs, then pairs, triplets, quadruplets, and, finally, quintuplets.
At each stage, we dropped the two lowest ranking feature groups. Results are presented in Section 4.1.1
as relative importance, i.e., the ratio of the lowest total score achieved in the corresponding step to the
scores of each group, resulting in importance scores between 0 and 1, where the best-performing group
of each step achieves an importance of 1.
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3.2.4. Hyperparameter Tuning and Model Training

We considered five hyperparameters for tuning: number of hidden layers, number of nodes per
hidden layer, type of activation function in hidden layers, learning rate and dropout rate (random
dropout probability) per hidden layer. Table 3 lists the considered settings.

Table 3. Hyperparameters considered (selected parameters in bold text).

Hyperparameter Considered Values
Number of hidden layers 2,3,4,5
Number of nodes per hidden layer 15, 20, 25, 30, 35, 40, 45, 50
Type of activation function Sigmoid, ReLU
Learning rate 0.01, 0.001, 0.0001, 0.00001
Dropout rate per hidden layer 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%

We first performed a manual pre-testing to obtain some insights into the model behavior and the
effects of different hyperparameter values to reduce the number of settings that need to be considered
in the tuning stage. Our pre-testing showed that a single hidden layer was insufficient to obtain best
results, although larger numbers of hidden layers beyond five also showed no advantage. Results for
the number of hidden nodes were inconclusive, with no clear tendency towards larger or smaller
numbers. Learning rates of 0.01 and below proved beneficial, as well as dropout rates of 20 % or higher,
especially to avoid overfitting late in the training process.

We performed the tuning via a random search. We trained each model for 10,000 epochs and
selected the one with the lowest validation loss as the parameter set for final model training. We trained
and validated the model on the full calibration and validation datasets, respectively. The final model
(four hidden layers of 35 hidden nodes each, rectified linear unit (ReLU) activation function, learning
rate of 0.0001, and dropout rate of 80%) was trained for 100,000 epochs [41].

3.2.5. Boundary Map Post-Processing

To further improve quality of the output, we transformed the probability map into a binary
boundary map by setting a threshold of 0.5. We further excluded non-agricultural areas using CORINE
land cover data of 2018 and the Land Cover DE product of the German Aerospace Center (DLR) and
highlighted the boundaries of those areas to allow for the contour extraction to detect them [42,43].
To further refine the boundaries, we calculated the boundary strength as the share of boundary pixels
in a 3 x 3 pixel neighborhood. This helps guide the contour extraction towards the center of the
boundaries (see Section 3.3).

3.2.6. Quality Assessment

For final model evaluation, we employed multiple accuracy metrics. First, we used sensitivity
(true positive rate), specificity (true negative rate), accuracy, and F; score as general indicators of model
performance, calculated as follows [39]:

Sensitivity = TPZ——PFN (17)
Speci ficity = FP]—;—NTN (18)
Accuracy = W (19)
3 2TP 20)

T 2TP+FP+EN
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where TP is the number of samples correctly classified as positive (true positive), TN is the number of
samples correctly classified as negative (true negative), FP is the number of samples falsely classified
as positive (false positive), and FN is the number of those falsely classified as negative (false negative).
N represents the whole sample size. All four metrics range from 0 to 1 and 0% to 100%, respectively.
A score of 1 or 100% indicates a perfect result.

Further, we obtained the area under the receiver operating characteristic (ROC) curve as a
probability-based indicator of model performance. The ROC curve represents the trade-off between the
true positive rate and false positive rate by plotting the two measures against each other for multiple
thresholds. The area under the curve (AUC), i.e,, its integral, is used as an indicator for a model’s
capacity to separate two classes in a binary classification [39]. An AUC of 1 represents a perfect
distinction, while an AUC of 0.5 indicates a purely random classification.

3.3. Field Extraction

3.3.1. The Graph-Based Growing Contours Method

For field polygon extraction, we employ an active contours algorithm based on growing contours
(or snakes) that we presented recently [25,44]. Active contours in general were introduced for object
delineation and are based on energy minimization [45]. An initial spline or polyline follows an
external and an internal energy, representing information from the image (e.g., gradient magnitude
or local intensities) and the shape of the contour. While the former guides the snake towards the
contour of interest, the latter influences curvature and the size of the snake, preventing it from creating
discontinuous shapes and collapsing or expanding indefinitely.

However, agricultural field boundaries are rather complex networks of contours that are sometimes
only loosely interconnected and can be quite irregular in shape. Therefore, using shape priors or any
previous assumptions may limit performance of an algorithm in different environments with varying
characteristics (field sizes, shapes, locations, etc.).

The growing snakes concept introduced by Velasco and Marroquin addressed common drawbacks
of many active contour models regarding sensitivity to initiation, i.e., initial position and shape priors,
as well as difficulties in extracting discontinuous contours of many separate or highly irregularly
shaped objects [44]. To achieve this, the growing snakes are initiated on seed points on the contour of
interest and grow along it. As the growth follows local maxima, it tends to create irregular shapes and
requires repeated smoothing.

In our applications to field boundaries, however, we observed that growing snakes tended to get
“off track” easily. As they follow local maxima of the input image, any irregularities, especially near
corner points or intersections of multiple boundaries, may easily move them away from the actual
boundary. Further, we observed limitations in representing sharp turns.

Following these insights, we developed a modified growing contours model called graph-based
growing contours (GGC). Our main goals were to (a) improve the quality of extracted contours and
reduce the need for repeated smoothing; (b) introduce adaptive behavior allowing the tracing of
contours of different shapes (straight lines, curves, sharp changes in direction, etc.); (c) enable automatic
branching to explore multiple parts of a boundary network automatically and represent crossings as
well as T-junctions; (d) reduce “dead ends”; and (e) extract an interconnected network rather than
separate contour segments.

To achieve this, we replaced the growth step of the original growing snakes with a more
sophisticated approach based on graph theory principles. Instead of simply searching for a local
maximum in a set of possible steps, we generate a local graph by sampling around each current end
point at each growth step. The GGC method works at sub-pixel accuracy. We used a barycentric
transform to obtain values at a sub-pixel level [46].

The graph is defined by an inner radius 7, an outer radius 7,4, the number of vertices on the
innermost circle #;, and the number of evenly spaced circles 7.. The parameter 7, defines the number
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of connections of each vertex to vertices on the next-larger circle. Starting from the innermost circle,
the number of points doubles with each circle to obtain a homogeneous pattern, in which each vertex
on a circle has the same number of neighbors on the next circle (see Figure 3). Vertices in the direction
of the previous step are masked to avoid retracing of contours.

. »
.. e 2 9 .o
[ ] .. .. ]
L Y o '.
.« ¥ ¢ °
Y & & °
°
' " ¢ °
—-- & L ®
A TR e 5
o Y h hd
s ¥ " ° ®
. Y .'
° p * ®
o A I IR W )
¢ °
L o ®

Figure 3. Example of local graph in graph-based growing contours. The large horizontal arrow
indicates the direction of movement.

The sampled points are used as vertices in a directed, weighted graph G = (V,E) as shown in
Figure 3, where each edge (except for those originating at the center point) is weighted based on:
wy; = 2 1)
1] g]
where w; ; is the weight of the edge connecting vertices v; and v}, D; ; is the Euclidian distance between
the two vertices, and g; is the gradient magnitude (or any other boundary strength indicator used)
at vertex v;. The resulting weights favor shorter paths (smaller Euclidian distance) and paths along
boundaries in the image (higher boundary strength).

The different settings in constructing the graph (*,,i,, *max, 1i, 11¢, 1) may be regarded as parameters
for adjusting step size, precision, capacity to represent sharper directional changes, and complexity of
the graph.

At each iteration, each current end point is explored for possible branches. Shortest path
searches from the center vertex (source) to each vertex of the outermost circle (sinks) are initiated.
Firstly, the single shortest path defines the first branch. The graph is then separated into two
subsections at +1m and — 47 from the first branch (see Figure 4). The shortest path in each segment is
then considered as a further branch. Any branch exceeding a certain maximum length L, is ignored
to quickly omit possible “dead ends”. If no valid path is found or the end point is near an already
existing contour point or the image boundaries, the end point is terminated. As such, the number of
end points changes with each iteration, dynamically exploring various contours.



Remote Sens. 2020, 12, 1990 13 of 22

..0.0..
RS o,
o. ¥ W 1 .o
. \ e © >
L% ) A
¥ ¥ y 2.
e . & e
N Y o ..
i > ; ‘
¥ B ® & :
o ° N :
‘ °
" '8, \ X
° ! ! ©
o TR B o°
L Ny )
2 1523 L0 Cesideee’®

Figure 4. Main steps of movement in local graph: determine overall shortest path in graph (left); select
shortest paths in subsections (right).

3.3.2. Modifications and Adaptive Masking

In our previous study, we observed two main drawbacks of the GGC method. Firstly, there is a
significant trade-off between precision of the contour extraction and complexity of the local graph as
expressed by the number of circles 1. per unit distance in a given step size 7. Higher complexity
dramatically increases the number of vertices and edges considered and consequently slows down
the process. Secondly, different quality of boundary inputs to the GGC method requires a different
behavior. If the boundary map provided is inconsistent or accuracy is low, following the provided
magnitude values may result in “zig-zag” curves and irregular shapes, even when considering distances
(see Equation (21)).

To address the complexity issue, we acknowledge that it is not necessary to consider the entire local
graph at a given position. In fact, only those parts of the graph that cover actual boundary structures
are of interest. Therefore, it would be desirable to exclude certain parts of the graph and thereby reduce
the number of possible paths to explore in the movement step. We achieve this by first sampling
the local magnitudes at all points of the graph. We then apply Otsu’s method to obtain an optimal
threshold, separating high and low values in the local neighborhood histogram [47]. By removing all
sample points below the threshold, we effectively drop those parts of the graph that do not correspond
to any boundary structures (see Figure 5).

Figure 5. Examples for adaptive masking of vertices in the graph. Light grey points indicate removed
points of the local graph, blue points represent those retained after masking.
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The aspect of input quality can be addressed by modifying the weighting in Equation (21). If the
input map is less reliable, a higher emphasis on shorter (and smoother) paths would be advantageous.
If the input map is very accurate, however, the model may more closely follow the provided boundaries
to create a more accurate result. Therefore, we introduce the factor  that can be used to increase or
decrease the relevance of magnitudes relative to the distance between vertices:

W — Di (22)
L] ﬁ . g]
To ensure consistency, Lyqy is scaled by % to allow using comparable values of Ly, regardless of
the 8 used.

3.3.3. Field Polygon Extraction

Using the output of the GGC model as an undirected network or graph of contour points,
we intend to produce actual field polygons. Theoretically, finding cycles in the graph would be a
possible approach to distinguishing different fields. The large size of the resulting graph, however,
makes this task computationally demanding. Further, even a few missing connections may result in
incorrectly created polygons or cycles not found.

Following our previous methodology, we therefore transform the contour output of the GGC
method into a binary edge map [25]. We use a flood fill algorithm initiated on local maxima of a
Euclidian distance transform from the binary boundaries to create a segment representing the rough
extent of a field as described by the extracted contours. We then only consider those vertices close
to the segment and a new over-connected unweighted and undirected graph is produced in which
each vertex is connected to its four nearest neighbors. The field polygon is then obtained using the
longest cycle in this network. Finally, polygons are refined using adaptive Gaussian filtering and the
Ramer-Douglas-Peucker algorithm [48-50].

4. Results

We provide statistical and visual results for the boundary detection as well as the subsequent field
polygon extraction steps. For the sake of brevity, we focus visual comparisons on study area 2.

4.1. Boundary Detection

4.1.1. Input Feature Importance

The step-wise feature importance ranking resulted in relative importance values listed in Table 4.
As step five (quintuplets) did not allow for much further distinction in quality, we ultimately arrived at
the six feature groups (in order of importance): G8, G4, G14, G1, G6, and G5 and the corresponding 13
features F17-F20, F6-F8, F29, F1, F11-F12, and F9-F10. Multiplying by the three time steps, this resulted
in a total of 39 inputs for the boundary detection model.

This demonstrates texture metrics (G8), local statistics (G4), local cues (G14), gradient magnitude
(G1), and Hessian matrix eigenvalues (G5 and G6) to be the most relevant for boundary detection.
Overall, it seems that color information was significantly more useful than luminosity, as in most
feature types, those applied on color channels were preferred over luminosity ones. The only exception
in this respect is image gradient.

Texture metrics on color images were particularly useful and continuously achieved the best
ranks in all steps except the first one. This initial underperformance may be explained by similar
results across all feature groups in the initial tests, except for the two “outliers”, G9 and G10 (angular
dispersion), which showed very little merit with validation loss barely better than a purely random
guess. Further, Hessian matrix eigenvalues proved relevant in terms of both luminosity and color,
while local statistics and local cues were again most useful in terms of color.
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Table 4. Results of feature importance ranking. Values are given as relative importance values (ratio to
best achieved for any feature group in all test runs of the respective step).

Round 1 Round 2 Round 3 Round 4 Round 5

G1 0.20 0.19 0.30 0.49 0.83
G2 0.17 0.19 0.29 0.47 -
G3 0.25 0.19 0.28 - -
G4 1.00 0.54 0.48 0.69 0.94
G5 0.33 0.22 0.29 0.51 0.75
G6 0.50 0.35 0.39 0.53 0.79
G7 0.10 0.18 - - -
G8 0.11 1.00 1.00 1.00 1.00
G9 0.07 - - - -
G10 0.08 - - - -
G11 0.09 0.18 0.26 - -
G12 0.13 0.22 0.30 0.48 -
G13 0.08 0.17 - - -
G14 0.14 0.20 0.28 0.55 0.88

4.1.2. Performance Metrics

We evaluated the boundary detection model on the test dataset: once on the full dataset and once
only on those samples that were actually agricultural according to the land cover maps. We made this
distinction to analyze potential effects of basic “post-processing” based on prior knowledge of results.

As seen in Table 5, accuracies tend to be slightly better in study area 2 compared to 1. Nevertheless,
results for both areas are similar, indicating a comparable performance of the model. Overall accuracies
are reduced by a lower sensitivity while specificity is generally high. The high AUC values of 0.92 and
greater indicate a very reliable distinction of the classes. Masking of non-agricultural areas slightly
increases performance in all metrics, reaching accuracies of up to 88.2% and AUC of 0.94.

Table 5. Accuracy metrics of the field boundary detection for the test dataset.

Full Dataset Only Non-Agricultural Areas
Study area 1&2 1 2 1&2 1 2
Sensitivity 77.9% 77.3% 79.1% 81.6% 81.3% 82.5%
Specificity 92.1% 92.9% 93.2% 93.5% 93.2% 94.4%
Accuracy 83.8% 83.4% 84.8% 87.2% 87.8% 88.2%
Fq 0.85 0.85 0.86 0.87 0.87 0.88
AUC 0.92 0.92 0.93 0.94 0.94 0.94

4.1.3. Visual Comparison

Figure 6 provides side-by-side comparisons of the predicted boundary probability map, the masked
binary map, the boundary strength map, and the reference boundary map for three subsets.
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binary strength reference

Figure 6. Comparison of boundary detection results in study area 2. Columns represent the model
probability output, the binary output after land cover masking, the final boundary strength map, and
the final reference dataset (boundaries thickened for visualization). Rows represent different subsets.

The comparison shows that most boundaries are correctly detected and overall appearance is
matched quite well, although extracted boundaries tend to be thicker than those drawn in the reference
dataset. Problems, however, occur near urban areas (first example top right, third example top
right). The heterogeneous structure of these built-up areas is frequently confused with actual field
boundaries when they have not been masked using the two land cover maps. Similar issues occur near
groups of small fields where the model struggles to separate multiple boundaries in close proximity.
In some cases, the land cover based masking excluded some structures that may have been considered
agricultural field boundaries (first example top center).

Further, there are cases where the model originally seemed to detect some weaker boundary
patterns within the fields that were not part of the reference set (third example bottom left), or it missed
some smaller boundary segments (first example center right).

4.2. Field Extraction Results

We compare the default version of the GGC method as presented in our previous publication and
the new adaptive version [25]. Settings were selected through manual testing of different settings and
visual interpretation of results. According to the results of manual testing, we chose the following
setting: 7y = 12, e = 8, Liyay = 20, and = 1.25.
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4.2.1. Visual Comparison

As seen in Figures 7 and 8, distribution and general shapes of extracted polygons often closely
resemble those of the reference polygons. However, shapes tend to be a bit smoother and edges more
rounded (e.g., Figures 7 and 8 bottom center). Smaller fields, in particular, were occasionally missed or
merged with larger fields (e.g., Figures 7 and 8 top center). This can be explained in part by issues in
the prior boundary detection step, e.g., inconsistent boundaries or some falsely detected boundaries
within the fields. Other fields were also missed by the process, again partly due to the boundary
detection step (e.g., Figures 7 and 8 bottom left).

Extracted boundaries

Extracted polygons

Reference polygons

Figure 7. Result of the adaptive graph-based growing contours (GGC) field polygon extraction.

Extracted boundaries Extracted polygons Reference polygons

k-«

Figure 8. Result of the non-adaptive GGC field polygon extraction.

In particular, clusters of small fields pose problems (see Figures 7 and 8 bottom left). As mentioned
in Section 4.1.3, boundaries are sometimes difficult to delineate here and the subsequent extraction
may be confused if multiple adjacent boundaries are merged. Additionally, large gaps within fields
due to larger non-agricultural areas, such as clusters of trees, occasionally led to errors in the extraction
(e.g., Figures 7 and 8 bottom center), confusing the extraction process.

When comparing the adaptive and non-adaptive version, the results look very similar. Differences
are visible in some polygons being detected by only one of the versions (e.g., Figures 7 and 8 center and
bottom center). In many cases, the adaptive version seems to be a bit less likely to miss fields entirely.
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4.2.2. Processing Speed and Upscaling

Our testing revealed the actual processing time to be highly dependent on the implementation.
Therefore, the results in this section are presented as a relative comparison of the adaptive and
non-adaptive versions rather than a reference for actual processing time. The test runs were performed
on an Intel Core i7-4790K CPU with four cores at 4.0 Ghz (4.4 Ghz turbo boost) in single-core execution
and 32 GB of memory. Table 6 shows an overview of execution speed and the number of contour
points extracted as an indication of the complexity of the given scene.

Table 6. Comparison of processing speed and number of extracted contour points in adaptive vs
non-adaptive GGC for differently sized areas. Processing acceleration indicates the reduction in
processing time of the adaptive version in relation to the non-adaptive version.

Settings Tmax = 6, Mc =4, Liygy = 14 Tmax = 12,1 = 8, Liyax = 20
Acceleration Points extracted Acceleration Points extracted
2.5 x 2.5 km? subset 1.3x ~5500 2.2x% ~3800
5.0 X 5.0 km? subset 1.3% ~20,000 2.2x ~14,000
10.2 x 7.5 km? scene 1.3x ~55,000 2.3% ~40,000

Results demonstrate the adaptive version achieved a substantial acceleration compared to the
non-adaptive version at all subset sizes and settings. The advantage is more substantial for larger graphs.

5. Discussion

Analysis of the selected input features revealed that most features obtained from color channels
outperformed those based on luminosity. Sequentially dropping the lowest performing groups
highlighted texture metrics, eigenvalues of the Hessian matrix, local statistics, local cues, and gradient
magnitude as useful. Homogeneity measures, however, showed poorer performance, and angular
dispersion did not provide enough information to obtain good boundary detection. It may be interesting
for future applications to further explore the effect on performance if the groups dropped were added
back into the input set or comparisons were performed on an even more granular level evaluating
each individual feature.

The MLP-NN model proved capable of accurately detecting field boundaries. Hyperparameter
selection showed multiple layers to be advantageous, combined with a high dropout rate of 80% and a
learning rate of 0.0001. Results of the boundary detection model were good, with high accuracies that
could be further increased by removing non-agricultural areas from the output. This is particularly
promising when considering the input being solely comprised of RGB channels. For both study
areas combined, we obtained an accuracy of 87.2%, F; score of 0.87, and AUC of 0.94 after removing
non-agricultural areas. These results also seem competitive when compared to another deep learning
approach recently presented by Masoud et al. [21]. They proposed a field boundary detection based
on convolutional NNs trained on S-2 10-m and 20-m resolution imagery of multiple test sites in the
Netherlands. They reported an overall best F; score of 0.67 and an average F; score of 0.63 for all
test sites. Further, the overall best sensitivity and specificity values were 0.69 and 0.66, respectively.
However, a direct comparison may be difficult, as they used more bands, including near-infrared
channels, and merged different spatial resolutions, but did not consider multi-temporal imagery in
their approach. This may partly explain the difference in performance. Another approach based on
convolutional NNs was presented by Persello et al. [23]. They reported performance similar to that
obtained here with F; scores of up to 0.830 when using World View-2/3 data for field delineation in
smallholder farms in Nigeria and Mali.

Visual comparisons further revealed that the boundary detection sometimes observed boundaries
that were not part of the reference dataset, while it missed other parts. In some of these cases, it is
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debatable if results are objectively wrong, as interpreting certain structures can be difficult if they
only occur at some time of the growing season, e.g., due to field management or cropping patterns.
The boundaries produced tended to be broader than a precisely hand-drawn delineation and may
appear “blurred”. This is mostly a result of the appearance of many of the input features, such as
gradient magnitude, that do not provide a sharp distinction but rather a gradual highlighting of
discontinuities in the image. As the model predictions, however, were intended as an input to the
following GGC method, they are not required to be flawless. The  value > 1 selected as best for the
extraction step further indicates a high quality of the boundary detection result. For other applications,
further post-processing or modifications to the modeling step may be required.

Another advantage of the boundary detection approach presented here is that it is scalable and
should be relatively easy to transfer to other regions and landscapes. The inputs to the model are
universal image features and exclusively based on regular RGB imagery, enabling an adaptation to
other satellite, unmanned aerial vehicle (UAV), or airborne sensors. Further research may also explore
the use of higher resolution imagery that offers more accurate field delineations and helps resolve
more detail to effectively extend the process to even smaller field sizes.

Field extraction results were also promising and proved to work well when given a consistent,
high quality input map. This also allowed the use of a much larger step size than in our previous
study. The new adaptive version of GGC obtained very similar results as the non-adaptive one,
while drastically reducing processing time. It is therefore more suited for larger-scale applications.
A further advantage could be that settings such as L,y may not be as crucial as in the previous version
because the automatic masking step removes much of the ambiguity of a heterogeneous environment.

Nonetheless, despite the improved detection step, groups of very small fields or very heterogeneous
structures posed problems in field polygon extraction. Fields were occasionally merged or missed
entirely. While it also did not extract all fields accurately as represented in the reference set, the adaptive
version seemed to suffer slightly less from those issues. One reason for this may be that masking less
relevant parts of the graph also avoids following erroneous paths. For example, cases in which there
are small spots of high boundary strength within a field due to false detections can result in a path
being selected that attempts to connect to this point, even if other vertices on the way should clearly
not be considered boundaries. By masking weaker vertices, the adaptive version may effectively avoid
any possible path to such falsely detected boundary spots.

Another observation was that extracted fields tended to be more rounded in shape and sharp 90°
angles were occasionally missed. This is in part due to the field extraction steps following the GGC
application (see Section 3.3.3). The over-connected nature of the graph used as a basis for polygon
creation can result in rounded shapes when connections “cut out” the actual corner points. Therefore,
further research may be needed to improve the transferring of the GGC output to polygons.

Furthermore, it may be interesting to explore other applications of the GGC methodology outside
of field delineation. As it is fundamentally a growing active contour technique and independent of the
context or the type of input given, its application may extend outside its original use case.

6. Conclusions

We demonstrated a new field boundary detection approach based on deep learning and explored
a large number of image features obtained from S-2 RGB imagery. We merged it with the GGC method
for field polygon extraction and further introduced an improved version of the GGC approach that
increases scalability through automatic masking of the local graph to reduce complexity without
affecting quality of the output.

The analysis of a large number of possible input features revealed interesting insights regarding
their usefulness for this particular task. While some features such as local statistics, texture metrics,
image gradient, Hessian matrix eigenvalues, and local cues were valuable inputs, others such as
angular dispersion and homogeneity measures were less useful. Color information was more valuable
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than luminosity in most cases. The use of these universal image features may also facilitate adapting
the methodology to other sensors and resolutions.

The boundary detection model obtained high accuracies but tended to produce broader boundary
lines. The quality of the output map benefited from post-processing based on land cover masking.
Limitations of the results were, to a large extent, successfully mitigated by the subsequent GGC
method. Nonetheless, issues remain regarding performance on non-agricultural areas in case there
is no land cover mask available. Further research may be needed, including closer analysis of input
features (settings, types of features to use, etc.), as well as exploring different types of classification
models. The use of different time steps and the relevance of multi-temporal compared to single image
classification may also be further investigated.

The new, adaptive version of GGC proved to be much faster than the original version without
compromising quality of the extraction result. A logical next step may be to apply the technique at
an even larger scale, e.g., at county or state level. Beyond that, the nature of the GGC approach also
allows exploring further applications outside of field extraction and agricultural remote sensing.
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