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1 infinite equilibrium plasma homogeneous in the y and z

.rections and contained in the X direction by a magnetic field
e

] .L2 'BE(X) is studied. We consider the following class of

quilibrium distribution functions:
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.rery-where infinitely differentiable. The stability of such a
onfiguration against electrnstatic perturbations is studied.

et us assume a quantity F x t)to have a Laplace transform,
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F[l t) have a singularity (not necessarily a pole) in the

. The same conﬂition is true for the

e therefore deduce an equation for the Laplace-Fourier trans-
orm of the electric potential and look for the singularities
I this potential without explicitly solving the equation.

. necessary and sufficient condition is obtained for the

xistence of singularities in the form:
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lhEI"E:D is a functional of the distribution .F, and is
ndependent of the initial conditions.

f the linearized Vlasov equation is solved with the method of
haracteristics and the result substituted in the Poisson
quatlion, the following integral equation is obtained for the

lectric potential P
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Further analysia of &* requires knowledge of the rorm of b(x)

¥
when jBi depends on X, then: K =

|x

We shall consider two classes of G]‘ corresponding to the
following classes of b(x) (always with the assumptinn[ hiakbe <.'>°)
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for all positive £ . Here E’r"is an entire function.

1) bf:.) goes to zero more rapidly than when |x| —»oa

2) b(x) goes to zero more slowly than L-EM , when |3 [—>ue
for an arbitrary small £.>C . Then (:'{" has a branch point at
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The problem would be more complicated with other classes of

b(x) ,

but the mean line of the method would remain the same

Tt can be shown that, when has a singularity at K, = Kofh-‘)

(Im Ky = c) » it is also singular at K, = K, (nu 1(-,\=|,2“)

The necessary and sufficient condition for the existence of

a singularity at K:[:Ho(u) is:
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In the quasi-neutrality approximation,

L =& B,
the left hand side in
(3) drops out, Consequently, the whole set of singularities
KotAMma appears no more with the singularity K (w)and the
dispersicn relation degenerates into the form:
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