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Explicit formulas for orbital carriers of periods 4, 5, and 6 are reported for discrete-time quadratic dy-

namics. A systematic investigation of orbital inheritance for periods as high as k ≤ 12 is also reported.
Inheritance means that unknown orbits may be obtained by nonlinear transformations of known orbits.

Such nested orbit within orbit stratification shows orbits not to be necessarily independent of each

other as generally assumed. Orbital stratification is potentially significant to rearrange trajectories
sums in trace formulas underlying modern semiclassical interpretations of atomic physics spectra. The

stratification seems to dominate as the orbital period grows.
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1. Introduction

Applied problems in physics normally require solving equations of motion, frequently expressed

either as differential equations involving continuous-time derivatives, or discrete-time maps.

Since the advent of modern computers, solving equations of motion essentially boils down to

number crunching using special-purpose numerical methods. For a representative selection of

methods and applications see, e.g., Refs. 1,2,3.

Numerical methods revealed much of what is presently known about the time-evolution

of complex systems. However, there are certain peculiarities that are totally out of reach to

approximate numerical methods and that have not yet been addressed as they could. For

instance, consider cascades of periodic motions, which are among the most prominent features

found in systems governed by differential equations or by maps. Although such cascades cannot

be followed analytically for differential equations, they are accessible in systems governed by

maps with algebraic equations of motion, particularly in one-dimensional dissipative maps1,2,3.

Consider a popular class of models, namely one-dimensional maps governed by algebraic

equations of motion. To delimit analytically their stability windows one needs to solve polyno-

mials containing physical parameters. Although parameters may vary freely, conditions imposed

on the stability boundaries greatly reduce such freedom as well as the complexity of the nu-

merical values defining boundaries. For example, for the paradigmatic quadratic and Hénon

maps, the polynomial coefficients at intersections are simply given by integers or by algebraic

numbers1,2,3,4,5.

The self-similar regularities recorded for cascades of periodic motions in parameterized maps
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pose a natural question regarding the generic arithmetic nature of the numbers delimiting

adjacent windows of stability as parameters are varied. Knowledge of the arithmetical unfolding

of such cascades should provide insight into the analytical clockwork mechanism underlying this

forever repeating process. Such information cannot be inferred from approximate computations

but could be eventually won using exact algebraic analysis.

The purpose of this paper is to report a systematic investigation of orbital carriers and

orbital inheritance in discrete-time quadratic dynamics, in the so-called partition generating

limit1,2, whose equation of motion is xt+1 = 2−x2t . More specifically, we extend previous work5

to include carriers for orbits with periods 4, 5 and 6, and inheritance for periods k ≤ 12 of the

map. Such computations are quite strenuous. The latter limit is set by the capability of the

hardware and software at our disposal to generate and to factor large polynomials of degrees no

less than 4020, with exceedingly large numerical coefficients and discriminants. As discussed and

illustrated below, carriers are polynomials encoding simultaneously all possible orbits of a given

period5. Inheritance means that known periodic orbits reveal unknown orbits. New orbits are

obtained through simple nonlinear transformations from known orbits6,7,8. Inherited orbits are

clones that share an arithmetic ancestry. Arithmetic interdependencies among periodic orbits

are hard, not to say impossible, to recognize in numerical simulations, where only approximate

numbers are considered.

The starting point to investigate the arithmetic nature of equations of motion is the ring Z
of integers, namely solving polynomials with integer coefficients. Key properties which facilitate

the study of polynomials with integer coefficients are the Euclidean algorithm and the unique

factorization of integers (the ‘fundamental theorem of arithmetic’). Such properties no longer

always hold for rings of integers of higher algebraic number fields, involving polynomials with a

good deal more complicated coefficients and which are the framework where algebraic equations

of motions must be considered.

The first coherent discussion of complex integers a + ib with rational integral a and b was

presented by Gauss as far back as 1831-32, in his second paper on biquadratic reciprocity.

Subsequently, the theory of quadratic algebraic numbers was essentially completed during the

nineteen century by Kummer, Dirichlet, Dedekind, Hilbert and others9. However, the corre-

sponding knowledge regarding numbers as simple as cubics and relative cubics is by far less

complete, despite more than two centuries of work10. The main difficulty comes from the well-

known fact that irreducible cubics with three real roots, the so-called casus irreducibilis, cannot

have their roots expressed in terms of real radicals. The equations of motion discussed here are

attractive in that they require investigating towers of such cubic fields. We consider periods

k ≤ 12, and provide explicit solutions for polynomials of degrees as high as 18 and 24, involving

nested cubic roots.

With respect to applications beyond the scope of dynamical systems, we mention briefly that

the concept of inheritance is potentially attractive for atomic physics, where it seems to imply

the interesting and unsuspected possibility of rearranging certain orbit-dependent contributions

in cycle expansions and semiclassical sums needed for calculating energy spectra and density

of states using, e.g., Gutzwiller’s trace formula15,16,17,18,19,20,21,22.

2. Orbital carriers for periods 4, 5 and 6

A recent work has shown that classical equations of motion of algebraic origin may be all

conveniently extracted from just a single mathematical object, a polynomial called an orbital

carrier. All possible orbits may be encoded simultaneously by a single carrier, with individual

orbits parameterized by σ, the sum of their orbital points5. In Ref. 5, such parameterization was
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established for period-three orbits using standard textbook knowledge of the theory of algebraic

equations. Essentially, one uses certain functions of the roots of the equation of motion, the

elementary symmetric functions23, which may be expressed in a general manner by means of

the coefficients of the equation of motion, without the equation itself being resolved. This fact

shifts the traditional study of orbital points to a new level, to the study of orbital equations of

motion.

Here, we extend the aforementioned orbital parameterization to include explicit expressions

for carriers of periods 4, 5 and 6. Results for periods four24 and six25 may be obtained as

particular cases of general expressions obtained previously for the two-parameter Hénon map,

(x, y) 7→ (a−x2 + by, x). For arbitrary values of a, carriers for the quadratic map xt+1 = a−x2t
are obtained setting b = 0 in the expressions of the Hénon map. For the partition generating

limit discussed here, set (a, b) = (2, 0). The carrier for period five is freshly obtained and is

reported here for the first time. Apart from the theoretical novelty of these carriers, they help

to motivate the main results below and to make them more comprehensible.

2.1. The period four carrier

Essentially, for a given period k, all period-k orbits may be encoded simultaneously by two

polynomials, as described in a recent open access paper5: A σ-parameterized polynomial ψk(x),

called the carrier, and an auxiliary polynomial, Sk(σ), which fixes the values of the parameter

σ for each individual orbit. The parameter σ is just the sum of the orbital points. The degree

of the polynomial Sk(σ) informs the total number of possible k-periodic orbits in the system.

When substituted into ψk(x), each individual root of Sk(σ) = 0 “projects” ψk(x) into the σ-

selected individual orbit. Normally, Sk(σ) is a reducible polynomial over the integers: nonlinear

factors of degree ∂k correspond to orbital clusters, namely to irreducible polynomial aggregates

commingling together a total of ∂k orbits. Linear factors correspond to non-clustered single

orbits of degree k.
For period-four there are three possible orbits, all encoded simultaneously by the doublet:

ψ4(x) = x4 − σx3 + 1
2 (σ2 + σ − 8)x2 − 1

6 (σ3 + 3σ2 − 20σ + 2)x

+ 1
24 (σ − 3)(σ3 + 9σ2 − 2σ − 16) (1)

S4(σ) = (σ + 1)(σ2 − σ − 4). (2)

Substituting σ = −1 into ψ4(x) we obtain the orbit o4,1(x), while for (1 −
√

17)/2 and (1 +√
17)/2, roots of the quadratic factor, we get o4,2(x) and o4,3(x), respectively:

o4,1(x) = x4 + x3 − 4x2 − 4x+ 1, (3)

o4,2(x) = x4 − 1
2 (1−

√
17)x3 − 1

2 (3 +
√

17)x2 − (2 +
√

17)x− 1, (4)

o4,3(x) = x4 − 1
2 (1 +

√
17)x3 − 1

2 (3−
√

17)x2 − (2−
√

17)x− 1. (5)

When multiplied together, o4,2(x) and o4,3(x) produce the orbital cluster, or aggregate:

c4,1(x) = o4,2(x) · o4,3(x) = x8 − x7 − 7x6 + 6x5 + 15x4 − 10x3 − 10x2 + 4x+ 1, (6)

a cluster that may be obtained directly by eliminating σ between ψ4(x) and σ2 − σ − 4.
Note that the product of o4,2(x) and o4,3(x), which have algebraic coefficients, resulted in a cluster

with integer coefficients, a generic characteristic. Technically, o4,2(x) and o4,3(x) are defined by relative

quadratic equations of motion9. Manifestly, c4,1(x) decomposes over the field Q(
√

17). The orbit o4,1(x)
has always integer coefficients and is always an exact representation for the orbit. In sharp contrast,
when projected onto the real axis, o4,2(x) and o4,3(x) will have necessarily approximate numerical
coefficients. Thus, the symmetries clearly visible between Eqs. (4) and (5) will be totally obliterated.
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This unambiguous dichotomic distinction between orbits remains valid for other periods and neatly
displays the enhanced insight obtained by working with exact equations of motion.

Doublets like Eqs. (1) and (2) may be determined for arbitrary periods. Expressions for arbitrary
values of a of the quadratic map and arbitrary (a, b) of the Hénon map are available24,25.

2.2. The period five carrier

For period-five there are six possible orbits, all encoded simultaneously by the doublet:

ψ5(x) = (360σ2 − 360σ − 240)x5 − 120σ(3σ2 − 3σ − 2)x4 + 60(σ2 + σ − 10)(3σ2 − 3σ − 2)x3

−(60σ5 + 90σ4 − 1800σ3 + 1710σ2 + 1860σ − 1200)x2

+(15σ6 + 45σ5 − 735σ4 + 375σ3 + 3480σ2 − 2700σ − 1200)x

−3σ7 − 12σ6 + 192σ5 + 30σ4 − 2061σ3 + 1446σ2 + 4248σ − 3600, (7)

S5(σ) = (σ − 1)(σ2 + σ − 8)(σ3 − σ2 − 10σ + 8). (8)

Eliminating σ between ψ5(x) and, successively, σ− 1, σ2 + σ− 8, and σ3− σ2− 10σ+ 8, we get, apart
from multiplicative constants used to eliminate denominators in ψ5(x),

o5,1(x) = x5 − x4 − 4x3 + 3x2 + 3x− 1, (9)

c5,1(x) = x10 + x9 − 10x8 − 10x7 + 34x6 + 34x5 − 43x4 − 43x3 + 12x2 + 12x+ 1, (10)

c5,2(x) = x15 − x14 − 14x13 + 13x12 + 78x11 − 66x10 − 220x9 + 165x8 + 330x7

−210x6 − 252x5 + 126x4 + 84x3 − 28x2 − 8x+ 1. (11)

The clusters factor into quintics over Q(
√

33) and Q
(

3
√
−62 + 95

√
−3
)
, respectively, thereby provid-

ing explicit expressions for the remaining five period-five orbits. As before, clustered orbits involve
relative quadratic and cubic equations, with algebraic (non-integer) coefficients which, in numerical
computations cannot be determined exactly.

2.3. The period six carrier

For period-six there are nine possible orbits, all encoded simultaneously by the doublet:

ψ6(x) = 160ϕ2σ2(x6 − σ x5) + 80σ2(σ + 4)(σ − 3)ϕ2x4

−40σ ϕ
(
2σ7 + σ6 − 86σ5 + 126σ4 + 358σ3 − 343σ2 − 50σ + 56

)
x3

+20σ2ϕ
(
σ7 + 3σ6 − 70σ5 + 48σ4 + 679σ3 − 683σ2 − 1218σ + 1048

)
x2

−4σ ϕ
(
σ9 + 6σ8 − 91σ7 − 78σ6 + 1693σ5 − 976σ4 − 6911σ3 + 5496σ2 + 2508σ − 2128

)
x

+2σ14 + 14σ13 − 247σ12 − 268σ11 + 7984σ10 − 8072σ9 − 80966σ8 + 157668σ7

+184938σ6 − 530694σ5 + 88965σ4 + 373032σ3 − 197156σ2 − 13440σ + 15680, (12)

S6(σ) = (σ + 1)(σ − 1)(σ3 − 21σ + 28)(σ4 + σ3 − 24σ2 − 4σ + 16). (13)

where ϕ ≡ 3σ3− 7σ2− 13σ+ 13. Apart from multiplicative constants used to eliminate denominators
in ψ6(x), by selecting σ = 1 and σ = −1 we get the orbits and discriminants:

o6,1(x) = x6 − x5 − 5x4 + 4x3 + 6x2 − 3x− 1, ∆6,1 = 135 = 371293, (14)

o6,2(x) = x6 + x5 − 6x4 − 6x3 + 8x2 + 8x+ 1, ∆6,2 = 33 · 75 = 453789. (15)

Again, for roots of the cubic and quartic factors in Eq. (13), the resulting coefficients in Eq. (12) are
more complicated algebraic numbers, not integers. When all orbits arising from the same σ−factor are
multiplied together one obtains a cluster, a polynomial aggregate with integer coefficients and degree
∂ = mk, multiple of the period k, where m > 1 is an integer:

c6,1(x) = x18 − 18x16 + x15 + 135x14 − 15x13 − 546x12 + 90x11 + 1287x10 − 276x9

−1782x8 + 459x7 + 1385x6 − 405x5 − 534x4 + 170x3 + 72x2 − 24x+ 1, (16)

c6,2(x) = x24 + x23 − 24x22 − 23x21 + 252x20 + 229x19 − 1521x18 − 1292x17 + 5832x16

+4540x15 − 14822x14 − 10282x13 + 25284x12 + 15001x11 − 28667x10 − 13653x9
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Table 1. The nine period-six orbits o6,j of the map xt+1 = 2 − x2t . Here, σ6,j =
∑
xj is the sum

of the orbital points. The triad and quartet of σ6,j values are roots of the cubic and quartic factors

in Eq. (13), respectively.

Orbit x1 x2 x3 x4 x5 x6 σ6,j
o6,1 -1.770912051306 -1.1361 0.7093 1.4969 -0.2407 1.9421 1

o6,2 -1.911145611572 -1.6523 -0.7301 1.4670 -0.1521 1.9769 -1

o6,3 -1.990061550730 -1.9605 -1.8436 -1.3989 0.0431 1.9981 -5.142457360
o6,4 -1.756443146740 -1.0849 0.8230 1.3227 0.2505 1.9372 1.491252188

o6,5 -0.912421314706 1.1675 0.6369 1.5944 -0.5421 1.7061 3.651205171

o6,6 -1.990663269435 -1.9629 -1.8530 -1.4336 -0.0552 1.9970 -5.287613777

o6,7 -1.916491658218 -1.6730 -0.7989 1.3618 0.1455 1.9788 -0.902246984
o6,8 -1.559348708126 -0.4314 1.8139 -1.2902 0.3354 1.8875 0.756484903

o6,9 -0.971966826485 1.0553 0.8863 1.2145 0.5250 1.7244 4.433375858
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Fig. 1. Return maps xt × xt+1 for the nine period-6 orbits. Numbers refer to the leftmost orbital coordinate.

Some of the orbits are topologically identical, despite their very distinct algebraic character.

+20886x8 + 7168x7 − 9126x6 − 1802x5 + 2085x4 + 101x3 − 180x2 + 12x+ 1. (17)

Independently from ψ6(x), the Maple driver given in Appendix A exemplifies how to extract o6,1(x),
o6,2(x), c6,1(x), and c6,2(x) directly from the quadratic equation of motion.

The orbital points for all nine period-six orbits are collected in Table 1, together with the sums σ6,j .
Return maps for all nine orbits are illustrated in Fig. 1. Numbers inside panels identify the leftmost
orbital point. From Fig. 1 one sees that some orbits are topologically identical despite the very distinct
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nature of the algebraic numbers underlying them.
It is interesting to mention that Eqs. (14) and (15) imply a novel twist in the current understanding

of polynomial interdependence. As individual orbits, they are obtained as two “projections” arising from
a common mathematical origin, the carrier ψ6(x). Therefore, rather than independent orbits, they are
in a certain sense a kind of “conjugated” orbits. Furthermore, since all nine orbits arise from the same
carrier ψ6(x), the pair of orbits is also conjugated to the remaining seven orbits. This illustrates the
existence of a complex and subtle arithmetical interdependence lurking among such orbits, apparently
rather different from the usual field isomorphisms familiar from Galois theory of equations. Orbital
carriers allow conjugated orbits to have coefficients from very distinct number fields, a concept alien
to the standard theory.

As for the remaining polynomials, o6,1(x) factors into a pair of cubics over Q(
√

13). The cluster
c6,2(x) factors into two equations of degree nine over Q(

√
21). However, these polynomials mix roots

of distinct orbits, since their degree is not a multiple of six. For c6,1(x), six cubics are obtained over
Q( 3
√
α), where α = −154+42

√
−3−18

√
−7+30

√
21. For c6,2(x), eight cubics are obtained over Q(

√
β),

where β = 65 − 13
√

5 + 15
√

15 − 3
√

65. These factorizations provide explicit and exact solutions for
all period-six orbits. Note that the factors of Sk(σ) reveal how orbits are distributed into clusters and
single orbits, if any.

3. Orbital inheritance

A simple example allows one to grasp easily what inheritance means6,7,8. To this end, we apply the
nonlinear transformation x3 − 3x to o6,2(x), obtaining the identity:

c6,1(x) = o6,2(x3 − 3x). (18)

This identity shows that, as soon as the roots zi of o6,2(x) = 0 are determined, three new orbits follow
from the zeros of the six cubics

x3 − 3x− zi = 0. (19)

Therefore, since o6,2(x) factors into a pair of cubics over Q(
√

21),

o6,2(x) =
(
x3 + 1

2 (1−
√

21)x2 − 1
2 (1 +

√
21)x+ 1

2 (5 +
√

21)
)
×(

x3 + 1
2 (1 +

√
21)x2 − 1

2 (1−
√

21)x+ 1
2 (5−

√
21)
)
, (20)

their roots provide exact analytical solutions in terms of radicals for all orbital points of
the 18th-degree cluster c6,1(x) = 0. Such exact solutions are simple cascades, towers, of rela-

tive cubic irrationalities9. Incidentally, Maple surprisingly fails to solve the sextic o6,2(x) using
aux:=solve(o62,x); convert(aux[1],radical); But it correctly breaks o6,2(x) into a pair of cu-
bics when adding input from the sextic discriminant: factor(o62,21^(1/2));

What about the inherent character of the irrationalities underlying period-six orbital point? This
question is particularly interesting because, while compositions of relative quadratic irrationalities are
long known9, the considerably more complicated structures arising from nested cyclic cubic irrational-
ities remains essentially open10. Thus, present day computer algebra systems still have to grapple with
difficulties to simplify expressions containing cubic and higher roots11,12,13,14. By way of illustration,
consider to reassemble the cubics in Eq. (20) starting from the exact expressions of their three roots.
In this case, we get the leftmost number below as the second coefficient in the topmost equation, not
its most simplified version:

119− 21
√
−3− 27

√
−7 + 31

√
21

−77 + 21
√
−3 + 9

√
−7− 15

√
21

= − 49 + 11
√

21

2(14 + 3
√

21)
= 1

2 (1−
√

21) ' −1.791287. (21)

Similarly garbled expressions are obtained for all other coefficients in Eq. (20). The good news is that
such expressions provide clues regarding the subfield structure underlying the solutions. Clues may be
also obtained from the algebraic numbers solving the factors in Sk(σ).

4. Inheritance systematics up to periods k ≤ 12

4.1. Periods k ≤ 11

Using a slightly adapted version of the ad-hoc Maple driver given in appendix A, we computed sys-
tematically all genuine factors defining orbits with period k ≤ 12. A summary of the relevant data
obtained for k ≤ 11 is given in Table 2. This table reveals a number of interesting facts and trends:
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Table 2. Data summary of polynomial factors as a function of the period k. Type refers either

to orbits ok,j or orbital clusters ck,j , ∂ is the degree of the corresponding polynomial, D = ∆

are the standard polynomial and field discriminants, and L is the length, the number of digits of
the discriminants. For a given k, highlighted cells indicate discriminants arising from identical

prime numbers (see text).

k Type ∂ D = ∆ L k Type ∂ D = ∆ L

3 o3,1 3 72 2 9 o9,1 9 322 11
o3,2 3 92 2 o9,2 9 198 11

4 o4,1 4 32 · 53 4 c9,1 18 39 · 1917 27
c4,1 8 177 9 c9,2 36 7335 66

5 o5,1 5 114 5 c9,3 54 381 · 1951 104

c5,2 10 35 · 119 12 c9,4 162 3405 · 19153 389
c5,3 15 3114 21 c9,5 216 7180 · 73213 550

6 o6,1 6 135 6 10 o10,1 10 517 12
o6,2 6 33 · 75 6 c10,1 20 4119 31

c6,1 18 327 · 715 26 c10,2 30 315 · 3129 51
c6,2 24 518 · 1322 38 c10,3 80 560 · 4178 168

7 c7,1 21 4320 33 c10,4 150 11135 · 31145 357
c7,2 42 321 · 4341 77 c10,5 300 3150 · 11270 · 31290 786
c7,3 63 12762 131 c10,6 400 5700 · 41390 1119

8 c8,1 16 38 · 1715 23 11 o11,1 11 2310 14
c8,2 32 524 · 1730 54 c11,1 44 8943 84

c8,3 64 332 · 548 · 1760 123 c11,3 341 683340 964
c8,4 128 257127 307 c11,4 682 3341 · 683681 2093

c11,5 968 23924 · 89957 3124

(1) The growth of the number of single orbits is much smaller than cluster growth.
(2) Periods k = 7 and k = 8 contain only orbital clusters, no single orbits.
(3) Orbits and clusters are all monogenic, i.e. the discriminant D of their minimal polynomial

coincides with their field discriminant ∆. Therefore, orbits and clusters admit power integral
bases. For details, see Ref. 26.

(4) The degree of single orbits and clusters is always a multiple of the period k.
(5) As indicated by the length L giving the number of digits in the discriminants, D and ∆ grow

fast with the period. However, they contain powers of relatively small prime numbers.
(6) The discriminants of, e.g., c11,5 contain 3124 digits. It would be computationally hard to factor

it if it was not a simple product of powers of a few identical and small primes, 23 and 89.
(7) The highlighted values of D = ∆ for k = 6, 9, and 10 summarize all cases of inheritance found

for k ≤ 11.
(8) For k = 6 the ratio of the polynomial degrees are ∂(c6,1)/∂(o6,1) = 3. Similarly, for k = 9 the

ratios are ∂(c9,4)/∂(c9,3) = ∂(c9,3)/∂(c9,1) = 3. Inheritance among these orbits involves the

aforementioned cubic transformation: c9,3(x) ≡ c9,1(x3 − 3x) and c9,4(x) ≡ c9,3(x3 − 3x).
(9) In contrast, for k = 10 the ratio is ∂(c10,6)/∂(o10,3) = 5, implying inheritance involving a

quintic nonlinear transformation7. In this case, we have c10,6(x) ≡ o10,3(x5 − 5x3 + 5x).
(10) For a given period k, the discriminants D and ∆ involve certain combinations of a small set

of primes. We were not able to find interconnections between orbits with discriminants arising
from powers of distinct primes, although we see no reason to rule out the possibility of intricate
interconnections yet to be discovered.

(11) From Table 2, it seems reasonable to conjecture inheritance to exist among polynomials with
discriminants composed by powers of the same primes.

4.2. Period k = 12

Table 3 summarizes data obtained for the sixteen individual factors resulting from the computation
and factorization of the 4020th degree polynomial which contains all genuine period twelve orbits and
clusters. These factors corroborate the properties listed above for k ≤ 11. Note the fast increase in the
number of digits of the discriminants, which for c12,16(x) contains no less than 6770 digits. In order to
factor arbitrary numbers of this size, computers need to check numbers of the order of the size of the
square-root of the number to be factored, in the present case roughly 103385.
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Table 3. Individual factors of the 4020th degree poly-

nomial containing all period twelve orbits and orbital

clusters. Here, ∂ refers to the degree of individual fac-
tors, while length is the number of digits contained in

the discriminants D = ∆. Similar highlighting is used

for discriminants defined by identical prime numbers. No
more than pairs of interdependent orbits are observed.

` Degree ∂ D = ∆ Length

1 12 59 · 710 15
2 12 318 · 59 15
3 12 36 · 1311 16

4 24 312 · 518 · 720 36
5 36 354 · 1333 63
6 36 730 · 1333 63
7 48 324 · 536 · 1344 86
8 72 3108 · 554 · 760 140

9 72 336 · 760 · 1366 142
10 120 241119 284
11 144 5108 · 7120 · 13132 324
12 144 3216 · 5108 · 13132 326

13 216 3324 · 7180 · 13198 528
14 288 3144 · 5216 · 7240 · 13264 717
15 864 31296 · 5648 · 7720 · 13792 2562

16 1920 171800 · 2411912 6770

Table 4. Growth of the number Nk of periodic orbits, as a function of the period k.

The number of orbits roughly doubles as k increases. For simple equations and Maple
implementations to obtain arbitrary values of Nk see Refs. 27,28.

k 12 13 14 15 16 17 18 19 20

Nk 335 630 1161 2182 4080 7710 14532 27594 52377

Nk/Nk−1 1.80 1.88 1.84 1.88 1.87 1.90 1.88 1.90 1.90

Numbers with 6770 digits are well beyond the capabilities of factorization, and also well beyond
the numbers currently used in data encryption. For instance, consider that the lifetime of the universe,
currently estimated to be some 13.8 billion years, roughly 1018 seconds, a number with 19 digits.
Assuming a computer able to test one million factorizations per second, during the lifetime of the
universe it would be able to check some 1024 possibilities. However, for 6770 digits, roughly 106770,
one would need to check 103385 possibilities, meaning that the time to do this amounts to roughly
103385−24 = 103361 times the lifetime of the universe! Fortunately, however, the very big numbers in
Table 3 involve products of just a few and small primes, allowing them to be factored, as indicated
in the Table. The passage here is exceedingly narrow. Slight changes in the coefficients may preclude
factorization.

The most conspicuous difference when comparing the numbers in Table 3 with analogous results
for the lower periods in Table 2 is the surprising increase of the number of polynomials display-
ing inheritance. For instance, abbreviating X = x3 − 3x, we find the following five nonlinear in-
terconnections among polynomials of quite high degrees: c12,5(x) ≡ o12,3(X), c12,8(x) ≡ c12,4(X),
c12,12(x) ≡ c12,7(X), c12,13(x) ≡ c12,9(X), and c12,15(x) ≡ c12,14(X). The verification of these identi-
ties requires ad-hoc handling because of recurring Maple warnings “stack limit reached”.

Table 4 illustrates how fast the number of orbits grows as a function of the period k. A simple and
explicit formula and its Maple implementation to compute such growth is available in the literature27,28.
It would be interesting to extend the present calculations and check inheritance for the promising cases
k = 14, 15, 16 and 18, something that should be feasible already by someone with access to more
powerful resources than available to us.

Two additional aspects are worth mentioning: First, periodic orbits may be found by studying
preperiodic points8. Such procedure involves just straightforward but somewhat tedious computations,
due to the large number of factors and orbits involved. Fortunately, the procedure involving preperiodic
points may be programmed to run automatically. Second, by a process of reverse engineering and by



August 5, 2020 0:18 WSPC/INSTRUCTION FILE inheritance˙arxiv-2020

Carriers and inheritance in quadratic dynamics 9

suitably summing orbital points, one may recover the several individual factors arising in the Sk(σ)
polynomials. For instance, in Appendix B we compute explicitly the three factors composing S7(σ).
For single orbits the factors are very simple to find. For instance, the single period-twelve orbits are

o12,1(x) = x12 + x11 − 12x10 − 11x9 + 54x8 + 43x7 − 113x6 − 71x5

+110x4 + 46x3 − 40x2 − 8x+ 1, (22)

o12,2(x) = x12 − 12x10 + x9 + 54x8 − 9x7 − 112x6 + 27x5 + 105x4

−31x3 − 36x2 + 12x+ 1, (23)

o12,3(x) = x12 + x11 − 12x10 − 12x9 + 53x8 + 53x7 − 103x6 − 103x5

+79x4 + 79x3 − 12x2 − 12x+ 1, (24)

and we immediately recognize that s(s + 1)2 are the linear factors of S12(σ), a curious degenerate
multiplicity situation which seems to foretell that ψ12(x) will be a reducible polynomial. Analogously,
linear factors of Sk(σ) may be read directly from the coefficients of the orbits:

o9,1(x) = x9 − 9x7 + 27x5 − 30x3 + 9x− 1, (25)

o9,2(x) = x9 − x8 − 8x7 + 7x6 + 21x5 − 15x4 − 20x3 + 10x2 + 5x− 1, (26)

o10,1(x) = x10 − 10x8 + 35x6 − x5 − 50x4 + 5x3 + 25x2 − 5x− 1, (27)

o11,1(x) = x11 − x10 − 10x9 + 9x8 + 36x7 − 28x6 − 56x5 + 35x4 + 35x3 − 15x2 − 6x+ 1. (28)

It is quite challenging to decompose orbital clusters combining more than two orbits, particularly
those combining an odd number of orbits. However, the coefficients of such decompositions hide the
secretest truth and most interesting relations among numbers which fix orbital individuality.

5. Conclusions and outlook

This paper presented explicit expressions for orbital carriers of periods 4, 5, and 6. In addition, the
systematics of orbital inheritance was considered for all periods k ≤ 12. Evidence was found that
inheritance becomes more abundant as the period increases. Useful insight was obtained from the
exact properties of equations of motion, instead of orbital points. An interesting open challenge is to
compute the distinct factors arising for orbits of periods k = 14, 15, 16 and 18, and to check if they
also display inheritance and relations with orbits of lower periods, if any. A much harder problem
seems to be to find out if orbits not displaying inheritance may nevertheless display some other type of
interdependence. If found, this would certainly reveal unanticipated interconnections among families
of algebraic numbers.

As it is visible from Tables 2 and 3, the growth of the polynomial degrees ∂k as a function of k
and their partition into proper divisors of k are interesting open combinatorial questions. What is the
mechanism behind the decomposition of the number Nk of periodic orbits into the several degrees ∂k of
the polynomial set defining k−periodic orbits? For instance, the 4020th degree polynomial of period-12
orbits is partitioned into sixteen factors recorded in Table 3. What would be, say, the corresponding
partition for the 16254th degree polynomial corresponding to period-14 orbits and clusters? Or the
32730th degree polynomial for period-15? Or the 65280th degree polynomial for period-16? Note that
the partitions listed in Table 2 are not unique: for k = 6, instead of 6 + 6 + 18 + 24, we could equally
well have 12 + 18 + 24, 12 + 12 + 30, etc. Such alternative partitions, however, are never observed in the
present context. It is clear that the partition sets have many elements, and an interesting combinatorial
challenge is to count them all and to predict partitions that may be observed for a given period of a
given map.

Finally, for applications in physics and dynamical systems, it is of interest to mention that in
algebraic number theory one knows that every cyclotomic field is an Abelian extension of the rational
numbers Q. In this context, an important discovery is the so-called Kronecker-Weber theorem, stating
that every finite Abelian extension of Q can be generated by roots of unity, i.e. Abelian extensions
are contained within some cyclotomic field. Equivalently, every algebraic integer whose Galois group
is Abelian can be expressed as a sum of roots of unity with rational coefficients. For details see, e.g.,
Edwards29. The study of the partition generating limit of the quadratic map xt+1 = a− x2t seems to
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lend hope that for a = 2 the map may also share an analogous correspondence with Abelian equations
as the one embodied in the Kronecker-Weber theorem30, which is intrinsically related to the cyclotomic
polynomials generated by the map when a = 0, whose dynamics, unbeknownst to him, was studied by
Gauss in Sectio Septima of his Disquisitiones Arithmeticæ. Such enticing possibility of correspondence
deserves to be further investigated.
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Appendix A. Maple driver to generate period six orbits and clusters

a := 2:

x[1]:= a - x*x: x[2]:= a - x[1]*x[1]: x[3]:= a - x[2]*x[2]:

x[4]:= a - x[3]*x[3]: x[5]:= a - x[4]*x[4]: x[6]:= a - x[5]*x[5]:

aux := factor(x-x[6]);

## FAKE period six orbits, containing repeated points:

per1 := op(1,aux)*op(2,aux); per2 := op(3,aux);

per3 := op(4,aux)*op(5,aux);

## GENUINE period six orbits, containing NO repeated points:

o61:= op(7,aux); o62:= op(6,aux); c61:= op(9,aux); c62:= op(8,aux);

The above assignments are correct under Maple 2014, but are easy to adjust if emerging differently.
Manifestly, the driver above may be easily adapted to generate equations for other periods.

Appendix B. Determination of the three factors composing S7(σ)

Here, in contrast to the arithmetic work done so far, we resort to numerically computed orbital points
to illustrate how to find exact representations for the individual factors composing S7(σ). The three
clusters whose roots give all period-seven orbital points may be easily generated by slightly adapting
the Maple driver given in Appendix A. Such clusters read as follows:

c7,1(x) = x21 − x20 − 20x19 + 19x18 + 171x17 − 153x16 − 816x15 + 680x14

+2380x13 − 1820x12 − 4368x11 + 3003x10 + 5005x9 − 3003x8

−3432x7 + 1716x6 + 1287x5 − 495x4 − 220x3 + 55x2 + 11x− 1, (B.1)

c7,2(x) = x42 + x41 − 42x40 − 42x39 + · · · − 3267x4 − 3267x3 + 44x2 + 44x+ 1, (B.2)

c7,3(x) = x63 − x62 − 62x61 + 61x60 + · · ·+ 40920x4 + 5456x3 − 496x2 − 32x+ 1. (B.3)

From them, we extract the (21 + 42 + 63)/7 = 18 orbits summarized in Table 5. After rounding off
the real coefficients in the products below, we easily get the exact representations of the three factors
composing S7(σ), all with degree multiple of three:

3∏
j=1

(σ − σ7,j) = σ3 − σ2 − 14σ − 8, (B.4)

9∏
j=4

(σ − σ7,j) = σ6 + σ5 − 39σ4 + 63σ3 + 110σ2 − 136σ − 128, (B.5)

18∏
j=10

(σ − σ7,j) = σ9 − σ8 − 56σ7 + 118σ6 + 573σ5 − 1249σ4 − 1582σ3 + 2700σ2 + 1576σ − 32.

Even though an expression for the period-seven carrier pair is still unknown, we were nevertheless
able to extract S7(σ). Its factors corroborate the three aggregates c7,m(x), m = 1, 2, 3 and identify
the relative algebraic nature of the coefficients of individual orbits. Manifestly, the above procedure
is valid generically and may be applied to higher periods. Separation of orbits into three groups in
Table 5 was only possible due to the a priori knowledge of the three “brute-force factors” in Table
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Table 5. The eighteen period-seven orbits, characterized by one orbital point and the

sum σ7,j of all points. The remaining orbital points follow by iterating xt+1 = 2 − x2t .

Orbit x1 σ7,j
o7,1 -1.97868673615022039558470712622 -2.88823600884341144649527347953

o7,2 -1.81089647498629323144358511206 -0.61507162581156506493032243917
o7,3 -1.04188068097586057235256289907 4.50330763465497651142559591867

o7,4 -1.99762811048164609235032811636 -7.24813219626988235042435866316

o7,5 -1.88487616566742883844738056630 -1.22906022702843317616182868886
o7,6 -1.94098358831481064644663464031 -0.774908002370389501560130448853

o7,7 -1.61228898351072554484668557445 1.84413185283999824109215112803
o7,8 -1.71974598668362014848475373830 2.74482456161490583899876274448

o7,9 -1.20298163000374078956875931348 3.66314401121380094805540392837

o7,10 -1.99755283242852256525640526121 -7.17543506383968793122213507689

o7,11 -1.97801140897626144475812107452 -2.93599431271533079530605723303
o7,12 -1.88125825920768775450635179933 -1.60237082080316266127006810916
o7,13 -1.93911972959649314295081201674 -0.525572883742883886011679753072

o7,14 -1.80499303815485256128035783817 0.0196507480462068262052865602836
o7,15 -1.60040839696003410107405022267 2.19795804752238429773060428492

o7,16 -1.71107014481703192827696436581 2.36473479389711276652833789748
o7,17 -1.17956942634103896113267847206 3.29077832666324426013918210422
o7,18 -1.01424772773954618184418426842 5.36625116497211712320652932523

2 and given explicitly above, in c7,m(x). However, using preperiodic points generated by an infinite

family Q`(x) of polynomials8, the same three groups my be discovered independently, directly from
numerically approximated orbital equations. How to accomplish this will be presented in a forthcoming
publication.
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