
Effects of Age Differences in Memory Formation on Neural Mechanisms of Consolidation 

and Retrieval  

 

 

Myriam C. Sander, Yana Fandakova, and Markus Werkle-Bergner 

 

Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, 

Germany 

 

 

 

Correspondence concerning this article should be addressed to Myriam C. Sander 

(sander@mpib-berlin.mpg.de) at the Max Planck Institute for Human Development, 

Lentzeallee 94, 14195 Berlin, Germany. 

 

 

 

  

Declarations of interest: none 
  



 2 

Abstract 

Episodic memory decline is a hallmark of cognitive aging and a multifaceted phenomenon. 

We review studies that target age differences across different memory processing stages, 

i.e., from encoding to retrieval. The available evidence cumulates in the proposition that 

older adults form memories of lower quality than younger adults, which has negative 

downstream consequences for later processing stages. We argue that low memory quality in 

combination with age-related neural decline of key regions of the episodic memory network 

puts older adults in a double jeopardy situation that finally results in broader memory 

impairments in older compared to younger adults.  

 

Introduction  

Our ability to vividly re-experience past events is one of the most fundamental human 

abilities. However, during the course of aging, episodic memory, the ability to remember 

episodes with their spatial and temporal details (Tulving, 2002), steadily declines (Koen & 

Yonelinas, 2014; Shing et al., 2010; Spencer & Raz, 1995) whereas the probability to 

remember episodes that are (partially) false increases (Fandakova et al., 2020). To pinpoint 

the neural mechanisms underlying the decline in episodic memory in old adulthood while 

delineating precisely their contribution to cognitive component processes is therefore a 

major endeavour of the cognitive neuroscience of aging (Cabeza et al., 2018; Lindenberger, 

2014). The goal of this review is to discuss age-related changes in neural processes within 

the episodic memory network that give rise to age-related changes in the ability to recall 

events from the past.  

Episodic memory relies on a widely distributed network of brain regions, with the central 

parts being the mediotemporal lobe (MTL) including the hippocampus, perirhinal cortex, 
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entorhinal cortex, and parahippocampal cortex (Eichenbaum et al., 2007; Moscovitch et al., 

2016), and the prefrontal cortex (PFC) (Eichenbaum, 2017; Simons & Spiers, 2003) as well as 

regions such as the posterior cingulate, lateral temporal and parietal cortices (Benoit & 

Schacter, 2015; Cabeza et al., 2008). Among the core episodic memory network, the most 

prominent role is certainly taken by the hippocampus which is involved in the rapid 

formation and recall of associations between stimuli, or between stimuli and their context 

(Davachi, 2006; Eichenbaum et al., 2007; Moscovitch et al., 2016). A complementary role is 

taken by the PFC that subserves rather domain-general executive functions (Miller & Cohen, 

2001) and supports in particular monitoring and control processes during encoding and 

retrieval (Cabeza & Nyberg, 2000; Simons & Spiers, 2003). Importantly, these key players of 

the episodic memory network undergo strong senescent changes during aging. With regard 

to the PFC, marked gray matter reductions (Fjell et al., 2009; Raz et al., 2005)  and changes in 

prefrontal white matter (Raz et al., 2008; Sexton et al., 2014) have been reported in cross-

sectional and longitudinal studies (for recent reviews see Nyberg et al., 2017; Naftali Raz, 

2020). Similarly, gray matter reductions occur within the MTL (Fjell et al., 2014), with 

particularly strong decline observed for the hippocampus  and the entorhinal cortex 

(Kennedy & Raz, 2015; Raz et al., 2005). Together with changes in functional (Grady, 2017) 

and structural (Madden & Parks, 2017) connectivity and declines in central neurotransmitter 

systems (Bäckman et al., 2006; Mather, 2020; Mather & Harley, 2016; Nyberg et al., 2016), 

age-related structural changes in are thought to impact the functionality of brain regions 

that have been shown to involved in successful memory in young adults, with detrimental 

consequences for memory performance (Becker et al., 2015; Anders M Fjell & Walhovd, 

2010; U. Lindenberger, 2014; Persson et al., 2012; Yuan & Raz, 2014).  
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Traditional cognitive theories (Atkinson & Shiffrin, 1968; Craik & Lockhart, 1972; 

Tulving & Pearlstone, 1966) conceive memory as a product of three sequential processing 

stages: Encoding, Consolidation, and Retrieval. Encoding can be defined as the process of 

memory formation by which incoming inputs from the external world are transformed into 

an internal representation of that information. Consolidation refers to  processes (mostly 

during sleep) that result in the persistence of information over time (often in a more 

generalized form including a loss of details of the information, Dudai, 2012; Rasch & Born, 

2013). Retrieval is the (attempt) to access information that was acquired previously. Thus, 

episodic memory performance relies on the ability to successfully form detailed, bound 

representations of content and contextual information, transform these representation into 

a lasting format, and later access, evaluate, and use these memory representations to guide 

behavior (Bellmund et al., 2018; Schacter et al., 2007). 

 

Here, we argue that among these stages, encoding may play a particularly important 

role for memory abilities and their age-related changes. Any differences at encoding can 

produce downstream consequences for later processing stages. In the extreme case, this 

notion is intuitively obvious: An event that was not (sufficiently) encoded in the first place 

cannot result in an internal representation that could be consolidated or even retrieved. By 

contrast, attentively studying personally relevant information will most likely result in a 

detailed mnemonic representation with a high likelihood for consolidation and later 

retrieval. In any natural situation, we can safely assume that any level of encoding, from not 

at all to highly detailed, with associated consequences for ensuing processing stages occurs, 

producing mnemonic representations with a wide range of quality (Craik & Lockhart, 1972; 

Fenn & Hambrick, 2013; Habib & Nyberg, 2008; Tulving & Pearlstone, 1966), even in younger 
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adults. Age-related changes affecting encoding processes may thus explain a large fraction of 

age differences in episodic memory performance as they may result in a large amount of 

memories of low quality.  

  In the following we provide a focused review of how age-related alterations in memory 

encoding (see Craik & Rose, 2012) produce differences in memory quality that affect later 

stages of memory processing such as consolidation and retrieval. Illustratively, we will focus 

on a series of studies conducted by our lab (the so-called MERLIN studies = Memory 

Encoding and Retrieval across the Lifespan studies) that aimed at comprehensively 

describing age differences at all stages of memory processing (Fandakova et al., 2018, 2020; 

Muehlroth et al., 2019; Muehlroth, Sander, et al., 2020; Sander et al., 2020; Sommer et al., 

2019), see also (Joechner et al., 2020) for an extension of this approach to childhood). At the 

core of the MERLIN studies was an age-adapted associative picture-word memory task 

(Figure 1).   

 

 

Figure 1. Experimental Paradigm. A. In the study phase, participants were asked to associate 
440 (young adults) or 280 (older adults) scenes and words using an imagery strategy. Cued 
recall was used to test memory performance. B. During the cued recall and feedback phase, 
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the scene was presented as cue to verbally recall the associated word. Subsequently, the 
original pair was presented again for restudy. The cued recall and feedback phase was 
performed once for younger and twice for older adults. C. During final recall, no feedback 
was provided. Scene-word pairs were sorted into high and low memory quality based on 
recall performance in phase C (Fandakova et al., 2018). In Muehlroth et al., 2020 and 
Sommer et al., 2019 high quality pairs were further distinguished into high and intermediate 
quality dependent on whether they were successfully recalled in phase B or not. Memory 
performance was tested approximately 24 hours later either with a delayed cued recall task 
(D) or with a recognition task (E). D. During delayed cued recall, participants were presented 
with the scenes only and had to indicate if they still remembered the associated word. 
Afterwards, they had to select the corresponding second letter of the word to verify their 
true memory of the associate. E. In the recognition task, participants were presented with 
intact, rearranged, and new pairs were instructed to decide if the corresponding pair was old 
(i.e., studied on Day 1) or new (not studied on Day 1). Intact and rearranged pairs varied in 
memory quality to test effects of memory quality on recognition.      

 
Specifically, on their first visit to our lab, younger and older adults were instructed to 

intentionally encode memories by associating scene pictures with words using an imagery 

strategy (Baltes & Kliegl, 1992; Bower & Winzenz, 1970; Verhaeghen et al., 1992). Given 

well-known age differences in the speed and limits of learning between younger and older 

adults, we adapted the task difficulty between age groups. Specifically, older adults studied 

fewer picture-word pairs than younger adults. While both age groups performed several 

rounds of learning and retrieval of the picture-word pairs, older adults were provided with 

an additional learning round. Together, this procedure allowed us to trace the mnemonic 

fate of single items within a given individual. We later capitalized on the item level 

information from the learning phase to determine the memory quality for single picture-

word pairs for each individual participant: We reasoned that pairs that were successfully 

acquired during learning, such that, when cued with a scene picture, participants were able 

to verbally recall the associated words, are items of high quality. In contrast, low quality 

items are pairs to which participants were exposed to several time, but did not succeed in 

forming and retrieving a bound memory representation. Thus, low-quality items included 

pairs that were not recalled until the end of the learning session of day one.  In some 
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analyses, we further distinguished within the high quality items between those that were 

learned early during the procedure and those that were only acquired after repeated 

learning, the latter representing intermediate quality items. Defining memory quality based 

on the learning history allowed us to exploit person-specific item-level information for 

investigating effects on later stages of cognitive and neural processes. Note that from an 

experimental perspective, also other procedures have been used in order to vary memory 

quality, e.g. by comparing deep versus shallow encoding instructions (Craik & Lockhart, 

1972), situations with full versus divided attention (Craik & Byrd, 1982), varying numbers of 

repetitions during learning (Buchler et al., 2011; Light et al., 2004) and many more. However, 

these previously used procedures require aggregation across items of a given condition. By 

contrast, determining memory quality based on the learning history provided person-

specific information about single mnemonic items.  

During the learning phase of day one of our MERLIN studies, we measured 

electroencephalographic (EEG) responses from our participants, allowing us to observe 

differences and commonalities between age groups in the neurophysiological mechanisms 

underlying this initial acquisition phase of information. We will elaborate on these findings in 

the section “age-differences in memory encoding”.  To investigate age differences in 

consolidation, we monitored our participants’ sleep with ambulatory polysomnography 

(PSG) on the night before and immediately following the learning phase. We will elaborate 

on this in the section “age-differences in memory consolidation”. Finally, to investigate 

neural age differences during retrieval, we probed younger and older adult’s memory with a 

recognition and a cued recall task on the picture-word pairs learned 24 hours earlier on day 

two using functional magnetic resonance imaging (fMRI). We will elaborate on this in the 

section “age-differences in memory retrieval”. In the conclusion part, two main findings that 
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emerged across studies will be discussed: The role of age-related changes in neural 

structures for the functioning of memory processes as well as the contribution of age 

differences in memory quality to memory performance.  

  
Section 1: Age differences during encoding  

Without any doubt, younger and older adults’ memory differs already at encoding, i.e., 

during the processing of incoming information (see Craik & Rose, 2012 for a review). Neural 

mechanisms of memory formation can be studied with so-called subsequent memory 

paradigms (Paller & Wagner, 2002; Werkle-Bergner et al., 2006). Here, neural activity during 

encoding of those trials that are later remember is contrasted with neural activity of trials 

that are later not remembered (maybe even forgotten), thereby revealing the neural 

mechanisms of successful versus unsuccessful memory formation.  

Using this approach, functional magnetic resonance imaging (fMRI) has revealed reliable 

subsequent memory effects (SMEs) in key regions of the episodic memory network, in 

particular, in the MTL and PFC (Kim, 2011; Maillet & Rajah, 2014; Otten, 2001). 

Electroencephalographic studies have complemented these findings demonstrating SMEs in 

event-related potentials (e.g. Kamp et al., 2017; Paller et al., 1987; Sanquist et al., 1980), 

intra-cranial recordings (Fernandez et al., 1999), and oscillatory activity, in particular within 

the alpha/beta (~ 8-30 Hz), theta (~ 4-8 Hz) and gamma (> 40 Hz) frequency ranges (for a 

review see Simon Hanslmayr & Staudigl, 2014). Thus, SMEs can be leveraged to investigate 

whether aging already affects mnemonic processing at encoding.  

Adopting a subsequent memory approach, we studied oscillatory mechanisms of memory 

formation in the associative memory paradigm described above (Sander et al., 2020). 

Specifically, we asked whether age-differences in structural integrity of core memory 

regions, notably inferior frontal gyrus (IFG) and hippocampus, could account for between 
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person differences in the strength of oscillatory SMEs. Neural oscillations reflect the 

coordinated firing patterns of neurons in local and global networks (Buzsáki & Draguhn, 

2004; Fries, 2005, 2015; Klimesch et al., 2007; Varela et al., 2001). Precisely timed neural 

interactions turned out crucial for accurate memory formation, stabilization, and 

reactivation (Fell & Axmacher, 2011; Hanslmayr et al., 2012; Klimesch, 1999; Lisman & 

Jensen, 2013). Using the MERLIN procedure as described above, younger and older adults 

were asked to intentionally encode picture-word pairs repeatedly using an imagery strategy. 

Despite our age-adaptive procedure, age group differences in performance were present 

even in terms of proportion of recalled pairs, with younger adults outperforming older 

adults. Oscillatory power of the trials of the last learning round were then analyzed with 

regard to whether they were later successfully remembered or not. We observed highly 

similar mechanisms of successful memory formation in older and younger adults (Figure 2). 

In both age-groups power increases in the theta band were accompanied by power 

decreases in the alpha/beta range (Figure 2a). These effects  have been shown to indicate 

associative binding and elaboration mechanisms in young adults, respectively (Hanslmayr et 

al., 2011; Hanslmayr et al., 2012; Hanslmayr & Staudigl, 2014; Nyhus & Curran, 2010; 

Staudigl & Hanslmayr, 2013). However, we also found that the strength of the oscillatory 

subsequent memory effect was modulated by the structural integrity of brain regions that 

are part of the core episodic network. More specifically, lower structural integrity in the IFG, 

a region that has been shown to be involved in the elaboration of the incoming information 

during encoding (Becker et al., 2017; Blumenfeld & Ranganath, 2007), was accompanied by 

smaller SMEs in the alpha/beta frequency bands (Figure 2c). While this structure–function 

relationship did not generally differ between age groups, it is important to note that those 

participants with low IFG integrity were mostly older adults (Figure 2b). These results 
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suggest that older adults, in particular those with low IFG integrity and reduced SMEs in the 

alpha/beta band, tend to form memory representations that have undergone less deep 

elaboration during encoding and may as a consequence contain fewer details. In other 

words, while the general mechanisms that underlie successful memory formation appear 

not to change across adulthood, the probability to successfully engage memory formation 

operations does seem to deteriorate as well as the level of detailedness or specificity of 

memories (see also Sommer et al., 2020). 

Recent advances in neuroimaging analysis techniques allow characterizing memories with 

regard to their informational content, ultimately improving investigations of the 

detailedness of memories. Representational pattern analysis (RSA) is a multivariate analysis 

technique that describes neural activation patterns between stimuli in terms of their 

similarity or distance in geometric space (Kriegeskorte & Diedrichsen, 2019; Kriegeskorte & 

Kievit, 2013). Perceptually or semantically similar stimuli are generally represented closer in 

geometric space. Thus, RSA can be used to ask whether informational content of specific 

memories is represented in the same way in younger and older adults (Koen & Rugg, 2019), 

and allow to investigate the neural underpinnings of age differences in memory specificity.   

Relying on RSA of spatio-temporal EEG frequency patterns that reflect the neural 

representation of information in rhythmic neural activity across time, we therefore asked 

whether the similarity of these patterns differed during encoding between younger and 

older adults (Sommer et al., 2019). In particular, we hypothesized that older adults form less 

detailed representations than younger adults. Indeed, we observed age differences in 

representational similarity during the encoding of picture–word pairs. Older adults generally 

showed more similar, thus less distinct activation patterns than younger adults, in line with 

the assumption that memories become more similar and less specific as we age (Koen & 
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Rugg, 2019; Li et al., 2001; Wilson et al., 2006). Interestingly, also the relation to memory 

performance showed an age-differential effect: For older adults, higher similarity between 

early stages of processing was related to successful subsequent memory, whereas in 

younger adults, lower similarity during later stages of encoding was related to a higher recall 

probability. These results are in line with the assumption that older adults are less able to 

form precise and detailed memory representations compared to younger adults (Korkki et 

al., 2020; Trelle et al., 2017, 2019). As a consequence, they rely more on encoding of the 

general gist of stimuli (Kensinger & Schacter, 1999; Koen & Yonelinas, 2014) as reflected in 

the positive relation between increased similarity and memory performance. In contrast, 

young adults form memory representations that entail more details and are distinct from 

each other as reflected in increased dissimilarity during later phases of encoding.  
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Figure 2. Age differences during encoding. A. Across age groups, recall success is reflected in 
an early power increases in the theta band, and a broad decrease in alpha/beta power. The 
comparison of subsequently remembered versus not-remembered pairs is represented as t-
values in time and frequency along with their respective topographical distribution. B. Age 
distribution of younger and older adults with regard to structural integrity of the inferior 
frontal gyrus (IFG). Older adults belong mostly to the lower two quantiles, younger adults 
dominate the upper two quantiles. C. Subsequent memory effects in alpha/beta power 
differ by IFG quantiles as indicated by differences in slopes when displaying predicted 
probabilities of recall of varying alpha/beta power for different IFG quantiles. D. In older 
adults, better memory is related to higher similarity early in a trial, whereas in younger 
adults, lower similarity between items later in the trial benefits performance. Time-time-
clusters revealing the respective relationship are displayed separately for younger and older 
adults.    Figure 2 a-c adapted from Sander et al., 2020. Figure d adapted from Sommer et al., 
2019.  

 
In sum, the available evidence suggests that age differences between younger and older 

adults express already during encoding, and these age differences may result in memories of 

different quality: Older adults’ memories are less specific and detailed and individual 
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able to form high quality memories, depending on external factors such as the encoding 

conditions (e.g. the number of repetitions) and individual factors such as neural integrity of 

brain regions within the core memory network (Lindenberger, 2014; Nyberg et al., 2012; 

Nyberg & Lindenberger, 2020). Thus, the quality of encoded memories differs between age 

groups, but also varies from trial to trial within a person. Consequently, it becomes an 

important question how inter- and intra-individual differences in memory quality resulting 

from encoding impact memory consolidation (section 2) and memory retrieval (section 3).  

 

Section 2: Age differences during memory consolidation  

Consolidation refers to the transformation of transient memory representations, initially 

strongly supported by the hippocampus, into long-lasting representations in neocortical 

regions (Buzsáki, 1989; McClelland et al., 1995; Nadel et al., 2000; Rasch & Born, 2013). This 

so-called system-level consolidation is dependent on rhythmic neural events during sleep. 

Specifically, slow oscillations (SO) and sleep spindles (SP) (Axmacher et al., 2008; Gais et al., 

2002; Ngo et al., 2013; Steriade, 2006) as well as their precise coupling (Mölle et al., 2002; 

Staresina et al., 2015; Steriade, 2006) are supposed to drive consolidation.  

With increasing age, sleep changes with regard to its architecture (i.e., the stability and 

succession of sleep phases) and physiology. Typically, sleep in older adults becomes lighter 

and more fragile. At the same time, fatigue and daytime napping become more prevalent (for 

a review see Muehlroth, Rasch, et al., 2020). Most crucially, cardinal neural sleep rhythms, 

specifically slow oscillations and spindles, decrease in amplitude and frequency of occurrence 

with increasing age (Mander et al., 2017; Muehlroth, Rasch, et al., 2020). While daytime 

fatigue may have detrimental effects on acquiring new memories, altered sleep physiology 

may distort the necessary neural processes for memory stabilization.  
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Importantly, sleep-dependent memory consolidation does not affect all encoded 

memories similarly (Conte & Ficca, 2013; Ellenbogen et al., 2006; Schoch et al., 2017; Stickgold 

& Walker, 2013) and the reliance on consolidation processes for successful memory 

stabilization may be differential for memories of varying quality. On the one hand, sleep may 

stabilize previously successfully encoded memories. On the other hand, it may also enhance 

the availability of initially poor memories above a pre-sleep learning level (Ellenbogen et al., 

2006; Nettersheim et al., 2015). The available evidence so far leans towards a role of sleep 

mainly in memory maintenance. Behaviorally observed memory gains, by contrast, appear 

less reliant on sleep (Dumay, 2016; Fenn & Hambrick, 2013; Schreiner & Rasch, 2018). 

If sleep-dependent consolidation mainly serves the stabilization of mnemonic contents, it 

may be particularly relevant for the maintenance of memories of intermediate quality, i.e., 

when encoding was successful, but not very detailed. Accordingly, it has been shown that 

these memories are prioritized during sleep-dependent consolidation over mnemonic 

contents of high quality for which subsequent consolidation processes are redundant 

(Diekelmann et al., 2009; Schapiro et al., 2018; Schoch et al., 2017).  

As discussed above, aging differentially affects encoding. Accordingly, also the distribution 

of memory quality across items is likely shifted in older compared to younger adults. Hence, 

proper assessment of age differences in sleep-dependent memory consolidation requires 

consideration of the quality of encoded memories. By tracing the fate of individual memory 

contents (Dumay, 2016; Fenn & Hambrick, 2013) in the MERLIN studies, (Muehlroth, Sander, 

et al., 2020) found that the effects of aging on memory maintenance were indeed most 

pronounced when the acquired memory representations were of lower quality.  

Besides age differences in memory quality, changes in brain structure can also impair sleep-

dependent consolidation in older adults. For example, Muehlroth et al. (2019) investigated 
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age-related changes in the coupling of slow oscillations with slow and fast sleep spindles. They 

tested whether differences in structural integrity of source regions of SO and SP generation 

were related to the loss of precision in SO-SP coupling and memory consolidation. To that end, 

they monitored the sleep of the participants taking part in the MERLIN study using ambulatory 

polysomnography (PSG) and assessed structural brain integrity by voxel-based morphometry 

(VBM) of structural magnetic resonance images (MRI). By comparing the PSG recordings of 

younger and older adults, Muehlroth et al. (2019) identified age-related differences in the 

coordination of SOs and SPs. Specifically, the characteristic SO-SP coupling in young adults was 

marked by a strong increase in SP coupled to the SO peak, predominantly for fast spindles. By 

contrast, in older adults, the coupling was shifted towards lower SP frequencies with a wider 

spread around the SO peak, indicating a reduced precision in SO-SP coupling in older adults 

(Helfrich et al., 2018).   

 

 

Figure 3. Age differences during sleep-dependent consolidation. A. Overnight memory 
retention indicates the percentage of correctly recalled items during delayed recall (on Day2) 
relative to all items that were correctly retrieved during immediate recall (on Day1) before 
sleep.  Overnight memory retention is significantly reduced in older adults. B. Voxel-based 
morphometry was used to determine the individual level of structural integrity of brain-
regions of interest (ROI masks overlaid in color). C. Higher structural integrity of source regions 
of slow oscillations (SO) and sleep spindles (SP) is related to increased spindle activity at the 
peak of the SO. Positive correlations are outlined by solid (mPFC) and dashed black lines 
(thalamus).  For illustration purposes, a SO is overlaid on time-frequency profiles (in t-score 
units). The reference window for the correlation analysis is outlined with the dashed black 
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line. D. Higher structural integrity in core regions of the episodic memory network 
(hippocampus, entorhinal cortex) is positively correlated with global power increases during 
the SO up-state. Adapted from Muehlroth et al., 2019. 

 

Crucially, the precision of SO-SP coupling was related to over-night memory retention. 

Interestingly, older adults with higher structural integrity (i.e. larger brain volume) in source 

regions of SOs and SPs (i.e. medial prefrontal cortex and thalamus) showed a more youth-like 

pattern of SO-SP coupling, indicating that structural integrity of these brain regions plays an 

important role in the coordination of SO and SPs (Steriade, 2006).  

Thus, similar to what we have observed with regard to age differences during encoding, 

these results suggest that age-related impairments in the processes supporting memory 

consolidation display large interindividual differences that are related to the structural 

integrity of core memory regions. Accordingly, older adults with little signs of structural 

decline also seem to show less changes in functional memory processes (Nyberg et al., 2012; 

Nyberg & Lindenberger, 2020).  

Together, these findings suggest that a combination of age differences in memory quality 

as a result of altered encoding together with person-specific factors like brain integrity 

influence the success or failure of memory consolidation processes in older adults.  

 

Section 3: Age differences during memory retrieval 

In this final section we elaborate on the effects of age differences in memory quality on 

memory retrieval processes. Explicit memory retrieval refers to the successful recovery of a 

previously acquired memory trace and can be tested with a recognition task or a cued recall 

task. In a cued recall task, participants are presented with one part of the learned stimulus, 

typically a pair, and are asked to retrieve the associated part. In the case of the MERLIN 

studies, participants saw the picture and were asked to recall the associated word. This task 
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is usually more difficult and reveals larger age group differences than recognition tasks 

(Craik, 1983) . In old/new recognition tasks, participants’ memory is probed via the 

presentation of “old” stimuli from the encoding phase intermixed with “new”, unseen 

stimuli. A particular variation of old/new recognition tasks is often used when testing 

associative memory: Since in associative tasks, stimuli are pairs, during test they can either 

be presented in the identical pairing as during encoding or in a “rearranged” pairing which 

means that although both elements of the pair have been seen during encoding, they were 

part of separate pairs. In the latter case, the exact combination is “new” and has not been 

encountered before. Therefore, participants would have to judge such a pair as “new”, and 

not as “old”, thus, correctly reject this pair. This kind of paradigm aims particularly at the 

specificity and detailedness of memories as reliance on familiarity, the feeling to have seen 

parts of the pair before, is not sufficient for successful performance due to the high 

familiarity of each item in the rearranged pair. Correct rejection of rearranged information is 

particularly difficult for older adults and is behaviorally reflected in higher false alarm rates 

(Devitt & Schacter, 2016; Shing et al., 2009), thus, a greater propensity to endorse 

rearranged pairs as old compared to younger adults.  

Higher levels of false alarms in older adults may result from the interaction of lower 

quality memory representations and age-related deficits in the ability to monitor retrieval 

outcomes for rejecting misleading information (Fandakova et al., 2013; Trelle et al., 2017). 

Monitoring processes are engaged to evaluate in retrieved memories in the context of 

current goals and task demands (Mitchell & Johnson, 2009). They are particularly important 

to avoid errors when retrieved memories are very similar to each other or highly familiar, as 

it is the case for rearranged pairs (Cohn et al., 2008; Gallo, 2004; Rotello & Heit, 2000). On 

the neural level, close interactions between fronto-parietal and cingulo-opercular regions 
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support retrieval monitoring processes. The cingulo-opercular network plays an important 

role in the monitoring of ongoing performance (Bastin et al., 2019; Ullsperger et al., 2010) 

and in the initiation of control and evaluation processes supported by fronto-parietal regions 

(Dosenbach et al., 2008; Menon & Uddin, 2010; Shenhav et al., 2017). Thus, these brain 

networks are crucial for successful memory retrieval by ensuring that the right memory is 

recovered in sufficient detail when needed. While the demand on monitoring processes is 

lower when a high-quality distinct memory is retrieved, fronto-parietal and cingulo-

opercular activity is expected to increase when the quality of the retrieved memory is 

relatively low. Thus, the selective recruitment of fronto-parietal and cingulo-opercular 

regions with varying memory quality represents a hallmark of efficient retrieval monitoring. 

At the same time, advancing age is associated with declines in the structural integrity of 

regions in the cingulo-opercular network (Sun et al., 2016) as well as in the lateral PFC and 

the parietal lobes (Raz et al., 2005). Additionally, major tracts connecting those regions, such 

as the superior longitudinal fasciculus are also compromised in older adults (Bennett & 

Madden, 2014). In parallel to these structural changes, older adults display reduced activity 

in fronto-parietal and cingulo-opercular regions when correctly rejecting highly familiar 

information such as rearranged pairs (Dulas & Duarte, 2016; Fandakova et al., 2014). Based 

on these age-related deficits in retrieval monitoring we sought to examine how they are 

modulated by the quality of newly established mnemonic representations.  

We thus probed younger and older adults memory with a recognition task on picture-

word pairs learned 24 hours earlier in the scanner using functional magnet resonance 

tomography (Fandakova et al., 2018). Participants saw new picture-words pairs that were 

intermixed with intact pairs, i.e. pairs that were identical to those presented during the 

learning phase, or rearranged, i.e. pairs for which both the picture and the word were 
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familiar to the participants, but not their combination. Importantly, based on the 

participant-specific recall history of day one, we were able to construct individualized 

recognition tasks that included balanced numbers of high and low quality pairs. Thus, by 

referring to successful versus unsuccessful retrieval on the previous day as an indicator of 

memory quality, we were able to test how memories of different quality modulate activity in 

brain regions that have been found to be involved in successful recall-to-reject and 

monitoring processes in young and older adults. On the behavioral level, memory quality 

influenced overall recognition performance in both younger and older adults with lower 

probability of correct recognition for low compared to high quality memories. However, 

regarding rearranged pairs, older adults committed more false alarms than younger adults, 

and this age group difference was even larger for high quality memories (see Fandakova et 

al., 2020).  

On the neural level, we again observed commonalities and differences between age 

groups (Figure 4): Mnemonic quality modulated brain activity in the anterior hippocampus 

as well as medial and lateral PFC similarly in younger and older adults. Higher activation in 

these regions for correct rejection of high-quality rearranged pairs than of low-quality 

information rearranged pairs seems to reflect the more detailed and successful 

reinstatement of mnemonic information in the case of high quality memories (Wais, 2011). 

At the same time, young adults recruited brain regions that are associated with post-

retrieval monitoring, including cingulo-opercular regions, more when mnemonic quality was 

low and errors were likely, and less when they were able to rely on high quality 

representations. However, older adults did not show such a memory-quality-dependent 

activation in these regions. Importantly, the modulation of activation on these regions was 
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negatively related to the proportion of false alarms, suggesting that quality-dependent 

recruitment of these regions was highly relevant for memory performance.   

In sum, our results provide evidence for the modulatory effect of memory quality on 

retrieval processes. Similar to the effect of memory quality on consolidation, older adults 

may thus also be in a double jeopardy situation during retrieval when memory quality is low 

due to additional deficits in the recruitment of monitoring and control processes.   

 

<<< Figure not reproduced in preprint for copyright reasons>>>>>>>>>>> 

Figure 4. Age differences during retrieval. A. Example of age-invariant effects of memory 
quality on the engagement of core regions of the episodic memory network. Both younger 
and older adults show higher %signal change in the left hippocampus during the correct 
rejection of high quality versus low quality pairs, indicating the retrieval of relevant 
mnemonic details to reject rearranged pairs. B. In contrast, age differences were observed in 
monitoring and control regions, with larger effects of memory quality on the recruitment of 
dACC and insula in younger than older adults.  C. Greater activity differences between 
correct rejections for low and high quality pairs were related to fewer false alarms. Adapted 
from Fandakova et al., 2018.    

 
 
Discussion  

Reviewing evidence across several studies, we show that episodic memory decline during 

aging is a multifaceted phenomenon that results from impaired processing during different 

cognitive stages, spanning the full range from encoding to retrieval. We find that differences 

in memory quality play an important role for memory consolidation and retrieval such that 

memories of low quality pose a bigger challenge to the episodic memory network. In 

consequence, the structural and functional integrity of the regions that are recruited during  

a specific cognitive stage determine whether this challenge is successfully dealt with or not, 

and predict interindividual differences in memory performance.  

With regard to memory formation, while we observed generally similar mechanisms of 

memory encoding in older and younger adults in case of successful memory (see also 
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(Sommer et al., 2020; Strunk & Duarte, 2019), older adults more often form memories that 

are of lower quality than those of younger adults. For example, we found that both age 

groups showed reliable oscillatory subsequent memory effects. At the same time, the size of 

alpha/beta desynchronization was related to the cortical thickness of the IFG, an important 

region for elaboration processes (Becker et al., 2017; Blumenfeld & Ranganath, 2007; Kim, 

2011), which was significantly lower in older adults (Sander et al., 2020). Thus, it seems that 

impaired structural integrity of key regions of the core episodic memory network alters the 

precise recruitment and efficiency of memory formation processes. As a consequence, 

despite similar encoding mechanisms, the quality of encoded memory representations may 

differ between younger and older adults and impact later cognitive stages such as 

consolidation and retrieval.  

Differences in the quality of memory representations between younger and older adults 

are implicated as a key source for age group differences in behavior. Influential theories of 

cognitive aging have suggested that neural dedifferentiation, i.e., a loss of representational 

specificity (Koen et al., 2020; Koen & Rugg, 2019), underlies cognitive decline in old 

adulthood (Li et al., 2001; Li & Sikström, 2002). For example, univariate fMRI studies focusing 

on content-specific activation in category-selective regions of the ventral visual cortex have 

consistently shown that these are less selective, with less differentiated activation patterns 

for stimuli of different categories such as faces and houses, in older compared to younger 

adults (D. C. Park et al., 2004) see also (J. Park et al., 2012; Voss et al., 2008). Importantly, 

interindividual differences in neural dedifferentation are related to memory performance 

(Kobelt et al., 2020; Koen et al., 2019), such that participants with higher levels of neural 

dedifferentiation showed lower memory performance (for a recent review see Koen & Rugg, 

2019). Complementary evidence is accumulating from studies using multivariate approaches 
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such as neural pattern analysis (Carp et al., 2011; Zheng et al., 2018). Accordingly, in a recent 

study (Kobelt et al., 2020) we observed age group differences in neural specificity during 

encoding not only on the level of category information, but even on the item-level, providing 

further evidence for the crucial contribution of specific, high-quality memories for memory 

performance. Strikingly, age differences on the item level were located in occipital regions, 

thus early in the visual processing hierarchy, in line with early observation of a close 

connection between age-differences in perception and cognition (Baltes & Lindenberger, 

1997; Lindenberger & Baltes, 1994). 

Computational models suggest that the cause of neural dedifferentiation are age-related 

changes in neurotransmitter availability, in particular to deficient dopaminergic modulation 

(Li et al., 2001; Li & Rieckmann, 2014; Li & Sikström, 2002). They conceptualized the age-

related attenuation of dopaminergic modulation as an alteration of the activation function 

of units in a neural network, leading a reduced fidelity of neural information processing and 

reductions in the distinctiveness of representations. Evidence of reliable individual 

differences in D2/D3 dopamine receptors in occipital cortex (Papenberg et al., 2019) 

supports the idea that their availability in early sensory regions could play an important role 

in neural dedifferentation. Interestingly, recent studies also demonstrated a relationship 

between a decline of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and 

neural distinctiveness. Combining magnetic resonance spectroscopy (MRS) to measure GABA 

with functional MRI, Chamberlain et al. (2019) found that older adults had lower GABA levels 

(see also Simmonite et al., 2019) and less distinct activation patterns in the ventral visual 

cortex. Furthermore, individual differences in GABA predicted individual differences in 

distinctiveness (see for similar results with regard to the discrimination of auditory stimuli 

and GABA levels in the auditory cortex (see Lalwani et al., 2019, for similar results with 
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regard to the discrimination of auditory stimuli and GABA levels in the auditory cortex).  

Reduced inhibition by GABAergic interneurons might impair the resolution of conflict 

between neural representations and result in less distinct representations (Chamberlain et 

al., 2019; Lalwani et al., 2019).  

In sum, accumulating evidence supports the proposition that age differences in structural 

integrity, functionality and neurotransmitter availability alter neural mechanisms of memory 

encoding already at early stages of the processing hierarchy with downstream consequences 

for ensuing consolidation and retrieval of memory representations. Age differences in 

memory encoding may thus explain a large fraction of episodic memory decline (Craik & 

Rose, 2012; de Chastelaine et al., 2016). Having to deal with more gist-like (Kensinger & 

Schacter, 1999; Koutstaal et al., 2001; Sommer et al., 2019) and less specific  (Kobelt et al., 

2020; Koen et al., 2019) memory representations increases the challenge for the episodic 

memory network of older adults that can hardly be counteracted during later stages of 

processing (Velanova et al., 2006). In line with this assumption, our results that highlight that 

age difference in prefrontally mediated monitoring and control processes contribute to age-

related memory decline (Fandakova et al., 2013; Shing et al., 2010), in particular, in case of 

low memory quality.  

With standard paradigms it is difficult to experimentally distinguish effects of memory 

quality due to differences in encoding from age-related processing differences at later 

stages. The experimental design developed for the MERLIN studies tracked the fate of single 

items within each participant, thereby allowing us to separate these effects. Our findings 

further emphasize that age differences in structural and functional integrity do not only 

impact the ability to form high quality memories with rich details. Rather, we can 

demonstrate that impaired structural integrity in memory-specific networks puts an 
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additional burden on all processing stages, from encoding to consolidation and retrieval. This 

observation is generally in line with the so-called “brain maintenance” hypothesis which 

suggests that the level of an older person cognitive capabilities is related to the degree of 

maintained neural integrity including structure, function, and neurochemistry (Cabeza et al., 

2018; Lindenberger, 2014; Nyberg et al., 2012; Nyberg & Lindenberger, 2020).  

The formation and maintenance of highly specific memories has been shown to depend 

on successful pattern separation processes of the hippocampus (Keresztes et al., 2018; Yassa 

& Stark, 2011). At the same time, the hippocampus is disproportionatly atrophied in old 

adulthood (Raz et al., 2005) with hippocampal shrinkage being clearly related to episodic 

memory decline in longitudinal studies (Gorbach et al., 2017; Persson et al., 2012). Not 

surprisingly, impaired pattern separation processes, linked to structural alterations in 

hippocampal subfields, haven been shown to drive age differences in memory performance 

in humans (Shing et al., 2011; Yassa et al., 2011) as well as in animal models (Wilson et al., 

2006).  Accordingly, with regard to episodic memory functioning, hippocampal maintenance 

(Köhncke et al., 2020) may be crucial for the formation of high quality memories as key 

determinant of episodic memory functioning in old age (Nyberg & Lindenberger, 2020).  

At the same time, while age-related changes do not affect all brain regions to the same 

degree, they are nevertheless widespread and not a phenomenon that can be localized to 

only some regions (for a recent review see Raz, 2020). Whether neural decline is a general or 

specific phenomenon is still a matter of debate (see Nyberg & Lindenberger, 2020, for a 

discussion), however, there is evidence that changes within functional neural networks are 

indeed often correlated. For example, longitudinal evidence has shown that 5-year changes 

in prefrontal white matter and hippocampus volume show high correlations, whereas lower 

change-change correlations were observed for other regions (Raz et al., 2005). Thus, 
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interdependencies in structural change in PFC and MTL support the notion that successful 

memory performance in aging results from the joint effect of sufficient memory quality and 

controlled retrieval processes (Devitt & Schacter, 2016; Fandakova et al., 2013; 

Lindenberger, 2014; Shing et al., 2010; Trelle et al., 2017). 

 

Conclusion 

In sum, we have reviewed evidence that while general mechanisms of memory formation 

may not differ between younger and older adults, age-related structural changes in the 

episodic memory network and particularly in key regions such as the hippocampus and 

prefrontal cortex, may nonetheless result in a reduced quality of older adults’ memories. We 

further argued that variations in memory quality have downstream consequences for 

subsequent cognitive stages like consolidation and retrieval. Accordingly, memories of low 

quality pose a general challenge to the episodic memory network such that their processing 

requires an upregulation within brain regions that are central to the cognitive stage at hand. 

At the same time, structural decline in those brain regions that support consolidation and 

retrieval such as cingulo-opercular regions, medial prefrontal cortex, and the thalamus, then 

puts older adults in a double jeopardy situation during the processing of low quality 

memories, resulting in a decline in episodic memory performance in old adulthood.  
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