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A substantial fraction of worldwide mortality is attributed to 
erythrocyte-related disorders1–7. Variation in RBC traits is 
linked to mortality rates not related to primary hematologic 

disease1,3,6. Genome-wide association studies (GWAS) have iden-
tified numerous variable genomic regions associated with human 
traits and diseases, including RBC traits8–21. RBC-trait-associated 
single-nucleotide polymorphisms (SNPs) rarely affect DNA bind-
ing of MTFs, such as GATA2 and GATA1, even though they are 
often in close proximity to MTF target sequences15,22,23. Additional 
mechanisms by which RBC SNPs result in the phenotypic variabil-
ity of human genetic traits remain to be discovered.

Environmental factors contribute to the phenotypic manifesta-
tion of complex human genetic traits1,3,6. Under stress conditions, 
growth factors and small molecules activate signaling pathways24–26 
that converge on signal-induced effector transcription factors (STFs) 
to control gene expression. By coordinating with MTFs, the same 
STFs may be active in multiple cell types but exert tissue-specific 
functions27,28. Hence, alterations in STF target sequences may lead 
to aberrant responses to various signals.

Here, we observed that human erythroid-trait-associated 
non-coding SNPs are enriched in a small subset of enhancers 
co-bound by MTFs and STFs, which we named transcriptional sig-
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naling centers (TSCs). Our study suggests that such SNPs alter the 
DNA binding of various STFs more frequently than that of blood 
MTFs, leading to gene expression changes induced by extracellular 
signaling and consequently impacting RBC phenotypes.

Results
MTFs and STFs control cell-type-specific gene expression. To 
understand how signaling impacts human erythropoiesis, we 
sought to identify genomic regions responsive to exogenous signals 
using in  vitro erythroid differentiation of human hematopoietic 
progenitor cells (CD34+; Extended Data Fig. 1a)29. By performing 
H3K27ac chromatin immunoprecipitation with sequencing (ChIP–
seq) to identify active enhancers30, assay for transposase-accessible 
chromatin using sequencing (ATAC–seq) to determine chromatin 
accessibility31 and RNA sequencing (RNA-seq) to quantify gene 
expression in these cells at various stages of differentiation (day 0 
(d0) before differentiation induction and 6 h, 3 days, 4 days and 5 
days after induction of erythroid differentiation), we observed two 
expression clusters before and after d3, suggesting that CD34+ cells 
commit to an erythroid fate around d3 in this system (Extended 
Data Fig. 1f; Supplementary Table 1 presents genome-wide RNA 
expression values). Thus, we considered genes that are expressed at 
high levels before d3 as progenitor genes and after d3 as erythroid 
genes.

Next, we investigated genomic occupancy of MTFs and STFs 
during erythroid differentiation. We chose GATA2 and GATA1 as 
exemplary progenitor and erythroid MTFs, respectively. To choose 
an STF, we tested the effect of BMP/SMAD signaling in our system, 
owing to its importance in stress erythropoiesis28,32–35. Induction of 
BMP signaling by recombinant BMP4 or abrogation by dorsomor-
phin affected the efficiency of erythroid commitment (Fig. 1a,b), so 
we chose SMAD1 as an exemplary erythropoietic STF.

During differentiation, genomic occupancy of GATA2, identi-
fied by ChIP–seq, steadily decreased and GATA1 occupancy pro-
gressively increased while SMAD1 gradually re-localized to new 
genomic sites (Fig. 1c). SMAD1 binding at progenitor stages (d0–
d3) or erythroid stages (d3–d5) overlapped markedly with MTFs 
of the respective stages (Fig. 1c,d and Extended Data Fig. 1g). We 
then identified the GATA2 + SMAD1 co-occupied or GATA2-alone 
genomic sites at d0, hour 6 (h6) and d3 and the GATA1 + SMAD1 or 
GATA1-alone genomic regions at d3, d4 and d5 and assigned them 
to the predicted target genes (Supplementary Table 2). Notably, 
GATA-alone sites lack SMAD1 binding but possibly display bind-
ing of other MTFs besides GATA (refs. 36,37). Ingenuity Pathway 
Analysis showed that genes co-bound by GATA1 + SMAD1 are 
enriched for erythroid functions, whereas genes co-bound by 
GATA2 + SMAD1 are enriched for progenitor functions (Extended 
Data Fig. 1h), indicating that GATA + SMAD1 co-bound regions 
regulate stage-specific genes. Next, by comparing expression 
between genes co-occupied by GATA + SMAD1 and genes occu-
pied by GATA alone, we found that genes proximal to co-occupied 
regions showed significantly higher expression (Fig. 1e). Overlap 

of stage-matched ATAC–seq and ChIP–seq data demonstrated that 
co-bound regions exhibit enhanced chromatin accessibility com-
pared to regions where GATA factors bind without SMAD1 (Fig. 
1f). Additionally, inhibition of BMP signaling by dorsomorphin sig-
nificantly decreased expression of erythroid genes such as GLOBIN, 
ALAS and SLC4A1 that are co-bound by SMAD1 + GATA1 at d5 
but not of genes proximal to regions where GATA1 binds alone (Fig. 
1g).

SMAD1 + GATA regions are enriched for cell-type-specific 
MTFs. To investigate the features that distinguish co-bound from 
MTF-alone regions, we performed comparative motif analy-
sis. This analysis showed over-representation of progenitor MTF 
sequence motifs (for example, PU.1 and FLI1 motifs38,39) in the 
GATA2 + SMAD1 regions at h6 relative to GATA2-alone regions, 
and erythroid factor motifs such as EKLF (also known as KLF1) 
and NFE motifs40,41 in GATA1 + SMAD1 co-bound regions at the 
d5 erythrocyte stage relative to GATA1-alone regions (Extended 
Data Fig. 2a,b). Indeed, binding of PU.1 overlapped with 
GATA2 + SMAD1 co-bound regions at d0 while GATA1 + SMAD1 
co-bound regions overlapped with KLF1 at d5. We observed at least 
2.5-fold enrichment of PU.1 and KLF1 at co-occupied regions com-
pared to the GATA-alone regions at d0 and d5, respectively (Fig. 
2a,b and Supplementary Table 3a). Additionally, genomic regions 
where stage-specific MTFs co-localize with SMAD1 are proximal to 
stage-specific genes, are located in open chromatin regions and are 
enriched for H3K27ac (Figs. 1f and 2b and Extended Data Fig. 2c).

To examine the importance of binding of stage-specific MTFs 
within the SMAD1 + GATA co-bound regions, we investigated the 
change of SMAD1 binding on overexpression of PU.1 in K562 cells 
after BMP stimulation. PU.1-overexpressing cells showed increased 
binding of PU.1 in several genomic regions with a concomitant 
increase of SMAD1 binding within many of these regions, indicat-
ing that PU.1 can direct genomic localization of SMAD1 (Fig. 2c,d). 
We also confirmed that loss of PU.1 in K562 cells decreased PU.1 
and SMAD1 occupancy within PU.1/SMAD1/GATA2 co-bound 
genomic regions while GATA2 binding did not diminish to the 
same extent (Fig. 2e). However, loss of PU.1 and SMAD1 binding 
could happen in the same or different cells. Overall, MTFs such as 
PU.1, enriched at GATA + SMAD1 sites, can recruit SMAD1 after 
stimulation to co-bound genomic regions, which likely behave as 
BMP-responsive enhancers.

TSCs. Next, we sought to determine whether SMAD1 + GATA 
co-bound regions could serve as docking sites for other STFs. We 
performed ChIP–seq for SMAD2 on TGF-β stimulation42 and 
for TCF7L2 on WNT stimulation28 at d0. Indeed, we observed 
co-localization of such STFs at GATA2-bound, ATAC–seq 
and H3K27ac signal-enriched enhancers, also co-occupied by 
SMAD1 on BMP stimulation (Fig. 3a,b). A total of 4,549 genomic 
regions, representing 25% of the total SMAD1-bound peaks, were 
co-occupied by SMAD1/2 and TCF7L2 (Extended Data Fig. 3a and 

Fig. 1 | BMP/SMAD1 signaling impacts human erythroid differentiation. a, Representative FACS plots for CD71 and CD235a on BMP4- or dorsomorphin 
(DM)-treated CD34+ cells. Numbers represent the percentages of cells in the respective quadrants. b, Bar plots comparing the percentage of 
CD34+CD235a+ double-positive cells from a. The mean ± s.e.m. is shown (n = 5; 5 biologically independent experiments). A two-sided Student’s t-test 
was used. c, Regional heatmaps depicting the signal of the ChIP–seq reads for GATA2, GATA1 and SMAD1 at d0, h6, d3, d4 and d5 of differentiation. Signal 
intensities around ±2.5 kb of the peak center are shown. d, Representative gene tracks for a progenitor-specific gene (FLT3) and an erythroid-specific gene 
(ALAS2) showing binding of each TF at d0, h6, d4 and d5. e, Reads per kilobase of transcript per million mapped reads (RPKM) expression distribution of 
genes bound either by GATA + SMAD1 or by GATA alone at respective stages. The boxplots represent the median RPKM as the thickest line, the first and 
third quartiles as the box, and 1.5 times the interquartile range as whiskers. Two-sided Wilcoxon rank-sum tests were used. f, Metagene plots comparing 
the median signal intensities for ChIP–seq and ATAC–seq at regions co-bound by GATA2/1 + SMAD1 versus GATA2/1 alone. Signal intensities around 
±1 kb of the peak center are shown. g, The change of expression of genes bound by GATA1 + SMAD1 (HBB, ALAS2, SLC4A1, DYRK3 and UROS) or by GATA1 
alone (SH2D6, NFATC3, KCNK5, ZFP36L1 and LMNA) after continuous dorsomorphin treatment for two days starting from d3. The mean ± s.e.m. is shown 
(n = 3; 3 biologically independent experiments). A two-sided Student’s t-test was used.

NATuRE GENETICS | VOL 52 | DECEMBER 2020 | 1333–1345 | www.nature.com/naturegenetics1334

http://www.nature.com/naturegenetics


ArticlesNATuRE GENETICS

Supplementary Table 3b). We reasoned that enhancers where com-
binations of STFs would converge with hematopoietic MTFs after 
induction by environmental stimuli are likely signal responsive, and 
named them transcriptional signaling centers (TSCs; Fig. 3c).

While other STFs besides SMAD1 could define classes of TSCs, 
given the importance of BMP/SMAD1 signaling during stress 
hematopoiesis32–35, we focused on SMAD1-bound TSCs. Genomic 
Regions Enrichment of Annotations Tool (GREAT) analysis43 of 
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genes associated with SMAD1 + TCF7L2 + SMAD2 co-bound 
regions showed enrichment for blood functions (Fig. 3d), suggest-
ing that SMAD1, under BMP stimulation, could serve as a marker 
for TSCs during erythroid differentiation. Accordingly, we created 
a list of progenitor enhancers (merging ATAC–seq and H3K27ac 
ChIP–seq) and progenitor TSCs (overlapping enhancers with 
GATA2/SMAD1 ChIP–seq) by combining the data points d0 and h6. 
Similarly, erythroid enhancers and TSCs were identified by combin-
ing d4 and d5 ATAC–seq and ChIP–seq data (Supplementary Table 
4). These analyses showed that TSCs represent a small fraction of 
ATAC/H3K27ac-positive active enhancers at each differentiation 
stage (7.2–21.7% of all the active enhancers; Extended Data Fig. 3b).

Perturbed STF binding at a TSC affects gene expression. To 
determine the functional consequences of STF occupancy within 
a TSC, we mutated STF- or MTF-binding sites within a represen-
tative TSC. We identified a TSC that was co-bound by GATA2, 
SMAD1 and PU.1 in both progenitor CD34+ (d0) and K562 
erythro-leukemia cells and that was located within 5 kilobases (kb) 
from the nearest expressed gene, LHFPL2 (Fig. 4a). Perturbation of 
the GATA, PU.1 or SMAD1 motifs in K562 or the human umbili-
cal cord blood-derived erythroid progenitor (HUDEP2) cell line44 
(Extended Data Fig. 4a,b) showed that, as for loss of MTF-binding 
sites (PU.1 and GATA), perturbations of binding sites of the STF 
SMAD1 led to downregulation of the LHFPL2 gene under BMP 
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identified using GREAT analysis. FDR, false discovery rate.
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stimulation, while expression of two flanking genes (AP3B1 and 
SCAMP1) remained relatively unaltered (Fig. 4b,c and Extended 
Data Fig. 4c). On differentiation of HUDEP2 cells, perturbation of 
the same MTF or STF motifs within the LHFPL2 TSC led to a sig-
nificantly decreased percentage of mature CD71low, CD235a+ ery-
throid cells (Fig. 4d,e). Mutation of the SMAD1 motif within the 
LHFPL2 TSC led to decreased occupancy of SMAD1 but not PU.1 
(Fig. 4f). However, PU.1 knockdown in K562 cells led to decreased 
SMAD1 occupancy while GATA2 binding remained relatively unal-
tered (Fig. 4g). These results predict that, within a TSC, MTFs can 
direct the binding of an STF but not vice versa, at least in this spe-
cific TSC, while STF binding can be at least as important as an MTF 
in controlling gene expression.

SNPs affecting RBC traits are enriched within TSCs. Since SNPs 
are primarily located in non-coding genomic regions45–50, we won-
dered whether TSCs harbor non-coding GWAS variants associated 
with RBC traits. We compiled a set of SNPs from thirteen published 
GWAS studies associated with seven erythrocyte traits: hemoglo-
bin concentration (HGB), hematocrit or packed cell volume (HCT), 
mean corpuscular volume (MCV), mean corpuscular hemoglobin 
(MCH), MCH concentration (MCHC), red blood cell count (RBCC) 
and RBC distribution width (RDW)4,14–20,51–55. To increase the likeli-
hood of including functional SNPs, we used 1,270 lead SNPs for 
individual traits/region, together with the co-inherited SNPs in high 
linkage disequilibrium with them (LD r2 ≥ 0.6, as suggested by pre-
vious studies56–61, designated here as lead + LD SNPs). Altogether, 
29,069 lead and LD SNPs with at least 2 usable alleles across 924 
loci associated with the 7 RBC traits were used (Supplementary 
Table 5a,b). Out of 1,270 lead SNPs and 29,069 lead + LD RBC-trait 
SNPs, 353 and 3,318 SNPs were located in enhancers defined by 
ATAC–seq and H3K27ac ChIP–seq data (Extended Data Fig. 5a 
and Supplementary Table 5c,d). To confirm that our criteria of 
selecting SNPs enriched for potentially functional variants, we used 
RegulomeDB (ref. 62) and found a significant enrichment in SNPs 
with predicted effects on gene regulation (RegulomeDB score ≤ 4; 
51.1% of ATAC + H3K27ac SNPs compared to 19.6% of all SNPs; 
Fig. 5a and Supplementary Table 3c).

We then investigated whether enhancer-associated SNPs are pri-
marily located in TSCs. We assessed the number of SNPs located 
within TSCs out of the 353 lead enhancer SNPs or the 3,318 lead + LD 
enhancer SNPs (Supplementary Table 5e,f) and compared the num-
ber of SNPs in TSCs to the number of SNPs in overall enhancers or 
in GATA2/1-alone enhancers, normalized to the size of each region 
type in base pairs. We found that enhancer variants are significantly 
enriched within TSCs (Fig. 5b and Supplementary Table 3d). We 
also analyzed an independent list of fine-mapping-based SNPs asso-
ciated with 16 different blood traits23. Indeed, fine-mapping-based 
SNPs (with posterior probability value PP > 0.01) are significantly 
enriched in TSCs compared to overall enhancers or enhancers that 
are occupied by GATA2/1 alone during differentiation (Fig. 5b and 
Supplementary Table 3d). Taken together, these results show that 
enhancer variants are significantly enriched within TSCs.

To test whether SNPs linked to erythroid traits and not the traits 
of other lineages are enriched in erythroid TSCs, we compiled SNPs 
linked to platelet traits as controls. We used 786 platelet-trait loci 
regions associated with 575 lead and 22,158 lead + LD SNPs (LD 
r2 ≥ 0.6) with at least 2 usable alleles19 (Supplementary Table 5g–j). 
By comparing lead RBC-trait SNPs to lead platelet-trait SNPs, or 
lead + LD RBC-trait SNPs versus lead + LD platelet-trait SNPs, we 
observed that RBC-trait SNPs are significantly enriched within ery-
throid TSCs (Fig. 5c–e, Extended Data Fig. 5b and Supplementary 
Table 3e). In conclusion, RBC-trait SNPs, but not platelet-trait 
SNPs, are primarily enriched within erythroid TSCs.

Many RBC-trait SNPs are located within STF motif hits. We 
then asked whether non-coding RBC-trait SNPs could modu-
late transcription by altering the binding of transcription factors 
(TFs). We predicted TF motif hits (Methods) and created lists of 
predicted binding sites of hematopoietic MTFs and generic STFs 
(Supplementary Table 6 and Supplementary Note). We calcu-
lated the number of enhancer-associated SNPs appearing in STF 
or MTF motif hits. We categorized the motifs as STF-alone or 
MTF-alone (recognized by STFs or MTFs, respectively, but not 
both) and STFs and MTFs (motif hits recognized by either STFs 
or MTFs). While 72.4% of lead SNPs within MTF or STF motif 
hits overlap STF-alone motif hits, only 9.8% overlap MTF-alone 
motif hits and 17.8% reside on ambiguous STF and MTF motif hits 
(Fig. 5f). Similar conclusions were true for lead + LD (Fig. 5f) and 
enhancer-associated fine-mapped SNPs (PP > 0.01) overlapping TF 
motif hits (Fig. 5f). We then investigated whether the SNPs within 
STF motif hits are enriched in TSCs compared to non-TSC enhanc-
ers. Using either the lead, lead + LD or the fine-mapped SNPs, we 
compared the number of SNPs in STF motif hits between TSCs 
and non-TSC enhancers, normalized to the total number of base 
pairs in each region type. Indeed, TSCs show a significant enrich-
ment for SNPs associated with STF motif hits relative to non-TSC 
enhancers (Fig. 5g and Supplementary Table 3f). Thus, the major-
ity of enhancer-associated RBC-trait SNPs that overlap TF-binding 
sequences are found in STF-binding sites, and such STF SNPs are 
significantly over-represented within TSCs.

Functional alteration of STF–DNA binding by RBC SNPs. We 
hypothesized that STF SNPs may lead to differential STF occupancy 
within TSCs, resulting in altered gene expression under stimula-
tion. Thus, we analyzed protein binding microarray (PBM) datas-
ets63 to identify RBC-trait SNPs that affect binding of STFs within 
TSCs (Extended Data Fig. 6a). Using previously published PBM 
data for several STFs (Supplementary Table 7)64,65, we compared 
the binding of in  vitro–expressed SMAD between the two alleles 
of SNPs located in open chromatin enhancer regions as a proof 
of principle. Since SMAD1 PBM data were not available, we ana-
lyzed a mouse SMAD3 PBM dataset66 (the 69.61% identity of the 
MH1 DNA-binding domain sequence to the human SMAD1 MH1 
DNA-binding domain strongly argues that the TFs share similar 
sequence specificity65). Analysis of PBM data identified examples 

Fig. 4 | STFs and MTFs at TSCs control gene expression. a, Overlap of occupancy of PU.1, GATA2 and SMAD1 at a representative TSC near the LHFPL2 
gene in progenitor CD34+ (d0) and K562 cells. The locations of the PU.1, GATA and SMAD1 motifs within the TSC are shown. b, Relative alteration of 
expression of LHFPL2, SCAMP1 and AP3B1 due to mutation of the respective TF motifs in specific K562 clones, as indicated. The mean ± s.e.m. is shown 
(n = 3; 3 biologically independent experiments). A two-sided Student’s t-test was used. c, Relative change of expression of LHFPL2, SCAMP1 and AP3B1 
in bulk-edited HUDEP2 cells transduced with single gRNAs (sgRNAs) targeting PU.1, SMAD1 and/or GATA motifs in comparison with non-transduced 
cells or cells transduced with a control (AAVS1). The mean ± s.e.m. is shown (n = 3; 3 biologically independent experiments). A two-sided Student’s 
t-test was used. d, Representative flow cytometry plots for CD71 and CD235a for HUDEP2 cell bulk cultures from c. The percentage distributions of cells 
within CD71highCD235a+ and CD71lowCD235a+ compartments are shown. e, Bar plots comparing the percentage of CD71lowCD235a+ cells from d. The 
mean ± s.e.m. is shown (n = 3; 3 biologically independent experiments). A two-sided Student’s t-test was used. f, Alteration of binding of PU.1 and SMAD1 
in K562 cells with mutation of the SMAD motif. The mean ± s.e.m. is shown (n = 3; 3 biologically independent experiments). A two-sided Student’s t-test 
was used. g, Gene tracks at the LHFPL2 TSC showing the peak intensities of PU.1, SMAD1 and GATA2 in PU.1-knockdown cells compared to control cells.

NATuRE GENETICS | VOL 52 | DECEMBER 2020 | 1333–1345 | www.nature.com/naturegenetics1338

http://www.nature.com/naturegenetics


ArticlesNATuRE GENETICS

such as rs737092, where the change of the T>C allele significantly 
diminishes SMAD binding but causes little change in GATA bind-
ing between the two alleles of rs737092, despite its close proximity 
to the GATA motif15 (Fig. 6a,b and Extended Data Fig. 6b). This 
result argues for the existence of RBC-trait-associated SNPs that 

could perturb STF–DNA binding without notably altering the bind-
ing of a hematopoietic MTF.

We then analyzed our list of enhancer-associated SNPs for their 
predicted effects on STF binding and gene expression. For this pur-
pose, universal PBM octanucleotide enrichment (E) score datas-
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ets were downloaded from the UniPROBE and CIS-BP databases 
(Supplementary Table 7)64–69. Of the 3,318 enhancer-associated 
lead + LD variants that included indels, we focused our analy-
sis on the 3,263 single-nucleotide substitutions (Supplementary 
Note). We considered perturbed binding events for GATA-family 
MTFs, by using an averaged GATA binding profile from available 
GATA-family PBM datasets64, for comparison against several STFs. 
We found that several STFs, including SMAD3, TCF4, RXRA, 
GLI1/2/3 and EGR1/2, showed a greater than expected frequency of 
perturbed binding events in this set of RBC-trait SNPs (Benjamini–
Hochberg-adjusted empirical P value < 0.05), while GATA binding 
appeared to be perturbed less frequently than expected (Fig. 6c,d 
and Extended Data Fig. 6c). Inclusion of fine-mapped variants in 
PBM analysis further supported this conclusion (Supplementary 
Note and Supplementary Table 8). To further investigate the effects 
of STF-binding-altering SNPs on downstream gene expression, 
we coupled the PBM approach with expression quantitative trait 
locus (eQTL) analysis using microarray gene expression profiles 
of peripheral blood, isolated from participants in the Framingham 
Heart Study (FHS)70. In several instances, where the SNP resulted in 
a significant decrease in STF binding, the SNP was also identified as 
a cis-eQTL in the FHS dataset leading to a dose-dependent expres-
sion reduction of a proximal gene (Fig. 6d and Extended Data Fig. 
6c). A total of 86 out of the 115 transcripts from the FHS cis-eQTL 
gene list, and 108 out of 148 transcripts from the FHS cis-eQTL 
exon list showed at least 1 cis-eQTL SNP that also affected STF 
binding. Our RNA-seq results verify that those genes show a steady 
increase in expression during erythroid differentiation (Fig. 6e). 
Notably, loss of STF binding induced by a SNP allele could also lead 
to increased expression of associated genes. Overall, SNP-mediated 
modulation of STF–DNA binding results in expression alteration of 
relevant trait-associated genes.

STF SNPs can perturb DNA binding and gene expression. To 
validate whether alternative alleles of representative SNPs govern 
STF occupancy and gene expression, we investigated the effects of 
SMAD1 binding at the MCV-associated SNP rs9467664 (T>A), 
residing on a SMAD target sequence within a TSC proximal to 
HIST1H4A, which shows increased expression during erythroid 
differentiation (Extended Data Fig. 7a,b). Electrophoretic mobil-
ity shift assays showed that oligonucleotides harboring the T but 
not the A allele could efficiently bind SMAD1 (Extended Data Fig. 
7c,d). eQTL analysis from the FHS showed that the A allele is sig-
nificantly associated with reduced levels of HIST1H4A messenger 
RNA compared to the T allele (Extended Data Fig. 7e), further 
supporting our hypothesis that alteration of SMAD1 binding by 
an RBC-trait-associated SNP may have significant effects on gene 
expression.

To test whether perturbed STF binding impairs signal-induced 
gene expression, we selected a second SNP rs737092 (T>C). This 
SNP resides in an erythroid-specific TSC co-bound by GATA1, 

SMAD1 and KLF1 within an H3K27ac-positive open chromatin 
region. The SNP is present within a SMAD motif flanked by two 
GATA motifs (Fig. 7a). PBM analysis showed that this SNP per-
turbed SMAD binding without altering GATA binding. rs737092 
was identified in a previously published massively parallel reporter 
assay study as functional, regulating the expression of RBM38 
(ref. 15), which was confirmed by eQTL analysis from the FHS 
study. Finally, RBM38 is expressed at a significantly higher level in 
a population with the T but not the C allele and its expression is 
steadily increased during differentiation in our dataset (Fig. 7b,c). 
We obtained a CRISPR–Cas-modified K562 cell line15, where the 
SMAD1 motif within the RBM38 TSC is mutated together with 
the upstream but not the downstream GATA motif (Extended 
Data Fig. 7f). ChIP–quantitative PCR (qPCR) assays for SMAD1 
binding under BMP stimulation showed significant abrogation of 
SMAD1 binding in these cells, but GATA1 binding remained rela-
tively unchanged presumably owing to compensation from the 
other flanking GATA motif (Extended Data Fig. 7g). As a control, 
the binding of the WNT-responsive factor TCF7L2 (ref. 28) to its 
motif in the same TSC after WNT pathway stimulation with BIO 
(ref. 71) was not affected (Extended Data Fig. 7g). Concomitantly, 
the expression of RBM38 was significantly reduced in the mutant 
cells under BMP but not under BIO treatment (Extended Data Fig. 
7h). We then cloned the actual RBM38 TSC with either the T or 
the C allele upstream of the firefly luciferase gene15. The T allele, 
which retains SMAD binding, showed a higher increase in lucifer-
ase expression under BMP stimulation relative to no stimulation or 
dorsomorphin treatment (Extended Data Fig. 7i). These results sug-
gest that abrogation of the SMAD1 motif in the RBM38 TSC that 
harbors the rs737092 SNP diminished SMAD1 binding and com-
promised BMP responsiveness.

Effect of STF SNPs within TSCs in primary human samples. We 
then investigated the effects of RBC-trait SNPs in primary human 
peripheral blood CD34+ cells. We first validated that knockdown of 
SMAD1 in CD34+ cells impaired activation of RBM38 under BMP 
stimulation (Extended Data Fig. 7j,k). Next, we screened 18 human 
donors and identified individuals with homozygous alleles for pre-
selected TSC-associated SNPs—rs737092 (T>C) and rs2154434 
(C>A) (minor allele frequencies for rs737092 and rs2154434 are 
47.9% and 42.9%, respectively). Similar to rs737092, rs2154434 is 
also located within an erythroid TSC during erythroid differen-
tiation (Fig. 7d), and we observed a dose-dependent decrease of 
ITSN1 expression in FHS when the C allele is replaced by the A 
allele (Fig. 7e). ITSN1 also increases expression during erythroid 
differentiation (Fig. 7f). Individual donors with homozygous geno-
types for alternative alleles of rs737092 and rs2154434 were con-
firmed by PCR and sequencing (Fig. 7g,h). We next evaluated TF 
binding and BMP4 responsiveness of the alleles in donor CD34+ 
cells. rs737092 should affect SMAD but not TCF7L2 binding when 
the T is replaced by the C allele. Indeed, ChIP–PCR performed in 

Fig. 5 | RBC-trait SNPs enriched within TSCs predominantly reside in STF motifs. a, Enrichment of predicted functional SNPs in non-exonic open 
enhancer regions versus all SNPs; 2 × 2 chi-squared significance tests were used. b, Enrichment of SNPs within TSCs versus all and GATA-alone 
enhancers; 2 × 2 chi-squared significance values are shown. P values for permutation tests obtained by shuffling SNP positions in TSCs <0.0001 
for all SNP types; in GATA-alone enhancers: lead SNPs, P = 0.9166; lead + LD SNPs, P = 1; fine-mapped SNPs, P = 1. P values by permuting the TSC/
non-TSC labels of enhancers <0.0001 for all SNP types. c,d, Enrichment of lead and lead + LD RBC-trait SNPs, relative to platelet-trait SNPs within 
progenitor + erythroid and erythroid-alone TSCs; 2 × 2 chi-squared significance tests were used. e, Example RBC-trait SNPs (black line) localized within 
stage-specific TSCs. Binding sites of STFs at these SNPs are shown. Additional SNPs with significant LD within enhancers are shown (gray dashed 
lines). f, Distribution of lead, lead + LD and fine-mapped SNPs at STF-alone MTF-alone and STF and MTFs motifs. g, Enrichment of SNPs overlapping 
STF-alone motif hits within TSC versus non-TSC enhancers; 2 × 2 chi-squared significance values are shown. P values calculated by randomly permuting 
SNP positions showing the enrichment of STF-alone SNPs in TSCs: lead SNPs, P < 0.0001; lead + LD SNPs, P < 0.0001; fine-mapped SNPs, P < 0.0001. P 
values calculated by randomly permuting labels of enhancers as TSC/non-TSC: lead SNPs, P < 0.0001; lead + LD SNPs, P < 0.0001; fine-mapped SNPs, 
P < 0.0001. P values calculated by randomly permuting positions of STF motif hits: lead SNPs, P = 0.0194; lead + LD SNPs, P < 0.0001; fine-mapped 
SNPs, P = 0.0033.

NATuRE GENETICS | VOL 52 | DECEMBER 2020 | 1333–1345 | www.nature.com/naturegenetics1340

https://www.ncbi.nlm.nih.gov/snp/?term=rs9467664
https://www.ncbi.nlm.nih.gov/snp/?term=rs737092
https://www.ncbi.nlm.nih.gov/snp/?term=rs737092
https://www.ncbi.nlm.nih.gov/snp/?term=rs737092
https://www.ncbi.nlm.nih.gov/snp/?term=rs737092
https://www.ncbi.nlm.nih.gov/snp/?term=rs2154434
https://www.ncbi.nlm.nih.gov/snp/?term=rs737092
https://www.ncbi.nlm.nih.gov/snp/?term=rs2154434
https://www.ncbi.nlm.nih.gov/snp/?term=rs737092
https://www.ncbi.nlm.nih.gov/snp/?term=rs2154434
https://www.ncbi.nlm.nih.gov/snp/?term=rs737092
https://www.ncbi.nlm.nih.gov/snp/?term=rs2154434
https://www.ncbi.nlm.nih.gov/snp/?term=rs737092
http://www.nature.com/naturegenetics


ArticlesNATuRE GENETICS

BMP4-treated CD34+ cells with rs737092 alleles, differentiated for 
five days, showed attenuated SMAD1 binding under T>C change 
(Fig. 7i). TCF7L2 binding under BIO stimulation or GATA1 bind-
ing did not change significantly (Fig. 7i). In contrast, rs2154434 

should primarily disrupt the DNA binding of TCF7L2 but not of 
SMAD1. Indeed, we observed disrupted TCF7L2 but not SMAD1 
or GATA1 binding following BIO stimulation when the C allele was 
replaced by the A allele (Fig. 7j). We also tested the allele-specific 
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mRNA expression of RBM38 and ITSN1 for the alleles of rs737092 
and rs2154434 after acutely stimulating CD34+ cells with BMP4 and 
BIO, respectively, at d5 of differentiation for 2 h. Change from T to 
C allele mediated by the rs737092 SNP led to decreased expression 
of RBM38 under BMP but not BIO treatment (Fig. 7k). Similarly, 
ITSN1 expression was downregulated primarily under WNT stimu-
lation when the C allele of rs2154434 was replaced by the A allele 
(Fig. 7l). These results suggest that RBC-trait-associated SNPs, 
overlapping TF-binding sites, often abrogate DNA binding of STFs 
and not of MTFs to affect gene expression by respective signaling 
pathways in primary human samples.

Discussion
The majority of GWAS-associated variants linked to human genetic 
traits and diseases are non-coding45–50. Using genetic fine-mapping 
of 16 traits associated with blood, Ulirsch et al. showed that SNPs 
are often located within open chromatin regions enriched for 
lineage-specific MTF motifs23. Although blood-trait-associated 
GWAS SNPs are often found in close proximity to MTF motifs, 
the majority do not disrupt their binding sites directly15,22,23. Here, 
utilizing functional and computational approaches, we show that 
the alteration of STF binding induced by SNPs within TSCs, which 
represent a subset of enhancers co-occupied by both MTFs and 
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STFs, may drive a disproportionate fraction of phenotypic vari-
ability of human RBCs. Importantly, using several systems, includ-
ing primary CD34+ cells isolated from human donors with specific 
SNP alleles, we show that SNPs altering STF binding can modulate 
the induction of adjacent genes by respective signaling pathways 
(Supplementary Note).

It is important to understand why allele-specific effects of SNPs 
residing in STFs are more common than in MTF motifs. We specu-
late that SNPs affecting MTF binding can drastically affect expres-
sion of genes essential for development, and thus be less likely to be 
favored by natural selection. STF SNPs, on the other hand, can cause 
expression variability leading to tolerable phenotypic changes in 
RBC traits and thereby escape evolutionary pressure. Accordingly, 
we evaluated the published prediction scores from NCboost 
(ref. 72), which predict the pathogenicity of a variant occurring at 
non-coding positions of the genome based on evolutionary signals. 
The predicted pathogenicity of altering bases in MTF motifs appears 
significantly higher than that caused by alterations in STF motif hits 
(data not shown). Thus, an STF SNP can render enhancers and their 
regulated genes sub-optimally responsive to one or more signaling 
pathways during episodic stresses such as infections or environmen-
tal changes. The abnormal response to periodic stress signals could 
contribute to tissue damage and disease over time. Such altered 
signaling events over time could lead to ‘signalopathies’, ultimately 
resulting in phenotypic variation and susceptibility to a spectrum of 
human genetic diseases (Extended Data Fig. 8).
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Methods
Expansion and differentiation of CD34+ cells. Human CD34+ cells, isolated 
from peripheral blood of granulocyte colony-stimulating factor-mobilized 
healthy volunteers, were purchased from the Fred Hutchinson Cancer Research 
Center. The cells were maintained and differentiated as previously described28,73. 
Briefly, the cells were expanded in StemSpan medium (Stem Cell Technologies) 
supplemented with StemSpan CC100 cytokine mix (Stem Cell Technologies) 
and 2% penicillin/streptomycin for a total of 6 days. After 6 days of expansion, 
the cells were stimulated for 2 h with rhBMP4 (R&D) at a final concentration 
of 25 ng ml−1 and collected for use in all of the experiments corresponding to 
the d0 time point. For studying differentiated cells after d6 of expansion, cells 
were reseeded in differentiation medium (StemSpan SFEM medium with 2% 
penicillin/streptomycin, 20 ng ml−1 SCF, 1 U ml−1 Epo, 5 ng ml−1 IL-3, 2 mM 
dexamethasone and 1 mM β-estradiol), at a density of 0.5–1 × 106 cells ml−1. 
Before collecting the cells at h2, h6 and d1–d8, they were treated with 25 ng ml−1 
hrBMP4 for 2 h.

For testing the effects of BMP4 and dorsomorphin, cells at the beginning of 
the third day of differentiation were treated with either 25 ng ml−1 hrBMP4 or 
20 μM dorsomorphin until the beginning of the fifth day of differentiation. At 
d5, cells were isolated for flow cytometry and qPCR analysis. Cells treated with 
dimethylsulfoxide were used for control experiments.

Flow cytometry analysis. Control and treated stage-matched CD34+ cells or 
CD34+ cells at different stages of differentiation were washed in PBS and stained 
with propidium iodide, 1:60 APC-conjugated CD235a (eBioscience, clone HIR2, 
17-9987-42), 1:60 FITC-conjugated CD71 (eBioscience, OKT9, 11-0719-42), 1:60 
PE-conjugated CD41a (eBioscience, HIP8, 12-0419-42) and 1:60 PE-conjugated 
CD11b (eBioscience, ICRF44, 12-0118-42). A BD Bioscience LSR II flow 
cytometer was used to record raw FACS data, which were analyzed subsequently 
using FlowJo (v10.3).

Next-generation sequencing. Methodologies for all of the massively parallel 
sequencing assays (ChIP–seq, RNA-seq and ATAC–seq) are described in the 
Supplementary Note. Overall quality control of each dataset is presented in 
Supplementary Table 9. Supplementary Table 10 describes counts and the genomic 
span of individual TF-bound regions along with counts of associated genes, as 
obtained from ChIP–seq and RNA-seq data. The ChIP–seq and ATAC–seq peaks/
enriched regions obtained from d0, h6, d3, d4 and d5 are shown in Supplementary 
Tables 11–15.

qPCR analysis. RNA was extracted from CD34+ cells without any treatment or 
treated with hrBMP4 or dorsomorphin at the specified developmental stages 
using TRIZOL extraction (Invitrogen), followed by RNeasy column purification 
(QIAGEN). First-strand complementary DNA synthesis was performed using the 
Superscript VILO kit (Invitrogen) and equivalent amounts of starting RNA from all 
samples. The cDNA was analyzed with the Light Cycler 480 II SYBR green master 
mix (Applied Biosystems), and the QuantStudio 12K Flex (Applied Biosystems). 
All samples were prepared in triplicate. The PCR cycle conditions used were: 95 °C 
for 5 min, (95 °C for 10 s, 54 °C for 10 s, 72 °C for 15 s) × 40 cycles. The analysis of 
the Ct values was performed using the 2−ΔΔCt method74. The PCR primer pairs used 
can be found in Supplementary Table 16.

Generation of CRISPR clones in K562 and checking the expression with qPCR. 
pSpCas9(BB)-2A-GFP (PX458; a gift from F. Zhang, Addgene plasmid no. 48138)75 
was used to generate mutations at the LHFPL2 TSC. Guide RNAs (gRNAs) were 
designed using the CHOPCHOP tool76 or the CRISPR design tool from the Zhang 
laboratory77. The sequences of the gRNAs selected are schematized in Extended 
Data Fig. 3. The gRNAs were cloned in pSpCas9(BB)-2A-GFP (PX458) and verified 
by sequencing according to the instructions by Cong et al.77. For the generation of 
mutant cell lines, 20 μg of each gRNA that was cloned into pSpCas9(BB)-2A-GFP 
(PX458) was electroporated into K562 cells. After 48 h, single fluorescent cells 
were FACS-sorted into 96-well plates. Oligonucleotide sequences corresponding to 
individual gRNAs (to target the PU1, GATA and SMAD1 motifs) used for cloning 
can be found in Supplementary Table 16.

Genome editing and differentiation of HUDEP2 cells. HUDEP2 cells were 
cultured as previously described78. Cas9-expressing HUDEP2 cells in expansion 
cultures were transduced with sgRNAs targeting AAVS1 as a negative control79, 
LHFPL2, or the PU.1, GATA or SMAD1 motif in the corresponding signaling 
center. The same gRNAs that were validated in K562 cells were used in this 
experiment. At 24 h after transduction, cells were transferred to a ‘growth phase’ 
erythroid differentiation medium containing stem cell factor and doxycycline 
for 3 days. Puromycin was added to this medium to select for sgRNA-transduced 
cells. Then cells were transferred to a ‘maturation phase’ erythroid differentiation 
medium containing doxycycline for four days. After four days in this medium, 
an aliquot of cells was collected and processed for RNA isolation to determine 
LHFPL2 expression. The remaining cells were transferred to erythroid 
differentiation medium without doxycycline for two days, and the erythroid 
differentiation status was assessed on the final day by cell surface marker staining, 

using anti-CD71-PeCy7 (eBioscience, no. 25-0719-42) and anti-CD235a-APC 
(eBioscience, no. 17-9987-42), and flow cytometry.

Identifying human blood donors with homozygous SNP alleles. Genomic 
DNA from CD34+ cells isolated from peripheral blood of individual donors 
was extracted using the DNeasy Blood & Tissue kit (Qiagen, 69506) per the 
manufacturer’s protocol. The PCR amplification of each TSC region was carried 
out using the Q5 High-Fidelity 2× Master Mix (M0492S) and the primers used can 
be found in Supplementary Table 16.

siRNA-mediated SMAD1 knockdown. SMAD1 knockdown was performed on 
nucleofecting siRNA for SMAD1 during the expansion of CD34+ cells (using the 
Amexa 4D-Nucleofector kit from Lonza, V4XP-3024, per the manufacturer’s 
protocol). We used confirmed SMAD1 siRNA from Dharmacon (onTARGETplus, 
SMARTpool, L-012723-00-0005) and a standard non-targeting siRNA as a control 
(D-001810-10-05). Three different treatment doses for SMAD1 siRNA were used—
25 nM, 50 nM and 100 nM. Control siRNA was used at 100 nM concentration. After 
confirming SMAD1 knockdown, we differentiated CD34+ cells to erythroid lineage 
and kept them under BMP stimulation from d3 onwards. Expression of RBM38 
RNA and protein was verified at d5.

Luciferase reporter assay. Firefly luciferase reporter constructs (pGL4.24) 
were made by separately cloning each of the alleles of interest centered in 426 
nucleotides of genomic context upstream of the minimal promoter using BglII and 
XhoI sites. The firefly constructs (500 ng) were co-transfected with a pRL-SV40 
Renilla luciferase construct (50 ng) into 100,000 K562 cells using Lipofectamine 
LTX (Invitrogen, ref: 15338-030). After 48 h, luciferase activity was measured 
by the Dual-Glo Luciferase assay system (Promega, ref: E2940) according to the 
manufacturer’s protocol. At 24 h before luciferase activity measurement, cells 
were treated with 25 ng ml−1 rhBMP4. The sequences of the constructs are in 
Supplementary Table 16.

Electrophoretic gel mobility shift assay. G1ER and G1ER-S1FB murine 
hematopoietic progenitor cells80 were differentiated for 24 h with β-estradiol and 
treated with doxycycline to express FLAG–SMAD1. Two hours before collecting 
the cell extracts, cells were treated with 25 ng ml−1 rhBMP4 to activate the BMP 
pathway. Cell extracts were made using the Pierce IP lysis buffer (Thermo 
Scientific, 87788) according to the manufacturer’s protocol. Electrophoretic gel 
mobility shift assays were performed using the Lightshift Chemiluminescent kit 
(Thermo Scientific, 20148) according to the manufacturer’s instructions. Briefly, 
binding reactions were performed with 10 μg protein, 20 fmol biotinylated DNA 
probe, 1× binding buffer, 5% glycerol, 500 ng poly(dI-dC), 50 mM KCl and 1.5 mM 
MgCl2. Reactions were incubated for 30 min at room temperature. Cold competitor 
reactions contained 4 pmol non-biotinylated probe. Then the reactions were run on 
a 10% polyacrylamide/TBE non-denaturing gel (Bio-Rad Mini-PROTEAN Precast, 
456-5034). The DNA probes used for this study can be found in Supplementary 
Table 16.

Identification of RBC-trait-associated SNPs and related analyses. Lists of SNPs 
associated with blood traits were compiled from multiple studies, as mentioned in 
the results section. We selected 1000 Genomes European populations (CEU, TSI, 
FIN, GBR and IBS) for our study and filtered for SNPs associated with MCV, HGB, 
RBCC, MCH, HTC, MCHC and RDW as phenotypes. In total, 1,325 lead SNPs 
associated with any of the above RBC parameters were obtained. Using the lead 
GWAS SNP for each region, to increase the likelihood of including the functional 
SNPs from a reported hit, we also included highly associated SNPs with the lead 
SNP (with LD r2 ≥ 0.6), which we included in the ‘Lead + LD’ SNP list. We selected 
SNPs on the basis of the LD threshold of r2 > 0.6 using 1000 Genomes European 
populations (CEU, TSI, FIN, GBR and IBS). Only SNPs with an ‘rs’ identifier 
in dbSNP version 142 were considered. SNPs can have multiple allele pairs that 
show differential association with traits. To account for this possibility, we broke 
out each allele pair for each SNP. We removed any SNP from the analysis that has 
different alleles reported in the publication and in the dbSNP database. Such alleles 
were represented as ‘NA’ alleles for a given SNP. Only allele pairs that had two 
non-NA alleles were designated as ‘usable alleles’ and were retained for the final 
analysis. Accordingly, 29,069 lead and LD SNPs with at least 2 usable alleles, across 
924 loci associated with the 7 RBC traits, were used to initiate the study. Unless 
otherwise reported, numbers of SNPs reported refer to the positions of SNPs (that 
is, two allele pairs of the same SNP are reported once). We used the approach 
and criteria from Astle et al. (2016)19 for selecting the platelet-trait-associated 
GWAS SNPs to use as negative controls. RBCs and platelets share origins from 
megakaryocyte and erythroblast progenitor cells, suggesting platelet-trait SNPs as 
the ideal negative control for our study. We used 786 quantitative trait loci regions 
associated with 575 lead and 22,158 lead + LD platelet-trait SNPs (LD r2 ≥ 0.6) with 
at least 2 usable alleles. The positions of these SNPs relative to the hg19 revision 
of the human reference genome were taken from the UCSC Genome Browser 
track containing dbSNP version 142. Fine-mapped SNPs for blood traits were 
downloaded from Ulirsch et al. (2019)23 and were converted to BED format for 
downstream analyses using reported positions. Fine-mapped SNPs were filtered 
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for those with a PP > 0.01, which was the threshold used in the initial publication 
of these trait-associated SNPs, resulting in 54,255 SNP-trait associations and 
39,822 SNPs with unique positions and identifiers, and that are associated with at 
least 1 trait. SNP–enhancer or SNP–TSC overlap was determined using bedtools 
intersect. SNP–motif hit overlap was determined using bedtools intersect. The lists 
of all the SNPs that fall within overall enhancers and within TSCs are available in 
Supplementary Table 5.

To predict whether either allele of a given SNP was likely to be bound by a TF of 
interest, we built sequences containing either allele in context. Each allele for each 
SNP passing the above filters was used to create short, generally 41-nt-long DNA 
fragments that contain hg19 reference genome sequence upstream and downstream 
of the SNP position (that is 20 nt of reference sequence upstream, one allele of the 
SNP, 20 nt of reference sequence downstream). Alleles of variants called as SNPs 
that were greater than 1 base pair (bp) in length generated sequences longer than 
41 nt, but the vast majority of short sequences were 41 nt. Each ~41-nt sequence was 
scanned for the presence of predicted TF-binding sequences using FIMO 4.11.4 
(ref. 81) with a reference motif library that included multiple motif position weight 
matrices (PWMs). On the basis of our lists of STFs and MTFs, we identified all 
non-redundant PWMs from the CIS-BP database build 2.00 (ref. 65) that had been 
inferred from PBM analysis and the method of systematic evolution of ligands by 
exponential enrichment. These PWMs learned from in vitro experiments were 
selected to focus on direct TF binding (versus motifs inferred from, for example, 
ChIP–seq, which may include information about tethering TFs). We used this set 
of PWMs as our motif dictionary for FIMO scans of open, non-exonic regions for 
identifying motif hits, and this list is available as Supplementary Table 6. Motif hits 
that overlapped the SNP position in the 41-nt sequence were retained and used 
for comparison between risk and reference alleles (that is, the SNP was required to 
overlap the motif hit). Thus, we also required that, for a SNP to be associated with 
a motif hit, the motif hit directly overlap the center of the region (that is, the SNP’s 
position). The construction of 41-bp sequences centered on the SNP itself allowed 
for the SNP to appear at the extreme ends of longer motifs, such as motifs from 
heterodimeric TF binding. Unique SNP IDs were the unit used for counting.

To test whether our H3K27ac ChIP–seq/ATAC–seq-based approach enriches 
for ‘functional’ SNPs, we used RegulomeDB (ref. 62). A RegulomeDB score ≤ 4 was 
used to predict SNPs with the minimal functional evidence. This resulted in 5,695 
RBC SNPs out of the total 29,069 SNPs with 2 usable alleles.

Motif occurrence identification. Positions of predicted motif occurrences were 
determined across the hg19 revision of the human reference genome using FIMO 
(ref. 81) with default parameters and a position weight matrix reference library built 
as described above. The numbers of base pairs contained within each category of 
motif occurrence were calculated after collapsing all occurrences of either STFs 
motifs or MTF motifs using bedtools merge82. SNPs overlapping motif occurrences 
were determined using bedtools intersect.

Determining significance of enrichment in SNPs. To determine the relative 
enrichment of SNPs in pairs of region types when accounting for the collective size 
of regions, we used multiple statistical analyses, including 2 × 2 chi-square tests and 
permutation tests.

The 2 × 2 chi-squared tests compared the numbers of SNPs falling into 
two categories and the number of base pairs in the collective region type after 
collapsing. Note that the 2 × 2 chi-squared tests assume that observations are 
independent, which is not always the case in this biological system, especially 
when multiple SNPs in LD with each other are interrogated. Hence, we performed 
additional simulation analysis to determine the significance of our observations.

SNP position permutation tests were performed using 10,000 iterations of SNPs 
from the 3 lists described above (Lead, Lead + LD, fine-mapped) shuffled randomly 
within specified region types using bedtools shuffle.

To determine the enrichment of SNPs in STF motif hits in enhancers using 
SNP position permutation, SNPs were randomly shuffled in all enhancers as 
defined above (bedtools shuffle -incl), and the resulting positions were used to 
construct 41-bp sequences that were scanned by FIMO as described above for STF 
motif occurrences in either allele (described in detail above). Shuffled SNPs that 
fell within enhancers were interrogated for whether the sequences they created 
are likely motif occurrences for STFs or MTFs, and occurrence-overlapping SNPs 
were counted. The corresponding P value represents the number of random 
permutations that meet or exceed the actual observed count.

To determine the enrichment of SNPs in TSCs versus non-TSC enhancers 
using SNP position permutation, SNPs were randomly shuffled within enhancers 
as defined above and interrogated for whether they overlap the subset of enhancers 
defined as TSCs. The corresponding P value represents the fraction of 10,000 
random permutations that meet or exceed the actual observed count.

To determine the enrichment of SNPs in STF motif hits within TSCs versus 
STF motif hits within non-TSC enhancers using SNP position permutation, SNPs 
were randomly shuffled within enhancers as defined above, and interrogated for 
whether they fall within TSCs, and whether they are predicted to fall within motif 
occurrences at their original (read: not shuffled) position. The corresponding P 
value represents the fraction of 10,000 random permutations that meet or exceed 
the actual observed count.

Enhancer labeling permutation tests were performed by selecting a random 
subset of enhancers to represent TSCs to test whether SNPs are unusually 
concentrated in actual TSCs above background. Note that the number of observed 
successes differs in this approach from that of above, as the SNP position 
permutation analysis used both alleles of each SNP to determine whether the 
sequence created during shuffling was recognizable by specified TFs. A total of 
7,421 of 81,636 enhancers across the system were randomly selected each of 10,000 
iterations using the Unix utility shuf. The numbers of trait-associated SNPs from 
each of the three lists that are contained in each random TSC subset were tallied. 
The corresponding P value represents the number of random permutations that 
meet or exceed the actual observed count.

Motif hit permutation tests were performed by randomly shuffling the 
positions of unambiguous STF motif hits that fall within enhancers across all 
enhancer loci using bedtools shuffle -incl. Note that the number of observed 
successes differs in this approach from that of above, as the SNP position 
permutation analysis used both alleles of each SNP to determine whether the 
sequence created during shuffling was recognizable by specified TFs. The 
corresponding P value represents the number of random permutations that meet 
or exceed the actual observed count of SNPs in their real position overlapping 
permuted STF motif hits.

Expression analysis from FHS. Minor allele frequencies in groups of different 
ancestries were looked up from Hapmap CEU, YRI or CHB population data 
through http://snp-nexus.org/ (refs. 83–85). eQTLs were queried using R or Perl 
scripting based on our selected SNP lists from the dataset downloaded from 
https://grasp.nhlbi.nih.gov/Updates.aspx (ref. 86; GRASP 2.0.0.0 Expression 
QTLs), and the dataset downloaded from the FHS population (FHS whole-blood 
eQTL results) ftp://ftp.ncbi.nlm.nih.gov/eqtl/original_submissions/FHS_eQTL/ 
(refs. 70,87). For FHS whole-blood eQTL results, we focus only on significant eQTLs 
(peer-validated results up to a log[FDR] value of −4.0, at the levels of genes and 
exons, respectively), and report the cis-eQTL with the best P value in each region, 
or all of the significant cis- and trans-eQTLs for our selected SNPs as a reference.

Statistical analysis. The detailed methodologies used for the statistical tests and 
the resulting significance values obtained comparing the control and test groups 
are described in the relevant methods sections, figures and figure legends and in 
Supplementary Table 3. Biological replicates and observed data-point variations are 
mentioned wherever applicable. All statistical analyses were carried out using the 
statistical computing/graphics software R and GraphPad Prism 8.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The massively parallel sequencing data associated with this manuscript have been 
uploaded to GEO under the accession numbers GSE74483 and GSE104574 and are 
currently open to the public. The web links for the publicly available databases used 
in this study are: UniPROBE, http://thebrain.bwh.harvard.edu/uniprobe/; CIS-BP, 
http://cisbp.ccbr.utoronto.ca/; FHS, https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs000007.v30.p11; RegulomeDB, https://regulomedb.
org/regulome-search/; HEMMER, http://hmmer.org/; EMBOSS Needle, https://
www.ebi.ac.uk/Tools/psa/emboss_needle/; dbSNP, https://www.ncbi.nlm.nih.
gov/snp/?cmd=search. Links to all of the PBM datasets used are available in 
Supplementary Table 7. Source data are provided with this paper.

Code availability
The custom codes used in this study are available at https://bitbucket.org/
abrahamb/workspace/projects/TSC. The code and data files for the PBM analyses 
are available at https://github.com/BulykLab/RBCSNPs_2020.
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Extended Data Fig. 1 | Human CD34+ cells commit to an erythroid fate around day 3 (D3) of differentiation. a, Representative FACS plots for the 
erythroid markers CD71 and CD235a on CD34+ cells after induction of erythroid differentiation at hour 6 (H6), day 2 (D2), day 3 (D3), day 4 (D4), 
day 5 (D5) and day 7 (D7). b-c, Heatmaps depicting correlation of peaks from H3K27ac ChIP-seq or ATAC-seq obtained from distinct differentiation 
time-points. d-e, Gene tracks showing H3K27ac ChIP-seq signal (d) or ATAC-seq signal (e) at FLI1 and at the β-globin locus control region at different 
differentiation stages. D0 = progenitor CD34+ cells before induction of differentiation; H6 = 6 hours after differentiation; and D1 through D5 = 1, 2, 3, 4 
and 5 days after differentiation. f, Heatmap depicting correlation of gene expression profiles of all protein-coding RNAs from D0 through D8 of erythroid 
differentiation. D0 = progenitor CD34+ cells before induction of differentiation; H2 and H6 = 2 and 6 hours after differentiation; and D1 through D8 = 1, 
2, 3, 4, 5, 6, 7 and 8 days after differentiation. g, Signal heatmaps comparing ChIP-seq read densities of SMAD1, GATA2, and GATA1 at SMAD1 peaks 
identified at D0 (upper panel) and D5 (lower panel). Signal intensities centered around +/− 2.5 kb shown. h, Ingenuity pathway analysis (IPA) for 
GATA2+SMAD1 bound genes at D0, H6, D3 and D4 and GATA1+SMAD1 bound genes at D3, D4, D5 identifying differentiation stage-specific biological 
properties.
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Extended Data Fig. 2 | Comparative TF motif enrichment and H3K27ac signal density analysis surrounding GATA+SMAD1 versus GATA-only regions. 
Bar charts depicting the enrichment of transcription factor motif hits at regions co-bound by GATA+SMAD1 (left) versus by GATA only (right) at H6 
(a) and D5 (b). Length of the bar indicates the fraction of peaks containing a given motif hit, and the number associated with the bar represents the 
corresponding -log10(p-value) obtained from the one-tailed hyper-geometric test to assess the significance of motif enrichment. For both (a) and (b), top 
and bottom of the ranked lists are shown. c, (left panel) Region heatmaps depicting signal of ChIP-seq reads for D0 SMAD1, GATA2 and H3K27ac at 33,470 
GATA2 bound peaks at D0. Peaks are ranked by the SMAD1 intensity across the row. Each plot represents signal intensities around +/− 2 kb of the peak 
center. (right panel) Region heatmaps depicting signal of ChIP-seq reads for D5 SMAD1, GATA1 and H3K27ac at 10,855 GATA1 bound peaks at D5. Peaks 
are ranked by the SMAD1 intensity across the row. Each plot represents signal intensities around +/− 2 kb of the peak center.
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Percentage of SMAD1+GATA co-bound enhancers (TSCs) out of total active enhancers:
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Extended Data Fig. 3 | TSCs are a small subset of overall enhancers as defined by SMAD1 and GATA co-occupancy. a, Venn diagram representing 
genomic regions co-occupied by different STFs - SMAD1, SMAD2 and TCF7L2 in progenitor CD34+ cells upon stimulation with BMP4, TGFβ and WNT 
signaling, respectively. The genomic regions bound by all three factors are 4549. The other numbers refer to the total number of peaks bound by each factor 
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Extended Data Fig. 4 | Dissecting a TSC near the LHFPL2 gene by CRISPR-Cas9. a, sgRNAs (shown in brown) targeting specific sequences near PU.1 (pink), 
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | RBC-trait SNPs perturb STF-DNA binding. a, TSC containing rs9467664 at SMAD motif near HIST1H4A. b, HIST1H4A expression 
during CD34+ differentiation. c, Western blot showing the expression of FLAG-SMAD1. TBP is loading control. (n = 3; 3 biologically independent 
experiments). d, Representative gel-shift assay with A or T allele of rs9467664. (n = 3; 3 biologically independent experiments). e, HIST1H4A eQTL 
analysis for rs9467664: boxplots represent median HIST1H4A64 expression as the thickest line, the first and third quartile as the box, and 1.5 times 
the interquartile range as whiskers. Two-sided test with linear model for EffectAlleleDosage used: effect estimate (β)=0.1562; T-statistics=31.0243, 
R2 = 0.15536; log10(P-value)=-193.41, log10(Benjamin–Hochberg’s FDR) = -190.1. f, Schematic representation of K562 clone with altered sequence 
around rs737092. g, Alteration of TF binding in K562 mutants from f. Mean ± SEM shown. (n = 3; 3 biologically independent experiments). Two-sided 
student t-tests used. h, Expression alteration of RBM38 in K562 mutants from f, under BMP and BIO treatment. Mean ± SEM shown. (n = 3; 3 biologically 
independent experiments). Two-sided student t-tests used. i, Luciferase assays for alternative alleles of rs737092. Boxplots represent median as the 
thickest line, the first and third quartile as the box, and 1.5 times the interquartile range as whiskers. Two-sided student t-tests used. j, Western blot 
comparing SMAD1 expression in control and shRNA treated CD34+ cells with indicated doses. TBP is loading control. (n = 3; 3 biologically independent 
experiments). k, RBM38 expression upon SMAD1 loss. Mean ± SEM shown. (n = 3; 3 biologically independent experiments). Two-sided student t-tests 
used.

NATuRE GENETICS | www.nature.com/naturegenetics

https://www.ncbi.nlm.nih.gov/snp/?term=rs9467664
https://www.ncbi.nlm.nih.gov/snp/?term=rs9467664
https://www.ncbi.nlm.nih.gov/snp/?term=rs9467664
http://www.nature.com/naturegenetics


Articles NATuRE GENETICS
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Extended Data Fig. 8 | A model proposing how human genetic variation within TSCs induces RBC trait phenotypes. A combination of STFs and MTFs 
drives optimal gene expression via the TSC. The normal signal-induced expression of a red blood cell gene is perturbed due to a SNP that either eliminates 
an existing STF binding event or creates a new STF binding site in a critical signaling center. This can lead to a lack of response to an episodic signaling 
event, initiated by an exogenous stressor, and eventually manifest as phenotypic variability.
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in repor�ng. For further informa�on on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Sta�s�cs
For all sta�s�cal analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods sec�on.

n/a Confirmed

The exact sample size (n) for each experimental group/condi�on, given as a discrete number and unit of measurement

A statement on whether measurements were taken from dis�nct samples or whether the same sample was measured repeatedly

The sta�s�cal test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A descrip�on of all covariates tested

A descrip�on of any assump�ons or correc�ons, such as tests of normality and adjustment for mul�ple comparisons

A full descrip�on of the sta�s�cal parameters including central tendency (e.g. means) or other basic es�mates (e.g. regression
coefficient) AND varia�on (e.g. standard devia�on) or associated es�mates of uncertainty (e.g. confidence intervals)

For null hypothesis tes�ng, the test sta�s�c (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, informa�on on the choice of priors and Markov chain Monte Carlo se�ngs

For hierarchical and complex designs, iden�fica�on of the appropriate level for tests and full repor�ng of outcomes

Es�mates of effect sizes (e.g. Cohen's d, Pearson's r), indica�ng how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

So�ware and code
Policy informa�on about availability of computer code

Data collec�on Apart from the descrip�on given below, further details, e.g. references associated with each sec�on can be found in "METHODS" sec�on 
of the combined manuscript file. 
For expression analysis from Framingham Heart Study (FHS), minor allele frequencies in different ethnic groups were looked up from 
Hapmap CEU, YRI, or CHB popula�on data through h�p://snp-nexus.org/ 86-88. Expression QTLs (eQTLs) were queried using R or Perl 
scrip�ng based on our selected SNP lists from data-set downloaded from h�ps://grasp.nhlbi.nih.gov/Updates.aspx 89(GRASP 2.0.0.0 
Expression QTLs), and data-set downloaded from Framingham Heart Study popula�on (FHS whole blood eQTL results) �p://
�p.ncbi.nlm.nih.gov/eqtl/original_submissions/FHS_eQTL/ 40,90. For FHS whole blood eQTL results, we only focus on significant eQTLs 
(peer validated results up to a logFDR value of -4.0, at the levels of genes and exons respec�vely), and report the cis-eQTL with best p-
value in each region, or all of the significant cis and trans-eQTLs for our selected SNPs as a reference. 

Data analysis Apart from the descrip�on given below, further details, e.g. references associated with each sec�on can be found in "METHODS" sec�on 
of the combined manuscript file. 
Softwares/tools used for the study along with their version numbers are as follows: R (3.4.3), MACS (2.1.0), TopHat v2.0.13 
70, Cufflinks (v2.2.171), HOCOMOCO (v10), IGV (v2.8.9), corrplot (v0.84), bedtools (v2.29.2), deeptools (v2.0), Bowtie 
(v2.2.1 and 2.2.5), CHOPCHOP (v3.0.0), GRASP (2.0.0.0), FlowJo (V10.3), microsoft excel (v15.22), Graphprism (v8), 
HMMER (v3.3.10), EMBOSS (v6.6.0.0)      
ChIP-Seq data analysis: 
Alignment and Visualiza�on: 
ChIP-Seq reads were aligned to the human reference genome (hg19) using bow�e 66 with parameters -k 2 -m 2 -S.  WIG files for display 
were created using MACS 67 with parameters -w -S --space=50 --nomodel --shi�size=200, were normalized to the millions of mapped 
reads, and were displayed in IGV  68,69. The overall quality control values, percentage occupancy of each factors at different genomic 

regions are men�oned in Supplementary Data Table 9. The ChIP-seq peaks/enriched regions obtained from D0, H6, D3, D4 and D5 are 
shown in Supplementary Data Tables 9-13. 
Peak and Bound Gene Iden�fica�on: 
High-confidence peaks of ChIP-Seq signal were iden�fied using MACS with parameters --keep-dup=auto -p 1e-9 and corresponding input 
control.  Bound genes are RefSeq genes that contact a MACS-defined peak between -10000bp from the TSS and +5000bp from the TES. 
The bound genes associated with GATA2/1 and SMAD1 at each stage are shown in Supplementary Data Table 2.  
Iden�fying Enhancers and Transcrip�onal Signaling Centers (TSCs): 
Enhancers were iden�fied using H3K27ac ChIP-Seq and ATAC-Seq peak informa�on.  Peaks were iden�fied as described above using 
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MACS.  Coding regions were removed from H3K27ac and ATAC-Seq peaks using bedtools subtract; coding regions were exons from all 
RefSeq transcripts.  Non-exonic portions of ATAC-Seq-enriched regions that overlapped H3K27ac-enriched regions by at least 1 bp were 
retained.  H3K27ac- or ATAC-Seq/H3K27ac-enriched regions outside exons were collapsed using bedtools merge.  These steps were 
performed for each timepoint’s ATAC-Seq/H3K27ac ChIP-Seq pair.  D0, H6, D4, and D5 regions were collapsed and used for “enhancers” 
across the time-course.   
Transcription signaling centers (TSCs) were defined as those that was co-bound by SMAD1 and the corresponding GATA factor.  For each 
time-point, regions enriched in both SMAD1 and the corresponding GATA were identified using bedtools intersect on the peaks.  
Enhancers, as defined above, are considered TSCs if they overlap a SMAD1/GATA-bound region by at least 1 bp.  TSCs identified at each 
of D0, H6, D4, and D5 were collapsed and used as a canonical list of TSCs across the time-course.  Progenitor signaling centers represent 
the union of D0 and H6; erythroid signaling centers represent the union of D4 and D5 time-points. 
Lists of all the enhancers and TSCs identified using above methods are listed in Supplementary Data Table 4. 
Peak Similarity Heatmaps: 
The called H3K27ac ChIP-seq and ATAC-seq peaks of all samples were combined to generate peak files for heatmap analysis. Depending 
on the overlap of the union of peaks and peak from individual sample, a binary matrix of 0 and 1 were assigned to each peak of each 
sample. The similarity score was derived and correlation matrix was calculated by the cor method, and the heatmap drawn by corrplot 
package in R. 
ChIP-Seq Read Density Heatmaps/Scatterplots: 
ChIP-Seq read density heatmaps were constructed using bamToGFF (https://github.com/BradnerLab/pipeline) on 4kb regions centered 
on the peak center with parameters -m 200 -r -d and filtered bam files with at most one read per position.   
 Binary peak/not-peak "heatmaps" were determined by first taking the collapsed union of peaks defined at all five timepoints and 
determining whether each of these collapsed regions contacted a peak in any of the timepoints.   
Co-occupancy of multiple STFs upon stimulation with respective signaling pathways: 
ChIP-Seq read density heatmaps were constructed using bamToGFF (https://github.com/BradnerLab/pipeline) on 4kb regions centered 
on the peak center. Single-TF heatmaps were built with parameters -m 200 -r -d and filtered bam files with at most one read per position; 
rows were ordered by the row sums of the indicated factor.  Multiple-TF heatmaps were built with parameters -m 100 -r -d, and rows 
were ordered by the row sum in SMAD1 signal. Binary peak/not-peak "heatmaps" were determined by asking if the original peak 
overlapped a SMAD1-enriched region using bedtools intersect. 

RNA-seq data analysis: 
RNA-seq reads were mapped to the human reference genome (hg19) using TopHat v2.0.13 70 the flags: “--no-coverage-search --GTF 
gencode.v19.annotation.gtf” where gencode.v19.annotation.gtf is the Gencode v19 reference transcriptome available at 
gencodegenes.org. Cufflinks v2.2.171 was used to quantify gene expression and assess the statistical significance of differential gene 
expression. Briefly, Cuffquant was used to quantify mapped reads against Gencode v19 transcripts of at least 200bp with biotypes: 
protein_coding, lincRNA, antisense, processed_transript, sense_intronic, sense_overlapping. Cuffdiff was run on the resulting 
Cuffquant .cxb files, giving a table of RPKM expression level, fold change and statistical significance for each gene.   
ATAC-seq data analysis: 
All human ChIP-Seq datasets were aligned to build version NCBI37/HG19 of the human genome using Bowtie2 (version 2.2.1) (Langmead 
et al., 2012) with the following parameters: --end-to-end, -N0, -L20. Coverage files for display were created using MACS with parameters 
-w -S –space=50 –nomodel –shiftsize=200.  We used the MACS2 version 2.1.0 (Zhang et al., 2008) peak-finding algorithm to identify 
regions of ATAC-Seq peaks, with the following parameter --nomodel --shift -100 --extsize 200. A q-value threshold of enrichment of 0.05 
was used for all datasets. For correlation of ATAC-seq data with ChIP-seq binding, reads were mapped to the human genome (hg19) 
using Bowtie v2.2.5 72 with default options. BedTools 73  was used to count the number of ATAC-seq reads under Gata/Smad peaks 
(+/-2.5kb from peak center; 50bp bins). Read counts were normalized by library size to get CPM. The ATAC-seq peaks/enriched regions 
obtained from D0, H6, D3, D4 and D5 are shown in Supplementary Data Tables 11-15. 

Identification of RBC trait-associated SNPs and related analyses: 
SNPs associated with RBC traits were compiled from the following GWAS studies7-13,33-38. We selected SNPs filtering for MCV, HGB, 
RBC#, MCH, HTC, MCHC, and RDW as phenotypes. In total, 1,325 lead SNPs associated with any of the above RBC parameters were 
obtained. Using the lead GWAS SNP for each region, in order to increase the likelihood of including the functional SNPs from a reported 
hit, we also included highly associated SNPs with the lead SNP (with linkage disequilibrium LD R2  0.6). Only SNPs with “rs” identifier 
numbers were considered. SNPs can have multiple allele pairs that show differential association with traits. To account for this possibility, 
we broke out each allele pair for each SNP; only allele pairs that had two non-NA alleles were retained. Accordingly, 29,069 lead and LD 
SNPs with at least two usable alleles, across 924 loci associated with the seven RBC traits, were used to initiate the study. Unless 
otherwise reported, numbers of SNPs reported refer to the positions of SNPs, i.e. two allele pairs of the same SNP are reported once. We 
used the same approach and criteria for selecting the platelet trait-associated GWAS SNPs from Astle et al., 2016 to use them as negative 
controls. RBCs and platelets share origin from megakaryocyte and erythroblast progenitor cells, suggesting platelet trait SNPs as the ideal 
negative control for our study. We used total 786 risk loci regions associated with 575 lead and 22,158 (lead+LD) platelet trait SNPs (LD 
R2  0.6) with at least two usable alleles. The lists of all the SNPs that fall within overall enhancers and within TSCs are mentioned in 
Supplementary Table 5.
Positions of these SNPs relative to the hg19 revision of the human reference genome were taken from the UCSC genome browser track 
containing dbSNP version 142. SNP-enhancer or SNP-TSC overlap was determined using bedtools intersect. SNP-motif hit overlap was 
determined using bedtools intersect. Risk and reference allele sequences for each SNP passing the above filters were used to create 
41nt-long DNA fragments that contain hg19 reference genome sequence upstream and downstream of the SNP position. Each 41nt 
sequence was scanned for presence of predicted transcription factor-binding sequences using FIMO 4.11.4 74 with a reference motif 
library that included HOCOMOCOv10_HUMAN 75, JASPAR_CORE_2016_76 vertebrates and those from 77. Motif hits that overlapped 
the SNP position in the 41nt sequence were retained and used for comparison between risk and reference alleles, i.e. the SNP was 
required to overlap the motif hit. Thus, we also required that, for a SNP to be associated with a motif hit, the motif hit directly overlap 
the center of the region, i.e. the SNP’s position. The construction of 41bp sequences centered on the SNP itself, allowed for the SNP to 
appear at the extreme ends of longer motifs, such as motifs from heterodimeric TF binding. Unique SNP IDs were the unit used for 
counting. 
To test whether our H3K27ac ChIP-seq/ATAC-seq based approach enriches for “functional” SNPs, we use RegulomeDB39. A RegulomeDB 
score  4 was used to predict SNPs with the minimal functional evidences. This resulted in 5,695 RBC SNPs out of total 29,069 SNPs with 
two usable alleles.  

Motif occurrence identification: 
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Positions of motif occurrences were determined across the hg19 revision of the human reference genome using FIMO 74 with default 
parameters and a position weight matrix reference library comprised of HOCOMOCOv10, jolma2013, and 
JASPAR_CORE_2016_vertebrates. Motifs hits were subsetted by the type of transcription factor predicted to recognize them. Motif 
PWMs used for downstream analyses are within Supplementary Data Table 6. The numbers of base pairs contained within each 
category of motif occurrence were calculated after collapsing all occurrences of either STFs motifs or MTF motifs using bedtools merge 
73.  
Analysis of single nucleotide polymorphisms (SNPs) using protein binding microarray (PBM) data: 
Universal protein binding microarray (PBM) 8-mer enrichment (E) score datasets were downloaded from the UniPROBE 44 and CIS-BP 45 
databases. Please see Supplementary Data Table 7for the list of PBM datasets analysed in this manuscript 45,46,78-80. Of the 3318 RBC 
trait SNPs mapped within the non-exonic enhancer regions in this manuscript (defined, as above in Identifying Enhancers and 
Transcriptional Signaling Centers (TSCs), using the H3K27ac ChIP-seq and ATAC-seq peak information), 3,263 SNPs involving single 
nucleotide substitutions were considered in the analytical workflow. For each SNP, a 15-bp window, with the SNP at the centre, was 
obtained, using the GRCh38 version of the human reference sequence. For each of the eight 8-mers spanning the 15-bp window, 
contiguous ungapped PBM 8-mer E-scores for a transcription factor of interest were obtained for both the reference allele and the SNP-
containing allele. Wilcoxon signed-rank tests were performed for the eight reference 8-mers versus their corresponding eight SNP-
containing 8-mers to evaluate the statistical significance of any change in E-scores per 15-bp window associated with a SNP. For 
heightened stringency, the RBC trait SNP examples presented in this manuscript contain at least two consecutive 8-mers within the 15-bp 
window 81,82 in which the reference allele 8-mers have E-scores of >0.35 and the SNP-containing allele 8-mers have E-scores <0.3, or 
vice-versa. 

Analysis of perturbed transcription factor binding events associated with the set of single nucleotide substitution RBC trait SNPs: 
For this analysis, individual PBM datasets (Supplementary Data Table 7) were considered, with the exception of GATA – the average E-
score for each contiguous ungapped 8-mer from GATA3, GATA4, GATA5 and GATA6 PBM datasets was used; results were similar to this 
averaged GATA binding profile when individual GATA factor PBM datasets were analysed. The GATA zinc fingers in these mouse GATA3, 
GATA4, GATA5 and GATA6 TFs show between 80.00% to 91.43% amino acid identity when compared to the corresponding DNA binding 
domains in human GATA1, and 82.86% to 97.14% amino acid identity to that in human GATA2. A threshold of ~70% amino acid identity 
in the DNA binding domain has previously been proposed for TFs to share similar sequence specificity 45. We analyzed a mouse SMAD3 
PBM dataset 46; mouse SMAD3 shows 69.61% identity in the amino acid sequence of the MH1 DNA binding domain when compared to 
the human SMAD1 MH1 DNA binding domain (please see below, in Sequence alignment of transcription factor DNA binding domains, for 
the methodologies used to calculate percent amino acid identity of DNA binding domains of TFs considered from the same family).  
To consider whether the set of 3,263 single nucleotide substitution RBC trait SNPs mapped within enhancers were enriched for 
perturbation of binding by GATA factors versus putative signal transcription factors or by GATA factors, this set of SNPs was compared 
against a background set of SNPs, comprising all common SNPs from dbSNP (Build 151, GRCh38p7) that had an allele frequency >10%. 
For each PBM dataset of interest, the E-scores for reference allele 8-mers versus SNP-containing allele 8-mers were obtained according 
to the method described in Analysis of single nucleotide polymorphisms (SNPs) using protein binding microarray (PBM) data. For each 
pair of reference allele 8-mer and corresponding SNP-containing 8-mer, if one allele had an E-score >0.35, while the other allele had an 
E-score < 0.3, binding by the corresponding transcription factor was considered to be perturbed by the SNP. This procedure considered 
both SNPs that resulted in a gain of binding by the transcription factor of interest, and SNPs that abrogated or diminished transcription 
factor binding. This computation was performed for all PBM datasets of interests, to compare all 3,263 foreground SNPs against the 
background of ~5.4 million SNPs. Bootstrapping of the background SNPs was performed to obtain an empirical background distribution: 
100,000 iterations of the background were obtained by sampling, with replacement, 3263 SNPs from the background SNPs. Each of these 
100,000 iterations resulted in a distribution of values corresponding to the number of perturbed transcription factor binding events per 
3263 SNPs * eight 8-mers per SNP = 26,104 8-mers; the mean value of these 100,000 iterations was taken as the expected number of 
perturbed binding events per transcription factor of interest. The empirical p-value for each transcription factor of interest was 
computed by ranking the number of perturbed transcription factor binding events for the foreground set of 3263 SNPs * eight 8-mers 
per SNP against the 100,000 values from the empirical background distribution. The Benjamini-Hochberg procedure was applied 
(Benjamini and Hochberg, 1995), using the p.adjust function in R, to correct for multiple hypothesis testing. 

Sequence alignment of transcription factor DNA binding domains: 
DNA binding domains in transcription factors were identified by using hmmscan on the HMMER web server 83, scanning against the 
Pfam profile hidden Markov model database84 and using the default Pfam gathering threshold parameters. Pairwise global alignment of 
the protein sequences of these DNA binding domains was performed using EMBOSS Needle85, with the default parameters, to allow for 
computation of amino acid identity between two sequences. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data Availability Statement:
The massively parallel sequencing data associated with this manuscript have been uploaded to GEO under the accession numbers GSE74483 
and GSE104574 and are currently open to public. The web links for the publicly available databases used in this study are: UniPROBE: http://
thebrain.bwh.harvard.edu/uniprobe/, CIS-BP: http://cisbp.ccbr.utoronto.ca/, FHS: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000007.v30.p11, RegulomeDB: https://regulomedb.org/regulome-search/, HEMMER: http://hmmer.org/, EMBOSS Needle: https://
www.ebi.ac.uk/Tools/psa/emboss_needle/. dbSNP: https://www.ncbi.nlm.nih.gov/snp/?cmd=search. Links to all the PBM datasets used are 
available in Supplementary Data Table 7.   

Code Availability: 
Custom codes used in this study are available at https://bitbucket.org/abrahamb/workspace/projects/TSC. The code and data files for the 
PBM analyses are available at https://github.com/BulykLab/RBCSNPs_2020.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Replication Data were not excluded from the analysis, rather Values from each replicate were considered to test if the final results were statistically 
significant or not.

Randomization Samples were randomized for calculation of frequency of SNPs altering binding of specific TFs using protein 
binding microarray (PBM) and to calculate frequency of SNPs in TSCs and in STF motif hits. Detailed methodologies can be found in the online 
and supplementary methods section of the manuscript.No randomizations were performed for other studies. ..

Blinding
Blinding was not used as most of the resalts relied on electronically-derived values and not on visualization through human 
eyes. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used

The antibodies, along with the supplier name, catalog number, clone/lot number, are mentioned below:
SMAD1: Santacruz, sc7965X, A4, E1314; GATA1: Santacruz, sc265X, N6, J0511; GATA2: Santacruz, sc9008X, 
H-116, F0315; H3K27ac: Abcam, Ab4729, GR3231988-1; PU.1: Santacruz, sc352X, D1316, T-21; KLF1: Abcam, 
Ab2483, GR37687-20; TCF7L2: Cell Signaling, 2569S, C48H11, 07/2017. All these antibodies were used for 
ChIP-seq and 10 ug antibody was used for each ChIP experiment.
Details of the antibodies used for the FACS are as follows and dilutions used are also metioned:
1:60 APC-conjugated CD235a (eBioscience, clone HIR2, 17-9987-42), 1:60 FITC-conjugated CD71 (eBioscience, 
OKT9, 11-0719-42), 1:60 PE-conjugated CD41a (eBioscience, HIP8, 12-0419-42) and 1:60 PE-conjugated 
CD11b (eBioscience, ICRF44, 12-0118-42) 

Validation

All antibodies in this study were used according to manufacturer's instructions and dilutions. For ChIP-seq, only ChIP-
seq grade antibodies were used either by searching each manufacturer's website, or by searching previously published 
successful ChIP-seq results. Reliability of ChIP-seq peaks obtained was validated by known nearby erythroid genes. Wherever 
possible, ChIP-seq peaks were further validated by performing ChIP-seq in a relevant knockout cell lines. Furthermore, The 
overall quality control values, percentage occupancy of each factors at different genomic regions are mentioned in
Sapplementary Data Table 9.Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)
All the cell lines used in this study have long been used in this lab and are validated from multiple publications. Fresh batch of 
primary CD34 cells are bought from Fred Hutch Center in Seattle, and they always provide the authentication of each vial.
K562 cell lines were bought from ATCC. G1ER cells were obtained from Alan Cantor's lab, PU.1 modified K562 
cells were obtained from Sinichiro Takahashi's lab. They are the co-authors of the manuscript.

Authentication Identity of cell lines were validated by STR analysis. For mutated parental cell lines, mutations were verified by PCR with 
primers that are all mentioned in Supplementary Data Table 16 and procedure is described in methods section.

Mycoplasma contamination
Mycoplasma tests were performed on a frequent basis and confirmed to be negative. Tests were done using the luminiscence 
based MycoAlert Mycoplasma Detection Kit, Lonza LT07-318. Media collected from all the growing cells were tested for a 
luminiscence ratio of less than 0.9 to be confirmed as mycoplasma negative as per manufacturer's protocol. Ratio of greater 
than 1.2 is considered as mycoplasma positive. If ratio falls between 0.9 and 1.2, samples were tested further by PCR-based 
LookOut Mycoplasma PCR Detection Kit, Sigma MP0035. All the cell lines used in this study were associated with a ratio of 
well below 0.9 and hence confirmed to be mycoplasma negative.

No sample size power calculations were used. Since independent human donor derived CD34 cells or clones were used, three 
independent replicates were used for most of the experiments. 

Sample size

XX

X

X

X
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Commonly misidentified lines
(See ICLAC register)

None of the cell lines used are listed in the ICLAC database.

Palaeontology
Specimen provenance Not Applicable

Specimen deposition Not Applicable

Dating methods Not Applicable

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Not Applicable 

Wild animals Not Applicable

Field-collected samples Not Applicable

Ethics oversight Not Applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Not Applicable

Recruitment Not Applicable

Ethics oversight Not Applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Not Applicable

Study protocol Not Applicable

Data collection Not Applicable

Outcomes Not Applicable
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Methodology

Replicates Apart from ChIPseq, we conducted multiple extensive genome-wide assays from the time-point-matched CD34 cells for each 
time-point of differentiation. The genome-wide analyses of all these assays showed high concordance among each other 
establishing each stage of differentiation. We reasoned that each genome-wide assay served as perfect circumstantial 
evidence for replicating the results concluded from a different assay, and hence, we didn’t use replicates for the same assay. 
For example, the comparison of genome-wide H3K27ac ChIP-seq and ATAC-seq signal intensities and RNA-seq RPKM values 
between different differentiation stages formed a progenitor-specific and an erythroid-specific cluster before and after day 
3 (D3) (Extended Data Fig. b, c, d, e and f). These results independently reveal D3 as the erythroid commitment time-
point in our cell culture system during the gradual transition of cells from progenitor to erythroid stage. This observation 
also correlated with genome-wide ChIP-seq analysis of differentiation stage-specific GATA2 and GATA1 that showed a 
gradual GATA2 to GATA1 genomic switch around D3 marking the erythroid fate change (Fig. 1c, d). SMAD1 ChIP-seq peaks 
corroborated the gradual shift of stages around D3 (Fig. 1c). The Spearman correlation co-efficient values comparing the 
RPM-normalized (reads per million) read densities for SMAD1 ChIP-seq data sets, at each time-point, suggested that ChIP-
seq peaks before D3 (i.e. D0 and H6) and after D3 (i.e. D4 and D5) are more similar to each other than pairs across D3 (This 
result is not included in the current figure for space restriction, but can be provided if requested). The individual gene-tracks 
of known hematopoietic genes (An et al., 2014) supported the conclusions from genome-wide analyses; progenitor-specific 
genes FLI1 and FLT3 show gradual decrease of H3K27ac- and ATAC-seq peaks along with RNA-seq RPKM values, whereas 
erythroid gene ALAS2 showed a steady increase of open/active chromatin marks and RPKM values during the course of 
differentiation (Fig. 2b, Extended Data Fig. 1d, e). (RPKM values of FLI1: D0 = 20.86, H6 = 25.99, D2 = 14.33, D3 = 7.38, 
D4 = 5.47, D5 = 4.99; RPKM values for FLT3: H6 = 25.99, D1 = 26.52, D3 = 10.72, D4 = 4.37, D5 = 2.47; RPKM values for 
ALAS2: D0 = 4.86, H6 = 7.84, D2 = 7.0, D3 = 23.11, D4 = 54.37, D5 = 174.69). Given the strong correlation between samples, 
we believe that our data-sets for each assay are of high quality, accurately reflecting the identity of differentiation stages. 

 To validate this further, we have correlated the datasets used in this manuscript with selected time-point-matched 
replicates. We have compared the ChIP-seq data for GATA2 at D0, GATA1 at D5 and SMAD1 at D0 with previously generated 
ChIP-seq peaks in our lab as representative key samples. Replicate peak sets show appreciable similarity (around 70% of 
peaks in common, on average), with gene tracks revealing highly similar signal distributions (This result is not included in the 
current figure for space restriction, but can be provided if requested). Additionally, we have now replicated RNA-seq 
datasets at D0, H6, D1, D2, D3 and D4 using CD34 cells from a different donor. Clustering datasets from each donor reveals a 
similar kinetic profile, as both donors' samples clearly separate into erythroid cluster after D3 (This result is not included in 
the current figure for space restriction, but can be provided if requested). This observation is underscored looking at a 
subset of genes that show 2-fold or 4-fold increases in expression from D3 to D8 in the previous RNA-seq data-set. These 
genes replicated similar expression dynamics, showing a comparable increase in expression starting around D3 of 
differentiation (This result is not included in the current figure for space restriction, but can be provided if requested). Given 
these observations are reproducible between distinct biological replicates, we are highly confident about the validity of our 
results and the conclusions that we have drawn. 

Sequencing depth Average sequencing depth was 20-25 million reads per sample

Antibodies For ChIP-seq experiments the following antibodies were used: Smad1 (Santa Cruz sc7965X), Gata1 (Santa Cruz sc265X), 
Gata2 (Santa Cruz sc9008X), H3K27ac (Abcam ab4729), PU1 (Santa Cruz sc352X) and KLF1 (Abcam ab2483). 

Peak calling parameters Alignment and Visualization: 
ChIP-Seq reads were aligned to the human reference genome (hg19) using bowtie 66 with parameters -k 2 -m 2 -S.  WIG 
files for display were created using MACS 67 with parameters -w -S --space=50 --nomodel --shiftsize=200, were normalized 
to the millions of mapped reads, and were displayed in IGV  68,69. The overall quality control values, percentage occupancy 
of each factors at different genomic regions are mentioned in Supplementary Data Table 9. The ChIP-seq peaks/enriched 
regions obtained from D0, H6, D3, D4 and D5 are shown in Supplementary Data Tables 11-15. 
Peak and Bound Gene Identification: 
High-confidence peaks of ChIP-Seq signal were identified using MACS with parameters --keep-dup=auto -p 1e-9 and 
corresponding input control.  Bound genes are RefSeq genes that contact a MACS-defined peak between -10000bp from the 
TSS and +5000bp from the TES. The bound genes associated with GATA2/1 and SMAD1 at each stage are shown in 
Supplementary Data Table 2.  

Data quality For individual assays performed at each time-point, Supp Data Table 9 enlists: (a) number of peaks/enriched regions, the 
percentage of peaks that are within promoter and non-promoter regions (along with the definitions of promoter and non-
promoter regions); (b) Supp Data Tables 11-15 shows genomic localization of peaks for all the genome-wide assays 
performed at day 0 (D0), hour 6 (H6), day 3 (D3), day 4 (D4) and day 5 (D5); (c) Supp Data Table S9 also depicts “Fraction 
Non-Redundant Reads in Peaks/Regions” (FRiP) that we have now used to detect the overall quality of our data. ENCODE 
use FRiP parameter as part of their QC definition. ENCODE data sets have a FRiP enrichment of 1% or more when peaks are 
called using MACS with default parameters. The ENCODE Consortium scrutinizes experiments in which the FRiP falls below 
1% (Landt et al., 2012). All of our samples meet this 1% cutoff, except for the ChIP-seq for GATA1at D0 (FRiP = 0.9%), GATA1 
at H6 (FRiP = 0.7%) and GATA2 at D5 (FRiP = 0.4%). This is likely due to the low genomic occupancy of GATA2 and GATA1 at 
respective stages, that can be explained by GATA-switch, a well-known phenomenon during erythropoiesis.  

Software All the softwares used for this study are listed in the methods section and also in the earlier "software and code" 
section of this reporting summary. 
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ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

To access GSE74483, please Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74483
To access GSE104574, please Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104574

Files in database submission Raw FASTA files, BED files and wig or bigwig files

Genome browser session 
(e.g. UCSC)

IGV

ChIP-seq peak alignment and Visualization:
ChIP-Seq reads were aligned to the human reference genome (hg19) using bowtie 66 with parameters -k 2 -m 2 
-S. WIG files for display were created using MACS 67 with parameters -w -S --space=50 --nomodel --
shiftsize=200, were normalized to the millions of mapped reads, and were displayed in IGV 68,69. The overall 
quality control values, percentage occupancy of each factors at different genomic regions are mentioned in 
Supplementary Data Table 9. The ChIP-seq peaks/enriched regions obtained from D0, H6, D3, D4 and D5 are shown in 
Supplementary Data Tables 11-15. 
ChIP-seq peak and Bound Gene Identification: 
High-confidence peaks of ChIP-Seq signal were identified using MACS with parameters --keep-dup=auto -p 1e-9 and 
corresponding input control.  Bound genes are RefSeq genes that contact a MACS-defined peak between -10000bp from the 
TSS and +5000bp from the TES. The bound genes associated with GATA2/1 and SMAD1 at each stage are shown in 
Supplementary Data Table 2.  
Identifying Enhancers and Transcriptional Signaling Centers (TSCs): 
Enhancers were identified using H3K27ac ChIP-Seq and ATAC-Seq peak information.  Peaks were identified as described 
above using MACS.  Coding regions were removed from H3K27ac and ATAC-Seq peaks using bedtools subtract; coding 
regions were exons from all RefSeq transcripts.  Non-exonic portions of ATAC-Seq-enriched regions that overlapped 
H3K27ac-enriched regions by at least 1 bp were retained.  H3K27ac- or ATAC-Seq/H3K27ac-enriched regions outside exons 
were collapsed using bedtools merge.  These steps were performed for each timepoint’s ATAC-Seq/H3K27ac ChIP-Seq pair.  
D0, H6, D4, and D5 regions were collapsed and used for “enhancers” across the time-course.   
Transcription signaling centers (TSCs) were defined as those that was co-bound by SMAD1 and the corresponding GATA 
factor.  For each time-point, regions enriched in both SMAD1 and the corresponding GATA were identified using bedtools 
intersect on the peaks.  Enhancers, as defined above, are considered TSCs if they overlap a SMAD1/GATA-bound region by at 
least 1 bp.  TSCs identified at each of D0, H6, D4, and D5 were collapsed and used as a canonical list of TSCs across the time-
course.  Progenitor signaling centers represent the union of D0 and H6; erythroid signaling centers represent the union of 
D4 and D5 time-points. 

Lists of all the enhancers and TSCs identified using above methods are listed in Supplementary Data Table 4. 
Peak Similarity Heatmaps: 
The called H3K27ac ChIP-seq and ATAC-seq peaks of all samples were combined to generate peak files for heatmap analysis. 
Depending on the overlap of the union of peaks and peak from individual sample, a binary matrix of 0 and 1 were assigned 
to each peak of each sample. The similarity score was derived and correlation matrix was calculated by the cor method, and 
the heatmap drawn by corrplot package in R. 
ChIP-Seq Read Density Heatmaps/Scatterplots: 
ChIP-Seq read density heatmaps were constructed using bamToGFF (https://github.com/BradnerLab/pipeline) on 4kb 
regions centered on the peak center with parameters -m 200 -r -d and filtered bam files with at most one read per position.   
 Binary peak/not-peak "heatmaps" were determined by first taking the collapsed union of peaks defined at all five 
timepoints and determining whether each of these collapsed regions contacted a peak in any of the timepoints.   
Co-occupancy of multiple STFs upon stimulation with respective signaling pathways: 
ChIP-Seq read density heatmaps were constructed using bamToGFF (https://github.com/BradnerLab/pipeline) on 4kb 
regions centered on the peak center. Single-TF heatmaps were built with parameters -m 200 -r -d and filtered bam files with 
at most one read per position; rows were ordered by the row sums of the indicated factor.  Multiple-TF heatmaps were built 
with parameters -m 100 -r -d, and rows were ordered by the row sum in SMAD1 signal. Binary peak/not-peak "heatmaps" 
were determined by asking if the original peak overlapped a SMAD1-enriched region using bedtools intersect. 

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Control and treated stage-matched CD34 cells, or CD34 cells at different stages of differentiation were washed in PBS and 
stained with propidium iodide (PI), 1:60 APC-conjugated CD235a (eBioscience, clone HIR2, 17-9987-42), 1:60 FITC-conjugated 
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CD71 (eBioscience, OKT9, 11-0719-42), 1:60 PE-conjugated CD41a (eBioscience , HIP8, 12-0419-42) and 1:60 PE-conjugated 
CD11b (eBioscience, ICRF44, 12-0118-42). 

Instrument BD Bioscience LSR II flow cytometer was used to record raw FACS data

Software FlowJo 8.6.9 10.0.7 (TreeStar).

Cell population abundance Cells were not sorted using flow cytometer

Gating strategy Cells of interest were separated from dead cell debris using forward scatter versus side scatter. Single cells were separated from 
doublets through forward scatter height (FSC-H) versus forward scatter area (FSC-A). Subsequent live-dead differentiation was 
done using Propidium Iodide (PI) stain. The live cells were then stained for the differentiation markers, such as CD235a-APC and 
CD71-FITC for the CD34+ and the HUDEP2 cells.  

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging
Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

X
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Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 

Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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