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Similar to patients with Major depressive disorder (MDD), healthy subjects at risk
for depression show hyperactivation of the amygdala as a response to negative
emotional expressions. The medial prefrontal cortex is responsible for amygdala control.
Analyzing a large cohort of healthy subjects, we aimed to delineate malfunction in
amygdala regulation by the medial prefrontal cortex in subjects at increased risk for
depression, i.e., with a family history of affective disorders or a personal history of
childhood maltreatment. We included a total of 342 healthy subjects from the FOR2107
cohort (www.for2107.de). An emotional face-matching task was used to identify the
medial prefrontal cortex and right amygdala. Dynamic Causal Modeling (DCM) was
conducted and neural coupling parameters were obtained for healthy controls with
and without particular risk factors for depression. We assigned a genetic risk if
subjects had a first-degree relative with an affective disorder and an environmental
risk if subjects experienced childhood maltreatment. We then compared amygdala
inhibition during emotion processing between groups. Amygdala inhibition by the
medial prefrontal cortex was present in subjects without those two risk factors, as
indicated by negative model parameter estimates. Having a genetic risk (i.e., a family
history) did not result in changes in amygdala inhibition compared to no risk subjects.
In contrast, childhood maltreatment as environmental risk has led to a significant
reduction of amygdala inhibition by the medial prefrontal cortex. We propose a
mechanistic explanation for the amygdala hyperactivity in subjects with particular risk for
depression, in particular childhood maltreatment, caused by a malfunctioned amygdala
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downregulation via the medial prefrontal cortex. As childhood maltreatment is a major
environmental risk factor for depression, we emphasize the importance of this potential
early biomarker.

Keywords: major depression, childhood maltreatment, fMRI, connectivity, emotion processing, dynamic
causal modeling

INTRODUCTION

Major depressive disorder (MDD) is a common, chronic, costly,
and debilitating disorder, affecting more than 300 million people
worldwide (World Health Organization, 2017). The lifetime
prevalence is in most countries in the range of 8–15% (Andrade
et al., 2003; Kessler et al., 2003; Moffitt et al., 2010). MDD
is caused by a complex interplay of genetic susceptibility and
environmental factors, showing a heritability of ∼35% (Otte
et al., 2016). Genetic risk factors are believed to decrease
resilience to environmental stressors and make disorder onset
more probable. Environmental risk factors include stressful life
events and, in particular, childhood maltreatment (Nelson et al.,
2017). Childhood maltreatment leads to an increased risk for
the development of recurrent MDD and a weaker response to
treatment (Nanni et al., 2011). Childhood maltreatment is also
associated with persistent neurobiological alterations in brain
areas involved in mood regulation (Nemeroff, 2016), strongly
resembling changes reported for MDD patients (Dannlowski
et al., 2012). A deeper understanding how specific risk factors for
depression alter the functional neuroanatomy is important not
only from a basic neuroscience perspective, but also to identify
neurobiological changes that might be used as biomarkers to
potentially provide preventive measures to on-risk individuals at
early stages.

Functional magnetic resonance imaging (fMRI) yielded
insights into the neuroanatomical correlates of MDD. One
robustly replicated finding is the hyper-responsiveness of the
amygdala during emotion processing (e.g., Abler et al., 2007;
Dannlowski et al., 2007; Siegle et al., 2007; Suslow et al., 2010;
for meta-analysis, see Fitzgerald et al., 2008; Palmer et al.,
2015). Changes in activity in the amygdala and accompanying
changes of activity in the medial prefrontal cortex (mPFC) have
led to the formulation of the limbic-cortical model of major
depression (Graham et al., 2013). This model, first outlined by
Mayberg and colleagues (Mayberg, 1997), considers MDD as
a network disorder. One key aspect is that hyper-activity in
limbic areas is not adequately controlled by prefrontal regions,
with an associated depressed mood (Mayberg et al., 1999). More
importantly, amygdala hyperactivity is also present in subjects
at genetic (Joormann et al., 2012) and environmental risk for
depression, such as childhood maltreatment (Dannlowski et al.,
2012). This hyperactivity is therefore not specific for MDD but
may indicate a general vulnerability to mental disorders.

The limbic-cortical model offers a testable framework
that can continuously integrate neuroimaging findings
with complementary neuroanatomical, neurochemical,
and electrophysiological studies in the investigation of the
pathogenesis of depression. In the following, we deliberately

used a simplified version of the limbic-cortical model of Major
Depression. Our model focuses on the connection betweenmPFC
and amygdala. This allows, on the one hand, to test whether the
mPFC down-regulates the amygdala during emotion processing,
and on the other hand whether this downregulation is modulated
by risk factors.

The present study had two aims. First, we tested the limbic-
cortical model by assessing the strength of amygdala inhibition
exerted by the mPFC during an emotion processing task in a
large group of healthy subjects. Second, we tested whether genetic
(i.e., familial) and environmental risk factors modulate amygdala
inhibition. We operationalized those risks via a family history
of affective disorders and childhood maltreatment, respectively.
We hypothesized that both risk factors decrease the inhibitory
influence of the mPFC on the amygdala (Frodl et al., 2010; van
Harmelen et al., 2010; Dannlowski et al., 2012; Joormann et al.,
2012). To investigate the inhibition of mPFC to the amygdala, we
applied Dynamic Causal Modeling (DCM, Friston et al., 2003)
for fMRI. DCM allows for inferences about the directionality
of brain connectivity and aims at inferring neural interactions
from observational data. As DCM is strongly hypothesis-
driven, it allows us to test hypotheses within the borders of a
network model. Furthermore, previous studies have used such
models to decipher disorder and medication effects on limbic-
cortical circuitry (de Almeida et al., 2009; Sladky et al., 2015a;
Sladky et al., 2015b).

MATERIALS AND METHODS

Subjects
Neuroimaging, clinical and neuropsychological data were
obtained from the FOR2107 cohort1. FOR2107 is an ongoing
multicenter study that aims to decipher the neurobiological
foundations of affective disorders (Kircher et al., 2019). A
detailed study description, including recruitment and assessment
procedures, is given elsewhere (Vogelbacher et al., 2018; Kircher
et al., 2019). Neuroimaging was performed at two centers, the
University of Marburg and the University of Münster. The
study was approved by the ethics committees of all participating
institutions. Written informed consent was obtained from all
subjects after a complete description of the study.

A first data freeze (v1.00) was conducted after 1,000 subjects
(both patients and controls) were included in the study. For the
selection of our final sample, we proceeded as follows: First, we
decided to include only subjects measured at the University of
Marburg to reduce variance related to different MR scanners (see
Vogelbacher et al., 2018) for a comparison of data characteristics

1www.for2107.de
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of both sites), leading to a sample size of 800 subjects. Second,
we selected all subjects without any present or past psychiatric
disorders, leading to a sample size of 352 subjects. Third, we
excluded subjects with missing relevant imaging, clinical or
neuropsychological data, leading to a final sample size of 342
(135 men, mean age 33.4 × 12.6 years, range 18–65 years).
Subjects’ characteristics (sex, age, verbal IQ, years of education,
BDI, and HAMD scores) are summarized in Supplementary
Table S1.

The subjects were classified according to their risk status as
having a genetic risk (i.e., familial risk, n = 63), an environmental
risk (n = 44), or no risk factors (n = 247). Twelve subjects had
both a genetic and environmental risk. Genetic risk was assigned
if at least one first degree relative was suffering from an affective
disorder. We use the word ‘‘genetic risk’’ as a proxy for a familial
risk, knowing that we are not examining concrete genotypes
(see ‘‘Discussion’’ section). An environmental risk was assigned
when two subscales of the Childhood Trauma Questionnaire
(CTQ, Bernstein et al., 1997) exceeded a critical threshold
(10 for emotional abuse, eight for physical abuse, eight for sexual
abuse, 15 for emotional neglect, eight for physical neglect). We
hypothesized that both risk factors independently decreased the
inhibitory influence of the mPFC on the amygdala (Dannlowski
et al., 2012; Joormann et al., 2012).

Experimental Design
All subjects were measured with a large neuroimaging battery
assessing both brain function and structure. The study protocol
is described in detail elsewhere (Kircher et al., 2019). In the
present study, we analyzed the fMRI data from an emotional
face-matching task (Hariri et al., 2002). It aims at activating
face processing regions (e.g., fusiform face area, FFA), limbic
regions (e.g., amygdala), and prefrontal regions. In the active
condition, subjects viewed gray-scale images of fearful or angry
faces (Ekman, 1992), in the control condition they viewed
geometric shapes (circles and ellipsoids). In each trial, three
items were presented. A target image was located at the top,
two further images on the left and right side at the bottom,
whereby one of these images was identical to the target image.
The subject was instructed to indicate which of these two images
was identical to the target image by pressing a corresponding
button on an MRI-compatible response pad. The task was set
up as block design, with six face and shape trials, respectively,
per block. Blocks had a duration of 44 s (faces) and 32 s
(shapes), respectively. Five shape blocks and four faces blocks
were presented in an alternating order, starting with a shapes
block. Blocks were separated by short inter-block-intervals. The
paradigm lasted 6 min 14 s. Subjects of different subgroups
performed similar with respect to hit rates and reaction times in
this paradigm (Supplementary Table S2).

MRI Data Acquisition
MRI data were acquired at a 3TMRI scanner (Tim Trio, Siemens,
Erlangen, Germany), located at the Department of Psychiatry,
University of Marburg, using a 12-channel head matrix Rx-coil.
A T2*-weighted echo-planar imaging (EPI) sequence sensitive
to blood oxygen level-dependent (BOLD) contrast was used

with the following parameters: TE = 30 ms, TR = 2,000 ms,
FoV = 210 mm, matrix = 64 × 64, slice thickness = 3.8 mm,
distance factor = 10%, phase encoding direction anterior >>
posterior, flip angle = 90◦, no parallel imaging, bandwidth
2,232 Hz/Px, ascending acquisition, axial acquisition, 33 slices,
slice alignment parallel to AC-PC line tilted 20◦ in the dorsal
direction. A quality assurance (QA) protocol was implemented
to monitor scanner stability by regular phantom measurements,
similar to the ‘‘Glover protocol’’ implemented in the FBIRN
consortium (Friedman and Glover, 2006). The QA protocol is
described in detail elsewhere (Vogelbacher et al., 2018).

MRI Data Analysis
Analysis of Brain Activity
fMRI data were analyzed with the software Statistical Parametric
Mapping (SPM8, r2975)2 based on MATLAB 7.9.0 R2009b using
standard routines and templates. Preprocessing: the initial three
functional images were excluded from further analysis to exclude
T1 stabilization effects. Functional images were realigned onto
the mean image of the series using a six parameter rigid-body
transformation, spatially normalized into standard MNI space,
and resampled to a resolution of 2 × 2 × 2 mm3. Finally,
the images were spatially smoothed using an 8 mm full-width-
half-maximum (FWHM) isotropic Gaussian kernel. Statistical
analysis: statistical analysis was performed using a general linear
model (GLM) framework to create three-dimensional maps
concerning the estimated regressor response amplitude. At the
individual subject level, fMRI responses for both conditions
(faces, shapes) were modeled in a block design using the
canonical hemodynamic response function implemented in
SPM8 convolved with a vector of onset times for the different
stimulus blocks. High-pass filtering was applied with a cut-off
frequency of 1/128 Hz to attenuate low-frequency components.
Weighted beta-images and t-statistic images were created by
contrasting the faces-condition (contrast weight 1) against the
shapes-condition (contrast weight −1). At the group level, brain
activation was assessed using a one-sample t-test for the contrast
(faces > shapes).

Analysis of Brain Connectivity
Connectivity changes between the mPFC and the amygdala
were assessed using Dynamic Causal Modeling [DCM, Friston
et al., 2003), SPM12, r6685, DCM12, r6591]. DCM is a Bayesian
framework for investigating the effective connectivity in a
neural network based on neuroimaging data. In the present
implementation, DCM describes the brain as a deterministic
input-output system using a bilinear differential equation:

dz
dt
=

(
A+

∑m

j = 1
ujBj

)
z + Cu,

where z depicts the neuronal activities, u corresponds to the
experimental input. A describes the endogenous (fixed or
context-independent) connection strengths, Bj defines how the
experimental manipulation uj affects the connections among the
network regions (modulatory connectivity), and C describes how

2http://www.fil.ion.ucl.ac.uk/spm/
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the driving inputs directly influence the neuronal state of the
network regions. The dynamics of the neuronal states in each
region are translated into predictions of the measured BOLD
signal by a hemodynamic forward model (Balloon-Windkessel
model; (Buxton et al., 1998). Using a Variational Laplace
approach with Gaussian assumptions on the prior and posterior
distributions, the posterior densities of the model parameters
(i.e., conditional mean and covariance) can be estimated by
maximizing the negative free energy.

The starting point for a DCM analysis is the selection of a
fixed set of regions, their possible connections, the driving inputs,
and the modulatory inputs. Different models can be compared
to identify which models best predict the data. DCM enables
inferences at different levels, on the one hand, inference onmodel
space, on the other hand, inference on parameter space of any
given model. In the following, we will describe: (i) the extraction
of time series in specific regions of interest (ROIs), the basis
for estimating models; (ii) the model space definition; and (iii)
the statistical inferences conducted with the model parameters
of interest.

Time Series Extraction
fMRI time series were extracted from the mPFC and the right
amygdala, analogous to the procedure described by Sladky
et al. (2015b). First, we calculated the group activation pattern
for the contrast (faces > shapes) using a one-sample t-test
on the weighted beta-images of all subjects. We determined
mPFC (MNI: 2, 46, −16) and right amygdala (MNI: 20, −6,
−20) by selecting voxels that showed the most significant
activations concerning the t-test in those areas. Subsequently,
we identified the single subject peak voxel coordinates using a
searchlight approach. For this, single subjects’ activation maps
were thresholded at p < 0.99, uncorrected, and the most
strongly activated voxel was determined for each subject for
the mPFC (within a search radius of 12 mm around group
peak) and the right amygdala (within a search radius of 8 mm
around group peak). See Figure 1 for a graphical depiction
of the localization of the regions. We selected such a liberal
threshold to avoid dropping single subjects due to sub-threshold
activation out of our DCM analysis. This would have created
a selective sample with only ‘‘strongly’’-activating subjects and
generalizations would not have been possible.

At last, the first principal component of the time series in
the mPFC and the right amygdala, respectively, was extracted

including all voxels inside a radius of 4 mm around the subject-
specific peak voxel.

Model Space Definition
Based on the limbic-cortical model of major depression (see
‘‘Introduction’’ section), we investigated the coupling between
the mPFC and the right amygdala in a two-region model
(Figure 2). We chose the right rather than bilateral amygdala
because the most consistent findings regarding connectivity and
risk factors focus on the right amygdala (e.g., Del-Ben et al.,
2005; Anderson et al., 2007; Dalby et al., 2010; Windischberger
et al., 2010; Dannlowski et al., 2012; Zhang et al., 2012; Sladky
et al., 2015b). The choice of our model space was motivated by
previous studies using a similar approach (de Almeida et al.,
2009; Sladky et al., 2015a,b). We assumed reciprocal structural
connectivity between both regions (Klingler and Gloor, 1960;
Catani et al., 2002; Ghashghaei and Barbas, 2002). Therefore, the
A-matrix was identical in all models. We created 12 different
models, differing in their B- and C-matrices. The face blocks
served as direct driving input (C-matrix) into the system,
either via the mPFC, the amygdala, or both regions. These
face regressors served also as modulatory input (B-matrix)
on the connection from mPFC to the amygdala, on the
connection from the amygdala to mPFC, on both connections or
none connection.

Statistical Inference
We assessed the impact of risk status on amygdala inhibition.
Our parameter of interest was, therefore, the modulatory
B-matrix parameter of the fronto-amygdala connection. Bayesian
Model Averaging (BMA) was conducted over the whole model
space of a subject to compute a weighted average of each
model parameter. The weighting was determined by the posterior
probability of each model. This approach is considered as useful
complementation to Bayesian Model Selection (BMS, Stephan
et al., 2009) when none of the models tested outperformed all
others (as was the case in the present study; see Supplementary
Table S3).

A Bayesian estimation (BEST) procedure implemented in
R (version 3.5.1; Kruschke, 2013) was used to calculate group
differences. As input data, we used the posterior point estimates
of all subjects’ DCM parameters (i.e., modulatory fronto-
amygdala connection) after subject-specific BMA. We used
uninformative default priors. In a first step, a Bayesian MCMC
process generated random draws from the posterior distribution

FIGURE 1 | Graphical depiction of the regions-of-interest for the Dynamic Causal Modeling (DCM) analysis. Medial prefrontal cortex (mPFC; blue; peak voxel at MNI
coordinates 2, 46, −16) and right amygdala (red; peak voxel at MNI coordinates 20, −6, −20) are shown on axial slices. As the center of the sphere, we used the
peak voxels of the group-level activation map. Numbers indicate the MNI z-coordinate.
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FIGURE 2 | Model space consisting of 12 different DCMs. Faces with emotional expressions served as input into the system (C-matrix, short arrows), either on the
mPFC, the amygdala, or both regions. The two regions were always reciprocally connected (A-matrix, grey arrows). Faces either modulated one connection, both
connections, or none of the connections (B-matrix, black arrows).

of group means and differences of means (500,000 samples
each). We used the distribution of mean differences to infer the
credibility of group differences. With this, posterior distributions
for group mean comparisons were generated, similar to a
t-test. But rather than p-values, Bayesian estimation provides
probabilistic statements about values of interest (for more
information, see Kruschke, 2010, 2013; Kruschke and Liddell,
2018). For example, we can state that with a probability of 95%
the true value (i.e., mean connection strength) is higher for group
A than for group B. Furthermore, an (e.g., 95%) highest density
interval (HDI) marks a region of the credibility of parameter
values. Obtaining a 95% HDI in the difference distribution
that lies fully above or below zero, we can conclude a credible
difference. Furthermore, we report effect sizes of the difference
distribution between groups.

First, we computed three posterior distributions for the
fronto-amygdala modulatory parameter, one for each group (no
risk, genetic risk, and environmental risk). Subjects with both risks
were included in both risk groups equally. We further computed
the difference distributions between the respective risk groups
and the no-risk group. We hypothesized that both risk factors
independently decrease the inhibitory influence of the mPFC on
the amygdala (Dannlowski et al., 2012; Joormann et al., 2012).

To account for confounding factors such as age, sex, and BDI
score, we additionally conducted a multiple regression analysis
(see Supplementary Analysis).

RESULTS

In the following, we will present subgroup-specific posterior
parameter estimates after BMA and BEST. Our parameter of
interest was the modulatory B-matrix parameter of the fronto-
amygdala connection.

For participants without any of our examined risk factors,
the coupling between mPFC and amygdala was negative,
characterized by a mean parameter estimate of−0.366 (Figure 3,
top left). Importantly, the 95% HDI interval was completely
below zero, indicating a credible difference from zero. In this
group, themPFC therefore clearly exerted an inhibitory influence
on amygdala activity during face processing.

For participants with a family history of affective disorders
(i.e., genetic risk), the coupling strength was similar (mean
parameter estimate −0.417, Figure 3, top center). The 95%
HDI was completely located in the negative range, indicating
that also in this group the mPFC exerted a clear inhibitory
influence on amygdala activity during face processing. The
differences of means between the no risk and the genetic
risk group were 0.049 (Figure 3, top right). Since both the
distribution of differences between means accumulated at zero
and the 95% HDI intersected zero, there was no evidence for
a different coupling strength between both groups. The effect
size of the difference distribution was 0.03 (Supplementary
Figure S1).

For participants with an environmental risk (i.e., childhood
maltreatment) the parameter estimate of the fronto-amygdala
coupling accumulated around zero (mean parameter estimate
−0.035, Figure 3, bottom center). The difference of means
between the no risk and the environmental risk group was−0.331
(Figure 3, bottom right). Importantly, the mean of the no-
risk group was with a probability of 99.5% more negative than
the mean of the environmental risk group. Similarly, the 95%
HDI was completely in the negative range (Figure 3, bottom
right). This showed that the inhibitory influence of the mPFC
on amygdala activity during face processing was diminished
in the environmental risk group compared to the no-risk
group. The corresponding effect size was−0.46 (Supplementary
Figure S2).

An additional multiple regression analysis confirmed those
results (see Supplementary Analysis). In the regression, we
found an overall significant amygdala inhibition in subjects at
no risk (p < 0.001), and a significant reduction of this inhibition
by childhood maltreatment as environmental risk (p = 0.02, see
Supplementary Analysis). Neither effects of age, sex, or BDI
have been found.

DISCUSSION

In the present study, we tested a neurobiological model for the
inhibition of the amygdala response to emotional stimuli in a
large sample of healthy subjects. In particular, we tested whether

Frontiers in Systems Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 28

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Kessler et al. Limbic-Cortical Model and Childhood Trauma

FIGURE 3 | Effect of emotional face processing on the fronto-amygdala connection in healthy participants with and without particular risks for depression.
Displayed are sampling distributions for the mean for each subgroup (left and middle column) as obtained via Bayesian estimation (“BEST”) and sampling
distributions for the difference of group means (right column). Top row: subjects with genetic risk (family history) for major depressive disorder (MDD; top center)
exhibited similar amygdala inhibition than those without risk (top left). 95% highest density intervals (HDIs) fell fully into the negative range. There was no credible
difference between groups (top right). The 95% HDI well accumulated around zero. Bottom row: amygdala inhibition in healthy participants with environmental risk
for depression (i.e., childhood maltreatment). Fronto-amygdala connectivity during emotional face processing was strongly diminished in healthy participants
exhibiting an environmental risk with a probability of 99.5%, with the 95% HDI accumulating completely in the negative range.

this inhibition is modulated by genetic and environmental risk
factors such as a family history of affective disorders and
childhood maltreatment, respectively. Our results showed that
amygdala inhibition by medial prefrontal cortex regions was
strongly diminished in subjects who experienced childhood
maltreatment, but not in subjects with genetic (i.e., familial)
risk factors.

In the following, we will first discuss some background
on the amygdala function and the necessity of amygdala
inhibition. Then we will introduce the limbic-cortical model
for depression. We will demonstrate how this network model
explains amygdala hyperactivity in on-risk subjects, particularly
those with past childhoodmaltreatment. Our results complement
findings of amygdala hyperactivation in subjects with childhood
maltreatment, and we propose a mechanistic model for how this
hyperactivation may be caused.

The Amygdala Prefrontal Pathway in
Emotion Regulation
Amygdala’s activity is generally associated with the processing
of emotionally salient stimuli, e.g., fearful facial expressions
(Davis, 1992; Adolphs, 2002; Fitzgerald et al., 2006; Pessoa
and Adolphs, 2011). The amygdala can respond to biologically
relevant stimuli quickly (Méndez-Bértolo et al., 2016), allowing
for a fast modulation of specialized cortical processing as well as

behavioral, vegetative and endocrine reactions (LeDoux, 1998).
Proper amygdala functioning was therefore of major advantage
throughout vertebrate evolution. However, amygdala activity
needs regulation, for instance after a stimulus has been evaluated
as harmless. Such control is functionally related to the prefrontal
cortex (Kim and Whalen, 2009; Agustín-Pavón et al., 2012),
in particular to the orbitofrontal cortex (ORB), ventromedial
prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC;
Mayberg, 1997; Mayberg et al., 1999; Etkin et al., 2011; Motzkin
et al., 2015). Studies report overlapping functionalities of these
three medial frontal regions (Etkin et al., 2011; Marusak et al.,
2016). Lesions in medial prefrontal areas are associated with
impaired down-regulation of fear and anxiety (Agustín-Pavón
et al., 2012; Motzkin et al., 2015), implicating its role as an
emotion control region. Additionally, metabolic alterations of
those regulatory regions have been found for disorders such
as MDD, which are accompanied by impaired emotion control
abilities (Portella et al., 2011).

The amygdala has reciprocal anatomical connections to
medial prefrontal regions, e.g., via the uncinate fasciculus
(UF; Ebeling and von Cramon, 1992; Thiebaut de Schotten
et al., 2012; Von Der Heide et al., 2013), which has been
linked to inhibitory signaling from the mPFC to the amygdala
(Kim and Whalen, 2009; Motzkin et al., 2015). Top-down
signaling from mPFC towards the amygdala may be regarded
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as safety signaling, with the mPFC supposedly calming down
the amygdala (Harrison et al., 2017). Dysfunctions of amygdala
downregulation in MDD have been associated with structural
abnormalities in the UF, showing, for instance, an inverse
relationship between UF volume and trait anxiety (Kim and
Whalen, 2009; Baur et al., 2012) and weakened UF white
matter structural integrity in MDD (de Kwaasteniet et al., 2013),
particularly right-hemispheric (Dalby et al., 2010; Zhang et al.,
2012). In an often-used analogy, the amygdala is regarded as a
barking watchdog, while the mPFC is the dog’s owner, evaluating
the relevance of the barking dog and therefore differentiating
between harmless and potentially hazardous events. In MDD
however, the owner fails to regulate his or her watchdog as
effectively as necessary, and the dog keeps alarming longer or
louder as usual.

The Limbic-Cortical Model
A network model describing the interaction of mPFC and
amygdala was first outlined by Mayberg and colleagues in
the context of MDD (Mayberg, 1997). Its initial formulation
proposed aberrant networking of a variety of cortical and
subcortical areas. It proposes hypo-activity in the dorsal cortical
and dorsal limbic areas and accompanying hyperactivity in
ventral (para-) limbic areas in MDD. This activation pattern
was supposed to flip with treatment (Mayberg, 1997), and
medial prefrontal areas are to mediate between those major
compartments (Mayberg, 1997). It’s baseline activity has further
been proposed as a biomarker for treatment success (Mayberg,
1997). Over the years the Mayberg model has been adapted
and revised in very different fashions. For instance, the
ventromedial prefrontal cortex (vmPFC) is often described as
the regulatory region, inhibiting the amygdala in healthy subjects
(e.g., Johnstone et al., 2007; Dutcher and Creswell, 2018) and
lacking such inhibition in MDD (e.g., Johnstone et al., 2007).
Other studies assigned such a regulatory function rather than
the (ORB, Sladky et al., 2015b), but also (ACC, Johnstone et al.,
2007; Etkin et al., 2011). In neuroimaging studies, regions such
as vmPFC, ORB, and sometimes ACC are named in a very
heterogeneous fashion, complicating the comparison of studies
and findings. We derived both regions of interest from local
peaks within the respective areas. Therefore, we named our
prefrontal region, which encompassed both vmPFC and medial
ORB, ‘‘mPFC’’ to keep it sufficiently general.

We applied the limbic-cortical model to data derived by
healthy subjects with and without particular risk status for MDD
rather than MDD patients themselves. We hypothesized that
both of our examined risks may be associated with aberrant
networking of this emotion regulation circuit, which then, in
turn, may contribute to disorder onset. In the present study, we
are not able to evaluate a causality chain due to the cross-sectional
data used. However, we were able to evaluate the network model
in healthy individuals without those two risk factors by showing,
that there is indeed a down-regulation of the amygdala by mPFC
during emotion processing, indicated by negative parameter
estimates. We then examined how the network model behaves
in subjects at-risk. In future studies, using longitudinal data that
is currently collected in the FOR2107 cohort, we will be able

to further refine our findings by applying our models also to
patient data.

The Impact of Risk Factors
MDD is most likely caused by a combination of some
polygenetic predisposition and environmental factors. Showing
high heritability, a family history of MDD may have a major
impact on an individual, e.g., lowering resilience to adverse
life events (Joormann et al., 2012). On the other hand, there
are environmental factors, elevating the probability of clinical
depression. One factor, leading to increased risk for depression,
is childhood maltreatment (Kessler, 1997; Gilbert et al., 2009).
Childhood maltreatment probably leads to psychological and
biological vulnerabilities and higher sensibility to stressors
(Kessler, 1997; Beck, 2008; Danese et al., 2008; Nanni et al., 2011),
increasing the probability of disorder onset. Furthermore, MDD
patients that experienced childhood maltreatment show lower
treatment outcome (Hammen et al., 2000; Lanquillon et al., 2000;
Nanni et al., 2011). On a neural system level, healthy subjects
with a family history of MDD show amygdala hyperactivity
in emotional tasks (Joormann et al., 2012). Similarly, healthy
subjects with childhood trauma experiences show amygdala
hyperactivity as a response to emotional faces, much like patients
suffering from MDD (Dannlowski et al., 2012), accompanied
with structural alterations in the prefrontal cortex (Frodl et al.,
2010; van Harmelen et al., 2010; Dannlowski et al., 2012).
Early life events, therefore, may establish long-lasting changes in
emotional processing and associated unfavorable alterations in
brain structure, function, and connectivity.

In our analysis, we tackled the question of amygdala inhibition
by mPFC in healthy subjects at-risk. We operationalized a
genetic risk by assigning it to a subject if a first-degree relative
ever had a diagnosed affective disorder. We found no credible
differences in amygdala inhibition between the no risk and the
genetic risk group (Figure 3, bottom). This was contrary to our
hypothesis as we expected a weaker inhibition in those subjects
under genetic (i.e., familial) risk. Likewise, the environmental
risk was operationalized via childhood maltreatment (see
‘‘Materials and Methods’’ section). We found that childhood
maltreatment was associated with a strong reduction of amygdala
inhibition (Figure 3, bottom). In the framework of our network
model—an operationalization of the limbic-cortical model—we,
therefore, provide a mechanistic explanation for the observed
amygdala hyperactivity in healthy subjects with childhood
trauma experiences (Dannlowski et al., 2012), namely a failure
of amygdala regulation by prefrontal control regions.

Limitations
We acknowledge some limitations of our analyses. First, we
used a simplified model including only two regions, covering
only a small part of the brain regions associated with emotion
processing. A widely distributed network of regions would form
a better picture but comes with higher computational costs.
Second, we identified one possible prefrontal region for our
analysis, derived from our group activation data. Literature,
however, reveals many different localizations of potential
prefrontal control regions, with overlapping functionality but
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variability in their designations (Etkin et al., 2011; Marusak
et al., 2016). We refer to the Mayberg studies with our results,
which can be seen as the basis for the limbic-cortical model of
MDD (Graham et al., 2013). It provides us a suitable framework
for our hypotheses. However, the prefrontal control region
we used differed from the regions within the original studies.
Additionally, we operationalized a genetic risk via a family
history of affective disorders. However, this does not capture any
concrete genotype. With this kind of operationalization, we may
also not distinguish between a true genetic risk due to inheritance,
and an environmental factor such as emotional neglect due to
the indirect consequences of a parent’s disorder. Therefore, our
assigned genetic risk can be better understood as a familial risk,
including both genetic and environmental factors.

Conclusion
In this article, we constructed and evaluated a model proposing
that childhood maltreatment but not a family history of affective
disorders are characterized by a reduced inhibition of the
amygdala by mPFC. In the context of our model, we illustrate
a potential mechanism for the frequently reported amygdala
hyperactivation in MDD during emotion processing. More
importantly, the model provides a mechanistic explanation for
amygdala hyperactivation in healthy subjects with childhood
trauma experiences. Model parameters such as this may
constitute vulnerability markers for clinical symptoms in later
life and maybe predictive for treatment success. Information
of such model parameters may be used for early therapeutic
intervention in at-risk individuals, to prevent disorder onset and
poor treatment response in later life stages, when pathological
connections are tightened and more difficult to treat.
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