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Abstract: In recent years the delta-E effect has been used for detecting low frequency and low
amplitude magnetic fields. Delta-E effect sensors utilize a forced mechanical resonator that is detuned
by the delta-E effect upon application of a magnetic field. Typical frequencies of operation are from
several kHz to the upper MHz regime. Different models have been used to describe the delta-E effect
in those devices, but the frequency dependency has mainly been neglected. With this work we present
a simple description of the delta-E effect as a function of the differential magnetic susceptibility χ of
the magnetic material. We derive an analytical expression for χ that permits describing the frequency
dependency of the delta-E effect of the Young’s modulus and the magnetic sensitivity. Calculations
are compared with measurements on soft-magnetic (Fe90Co10)78Si12B10 thin films. We show that the
frequency of operation can have a strong influence on the delta-E effect and the magnetic sensitivity
of delta-E effect sensors. Overall, the delta-E effect reduces with increasing frequency and results
in a stiffening of the Young’s modulus above the ferromagnetic resonance frequency. The details
depend on the Gilbert damping. Whereas for large Gilbert damping the sensitivity continuously
decreases with frequency, typical damping values result in an amplification close to the ferromagnetic
resonance frequency.

Keywords: delta-E effect; magnetoelasticity; resonators; magnetic field sensing; dynamic
susceptibility; surface acoustic wave (SAW)

1. Introduction

The change of the effective elastic properties with magnetization is referred to as the delta-E effect.
It results from inverse magnetostriction that adds an additional strain to the purely elastic Hookean
strain [1–3]. The delta-E effect has been used to build various types of magnetic field sensors for
the detection of low frequency and low amplitude magnetic fields. The first integrable devices [4]
were achieved using magnetoelectric MEMS (Micro-Electro-Mechanical Systems) cantilevers [5–7]
and nano-plate resonators [8–10] with thin soft-magnetic layers from 100 nm–2 µm. These structures
are excited electrically via a piezoelectric layer to oscillate at their respective resonance frequencies.
Typical operation frequencies are from several kHz up to several hundred MHz [11]. Upon application
of a magnetic field, the Young’s modulus of the magnetostrictive layer changes, which detunes the
resonance frequency. Similar kinds of delta-E effect sensors are based on surface acoustic wave (SAW)
devices [12–17]. Rayleigh or Love waves are excited with interdigital electrodes at MHz frequencies up
to the low GHz regime. The surface waves propagate through a magnetic thin film which is deposited
on top of the delay line. Upon application of a magnetic field, the delta-E effect of the magnetic material
results in a delay of the surface wave which can be detected as a phase change at the output electrodes.
Both kinds of delta-E effect sensors require an external or internal magnetic bias field to be operated at
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their optimum sensitivities. Besides sensor applications, the delta-E effect has been used for tunable
SAW devices operating up to the GHz range [18–24].

Early experiments and models on the frequency dependency of the delta-E effect focused mainly
on polycrystalline nickel rods. In these structures, a strong decrease (from 20% down to 3%) of the
delta-E effect was found by an increase of the frequency from a few kHz up to 10 MHz [25,26]. The
good agreement with calculations showed that this phenomenon can be assigned to eddy current
damping: at low frequencies, micro eddy currents increasingly impede domain wall motion until also
the moment rotation is being damped [27]. These calculations are made for bulk structures and are
limited to the demagnetized state. The models are based on a quasi-static approach and are only valid
for frequencies well below the ferromagnetic resonance frequency.

Despite the first theoretical attempts and the interest in high frequency devices, the existing
delta-E effect models [2,28–35] are mainly quasi-static single-spin approaches. Dynamic magnetoelastic
models treat the wave velocity [36–38] of Rayleigh waves and the electrically driven ferromagnetic
resonance [39,40]. Neither calculations for the dynamic delta-E effect nor for the sensitivity for delta-E
effect sensors are available.

Here we present a simple but general approach to include the frequency dependency in calculations
of the delta-E effect of the Young’s modulus. It is applied to the example of the high frequency regime
using a linearization of the magnetization dynamics. Calculations of the dynamic susceptibility are
compared with measurements on soft-magnetic material, which has been used for magnetic field
sensing before. The resulting parameters are used to calculate the Young’s modulus E(H, f ) as a
function of magnetic field H and operation frequency f . From E(H, f ) the magnetic part ∂E,H := ∂E/∂H
of the sensitivity S ∝ ∂E,H is calculated for resonators dominated by the Young’s modulus. Finally, the
results are compared with measurements from the literature.

2. The Delta-E Effect

In the following section, a simple equation for the delta-E effect as a function of the differential
susceptibility and the magnetoelastic properties is derived and illustrated. Next, an expression for the
dynamic differential susceptibility is presented that permits us to describe the frequency and magnetic
field dependency of the Young’s modulus.

2.1. The ∆E-Effect

The change of Young’s modulus E with the magnetic field results from a change of the
magnetoelastic response upon magnetization. Applying a stress σ to the magnetic material results
in a purely mechanical strain e = E−1

m σ, inversely proportional to Young’s modulus Em at fixed
magnetization. The mechanical strain e is superposed by a stress induced magnetostrictive strain λ
that depends on the magnetization M. The total Young’s modulus can be described by [3]

1
E
=
∂(e + λ)

∂σ
:=

1
Em

+
1

∆E
with

1
∆E

:=
∂λ
∂σ

=
∂λ
∂H

∂H
∂M

∂M
∂σ

. (1)

This expression is rearranged to describe the delta-E effect as a function of easy to measure magnetic
properties. Using the relation ∂M/∂σ = (1/µ0)∂λ/∂H [41] to replace ∂M/∂σ, the equation becomes

1
∆E

=
(∂λ/∂H)2

µ0∂M/∂H
:=

χ2
me

µ0χ
, (2)

which is consistent with [3]. Consequently, the change of Young’s modulus is inversely proportional
to the square of the differential magnetoelastic susceptibility χme := ∂λ/∂H, with the differential
magnetic susceptibility χ := ∂M/∂H as a proportionality factor.

The relation between M(H), λ(H) and E(H) is illustrated in Figure 1 in the example of a soft
magnetic amorphous FeCoSiB thin film with uniaxial magnetic anisotropy, typical for cantilever delta-E
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effect sensors [7]. A mean-field model based on a single-spin ensemble is used to describe λ(H) and
M(H), required for Equation (2). Details of the model and the material parameters are given in the
Appendix A. A slight hysteresis occurs in M(H), λ(H) and E(H) due to a dispersion of the magnetic
easy axis introduced in the model. Note that the minimum of E(H) is at slightly larger fields than
the maximum of χ2

me. This occurs because χ2
me is divided in Equation (2) by µ0χ, which is maximum

around H = 0. The calculation in Figure 1 is consistent the measurements [42] and the trend reported
in the literature [29,43].
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Figure 1. Illustration of the proportionality of the delta-E effect to the squared magnetoelastic
susceptibility χ2

me := (∂λ/∂H)2 in Equation (2) using a mean-field model based on a single-spin
ensemble (Appendix A). (a) Modelled magnetic hysteresis curve normalized to the saturation
magnetization Ms and the differential magnetic susceptibility χ; (b) modelled magnetostriction
curve, normalized to the magnetostriction λs at magnetic saturation and its squared derivative χ2

me;
(c) resulting Young’s modulus E as function of the applied magnetic field H, normalized to its value Em

at fixed magnetization. The mean-field model and the parameters used for the simulation are given in
the Appendix A.

2.2. Frequency Dependency of the Young’s Modulus

To describe the frequency dependency of the delta-E effect, Equation (2) cannot be used
directly, because both χme and χ are functions of the magnetization. Instead, the magnetic field
and magnetization dependency of χme are separated to describe E as function of χ only. For that, we
first use the common quadratic approximation of λ [44] to form the derivative of the magnetostrictive
strain to the magnetization

λ =
3
2
λs

(
m2

0 −
1
3

)
→

∂λ
∂M

=
1

Ms

∂λ
∂m0

=
3λsm0

Ms
. (3)

In this equation, m0 is the projection of the normalized quasi-static magnetization vector m0 on the
axis of the applied static bias field H. The expression χme := ∂λ/∂H = ∂λ/∂M· ∂M/∂H is substituted
into Equation (2) with ∂λ/∂M from Equation (3), which results in

1
∆E

=
χ
µ0

(
∂λ
∂M

)2

=
9λ2

sm2
0

µ0M2
s
χ . (4)
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Then the Young’s modulus E(H, f ) finally is

E(H, f ) =
(

1
Em

+
1

∆E(H, f )

)−1

with
1

∆E
=

9λ2
sm2

0

µ0M2
s
χ . (5)

The magnetostrictive strain λ(M) results from the strain response of the mechanical structure to
the magnetization induced magnetoelastic stress. Measurements and simulations on FePt nanoparticles
indicate that this local structural response occurs on the timescale of a few pico-seconds [45]. Hence,
we assume λ(M) to be constant in the GHz regime which is of interest here. With this the differential
dynamic susceptibility χ can be used to describe the frequency dependency of the delta-E effect. For
the specific situation of a hard axis magnetization process the projection m0(H) can be eliminated from
Equation (5) with the Stoner–Wohlfarth model [46]. The solution for a hard axis magnetization process
is [44,46]

m0(H) =

{
H/HK |H| < HK

1 |H| > HK

}
. (6)

The effective anisotropy field HK = 2K/(µ0Ms) is expressed via the first order anisotropy constant
K. The final solution for the Young’s modulus E(H, f ) as a function of the differential susceptibility for
this specific case is

E(H, f ) =
{

1/Em + 1/∆E |H| < HK

Em |H| > HK

}
with

1
∆E

=
9
4
µ0λ2

sH2

K2 χ . (7)

2.3. Dynamic Differential Susceptibility

For the differential dynamic susceptibility, a single spin model is used. The motion of the magnetic
moments is described by the Landau–Lifshitz–Gilbert equation [47]:

∂M
∂t

= γM×Heff +
α

Ms
M×

∂M
∂t

. (8)

In the equation, γ is the gyromagnetic ratio, α is the Gilbert damping parameter, Heff is the effective
field vector and M is the magnetization vector. The components of the effective field result from the
energy density function u, which is given in the Appendix A. For u we consider an effective uniaxial
energy density, a Zeeman term and a demagnetizing energy density. The components Heff,i of the
effective field are then given by

Heff,i = HK (m0,1ea1 + m0,2ea2 + m0,3ea3)eai + Hi + Hd,i with i = 1, 2, 3 . (9)

The components Hd,i = DiiMsm0,i of the demagnetizing field are given by the product of the
respective component m0,i of the normalized magnetization and the component Dii of the diagonal
demagnetizing tensor D. The direction cosines of the easy axis vector are given by eai. Hi are the
components of the applied static magnetic field vector.

The spin dynamic is linearized using a procedure similar to the one commonly used for
ferromagnetic resonance (FMR) calculations [48,49]. In our case, the effective AC driving field
is aligned with the magnetic bias field. The fact that the AC effective field originates from an external
stress and not from an external magnetic field does not change the calculation procedure. m0 can be
obtained from minimizing the energy density u numerically or from Equation (6) in the ideal hard axis
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case. The following expression is the result for the component χ11 := χ of the dynamic differential
magnetic susceptibility along the magnetic bias field

χ =
γMs m2

0,2

γ
(
Heff + MsD̃−HKẽa2

− αiω/γ
)
−

ω2

γ
(
Heff+MsD33−

αiω
γ

) , (10)

with D̃ := D11m2
0,2 +D22m2

0,1, ẽa := ea1m0,2 + ea2m0,1 and the angular frequency ω = 2π f of the driving

field. The magnitude Heff of the effective field is given by Heff =
(
H2

eff,1 + H2
eff,2 + H2

eff,3

)1/2
with Heff,i

from Equation (9). The full tensor of the differential susceptibility and more details on the calculation
procedure are given in the Appendix A. Together with Equation (5) or Equation (7), Equation (10) can
be used to describe the frequency and magnetic field dependency of the Young’s modulus. Results are
shown and discussed in the following section.

3. Results and Discussion

In this section, we first present results of the dynamic susceptibility and the Young’s modulus
E(H, f ) from an ideal single-spin. Afterwards, a mean-field model is used to compare the modeled
magnetization M(H) and the ferromagnetic resonance frequency fFMR with measurements. The
extracted parameters are used to calculate the magnetic part ∂E,H := ∂E/∂H of the sensitivity of delta-E
effect sensors as a function of damping parameter α and operation frequency f .

For all calculations in this section, we consider a thin film for which the approximation
D11 ≈ 0 , D22 ≈ 0 and D33 ≈ 1 holds well. For the material parameters we consider the
gyromagnetic ratio γ = 2.21× 10−5 Hz/(A/m) [50] of the free electron, a saturation magnetostriction
of λs = 35 ppm [42] and a saturation Young’s modulus of Em = 150 GPa [42]. We use K = 1400 J/m3

and a saturation flux density of µ0Ms = 1.48 T, obtained from the measurements in Section 3.2.

3.1. Frequency Dependency of the Young’s Modulus and Dynamic Susceptibility

In the following section, we illustrate the frequency and magnetic bias field dependency of
the differential dynamic susceptibility χ and the Young’s modulus E. Calculations are made with
the example of an ideal hard-axis magnetization process of a single-spin. For the Young’s modulus
Equation (7) is used with the dynamic differential susceptibility χ from Equation (10). A damping
parameter of α = 0.02 is used.

In Figure 2a the results for the normalized quasi-static magnetization M/Ms and the normalized
magnetostrictive strain λ/λs are illustrated. They resemble the well-known Stoner–Wohlfarth behavior
of a uniaxial anisotropy material. Because M(H) is a linear function for −HK < H < HK, the
static differential susceptibility χ0 is constant in this magnetic field regime. The real part Re{χ} of
the differential dynamic susceptibility χ (Figure 2b) is consistent with the quasi-static solution at
low frequencies. With increasing frequency, the discontinuity around H = HK is rounded off and
Re{χ} develops two minima. The minima occur due to the continuous shift of the ferromagnetic
resonance frequency from fFMR = 0 Hz at H = ±HK (due to the simple single-spin model) up to about
fFMR = 1.65 GHz at H = 0. The result at H = 0 is equal to the result from the equation of Kittel [51].



Sensors 2019, 19, 4769 6 of 14

Sensors 2019, 19, x FOR PEER REVIEW                                                                    5 of 14  

 

. Together with Equation 5 or Equation 7, Equation 10 can be used to describe the frequency and 

magnetic field dependency of the Young’s modulus. Results are shown and discussed in the 

following section. 

3. Results and Discussion 

In this section, we first present results of the dynamic susceptibility and the Young’s modulus 

𝐸(𝐻, 𝑓) from an ideal single-spin. Afterwards, a mean-field model is used to compare the modeled 

magnetization 𝑀(𝐻)  and the ferromagnetic resonance frequency 𝑓
FMR

 with measurements. The 

extracted parameters are used to calculate the magnetic part 𝜕𝐸,𝐻 ≔ 𝜕𝐸 𝜕𝐻⁄  of the sensitivity of 

delta-E effect sensors as a function of damping parameter 𝛼 and operation frequency 𝑓. 

For all calculations in this section, we consider a thin film for which the approximation 𝐷11 ≈

0 , 𝐷22 ≈ 0 and 𝐷33 ≈ 1 holds well. For the material parameters we consider the gyromagnetic ratio 

𝛾 = 2.21 × 10−5 Hz/(A m⁄ ) [50] of the free electron, a saturation magnetostriction of 𝜆s = 35 ppm 

[42] and a saturation Young’s modulus of 𝐸m = 150 GPa [42]. We use 𝐾 = 1400 J/m³  and a 

saturation flux density of 𝜇0𝑀s = 1.48 T, obtained from the measurements in section 3.2.  

3.1. Frequency Dependency of the Young’s Modulus and Dynamic Susceptibility  

In the following section, we illustrate the frequency and magnetic bias field dependency of the 

differential dynamic susceptibility 𝜒 and the Young’s modulus 𝐸. Calculations are made with the 

example of an ideal hard-axis magnetization process of a single-spin. For the Young’s modulus 

Equation 7 is used with the dynamic differential susceptibility 𝜒 from Equation 10. A damping 

parameter of 𝛼 = 0.02 is used. 

In Figure 2a the results for the normalized quasi-static magnetization 𝑀 𝑀s⁄  and the normalized 

magnetostrictive strain 𝜆 𝜆s⁄  are illustrated. They resemble the well-known Stoner–Wohlfarth 

behavior of a uniaxial anisotropy material. Because 𝑀(𝐻) is a linear function for −𝐻K < 𝐻 < 𝐻K, the 

static differential susceptibility 𝜒0 is constant in this magnetic field regime. The real part 𝑅𝑒{𝜒} of 

the differential dynamic susceptibility 𝜒 (Figure 2b) is consistent with the quasi-static solution at low 

frequencies. With increasing frequency, the discontinuity around 𝐻 = 𝐻K is rounded off and 𝑅𝑒{𝜒} 

develops two minima. The minima occur due to the continuous shift of the ferromagnetic resonance 

frequency from 𝑓FMR = 0 Hz at 𝐻 = ±𝐻K (due to the simple single-spin model) up to about 𝑓FMR =

1.65 GHz at 𝐻 =  0. The result at 𝐻 =  0 is equal to the result from the equation of Kittel [51]. 

 

(a) 

 

(b) 

Figure 2. (a) Modelled magnetization component 𝑀 along the magnetically hard axis, normalized to 

the value 𝑀s at magnetic saturation and the magnetostrictive strain 𝜆 normalized to its value 𝜆s at 

magnetic saturation. (b) Modelled real part 𝑅𝑒(𝜒)  of the dynamic differential susceptibility 

𝜒 (Equation (10)), normalized to the static susceptibility 𝜒0 ≈ 639 of its quasi-static magnetization 

value at a magnetic bias field 𝐻 =  0. 

Figure 2. (a) Modelled magnetization component M along the magnetically hard axis, normalized to the
value Ms at magnetic saturation and the magnetostrictive strain λ normalized to its value λs at magnetic
saturation. (b) Modelled real part Re(χ) of the dynamic differential susceptibility χ (Equation (10)),
normalized to the static susceptibility χ0 ≈ 639 of its quasi-static magnetization value at a magnetic
bias field H = 0.

In Figure 3a the real part Re{E} of the Young’s modulus is plotted, normalized to its value Em at
magnetic saturation. At low frequencies ( f = 0.01 GHz), Re

{
E(H)

}
is consistent with the results from

quasi-static single-spin models [2,28]. With increasing excitation frequency f , the curve rounds out
and develops two maxima Emax in addition to the minima Emin present at quasi static f. These maxima
have been observed experimentally in a previous study [22]. The change of the maxima Emax and
minima Emin with frequency depends strongly on the damping factor α as shown in Figure 3b. For
α = 0.03, Emin continuously increases with f . For smaller α, a minimum occurs in Emin( f ) that is more
pronounced for lower damping and shifted to higher f . The maximum of Emax increases for smaller α
and shifts to lower frequencies.
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Figure 3. Results for the real part Re(E) of the Young’s modulus E, normalized to its value Em at
magnetic saturation. (a) As a function of the magnetic bias field for different excitation frequencies f
and (b) the evolution of maxima and minima visible in (a) with the excitation frequency f .

The complete dependency of the complex E(H, f ) and χ(H, f ) are shown in Figure 4. The behavior
of the Young’s modulus with frequency can be understood by considering the ferromagnetic resonance
frequency fFMR. The fFMR is obtained from the maximum of the imaginary part Im

{
χ( f )

}
of the dynamic

differential susceptibility χ (Figure 4a, bottom) in frequency f . A dashed red line in Figure 4a(bottom)
shows how the fFMR changes with the magnetic bias field H and f . Starting at H = 0, fFMR continuously
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decreases until |H| = HK. The decrease occurs, because the AC magnetization always oscillates in a
plane perpendicular to m0. Hence, it oscillates along the hard axis initially at H = 0. With rotation of
m0, the AC magnetization increasingly oscillates along the easy axis. Consequently, the restoring force
reduces and fFMR decreases. For |H| > HK, Im{χ} and Re{χ} are zero because m0,2 = 0 in Equation (10).
At the ferromagnetic resonance frequency fFMR, the sign of the real part Re{χ} of χ changes and becomes
negative above it (Figure 4a, top). Consequently, the change of sign occurs also at fFMR in Re{∆E} as
defined in Equation (4). Though, because of the inversion, the frequency at which Re{E/Em} = 1 is at
frequencies f > fFMR in Figure 4b (top). The same applies for the maximum of Im{E/Em} in Figure 4b
(bottom).Sensors 2019, 19, x FOR PEER REVIEW                                                                    7 of 14  
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Figure 4. Model results for an ideal hard axis magnetization process: (a) real part Re{χ} (top) and
imaginary part Im{χ} (bottom) of the differential dynamic susceptibility χ. (b) The real part Re{E/Em}

(top) and the imaginary part Im{E/Em} of the normalized Young’s modulus E/Em as a function of the
external magnetic field and the frequency. A damping factor of α = 0.02 is used. The ferromagnetic
resonance frequency fFMR defined by the maximum of Im{χ} is denoted by a red dashed line. Because
Im{χ} = 0 for H > |HK|, fFMR is not shown in this field regime.

3.2. Mean-Field Calculations and Measurements

At |H| = HK the discontinuity in M(H) results in a discontinuity in Re{E} as well. Hence, the
sensitivity S ∝ ∂Re{E}/∂H is not defined at HK within the single-spin model. In real magnetic films,
distributions of the magnetization may occur due to inhomogeneities in material, structure or geometry
and the resulting variations in the demagnetizing field. By the distributions, the discontinuity in M(H)

and E(H) vanishes, which makes these functions fully differentiable. For the mean-field model, we
use normal distributions δEA and δK of the easy axis (EA) angle and the effective anisotropy energy
density K in a single-spin ensemble (Appendix A).

To obtain meaningful model parameters, measurements are performed on a 5 × 5 mm sample of
200 nm thick (Fe90Co10)78Si12B10 with an induced easy axis of anisotropy (Appendix A). The magnetic
mean-field model is fitted to quasi-static magnetization measurements performed with a BH-loop
tracer. An excellent fit is obtained with δEA ≈ 1 %, δK = 15 % and K = 1400 J/m3 (Figure 5a). The
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other material parameters required are obtained from PIMM measurements. As a result, we obtain a
saturation flux density of µ0Ms = 1.48 T, a damping constant of α = 0.01 and a dynamic anisotropy
energy density of K = 1.6 kJ/m3. A discrepancy between the static K and the dynamic K has been
observed before [52,53] and was explained with magnetic dispersion [54,55]. This dispersion might
also be reflected in the deviation of measured and modelled fFMR (Figure 5b), which occurs with
increasing magnetic field magnitude. The domain structure of the sample is not represented by the
single-spin based mean-field model. Additionally, sample misalignment of a few degrees can result
in errors. With increasing |H| the component m0,2 decreases, until it is too small for a meaningful
measurement at large H. For a tilted magnetic easy axis, magnetic saturation along the applied field
can never be reached within the Stoner–Wohlfarth model. For such a case it follows that m0,2 > 0,
while H→∞ . From Equation (10) it is χ→ 0 because m0,2 → 0 with H→∞ . Consequently, fFMR

increases due to the stiffening of the magnetic resonator by the increase of the effective field as shown
in Figure 5b.
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Figure 5. Comparison of measurement and model for (a) the normalized magnetization M /Ms

along the magnetically hard axis and (b) the ferromagnetic resonance frequency fFMR, defined as the
maximum of the imaginary part Im{χ} of the dynamic susceptibility in the model.

3.3. The Magnetic Sensitivity of Delta-E Effect Sensors

Delta-E effect sensors utilize the change of their mechanical resonance frequency fr upon application
of a magnetic field for magnetic field sensing. If the Young’s modulus’ contribution to fr dominates,
the magnetic part of the sensitivity S results from the derivative ∂E,H := ∂E/∂H, with S ∝ ∂E,H.
The derivative ∂E,H is calculated using the mean-field model. Due to the distributions introduced,
E(H, f ) smooths out and the extrema reduce but it does not fundamentally differ from the single-spin
result in Figure 4b (top). The absolute

∣∣∣∂E,H
∣∣∣ of the derivative is shown in Figure 6a for α = 0.01, together

with fFMR. A global maximum is apparent at frequencies just below fFMR(H = 0). In Figure 6b the

absolute
∣∣∣∣∂max

E,H

∣∣∣∣ of the maximum slope is plotted over the operation frequency f for different damping

parameters α. Overall,
∣∣∣∣∂max

E,H

∣∣∣∣ decreases with increasing f , shown, e.g., for α = 0.03. For lower α, a local
maximum evolves and increases with decreasing damping. At sufficiently low α, the local maximum
becomes a global one and exceeds the maximum at quasi-static frequencies.
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4. Summary and Conclusions

We described the delta-E effect as a function of the dynamic differential susceptibility χ of
the magnetization. It can be used to estimate the delta-E effect from static magnetization and
magnetostriction measurements if χ is known. A linearization of the Landau–Lifshitz–Gilbert equation
was used to describeχ as a function of the magnetization in a single-spin model. χ includes the complete
diagonal demagnetizing tensor for a film with uniaxial magnetic anisotropy and an external magnetic
field applied in an arbitrary direction. Hence, the model is not restricted to an infinite-plane assumption.
The susceptibility calculations match the measurements performed on a typical soft-magnetic FeCoSiB
thin film frequently used for magnetic field sensing.

With the extracted material parameters, the Young’s modulus is calculated and discussed as a
function of the magnetic field and the operation frequency. A stiffening of the material is observed
above the ferromagnetic resonance frequency, which matches with measurements in the literature.
The stiffening results from the large phase shift between the oscillating stress and the alternating
magnetostrictive strain response. Depending on the damping factors α, the magnitude of the
delta-E effect either decreases continuously or exhibits a maximum just below the ferromagnetic
resonance frequency.

The model is used to discuss the delta-E effect for magnetic field sensor applications by calculating
the magnetic sensitivity of delta-E effect sensors. Like the magnitude of the delta-E effect, a maximum
in magnetic sensitivity is visible close to the ferromagnetic resonance frequency for sufficiently small
damping factors α. For larger damping factors, the sensitivity continuously decreases with frequency.
The results indicate strong influence of the operating frequency on the delta-E effect and the sensitivity,
even below the ferromagnetic resonance frequency. Especially for high sensitivity devices, very soft
magnetic properties are required that result in a low ferromagnetic resonance frequency. Consequently,
the delta-E effect’s frequency dependence should be considered during the design of high sensitivity
and high frequency sensors. As the delta-E effect occurs in several components of the mechanical
stiffness tensor, we expect a similar dependency on the frequency in those components.
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Appendix A

Appendix A.1. Calculation of the Dynamic Suceptibility

For the calculation of the dynamic susceptibility we used two coordinate systems: a global one
(x1, x2, x3) and a rotated one (x′1, x′2, x′3) as it is illustrated in Figure A1. The rotation angle ϕ is defined

as the angle between the static equilibrium vector M of magnetization M
∗

and the x1-axis. Along the
x1-axis an external magnetic field H

∗

app = H + h is applied with a static part H and a dynamic part h.
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with the dynamic components ℎeff,𝑖
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The effective field H
∗

eff and the rotation angle ϕ are obtained from the energy density u:

u = K −
1

M2
s

K
(
M
∗

ea
)2
+

1
2
µ0M

∗

DM
∗

− µ0H
∗

appM
∗

. (A1)

For the following calculations we separate the magnetization vector M
∗

= M + m into a static
part M and a dynamic part m. Correspondingly, the effective field vector H

∗

= Heff + heff is expressed
as a sum of a static effective field Heff and a dynamic one heff. In equilibrium, M lies along the static
part Heff of the effective field vector. Hence, in the rotated coordinate system (x′) the only non-zero
component of H

′

eff is H′eff,1 = Heff and of M
′

is M′1 = Ms. The dynamic vectors m and heff can be
described with harmonic oscillations, presuming that the amplitude of the precession is small. In
rotated coordinates the complete vectors are

H
∗′

=


Heff

0
0

+


h′eff, 1
h′eff, 2
h′eff, 3

eiωt, M
∗′

=


Ms

0
0

+


0
m′2
m′3

eiωt, (A2)

with the dynamic components h′eff, ie
iωt of the effective field vector and the corresponding dynamic

magnetization components , both in rotated coordinates.
Substituting H

∗′

and M
∗′

into Equation (8) the LLG equation is rearranged to obtain the components
χ′i j := m′i /h′j of the dynamic susceptibility tensor χ′ in the rotated coordinate system. The harmonic
approximation only holds for small oscillations (m′i � Ms, h′eff,i � Heff) of the magnetization and
the effective field. As a consequence, all terms m′i h

′

eff,i ≈ 0 in the cross product of the LLG equation
(Equation (8)), which results in all χ′i1 = 0. Furthermore, the plane of magnetization precession is
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perpendicular to M and the driving field h is perpendicular to the x′3 axis. Hence, all components χ′1 j
and χ′i3 vanish as well. The residual rotated non-zero components are:

χ′22 =
γMs/

[
γHeff + γMsD′ − γHKea′2 − αiω

]
1− ω2[

γHeff+γMsD̃−γHK ẽa2
−αiω

]
(γMsD33+γHeff−αiω)

, (A3)

χ′32 =
iω γMs[

γHeff + γMsD̃− γHKẽa2
− αiω

]
(γMsD33 + γHeff − αiω) −ω2

, (A4)

with D̃ := D11m2
0,2 + D22m2

0,1 and ẽa := ea1m0,2 + ea2m0,1. By rotating χ′ back to the x-coordinate
system, we get the final tensor χ of the dynamic magnetic susceptibility:

χ =


χ′22 sin2ϕ χ′22 cosϕ sinϕ 0

χ′22 cosϕ sinϕ χ′22 cos2 ϕ 0
χ′32 sinϕ χ′32 cosϕ 0

. (A5)

In this paper, only uniaxial stress is considered. Therefore, only the χ11 component is used for the
Young’s modulus calculations.

Appendix A.2. Magnetic Mean-Field Model

For the simulation, we consider an ensemble of single-domain particles. Each particle has a
different orientation of its easy axis vector ea to the external magnetic field H and an anisotropy energy
density K. The orientations of ea and values of K are taken to be normally distributed with a standard
deviation δEA of the easy axis and a standard deviation δK of K. The global magnetization curve is
obtained by averaging the magnetization over all particles. For the delta-E effect, the Young’s modulus
is calculated for each particle and then averaged over all particles to obtain the global Young’s modulus.
The normalized static magnetization vector m0 is obtained for each particle by minimizing its energy
density function u (Equation (A1)), setting the dynamic components of h

′

and m′ in Equation (A2)
to zero.

Appendix A.3. Model Parameters for Figure 1

For the calculations shown in Figure 1 (Section 2.1) we used a standard deviation δK = 30%
around a mean of K = 1.9 kJ/m3 and a standard deviation δEA = 1 % of the easy axis. A size of
(3× 1× 0.002) mm3 is used for the magnetic layer, corresponding to the dimensions given in [7].
These dimensions result in D11 = 2.4223·10−4 , D22 = 15·10−4 and D33 = 0.9983 for the ballistic
demagnetizing factors in the center of a rectangular prism [56]. Except of K, we used the same material
parameters as given in Section 3.

Appendix A.4. Measurements

Experiments are performed on a 5 × 5mm sample of 200nm thick (Fe90Co10)78Si12B10 on a Si
substrate. A uniaxial anisotropy is induced by magnetization during the deposition. Quasi static
magnetization curves are measured by a BH-loop tracer at 10Hz. FMR frequencies are measured by
pulsed inductive microwave magnetometry (PIMM) [57] in flip chip geometry on a coplanar waveguide
(CPW). The hard axis of the sample is aligned parallel to the Oersted field of the CPW and magnetic bias
fields are also applied parallel to the Oersted field of the CPW. Each bias field is reached starting from
positive saturation of the sample and lowering it to the desired field strength to perform the PIMM
measurement. The magnetic field strength of the Oersted field is ca. 3A/m. The FMR frequency for
each bias field is extracted by the maximum of the magnitude of the Fourier transformed time signal.
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