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GELFAND-TSETLIN THEORY FOR RATIONAL GALOIS ALGEBRAS

VYACHESLAV FUTORNY, DIMITAR GRANTCHAROV, LUIS ENRIQUE RAMIREZ,

AND PABLO ZADUNAISKY

Abstract. In the present paper we study Gelfand-Tsetlin modules defined in terms

of BGG differential operators. The structure of these modules is described with the

aid of the Postnikov-Stanley polynomials introduced in [PS09]. These polynomials are

used to identify the action of the Gelfand-Tsetlin subalgebra on the BGG operators. We

also provide explicit bases of the corresponding Gelfand-Tsetlin modules and prove

a simplicity criterion for these modules. The results hold for modules defined over

standard Galois orders of type A - a large class of rings that include the universal

enveloping algebra of gl(n) and the finite W-algebras of type A.
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1. Introduction

The category of Gelfand-Tsetlin modules of the general linear Lie algebra gl(n) is an
important category of modules that plays a prominent role in many areas of mathemat-
ics and theoretical physics. By definition, a Gelfand-Tsetlin module of gl(n) is one that
has a generalized eigenspace decomposition over a certain maximal commutative sub-
algebra (Gelfand-Tsetlin subalgebra) Γ of the universal enveloping algebra of gl(n). This
algebraic definition has a nice combinatorial flavor. The concept of a Gelfand-Tsetlin
module generalizes the classical realization of the simple finite-dimensional represen-
tations of gl(n) via the so-called Gelfand-Tsetlin tableaux introduced in [GT50]. The
explicit nature of the Gelfand-Tsetlin formulas inevitably raises the question of what
infinite-dimensional modules admit tableaux bases - a question that led to the sys-
tematic study of the theory of Gelfand-Tsetlin modules. This theory has attracted
considerable attention in the last 30 years of the 20th century and have been studied
in [DOF91, DFO94, Maz98, Maz01, Mol99, Zhe74], among others. Gelfand-Tsetlin bases
and modules are also related to Gelfand-Tsetlin integrable systems that were first in-
troduced for the unitary Lie algebra u(n) by Guillemin and Sternberg in [GS83], and
later for the general linear Lie algebra gl(n) by Kostant and Wallach in [KW06a] and
[KW06b].

Recently, the study of Gelfand-Tsetlin modules took a new direction after the theory
of singular Gelfand-Tsetlin modules was initiated in [FGR16]. Singular Gelfand-Tsetlin
modules are roughly those that have basis of tableaux whose entries may be zeros of
the denominators in the Gelfand-Tsetlin formulas. For the last three years remark-
able progress has been made towards the study of singular Gelfand-Tsetlin modules

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MPG.PuRe

https://core.ac.uk/display/358466857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1801.09316v1


of gl(n). Important results in this direction were obtained in [FGR15, FGR16, FGR17,
Zad17, Vis18, Vis17, RZ17]. In particular, explicit constructions of a Gelfand-Tsetlin
module with a fixed singular Gelfand-Tsetlin character were obtained with algebro-
combinatorial methods in [RZ17] and with geometric methods in [Vis17]. One notable
property of these general constructions is their relations with Schubert calculus and
reflection groups. As explained below, this relation is brought to a higher level in
the present paper and new connections with Schubert polynomials and generalized
Littlewood-Richardson coefficients are established. We hope that these new connec-
tions, combined with combinatorial results on skew Schubert polynomials, will help
us to bring within a reach the solution of the most important problem in the theory:
the classification of all simple Gelfand-Tsetlin modules of gl(n).

The study of Gelfand-Tsetlin modules is not limited to the cases of gl(n) and sl(n).
Gelfand-Tsetlin subalgebras are part of a uniform algebraic theory, the theory of Galois
orders. Galois orders are special types of rings that were introduced in [FO10] in
an attempt to unify the representation theories of generalized Weyl algebras and the
universal enveloping algebra of gl(n). In addition to the universal enveloping algebra
of gl(n) examples of Galois orders include the n-th Weyl algebra, the quantum plane,
the Witten-Woronowicz algebra, the q-deformed Heisenberg algebra, and finite W-
algebras of type A (for details and more examples see for example [Har]).

The representation theory of Galois orders was initiated in [FO14]. In particular,
the following finiteness theorem for Gelfand-Tsetlin modules of a Galois order U over
an integral domain Γ was proven: given a maximal ideal m of Γ there exists only
finitely many non-isomorphic simple Gelfand-Tsetlin modules M such that M[m] 6= 0
(see §4.3 for the definition of M[m]). This theorem generalizes the finiteness theorem
for gl(n) obtained in [Ovs02]. Other important results of the Gelfand-Tsetlin theory
of gl(n) were extended to certain types of Galois orders in [EMV, Har, Maz99]. One
such important result is the construction of a Gelfand-Tsetlin module with any fixed
Gelfand-Tsetlin character over an orthogonal Gelfand-Tsetlin algebra obtained very
recently in [EMV]. Another notable contribution is the new framework of rational
Galois orders established in [Har]. Examples of rational Galois orders are the universal
enveloping algebra of gl(n), restricted Yangians of gl(n), orthogonal Gelfand-Tsetlin
algebras, finite W-algebras of type A, among others.

The first goal of the present paper is to establish a closer connection of the singular
Gelfand-Tstelin theory with the theory of Schubert polynomials and reflection groups.
We study a new natural class of Γ-modules that consists of differential operators re-
lated to the polynomials introduced in [BGG73]. These BGG differential operators
have numerous applications in the cohomology theory of flag varieties. In the present
paper, we use a particular aspect of these applications - the Postnikov-Stanley oper-
ators. Postnikov-Stanley polynomials were originally defined in [PS09] in order to
express degrees of Schubert varieties in the generalized complex flag manifold G/B.
The polynomials are given by weighted sums over saturated chains in the Bruhat or-
der and have intimate relations with Schubert polynomials, harmonic polynomials,
Demazure characters, and generalized Littlewood-Richardson coefficients. The action
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of Γ on the module of BGG differential operators is described explicitly in terms of
Postnikov-Stanley operators. Using this explicit action, we prove one of our main re-
sults - an upper bound for the size of Jordan blocks of the generators of Γ, see Theorem
6.6. The explicitness of the action helps us also to understand better the structure of
the U-module consisting of BGG operators and, in particular, is used as a technical
tool in the proof of the simplicity criterion for this U-module

The other goal of the paper is to deepen the study of Gelfand-Tsetlin modules of
rational Galois orders. We define a special class of rational Galois orders that we call
standard Galois orders of type A that includes most of the examples of rational Galois
orders listed above. Then we construct Gelfand-Tsetlin modules of arbitrary character
over these Galois orders and provide explicit bases of these modules, see Theorem
8.3. Our last main result, Theorem 8.5, is a sufficient condition for these modules to
be simple. This simplicity criterion generalizes the criterion for orthogonal Gelfand-
Tsetlin algebras obtained in [EMV]. It is worth noting, that as an immediate corollary,
our result provides new examples of simple modules of any finite W-algebra of type
A.

The organization of the paper is as follows. Preliminary results on reflection groups
are collected in Section 2. In Section 3 we include the needed background on BGG
differential operators and Postnikov-Stanley differential operators. Definitions and
properties of Galois orders and Gelfand-Tsetlin modules are included in Section 4. In
Section 5 we discuss generalities on rational Galois orders. The Γ-module of BGG op-
erators is defined in Section 6, where we study its structure with the aid of Postnikov-
Stanley operators. In this section we also give an upper bound for the size of a Jordan
block of any γ of Γ considered as an endomorphism of the Γ-module of BGG dif-
ferential operators. The U-module structure of a (larger) space of BGG differential
operators is studied in Section 7. In Section 8 we provide a basis of the U-module
defined in Section 7, prove that this module is a Gelfand-Tsetlin module, and establish
a simplicity criterion for this module.

We finish the introduction with a few notational conventions, which will be used
throughout the paper. Unless otherwise stated, the ground field will be C. By N

we denote the set of positive integer numbers. A reflection group will always be a
finite group isomorphic to a subgroup of O(n,R) for some n ∈ N and generated by
reflections. Given a ring R and a monoid M acting on R by ring morphisms, by R#M
we denote the smash product of R and M, i.e. the free R-module with basis M and
product given by r1m1 · r2m2 = r1m1(r2)m1m2 for any r1, r2 ∈ R and any m1, m2 ∈ M.
Acknowledgements. V.F. is supported in part by CNPq grant (301320/2013-6) and by
Fapesp grant (2014/09310-5). D.G is supported in part by Simons Collaboration Grant
358245. P.Z. is supported by Fapesp fellowship (2016-25984-1).

2. Preliminaries on reflection groups

We recall some basic facts and fix notation on root systems and reflection groups.
Our definition of root system is slightly different from the classical one, but is easily
seen to be equivalent.
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2.1. Root systems and reflection groups. Let V be a complex vector space with a
fixed inner product which we denote by (−,−). We use this inner product to identify
V with its dual V∗ and for each α ∈ V∗ we denote by vα the unique element of V
such that α(v′) = (v′, vα) for all v′ ∈ V. Given α ∈ V∗ we denote by sα the orthogonal
reflection through the hyperplane ker α, and by s∗α the corresponding endomorphism
of V∗. In this article a finite root system over V will be a finite set Φ ⊂ V∗ such that for
each α ∈ Φ we have

(R1) Φ ∩Cα = {±α} and
(R2) s∗α(Φ) ⊂ Φ.

In classical references such as [Hum90] and [Hil82] root systems are defined as subsets
of an Euclidian vector space VR with R instead of C in (R1). Taking V = C⊗R VR for
an adequate VR our definition is equivalent to theirs. We use the definition above since
we work with complex vector spaces endowed with the action of a reflection group.

We now review the basic features of the theory of root systems. For more details
we refer the reader to the two references above. Fix a root system Φ. The Weyl group
associated to Φ is the group W(Φ) generated by {sα | α ∈ Φ}. Since we do not assume
that the root systems are reduced or crystallographic, nor that Φ generates V∗

R
, the

group W(Φ) is a finite reflection group which may be decomposable, and its action on
V may have a nontrivial stabilizer. Any reflection group G ⊂ GL(V) is the Weyl group
of some root system Φ ⊂ V∗ [Hil82, §1.2].

Just as in the case of root systems for Lie algebras, for each root system Φ we can
choose a linearly independent subset Σ ⊂ Φ which is a basis of the R-span of Φ such
that the coefficients of each root of Φ in this basis are either all nonnegative or all
nonpositive. Such sets are called bases or simple systems, and its elements are called
simple roots. Each choice of a base defines a partition Φ = Φ+ ∪ −Φ+, where Φ+ is
the set of all positive roots, i.e. those whose coordinates over Σ are nonnegative. If we
fix a base Σ then the set S of reflections corresponding to simple roots is a minimal
generating set of the reflection group W = W(Φ), and hence (W, S) is a finite Coxeter
system in the sense of [Hum90, 1.9]. Each s ∈ W of order two is of the form sα for
some α ∈ Φ+ [Hum90, Proposition 2.14], and given s ∈ W of order two we denote by
αs the corresponding positive root.

Fixing a base Σ, or equivalently, a minimal generating set S ⊂ W, we define the
length ℓ(σ) of σ ∈ W as the least positive integer ℓ such that σ can be written as a
composition of ℓ reflections in S. Any sequence s1, . . . , sℓ(σ) such that σ = s1 · · · sℓ(σ) is
called a reduced decomposition; notice that reduced decompositions are not unique. The
group W acts faithfully and transitively on Φ. Furthermore, ℓ(σ) = |σ(Φ+)∩−Φ+|, so
W has a unique longest element whose length equals |Φ|. We will denote this element
by ω0(W), or simply by ω0 if the group W is clear from the context.

For the rest of this section we fix a root system Φ with base Σ and denote by (W, S)
be the corresponding Coxeter system.
2.2. Subsystems, subgroups and stabilizers. In this subsection we follow [Hum90,
1.10], where the reader can find most proofs. Given Ω ⊂ Σ we denote by Φ(Ω) the
root subsystem generated by Ω. We will call such subsystems standard. If Ψ ⊂ Φ is
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an arbitrary subsystem then we can choose a base Ω ⊂ Ψ which can be extended to a

base Ω of Φ. By [Hum90, 1.4 Theorem] W acts transitively on the set of all bases of Φ,

so for some σ ∈ W we have σ(Ω) = Σ and hence σ(Ψ) is standard.
Let θ ⊂ S and denote by Wθ the subgroup of W generated by θ. Then (Wθ , θ) is

also a Coxeter system and it determines a standard root system Φθ ⊂ Φ with simple
roots Σθ = {αs | s ∈ θ}. We will refer to subgroups of the form Wθ as standard parabolic
subgroups. A parabolic subgroup is any subgroup of W that is conjugate to a standard
parabolic subgroup.

If σ ∈ Wθ then we can compute its length as an element of W with respect to the
generating set S or as an element of Wθ with respect to the generating set θ. Both
lengths turn out to be equal and will be denoted by ℓ(σ). Since Wθ is also a Coxeter
group it has a unique element of maximal length which we will denote by ω0(θ). The
set Wθ = {σ ∈ W | ℓ(σs) > ℓ(σ) for all s ∈ θ} is a set of representatives of the classes

in the quotient W/Wθ , and for each σ ∈ W there exist unique elements σθ ∈ Wθ and
σθ ∈ Wθ such that σ = σθσθ with ℓ(σ) = ℓ(σθ) + ℓ(σθ). The element σθ is the element
of minimal length in the coclass σWθ . It follows that (ω0)θ = ω0(θ) and therefore
ωθ

0 = ω0ω0(θ)−1.
Given v ∈ V we denote by Φ0(v) the set of all roots in Φ such that α(v) = 0, which

is clearly a root subsystem of Φ. We also denote by Wv the stabilizer of v in W. We will
say that v is Σ-standard, or just standard when Σ is fixed or clear from the context, if
Φ0(v) is a Σ-standard subsystem of Φ. It is easy to check that v is standard if and only
if Wv is a standard parabolic subgroup, and W = W(Φ0(v)). Since Wσ(v) = σWvσ−1

and Φ0(σ(v)) = σ(Φ0(v)) for all σ ∈ W, it follows that for every v ∈ V there exists
σ ∈ W such that σ(v) is standard and hence Wσ(v) is a standard parabolic subgroup.
If v is standard then we denote by Wv the set of minimal length representatives of the
left coclasses W/Wv.

3. Divided differences and Postnikov-Stanley operators

In this section V is a fixed complex vector space, Λ = S(V), and L is the fraction field
of Λ. Note that following the convention of [PS09], we write S(V) for Sym(V∗). Also,
we fix a finite root system Φ with base Σ, and set W = W(Φ) to be the corresponding
reflection group with minimal generating set S. Thus W acts on Λ and L, and we set
Γ = ΛW and K = LW .
3.1. Divided differences. Since W acts on L we can form the smash product L#W.
Recall that the product in this complex algebra is given over generators by f σ · gτ =
f σ(g)στ for all f , g ∈ L and all σ, τ ∈ W. Dedekind’s theorem on linear independence
of field homomorphisms implies that the algebra morhpism L#W →֒ EndC(L) defined
by mapping lσ ∈ L#W to the endomorphism f 7→ lσ( f ) is an embedding. We identify
L#W with its image, and so must be careful to distinguish the result of applying the
endomorphism lσ to f , whose result is lσ( f ), and the product of lσ and f in L#W,
which is lσ · f = lσ( f )σ.
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For s ∈ W we set

∇s =
1

αs
(1 − s) ∈ L#W.

It is easy to show that for each f , g ∈ L,

∇s( f g) = ∇s( f )g + s( f )∇s(g)

so ∇s is a twisted derivation of L. Notice that ker∇s is exactly L〈s〉 and so ∇s is

L〈s〉-linear. Also it follows from the definition that ∇s(Λ) ⊂ Λ.

Example. Suppose V = C2 and let {x, y} ⊂ (C2)∗ be the dual basis to the canonical basis. Let
s be the reflection given by s(z1, z2) = (z2, z1), so αs = x − y. Then for each f (x, y) ∈ C[x, y]

we have ∇s( f )(x, y) = f (x,y)− f (y,x)
x−y . Notice that this quotient is always a polynomial, since

f (x, y)− f (y, x) is an antisymmetric polynomial and hence divisible by x − y.

Given σ ∈ W we take a reduced decomposition σ = s1 · · · sℓ and set ∂σ = ∇s1
◦

· · · ◦ ∇sℓ ; this element is called the divided difference corresponding to σ and does not
depend on the chosen reduced decomposition [Hil82, Chapter IV (1.6)]. Notice though
that the definition of ∂σ does depend on the choice of a base Σ ⊂ Φ.

By definition, an L#W-module Z is an L-vector space endowed with a W-module
structure such that the action of L on Z is W-equivariant. A simple induction on the
length of σ shows that the divided difference ∂σ defines a K-linear map over any L#W-
module Z. In particular L is such a module, and since ∇s(Λ) ⊂ Λ for any s ∈ S, it
follows that Λ is closed under the action of divided differences.
3.2. Coinvariant spaces and Schubert polynomials. The algebra Λ is Z≥0-graded
with Λ1 = V∗ and Γ is a graded subalgebra of Λ . We denote by IW the ideal of Λ

generated by the elements of Γ of positive degree. By the Chevalley-Shephard-Todd
theorem Γ is isomorphic to a polynomial algebra in dim V variables and Λ is a free
Γ-module of rank |W|. Also, a set B ⊂ Λ is a basis of the Γ-module Λ if and only if its
image in the quotient Λ/IW is a C-basis. Furthermore, Λ/IW is naturally a graded W-

module isomorphic to the regular representation of W with Hilbert series ∑σ∈W tℓ(σ).
For proofs we refer the reader to [Hil82, Chapter II, Section 3].

We now recall the construction of the basis of Schubert polynomials of Λ/IW .
This construction is due to Bernstein, Gelfand and Gelfand [BGG73] and Demazure
[Dem74] in the case when W is a Weyl group, and to Hiller [Hil82, Chapter IV] in
the case of arbitrary Coxeter groups. Set ∆(Φ) = ∏α∈Φ+ α, and for each σ ∈ W

set SΣ
σ = 1

|W|∂σ−1ω0
∆(Φ). We will often write Sσ instead of SΣ

σ when the base Σ is

clear from the context. Notice that by definition degSσ = ℓ(σ). The polynomials
{Sσ | σ ∈ W} are known as Schubert polynomials, and they form a basis of Λ as a Γ-
module, so the projection of this set is a basis of Λ/IW as a complex vector space. Since
K = LW we know that L is a K-vector space of dimension |W| and so {Sσ | σ ∈ W} is
also a basis of L over K. Given f ∈ L we will denote by f(σ) the coefficient of Sσ in the
expansion of f relative to this basis, so f = ∑σ∈W f(σ)Sσ.
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Since Schubert polynomials form a basis of Λ/IW , for all σ, τ, ρ ∈ W there exists

c
ρ
σ,τ ∈ C defined implicitly by the equation

SσSτ = ∑
ρ∈W

c
ρ
σ,τSρ mod IW .

The coefficients c
ρ
σ,τ are the generalized Littlewood-Richardson coefficients relative to the

base Σ. It follows from the definition that c
ρ
σ,τ = 0 unless ℓ(σ) + ℓ(τ) = ℓ(ρ). If θ ⊂ S

then the space of Wθ-invariants (Λ/IW)Wθ is generated by the set {Sσ | σ ∈ Wθ}
[Hil82, Chapter IV (4.4)]. In particular, if σ, τ ∈ Wθ then c

ρ
σ,τ 6= 0 implies that ρ ∈ Wθ .

3.3. Postnikov-Stanley operators. Given α ∈ V∗ there is a unique C-linear derivation
Θ(α) : Λ −→ Λ such that Θ(α)(β) = (β, α) for each β ∈ V∗. This map extends
uniquely to a morphism Θ : Λ −→ DerC(Λ). If we fix an orthonormal basis x1, . . . , xn

of V∗, then S(V) ∼= C[x1, . . . , xn] and Θ(xi) =
∂

∂xi
.

Let (−,−)Θ : Λ × Λ −→ C be the bilinear form given by ( f , g) = Θ( f )(g)(0). This
is a nondegenerate bilinear form which can be used to identify Λ with its graded dual
Λ◦. For every graded ideal I ⊂ Λ we write HI = {g ∈ Λ | ( f , g)Θ = 0 for all f ∈ I}.
Since the pairing (−,−)Θ is nodegenerate, the space HI is naturally isomorphic to the
graded dual (Λ/I)◦. We denote by PΣ

σ the unique element in HIW
such that (PΣ

σ ,SΣ
τ ) =

δσ,τ for all σ, τ ∈ W. Like before, we usually write Pσ instead of PΣ
σ . It follows that the

set {Pσ | σ ∈ W} is a graded basis of HIW
, dual to the Demazure basis of Λ/IW . Also

for each θ ⊂ S the set {Pσ | σ ∈ Wθ} is a graded basis of the dual of (Λ/IW)Wθ . Notice
that both these families are bases of the space of W-harmonic polynomials, i.e. those
polynomials which are annihilated by W-symmetric differential operators.

Recall that σ covers τ, and denote this by τ � σ, if σ = τsα for some α ∈ Φ and
ℓ(σ) = ℓ(τ) + 1. The Bruhat order of W is the transitive closure of this relation. A
saturated chain from σ to τ in the Bruhat order is a sequence σ = σ0 � σ1 � · · · � σr =
τ, and we refer to r as the length of the saturated chain. The polynomials Pσ were
described by Postnikov and Stanley in terms of saturated chains in the Bruhat order
of W in [PS09] when W is a Weyl group.

For each covering relation σ � σsα with α ∈ Φ+ we set m(σ, σsα) = α ∈ V∗ =
S(V)1, and for a saturated chain C = (σ1, σ2, . . . , σr) we denote by mC the product

∏
r−1
i=1 mC(σi, σi+1). Set

Pσ,τ =
1

(ℓ(τ)− ℓ(σ))! ∑
C

mC

where the sum is taken over all saturated chains from σ to τ. Now, according to
[PS09, Corollary 6.9], if σ ≤ τ in the Bruhat order then Pσ,τ = ∑ρ∈W cτ

σ,ρPρ. This

identity inspires the following definition.

Definition 3.1. For each σ, τ ∈ W with τ ≤ σ in the Bruhat order of W we set ΣDσ = Θ(PΣ
σ )

and ΣDτ,σ = ∑ρ∈W cσ
τ,ρ

ΣDρ. We ommit the superscript Σ whenever it is clear from the context.

3.4. Notice that although by definition ΣDτ,σ is a differential operator on Λ, it has
a well defined extension to the fraction field L, and we will denote this extenssion
by the same symbol. We denote by D0

σ and D0
τ,σ the linear functional of Λ obtained

7



by applying the corresponding differential operator followed by evaluation at 0. The
definition of the polynomials Pσ implies that D0

σ(γ f ) = γ(0)D0
σ( f ) for all f ∈ Λ and

γ ∈ Γ. The following proposition shows that this functional extends to the algebra of
rational functions without poles at 0 and gives a generalized Leibniz rule to compute
the result of applying this operator to the product of two such functions.

Proposition 3.2. Let f ∈ L be regular at zero and let σ ∈ W. Then f(σ) is also regular at 0

and f(σ)(0) = Dσ( f )(0) = (∂σ f )(0). Furthermore if g ∈ L is also regular at 0 then

D0
σ( f g) = ∑

ρ≤σ

D0
ρ,σ( f )D0

ρ(g) = ∑
ρ≤σ

D0
ρ( f )D0

ρ,σ(g).

Proof. Let T ⊂ Γ be the set of W-invariant rational functions with nonzero constant
term. This is clearly a W-invariant set and hence T−1Γ is a subalgebra of K = Frac(Γ).
Denoting by A the subalgebra of L consisting of rational functions regular at 0, the
product map T−1Γ ⊗ Λ −→ A is an isomorphism, since any fraction p/q ∈ L with
p, q ∈ Λ can be rewritten so that q ∈ Γ. Thus A is a free T−1Γ-module with basis
{Sσ | σ ∈ W} and f(σ) ∈ A for all σ ∈ W.

As noted in the preamble for each γ ∈ Γ we have D0
σ(γ f ) = γ(0)D0

σ( f ), and it
follows that the same holds if γ ∈ AG. Thus

Dσ( f )(0) = ∑
τ

f(τ)(0)Dσ(Sτ)(0) = f(σ)(0)

as stated. Analogously ∂σ is a K-linear operator, and hence

(∂σ f )(0) = ∑
τ

f(τ)(0)
1

|W|
(∂σ∂τ−1ω0

∆(Φ))(0).

Now 1
|W|∂σ∂τ−1ω0

∆(Φ) is zero unless ℓ(τσ) = ℓ(τ) + ℓ(σ), in which case it equals

Sτσ−1 . The evaluation of this polynomial at 0 is zero except when τ = σ, and in this
case the polynomial is just the constant 1 ∈ C. Therefore, (∂σ f )(0) = f(σ)(0) = D0

σ( f ).
Finally,

D0
σ( f g) = ∑

τ,ρ

f(τ)(0)g(ρ)(0)Dσ(SτSρ)(0) = ∑
τ,ρ

cσ
τ,ρD

0
τ( f )D0

ρ(g),

which proves the first identity in the proposition. To prove the second identity, we use
that cσ

τ,ρ = cσ
ρ,τ. �

4. Galois orders and Gelfand-Tsetlin modules

Throughout this section Γ is a noetherian integral domain, K is its field of fractions,
and L is a finite Galois extension of K with Galois group G. Hence K = LG.
4.1. Galois orders. We first recall the notion of a Galois ring (order), that was intro-
duced in [FO10]. Let M be a monoid acting on L by ring automorphisms, such that
for all t ∈ M and all σ ∈ G we have σ ◦ t ◦ σ−1 ∈ M. Then the action of G extends
naturally to an action on the smash product L#M. We assume that the monoid M is
K-separating, that is given m, m′ ∈ M, if m|K = m′|K then m = m′.

Definition 4.1. Set K = L#M.
8



(i) A Galois ring over Γ is a finitely generated Γ-subring U ⊂ (L#M)G such that UK =
KU = K.

(ii) Set S = Γ \ {0}. A Galois ring U over Γ is a right (respectively, left) Galois order, if
for any finite-dimensional right (respectively left) K-subspace W ⊂ U[S−1] (respectively,
W ⊂ [S−1]U), the set W ∩ U is a finitely generated right (respectively, left) Γ-module. A
Galois ring is Galois order if it is both a right and a left Galois order.

We will always assume that Galois rings are complex algebras. In this case we say
that a Galois ring is a Galois algebra over Γ.
4.2. Principal and co-principal Galois orders. Notice that L#M acts on L, where for
each X = ∑m∈M lmm ∈ L#M we define its action on f ∈ L by X( f ) = ∑m lmm( f ).

As an example of a Galois order, Hartwig introduced the standard Galois Γ-order in K
defined as KΓ = {X ∈ K | X(Γ) ⊂ Γ}, see [Har, Theorem 2.21]. In this article the term
“standard Galois order” has a different meaning, and for sake of clarity will refer to
the algebra above as the left Hartwig order of K. A principal Galois order is any Galois
order U ⊂ KΓ. By restriction Γ is a left U-module for any principal Galois order, and
hence its complex dual Γ∗ is a right U-module.

Denote by M−1 the monoid formed by the inverses of the elements in M. Following
[Har], we define an anti-isomorphism −† : L#M −→ L#M−1 by (lm)† = m−1 · l =
m−1(l)m−1 for any l ∈ L, m ∈ M. The right Hartwig order is thus defined as ΓK =
{X ∈ K | X†(Γ) ⊂ Γ}, and a co-principal Galois order is any Galois order contained in

ΓK. Thus Γ∗ is a left U-module for any co-principal Galois order, with action given by
X · χ = χ ◦ X† for any X ∈ U and χ ∈ Γ∗.
4.3. Gelfand-Tsetlin modules. Let U be a Galois order over Γ and let M be any U-

module. Given m ∈ Specm Γ we set M[m] = {x ∈ M | mkx = 0 for k ≫ 0}. Since
ideals in Specm Γ are in one-to-one correspondence with characters χ : Γ −→ C we

also set M[χ] = {x ∈ M | (γ − χ(γ))kx = 0 for all γ ∈ Γ and k ≫ 0}. If χ is given by
the natural projection Γ −→ Γ/m ∼= C then M[m] = M[χ].

Definition 4.2. A Gelfand-Tsetlin module is a finitely generated U-module M such that its
restriction M|Γ to Γ can be decomposed as a direct sum M|Γ =

⊕
m∈Specm Γ M[m].

A U-module M is a Gelfand-Tsetlin module if and only if for each x ∈ M the cyclic
Γ-module Γ · x is finite dimensional over C [DFO94, §1.4], which easily implies the
following result.

Lemma 4.3. A U-submodule of a Gelfand-Tsetlin module is again a Gelfand-Tsetlin module.

For every maximal ideal m of Γ we denote by ϕ(m) the number of non-isomorphic
simple Gelfand-Tsetlin modules M for which M[m] 6= 0. Sufficient conditions for the
number ϕ(m) to be nonzero and finite were established in [FO14].

Consider the integral closure Γ of Γ in L. It is a standard fact that if Γ is finitely
generated as a complex algebra then any character of Γ has finitely many extensions

to characters of Γ. Let m be any lifting of m to Γ, and Mm be the stabilizer of m

in M. Note that the monoid Mm is defined uniquely up to G-conjugation. Thus
the cardinality of Mm does not depend on the choice of the lifting. We denote this
cardinality by |m|.
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Theorem 4.4. [FO14, Main Theorem and Theorem 4.12] Let Γ be a commutative domain
which is finitely generated as a complex algebra and let U ⊂ (L#M)G be a right Galois order
over Γ. Let also m ∈ Specm Γ be such that |m| is finite. Then the following hold.

(i) The number ϕ(m) is nonzero.
(ii) If U is a Galois order over Γ then the number ϕ(m) is finite and uniformly bounded.

(iii) If U is a Galois order over Γ and Γ is a normal Noetherian algebra, then for every simple
Gelfand-Tsetlin module M the space M[m] is finite dimensional and bounded.

5. Rational Galois orders

Recall that V is a complex vector space with an inner product. We set Λ = S(V),
and L = Frac(Λ). Recall that an element g ∈ GL(V) is called a pseudo-reflection if it has
finite order and fixes a hyperplane of codimension 1. By definition every reflection is
a pseudo-reflection, and the converse holds over R but not over C, which is why finite
groups generated by pseudo-reflections are called pseudo-reflection groups or complex
reflection groups. We fix G ⊂ GL(V) a pseudo-reflection group. As usual the action of
G on V induces actions on Λ and L, and we denote by Γ the algebra of G-invariant
elements of Λ and set K = LG.
5.1. Let L →֒ EndC(L) be the C-algebra morphism that sends any rational function
f ∈ L to the C-linear map m f : f ′ ∈ L 7→ f f ′ ∈ L. Although EndC(L) is not a L-

algebra, it is an L-vector space with f · ϕ = m f ◦ ϕ for all ϕ ∈ EndC(L). Also G acts on

EndC(L) by conjugation and σ · m f = σ ◦ m f ◦ σ−1 = mσ( f ) for each σ ∈ G, so the map
f 7→ m f is G-equivariant. For simplicity we will write f for the operator m f .

Given v ∈ V we define a map av : V −→ V given by av(v′) = v′ + v. This in
turn induces an endomorphism of Λ, which we denote by tv, given bt tv( f ) = f ◦ av;
we sometimes write f (x + v) for tv( f ). Each map tv can be extended to a C-linear
operator on L and tv ◦ tv′ = tv+v′ , so V acts on L by automorphisms and we can form
the smash product L#V. Once again there is an algebra morphism L#V → EndC(L),
and the definitions imply that this map is G-equivariant.

Lemma 5.1. Let G, V, and L be as above, and let Z ⊂ V be an arbitrary subset. Then the set
{tz | z ∈ Z} ⊂ EndC(L) is linearly independent over L, and the map L#V −→ EndC(L) is
injective.

Proof. Put T = ∑
N
i=1 fitzi

where fi ∈ L× and each zi ∈ Z, and assume T = 0. Given
p ∈ Λ we obtain that 0 = T(p) = ∑i fi p(x + zi), or, equivalently, p(x)∑i fi = ∑i[p(x +
zi)− p(x)] fi. Let v ∈ V be arbitrary and choose a polynomial p of positive degree such
that p(v) = p(v + zj) for all j 6= i but p(v) + 1 = p(v + zi). Then 0 = p(v + zi) fi(v)
so fi(v) = 0. Since v is arbitrary this implies that fi = 0 so the set {tz | z ∈ Z} is
L-linearly independent. Since the morphism L#V −→ EndC(L) is L-linear and sends
an L-basis of L#V to a linearly independent subset, it must be injective. �

5.2. Rational Galois orders. Given a character χ : G −→ C×, the space of relative
invariants ΛG

χ = { f ∈ Λ | σ · p = χ(σ)p for all σ ∈ G} ⊂ Λ is a ΛG-submodule of

Λ. By a theorem of Stanley [Hil82, 4.4 Proposition] ΛG
χ is a free ΛG-module of rank

1. The generator of ΛG
χ is dχ = ∏H∈A(G)(αH)

aH , where A(G) is the set of hyperplanes
10



that are fixed pointwise by some element of G, each αH is a linear form such that
ker αH = H, and aH ∈ Z≥0 is minimal with the property det[s∗H ]

aH = χ(sH) for an
arbitrary generator sH of the stabilizer of H in G. Note that aH is independent on the
choice of sH , and that if G is a Coxeter group then aH is either 1 or 0.

Definition 5.2 ([Har, Definition 4.3]). A co-rational Galois order is a subalgebra U ⊂
EndC(L) generated by Γ and a finite set of operators X ⊂ (L#V)G such that for each X ∈ X
there exists χ ∈ Ĝ with Xdχ ∈ Λ#V.

Given X ∈ L#V we define its support as the set of all v ∈ V such that tv appears
with nonzero coefficient in X. Note that the support is well-defined since the set
{tv | v ∈ V} is free over L. We denote the support of X by supp X. Given a co-
rational Galois order U ⊂ (L#V)G we denote by Z(U) the additive monoid generated
by {supp X | X ∈ U} in V. By [Har, Theorem 4.2] U is a co-principal Galois order in
(L#Z(U))G. In particular Γ∗ is a left U-module.

Let v ∈ V, let evv : Γ −→ C be the character given by evaluation at v, and let
m = ker evv. Then the cyclic U-module U · evv ⊂ Γ is a Gelfand-Tsetlin module [Har,
Theorem 3.3], and since evv ∈ U · evv[m] we have a new proof that ϕ(m) 6= 0 for
rational Galois orders. The following sections are devoted to study a different module
associated to v, which always contains evv and turns out to be equal to evv ·U for
generic v (see Theorem 8.5).

6. Structure of Γ-modules associated to Postnikov-Stanley operators

Throughout this section we fix a complex vector space V, and a root system Φ. We
also fix a root subsytem Ψ ⊂ Φ with base Ω ⊂ Ψ. We denote by G the Weyl group
associated to Φ and by W the one associated to Ψ. Like before, Λ = S(V), L = Frac(Λ),
Γ = ΛG, and K = LG. Since W ⊂ G, the group W also acts on the vector spaces Λ,
Γ, etc. All Schubert polynomials, Postnikov-Stanley operators, standard elements, etc.
are defined with respect to the subsystem Ψ and the base Ω unless otherwise stated.

Lemma 6.1. Let v ∈ V and let πW : Λ −→ Λ/IW be the natural projection. Then
πW(tv(Γ)) = (Λ/IW)Wv .

Proof. Recall that K is the fixed field of G in L, and hence the fraction field of Γ. Since
the extension LW ⊂ L is a Galois extension with Galois group W, the field LWtv(K) ⊂ L

must be the fixed field of a subgroup W̃ ⊂ W. If σ ∈ Wv and f ∈ K then σ · tv( f ) =

tσ(v)(σ · f ) = tv( f ), so Wv ⊂ W̃. On the other hand, if σ ∈ W̃, then tv( f ) = tσ(v)( f ).
So, in this case, tσ(v)−v( f ) = f for all f ∈ K and this implies that σ(v) = v so σ ∈ Wv.

Thus LWtv(K) = LWv which implies that ΛWtv(Γ) = ΛWv . Since all non-constant
polynomials in ΛW are in the kernel of πW we see that πW(ΛWtv(Γ)) = πW(tv(Γ)), so
this last space equals πW(ΛWv) = (Λ/IW)Wv . �

6.1. Let D(Ω, v) be the complex subspace of L∗ (the complex dual of L) spanned by
{ΩDv

σ | σ ∈ W}. From now on we omit the superscript Ω. The generalized Leibniz
rule from Proposition 3.2 implies that D(Ω, v) is a Λ-submodule of HomC(L,C), since
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for each f ∈ Λ and g ∈ L we have

( f · Dv
σ)(g) = D0

σ(tv( f )tv(g)) = ∑
τ≤σ

D0
τ,σ(tv( f ))D0

τ(tv(g))

= ∑
τ≤σ

Dv
τ,σ( f )Dv

τ(g).

Now let Dv
σ denote the restriction of Dv

σ to Γ and let D(Ω, v) be the subspace of
Γ∗ spanned by {Dv

σ | σ ∈ W}. We call D(Ω, v) the space of BGG differential operators
associated to Ω and v. The same computation as above shows that D(Ω, v) is a Γ-
submodule of Γ∗. We record this result in the following theorem.

Theorem 6.2. Let v ∈ V. The space D(Ω, v) is a Γ-submodule of Γ∗ and for each γ ∈ Γ

γ · Dv
σ = γ(v)Dv

σ + ∑
τ<σ

Dv
σ,τ(γ)D

v
τ .

6.2. The structure of D(Ω, v) as Γ-module. The modules D(Ω, v) will play an impor-
tant role in our study of Gelfand-Tsetlin modules over a co-rational Galois order. We
thank David Speyer for pointing out the following technical result in [Spe17], which
greatly simplified our presentation.

Recall that Wv is the set of minimal length representatives of the left Wv-cosets.

Lemma 6.3. Let v ∈ V be Ω-standard, let A = (Λ/IW)Wv , and let ωv
0 be the longest element

in Wv. Then the bilinear form (a, b) ∈ A × A 7→ Dv
ωv

0
(ab) ∈ C is non-degenerate.

Proof. By the Chevalley-Shephard-Todd theorem ΛWv and ΛW are polynomial alge-
bras, generated by algebraically independent sets p1, . . . , pr and q1, . . . , qs respectively.
Clearly pi ∈ ΛWv and A = C[q1, . . . , qs]/J, where J is the ideal generated by the pi’s.
This implies that A is a finite-dimensional complete intersection, and hence a graded
Artinian self-injective ring.

Set r = ℓ(ωv
0). Then An = 0 for n > r, while Ar is spanned over C by Sωv

0
and

the bilinear form in the statement is given by taking the coefficient of Sωv
0

in the
product f g. By [Lam99, (16.22) and (16.55)], A is a symmetric algebra and there exists
a nonsingular associative bilinear form B : A × A −→ C; where by associative we
mean that B(a, bc) = B(ab, c) for every a, b, c ∈ A. To finish the proof we show that we

can choose B so that B(a, b) = Dab
ωv

0
. Since B is non-degenerate there exists a′ ∈ A such

that B(a′,Sωv
0
) = 1, and if a′ were of positive degree then B(a′,Sωv

0
) = B(1, a′Sωv

0
) = 0

so a′ ∈ C. Without loss of generality we may assume that a′ = 1, which implies that
B( f , g) = B(1, f g) = Dωv

0
( f g). �

Proposition 6.4. Suppose that v ∈ V is Ω-standard.

(a) The set {Dv
σ | σ ∈ Wv} is a basis of D(Ω, v), and Dv

σ = 0 for all σ /∈ Wv.
(b) Let x = ∑σ∈Wv aσDv

σ. Then D(Ω, v) = Γ · x if and only if aωv
0
6= 0.

(c) With the same notation as as in part b, (γ− γ(v))x = 0 for all γ ∈ Γ if and only if aσ = 0
for all σ 6= e.

(d) Let v′ ∈ V. The space D(Ω, v) ∩D(Ω, v′) is non-zero if and only if v′ is in the G-orbit of
v. Furthermore if v′ is in the W-orbit of v then D(Ω, v) = D(Ω, v′).
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Proof. Since Dv
σ is a differential operator we have Dv

σ = D0
σ ◦ tv|Γ, so for every γ ∈ Γ

Dv
σ(γ) = D0

σ(tv(γ)). By the definition of D0
σ, the latter value depends only on the

image of tv(γ) modulo the ideal IW , and, thanks to Lemma 6.1, πW(tv(Γ)) is exactly the
space of Wv-invariants of Λ/IW . On the other hand, the set of Schubert polynomials
{Sσ | σ ∈ Wv} forms a basis of this space. Thus, for each σ ∈ Wv there exists
γσ ∈ Γ such that tv(γσ) ≡ Sσ mod IW and these elements span πW(tv(Γ)). Hence
Dv

σ(γτ) = δσ,τ for all σ ∈ W and τ ∈ Wv, and this implies part (a).
For part (b), note that by Lemma 6.3, for each σ ∈ Wv there exist polynomials γ∗

σ

such that Dv
ω0

v
(γ∗

σγτ) = δσ,τ for all τ ∈ Wv. This implies that γ∗
σ · D

v
ωv

0
= Dv

σ and hence,

if x is as in the statement with aωv
0
6= 0, then for each σ ∈ Wv there exists γ ∈ Γ such

that γ · x equals the sum of Dv
σ and a linear combination of operators Dv

τ with τ < σ.
This proves part b.

Let m = ker evv ⊂ Γ. The adjointness between the Hom and the tensor product
functors implies that HomΓ(Γ/m, Γ∗) ∼= HomC(Γ/m,C) ∼= C, so the space of elements
in Γ∗ annihilated by m has complex dimension 1. Since γDv

e = γ(v)Dv
e this space is

generated by Dv
e and this implies (c).

It follows from the explicit formulas for the action of γ ∈ Γ that each element in
D(Ω, v) is a generalized eigenvector of γ with eigenvalue γ(v). Thus if D(Ω, v) ∩
D(Ω, v′) 6= 0 we must have γ(v) = γ(v′) for all γ ∈ Γ which implies that v′ ∈ G · v.

Now if v′ = τ(v) for some τ ∈ W then D
τ(v)
σ = D0

σ ◦ tτ(v)|Γ = D0
σ ◦ τ ◦ tv ◦ τ−1|Γ =

D0
σ ◦ τ ◦ tv. Since D0

σ ◦ τ lies in HW , for each ρ ∈ W there exist cρ ∈ C such that

D0
σ ◦ τ = ∑ρ cρD

0
ρ. Hence, D

τ(v)
σ = ∑ρ cρDv

ρ , which proves part (d). �

6.3. Jordan blocks of elements in Γ. Let v ∈ V be Ω-standard. For each γ ∈ Γ let us
denote by [γ] the matrix of the endomorphism of D(Ω, v) induced by γ relative to the
basis described in Proposition 6.4(a) and ordered by decreasing length. By Theorem
6.2, [γ] is a lower triangular matrix all diagonal entries of which equal γ(v). Thus, the
Jordan form of the matrix consists of Jordan blocks with this eigenvalue. To provide
further properties on the Jordan form of [γ] for generic elements of Γcwe need the
following lemma.

Lemma 6.5. For each σ ∈ W and each f ∈ Λ1 we have D0
σ( f ℓ(σ)) = ∑C(σ) ∏

ℓ(σ)
i=1 D0

si
( f ),

where the sum runs over the set C(σ) of reduced expressions σ = s1s2 · · · sℓ(σ) of σ.

Proof. We will prove the statement by induction on r = ℓ(σ). The base case r = 0
follows from f (0) = 0. Now writing f r = f f r−1 and using Proposition 3.2 and the fact
that D0

τ( f ) = 0 if ℓ(τ) 6= 1, we obtain

D0
σ( f f r−1) = ∑

ℓ(τ)=ℓ(σ)−1

D0
τ( f r−1)D0

τ,σ( f )

= ∑
ℓ(τ)=ℓ(σ)−1

(

∑
C(τ)

ℓ(τ)

∏
i=1

D0
si
( f r−1)

)
D0

τ,σ( f ).

Now note that D0
τ,σ = D0

s if σ = τs, and otherwise D0
τ,σ = 0. This completes the

proof. �
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Theorem 6.6. Let v ∈ V be standard and let γ ∈ Γ. Then the Jordan form of the matrix [γ]
consists of Jordan blocks of size at most ℓ(ωv

0) + 1 and eigenvalue γ(v). Furthermore, there
is at most one block of this maximal size, and for a generic element γ of Γ there is exactly one
such block.

Proof. Set r = ℓ(ωv
0). The formula for the action of Γ given in Theorem 6.2 implies that

(γ − γ(v))Dv
σ is a linear combination of Dv

τ with ℓ(τ) < ℓ(σ). It follows that

(γ − γ(v))ℓ(σ)+1Dv
σ = 0

so γ(v) is the only possible eigenvalue of γ acting on the space D(Ω, v), and ker(γ −
γ(v))r is contained in the linear span of Dv

ωv
0
. This proves that all Jordan blocks are of

size at most r + 1, and that there is at most one block of this size. We next show that
the Jordan form of [γ] has generically one such block.

Denote by N the subset of Γ/ ann D(Ω, v) consisting of the coclasses of those γ ∈ Γ

whose Jordan form contains only blocks of size strictly smaller than r+ 1. Equivalently,
this is the set of coclasses of γ such that (γ − γ(v))rD(Ω, v) = 0, and this set is a
Zariski closed subset of Γ/ ann D(Ω, v). Now let Sv ⊂ Wv be the set of all simple
transpositions in Wv and let S = ∑s∈Sv

Ss ∈ (Λ/IW)Wv . Furthermore, let γ ∈ Γ be
such that π ◦ tv(γ) = S, which exists by Lemma 6.1. Then γ(v) = 0 and

γr · Dωv
0
(v) = Dv

e,ωv
0
(γr)Dv

e = D0
ωv

0
(Sr)Dv

e .

Now, by Lemma 6.5, we have

D0
ωv

0
(Sr) = ∑

C

r

∏
i=1

D0
si
(S) = ∑

C

r

∏
i=1

ISv
(si)

where the sum is over all reduced decompositions s1 · · · sr of ωv
0 and ISv

is the indicator
function of the set Sv (that is, ISv is 1 over Sv and 0 over the complement of Sv).
Thus, the product ∏

r
i=1 ISv

(si) is zero unless each si in the reduced decomposition lies
in Sv. In view of [Hum90, 1.10 Proposition (b)], there is at least one such reduced
decomposition and hence D0

ωv
0
(Sr) ∈ Z>0. This shows that γ /∈ N and hence N

is a Zariski closed proper subset of Γ/ ann D(Ω, v). Thus the complement of N is
dense. �

7. Action of a co-rational Galois order

In this section G is a reflection group acting on V, and hence on Λ = S(V) and on its
field of rational functions L = Frac(Λ). We fix a co-rational Galois order U ⊂ (L#V)G

and denote by Z ⊂ V the additive monoid generated by supp U.
We assume again that Φ ⊂ V∗ is a root system with base Σ and G = W(Φ). We

denote by Ψ a standard subsystem with base Ω ⊂ Σ and set W = W(Ψ). All Schubert
polynomials and Postnikov-Stanley differential operators appearing in this section are
defined with respect to Ω unless otherwise stated.
7.1. Recall that for each σ ∈ G we introduced a divided difference operator as an
element of the smash product L#G. Since EndC(L) is an (L#G)-module, given X ∈
EndC(L) and σ ∈ G, we obtain a new operator on L by taking ∂σ(X). Notice that, in
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general, this operator is different from the composition of ∂σ (regarded as an element of
EndC(L)) and X. In the following lemma we collect some properties of these operators.

Lemma 7.1. Let X ∈ EndC(L).

(a) For each σ ∈ G we have ∂σ(X)|K = ∂σ ◦ X|K.
(b) Let v ∈ V be Ω-standard. If σ ∈ Wv and τ ∈ Wv then

Dv
σ ◦ ∂τ =

{
Dv

στ if ℓ(στ) = ℓ(σ) + ℓ(τ);

0 otherwise.

(c) Let Ψ̃ ⊂ Ψ be a standard subsystem, Wθ ⊂ W be the corresponding parabolic subgroup,

ωθ
0 be the longest word in Wθ , and ∆(Ψ)θ := ∆(Ψ)/∆(Ψ̃). If X ∈ EndC(L)Wθ , then

∑
σ∈W

σ · X = |Wθ |∂ωθ
0
(X∆(Ψ)θ).

Proof. We prove part (a) by induction on ℓ(σ). If σ is the identity then the result is
obvious. Assume now that σ = sτ with ℓ(σ) = 1 + ℓ(τ) and s ∈ S, and that the
statement holds for τ. Setting X′ = ∂τ(X), we obtain

∂σ(X)( f ) = ∂s(X
′)( f ) =

1

αs
(X′( f )− s ◦ X′ ◦ s( f )) =

1

αs
(X′( f )− s(X′( f )))

= ∂s(X
′( f )) = ∂s(∂τ(X( f ))) = ∂σ(X( f ))

which is the desired indentity.
We now prove part (b). The fact that τ ∈ Wv implies that tv ◦ ∂τ = ∂τ ◦ tv. Now

recall from Proposition 3.2 that D0
σ = ev0 ◦∂σ, so

Dv
σ ◦ ∂τ = D0

σ ◦ ∂τ ◦ tv

= ev0 ◦∂σ ◦ ∂τ ◦ tv =

{
ev0 ◦∂στ ◦ tv = Dv

στ if ℓ(στ) = ℓ(σ) + ℓ(τ);

0 otherwise.

Finally we prove part (c). The statement of [Hil82, Chapter IV (1.6)] implies that

∂ω0 = 1
∆(Φ) ∑σ∈G(−1)ℓ(σ)σ as operators on L, and since the map L#G −→ EndC(L) is

injective, the identity holds in L#G. Using that and the fact that σ ·∆(Φ) = (−1)ℓ(σ)∆(Φ)
we deduce that ∑σ∈G σ · X = ∂ω0(X∆(Φ)) for any X ∈ EndC(L). Certainly, the analo-
gous identity holds if we replace G by any subgroup and Φ by the corresponding root
subsystem.

Let ω0 and ω1 be the longest elements of W and Wθ , respectively. Then ω0ω−1
1 ∈

ω0Wθ and its length equals to ℓ(ω0)− ℓ(ω1), the smallest possible length of an element

in the coset ω0Gθ. Thus ωθ
0 = ω0ω−1

1 and

∑
σ∈W

σ · X = ∂ω0(X∆(Ψ)) = ∂ωθ
0
∂ω1

(X∆(Ψ̃)∆(Ψ)θ).

Now both ∆(Ψ)θ and X are Wθ-invariant, so the last expression equals

∂ωθ
0
(X∆(Ψ)θ∂ω1

(∆(Ψ̃))) = |Wθ |∂ωθ
0
(X∆(Ψ)θ),
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which completes the proof. �

Recall that for each z ∈ V there exists some Ω-standard element in the orbit W · z.
Thus, given Z ⊂ V that is stable by the action of W, we can choose a set of Ω-standard
representatives of Z/W. The following proposition shows how this fact can be used
to express elements of U in different ways.

Proposition 7.2. Let X ∈ (L#V)G and assume that there exists χ ∈ Ĝ such that dχX ∈ Λ#V.

(a) For each z ∈ supp X there exists fz ∈ ΛGz such that

X = ∑
z∈supp X

fz

dz
χ

tz,

where dz
χ is the product of all α ∈ Φ+ dividing dχ such that α(z) 6= 0.

(b) Let Y be a set of Ω-standard representatives of supp X/W, and for each y ∈ Y denote by

ω
y
0 the longest element in Wy, and by ∆(Ψ)y the product of all roots in Ψ+ with α(y) 6= 0.

Then

X = ∑
y∈Y

1

|Wy|
∂ω

y
0

(
fy∆(Ψ)y

d
y
χ

ty

)
.

Proof. Fix z ∈ supp X and let h be the coefficient of tz in X, which is well defined by
Lemma 5.1. Since X is G-invariant we know that σ ·X = X for any σ ∈ Gz, so σ(h) = h.
Writing h = g

dχ
we have

g

dχ
= σ ·

g

dχ
=

σ · g

χ(g)dχ
.

Therefore, σ · g = χ(σ)g for all σ ∈ Gz.
Denote by χ′ the restriction of χ to Gz. Observe that Gz is the reflection group gen-

erated by the reflections fixing z and it acts on Λ by restriction. Thus, by Stanley’s

theorem, the space of relative invariants Λ
Gz

χ′ is generated over ΛGz by dχ′ , and this

polynomial is the product of all roots α ∈ Φ+ dividing dχ such that α(z) = 0. There-

fore, g = fzdχ for some fz ∈ ΛGz , which implies that
g

dχ
= fz

dχ/dχ′
= fz

dz
χ
. This proves

part (a).
Since X is G-invariant, it is clear that

X =
1

|W| ∑
σ∈W

σ · X = ∑
y∈Y

1

|W| ∑
σ∈W

σ ·

(
fy

d
y
χ

ty

)
.

As we mentioned before, the coefficient of ty is Gy-invariant, and hence it is Wy-
invariant. After applying Lemma 7.1(c) to W, we obtain

∑
σ∈W

σ ·

(
fy

d
y
χ

ty

)
= |Wy|∂ω

y
0

(
fy∆(Ψ)y

d
y
χ

ty

)

and the result follows. �
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7.2. U-submodule of Γ∗ associated to v. Recall that to each v ∈ V we associate the
character evv : Γ −→ C given by evaluation at v. Since Γ consists of G-symmetric
polynomials, evv = evσ(v) for any σ ∈ G, so we can assume that v is Ω-standard.

Furthermore, note that evv = Dv
e ∈ D(Ω, v) ⊂ Γ∗.

Definition 7.3. Let v ∈ V be standard. We denote by V(Ω, T(v)) the space ∑
z∈Z

D(Ω, v + z).

Recall that Φ0(v) is the set of all roots in Φ such that α(v) = 0. The following
theorem shows that under certain conditions the space V(Ω, T(v)) is a U-module.
This theorem generalizes [EMV, Theorem 10] and [RZ17, 5.6 Theorem] to rational
Galois orders.

Theorem 7.4. Let v ∈ V be standard and assume that Φ0(v + z) ⊂ Ψ for each z ∈ Z. Then
V(Ω, T(v)) ⊂ Γ∗ is a Gelfand-Tsetlin U-module.

Proof. By Theorem 6.2, the action of Γ on V(Ω, T(v)) is locally finite, so we only need
to show that it is a U-submodule of Γ∗. By definition, U is generated by a finite set X
such that any element X ∈ X † satisfies the hypothesis of Proposition 7.2. Hence it is
enough to prove the following: for each z′ ∈ Z, each σ ∈ G, and each X satisfying the

hypothesis of Proposition 7.2, we have Dv+z′
σ ◦ X ∈ V(Ω, T(v)). We will prove this in

several steps.
First, let v′ be a standard element in the W-orbit of v+ z′. Since D(Ω, v′) = D(Ω, v+

z′) by Proposition 6.4(d), the statement in the theorem is equivalent to showing that

Dv′
σ ◦ X ∈ V(Ω, T(v)). Now let W̃ = Wv′ and let Ψ̃ = Ψ0(v′) be the associated standard

root subsystem. By Proposition 7.2(b), X can be written as a sum of operators of the

form ∂ω̃z
0
(Fztz) for z ∈ Z, where ω̃z

0 is the longest element of W̃z and Fz =
fz∆(Ψ̃)z

dz
χ

. Thus

Dv′

σ ◦ X = ∑
z∈Y

1

|W̃z|
Dv′

σ ◦ ∂ω̃z
0
(Fztz)|Γ,

where Y is a set of Ω̃-standard representatives of supp X/W̃. So, it is enough to show

that Dv′
σ ◦ ∂ω̃z

0
(Fztz)|Γ ∈ V(Ω, T(v)) for any z ∈ Y.

We claim that Fz is regular at v′. Recall that dz
χ is the product of all roots αs such

that χ(s) = −1 and αs(z) 6= 0. If one of this factors is such that αs(v′) = 0 then αs ∈
Φ0(v′) = Φ0(τ(v + z′)) = τ(Φ0(v + z′)) for some τ ∈ W. Now since Φ0(v + z′) ⊂ Ψ

by hypothesis, and since Ψ is stable by the action of W, it follows that Φ0(v′) ⊂ Ψ,

and hence αs is also a factor of ∆(Ψ̃)z. Thus the term ∆(Ψ̃)z in the numerator cancels
out all the linear terms in the denominator which are zero at v′. This proves that Fz is
regular at v′.

We make one further simplification. By parts (a) and (b) of Lemma 7.1,

Dv′

σ ◦ ∂ω̃z
0
(Fztz)|Γ = D0

σ ◦ tv′ ◦ ∂ω̃z
0
◦ Fztz|Γ = D0

σ ◦ ∂ω̃z
0
◦ tv′(Fz)tv′+z|Γ

=

{
D0

σω̃z
0
◦ tv′(Fz)tv′+z if ℓ(σω̃z

0) = ℓ(σ) + ℓ(ω̃z
0);

0 otherwise.
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Here we have used that tv and ∂ω̃z
0

commute since ω̃z
0 ∈ Wv′ . If the result above is 0

then we are done. On the other hand, since Fz is regular at v′ then tv′(Fz) is regular
at 0. So, writing tv′(Fz) = ∑ρ∈W(tv′(Fz))(ρ)Sρ and recalling from Proposition 3.2 that

(tv′(Fz))(ρ)(0) = D0
ρ(tv′(Fz)) = Dv′

ρ (Fz), we obtain that

Dv′

σ ◦ ∂ω̃z
0
(Fztz)|Γ =

{
∑ρ∈W Dv′

ρ (Fz)(D0
σω̃z

0
◦Sρtv′+z)|Γ if ℓ(σω̃z

0) = ℓ(σ) + ℓ(ω̃z
0);

0 otherwise.

Finally, let γ ∈ Γ. Then

(D0
σω̃z

0
◦Sρtv′+z)(γ) = D0

σω̃z
0
(Sρtv′+z(γ))

= ∑
ν∈W

tv′+z(γ)(ν)(0)D
0
σω̃z

0
(SρSν)

= ∑
ν∈W

c
σω̃z

0
ρ,ν Dv+z′

ν (γ).

Using the identities above, we obtain

Dv′

σ ◦ X = ∑
z∈Y

ℓ(σω̃z
0)=ℓ(σ)+ℓ(ω̃z

0)

1

|W̃z|
∑

ρ,ν∈W

c
σω̃z

0
ρ,ν Dv′

ρ (Fz)D
v′+z
ν

= ∑
z∈Y

ℓ(σω̃z
0)=ℓ(σ)+ℓ(ω̃z

0)

1

|W̃z|
∑

ν∈W

Dv′

ν,σω̃z
0
(Fz)D

v′+z
ν .

Now v′ + z = τ(v + z′) + z = τ(v + z′ + τ−1(z)) and hence Dv′+z
ν ∈ V(Ω, T(v)). �

8. Standard Galois orders of type A

In this section we consider a special type of Galois order, for which we find a basis
of Postnikov-Stanley operators for the module introduced in Theorem 7.4. We also
give a sufficient condition for the simplicity of this module.
8.1. Given µ = (µ1, . . . , µr) ∈ Nr we set Cµ = Cµ1 × · · · ×Cµr and I = I(µ) = {(k, i) |
1 ≤ k ≤ r, 1 ≤ i ≤ µk}. Also, for each v ∈ Cµ and (k, i) ∈ I, we will denote by vk

the projection of v to the component Cµk , and by vk,i the i-th coordinate of vk. We will
denote by ek,i the vector of Cµ with (ek,i)l,j = δk,lδi,j, and refer to the set {ek,i | (k, i) ∈ I}
as the canonical basis of Cµ. We denote by {xk,i | (k, i) ∈ I} the dual basis to the
canonical basis, so C[Xµ] = C[xk,i | (k, i) ∈ I] is the algebra of polynomial functions
over Cµ. We denote the fraction field of this algebra by C(Xµ). For each (k, i) ∈ I we
write tk,i for the automorphism tek,i

∈ EndC(C(Xµ)).
For each 1 ≤ j ≤ r the symmetric group Sµ j

acts on C
µ j by permuting the coordinates

of a vector, and hence Sµ = Sµ1
× · · · × Sµr acts on Cµ. This is a reflection group

corresponding to the root system Φ = {xk,i − xk,j | (k, i), (k, j) ∈ I}. We fix Σ =
{xk,i − xk,i+1 | 1 ≤ k ≤ r, 1 ≤ i < µk} as a base of Φ. Given σ ∈ Sµ we will denote

by σ[k] its projection to Sµk
. Also, given τ ∈ Sµk

we will denote by τ(k) the unique

element of Sµ such that τ(k)[k] = τ and τ(k)[l] = IdSµl
for l 6= k. We denote by
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symk = 1
µk! ∑σ∈Sµk

σ(k) ∈ C[Sµ], and ∆k = ∏1≤i<j≤µk
(xk,i − xk,j). Notice that ∆k is the

generator of the space of relative invariants associated to the character sg[k] given by
sg[k](σ) = sg(σ[k]).

The action of Sµ on Cµ induces actions on C[Xµ] and C(Xµ), so we may consider

Galois orders in (C(Xµ)#Cµ)Sµ . The following definition distinguishes a special class
of such rational Galois orders.

Definition 8.1. Let µ = (µ1, . . . , µr) ∈ N and let U ⊂ (C(Xµ)#Cµ)Sµ be a Galois order. We

will say that U is a standard Galois order of type A if it is generated by C[Xµ]
Sµ and a set

X = {X±
k | 1 ≤ k ≤ r′} for some r′ ≤ r such that

X±
k = symk

(
t±ek,1

f±k

∏
µk

j=2(xk,1 − xk,j)

)
.

Remark. As indicated earlier, by definition, a standard Galois order of type A is not necessarily
a standard Galois order in the sense of Hartwig’s definition, in [Har, Definition 2.30].

Notice that in the definition above X±
k ∆k ∈ C[Xµ]#Zµ so U is a co-rational Galois

order. From now on set µ = (µ1, . . . , µr′ , 0, . . . , 0) ∈ Nr. By definition, supp U = Zµ for
any U which is a standard Galois order of type A.

Example. As discussed in [Har, §4.2], finite W-algebras of type A are co-rational Galois
orders. The explicit formulas given in that paragraph show that they are in fact standard
Galois orders of type A. Simmilarly the formulas from [Har, §4.4] show that orthogonal
Gelfand-Tsetlin algebras, introduced by Mazorchuk in [Maz99], are also examples of standard
Galois orders of type A.

8.2. Modules of the form V(Ω, T(v)). Fix µ ∈ Nr and let U ⊂ (C[Xµ]#Cµ)Sµ be a

standard Galois order of type A. We will denote by Φ the root system {xk,i − xk,j | 1 ≤

k ≤ r′, 1 ≤ i < j ≤ µk}, and by Σ the base Σ ∩ Φ.

Given v ∈ Cµ we set Ψ(v) = {α ∈ Φ | α(v) ∈ Z}. We will say that v is a seed if Ψ

is a standard root subsystem of Φ and Ψ(v) = Φ0(v); notice that this second equality
is equivalent to Wv = W(Ψ(v)). We claim that for every element v ∈ Cµ there exists
a seed v of the form σ(v) + z for some z ∈ Zµ and some σ ∈ Sµ. Indeed, since Ψ(v)

is a root subsystem of Φ, there exists σ ∈ Sµ such that σ(Ψ(v)) = Ψ(σ−1(v)) is a

standard subsystem. In other words, v′ = σ−1(v) has the property that if v′k,i − v′k,j ∈ Z

for some (k, i), (k, j) ∈ I(µ) with i < j, then v′k,s − v′k,s+1 ∈ Z for any i ≤ s < j. It

follows that there exists z ∈ Zµ such that v′′ = v′ + z has an even stronger property: if
v′′k,i − v′′k,j ∈ Z for some (k, i), (k, j) ∈ I(µ) with i < j, then v′′k,s = v′′k,s+1 for any i ≤ s < j,

or equivalently v′′ is seed.

Fix a seed v, and set Ψ = Ψ(v) and Ω = Ψ(v) ∩ Σ. We denote by Z(v) the set of all
z ∈ Zµ such that α(z) ≥ 0 for all α ∈ Ω. This are the integral points in the fundamental
domain of the system Ω seen as a root system over the real vector space Rµ ⊂ Cµ, see
[Hum90, §1.12]. Also, for each z ∈ Z(v), we define an equivalence relation ∼z on I(µ),
by letting (k, i) ∼z (l, j) if and only if l = k and (v + z)k,i = (v + z)k,j. Denote by

I(µ, z) the set of all equivalence classes of this equivalence relation. Each equivalence
19



class I ∈ I(µ, z) is by definition a set of the form {(k, i), (k, i + 1), . . . , (k, j)} for some
1 ≤ i < j ≤ µk. We will write a+(I) for (k, i) and a−(I) for (k, j), i.e. the first and last
elements of I, respectively, with respect to the lexicographic order.

Lemma 8.2. Let v ∈ Cµ be a seed, Ψ = Ψ(v), Ω = Ψ ∩ Σ and W = W(Ψ).

(i) If z ∈ Zµ then v + z is Ω-standard if and only if z ∈ Z(v).
(ii) If z, z′ ∈ Z(v) and v + z = σ(v + z′) for some σ ∈ Sµ, then z = z′.

(iii) If z ∈ Z(v), then z ± δk,i ∈ Z(v) if and only if (k, i) = a±(I) for some I ∈ I(µ, z).

Proof. The definition of a seed implies that α ∈ Ψ if and only if α(v) = 0. Now v + z
is Ω-standard if and only if α(v + z) = α(z) ≥ 0 for all α ∈ Ω. Hence part (i) follows
immediately from these definitions.

Let now v+ z = σ(v + z′); since z ∈ Zµ, we can assume that σ ∈ Sµ. Then v− σ(v) =
σ(z′) − z, and so vk,i − σ(v)k,i = vk,i − vk,σ[k]−1(i) ∈ Z for all (k, i) ∈ I(µ). By the

definition of a seed this is possible if and only if σ(v) = v, so z = σ(z′). As mentioned
above, z, z′ ∈ Z(v) is equivalent to the property that α(z), α(z′) ∈ Z≥0 for all α ∈ Ω,
and by [Hum90, 1.12 Theorem, part (a)] there is exactly one element in W · z with this
property, so z = z′ and part (ii) is proved.

Finally it is easy to check that z ∈ Z(v) if and only if for each I ′ = {(k, i′), (k, i′ +
1), . . . , (k, j′)} ∈ I(µ, v) we have zk,i′ ≥ zk,i′+1 ≥ · · · ≥ zk,j′ . Thus if z + δk,i ∈ Z(v) then

either i = 1 or zk,i−1 > zk,i ≥ zk,i+1. In either of the two cases there exists I ∈ I(µ, v + z)
with a+(I) = (k, i). A similar argument shows that if z − δk,i ∈ Z(v) then there must
exist an I such that a−(I) = (k, i) and part (iii) is proved. �

We are now ready to prove the following result that generalizes [RZ17, 5.6 Theo-
rem] and [EMV, Theorem 10] to integral Galois algebras of type A. For the sake of
comparison, we note that the sets Z(v) and Wz in the following theorem correspond
respectively to the sets {ξ j | j ∈ J} and Xj defined in [EMV], and to the sets Nη and

Shuffle
η

ǫ(z)
defined in [RZ17].

Theorem 8.3. Let v ∈ Cµ be a seed, let Ψ = Ψ(v), let Ω = Ψ ∩ Σ, and let W = W(Ψ). Then

V(Ω, T(v)) =
⊕

z∈Z(v)

D(Ω, v + z).

In particular, the set {Dv+z
σ | z ∈ Z(v), σ ∈ Wz} is a basis of V(Ω, T(v)) and V(Ω, T(v)) is

a Gelfand-Tsetlin module over U with respect to Γ.

Proof. By definition V(Ω, T(v)) = ∑z∈Zµ D(Ω, v + z). Now by [Hum90, 1.12 Theorem]
for each z ∈ Zµ there exists σ ∈ W such that σ(z) ∈ Z(v). Since W is the stabilizer
of v it follows from part (d) of Proposition 6.4 that D(Ω, v + z) = D(Ω, v + σ(z)).
Hence V(Ω, T(v)) = ∑z∈Z(v) D(Ω, v + z). We next show that the sum is direct. Notice

that the space D(Ω, v + z) consists of eigenvectors of Γ = C[Xµ]
Sµ with eigenvalue

evv+z. If there exist z, z′ ∈ Z(v) such that γ(v + z) = γ(v + z′) for all γ ∈ Γ then
v + z = σ(v + z′) for some σ ∈ Sµ and, by Lemma 8.2(ii), z = z′. Hence the sum is
direct. The fact that the set in question is a basis follows from Proposition 6.4(a). �
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8.3. Simplicity criterion. In this paragraph U denotes a standard Galois order of type
A over (C[Xµ]#Cµ)Sµ with generators X±

k for 1 ≤ k ≤ r′. By definition

(X±
k )

† = symk

(
f±k

∏
µk

j=2(xk,1 − xk,j)
t∓1
k,1

)

for some fk ∈ C[Xµ]Hk , where Hk is the stabilizer of ek,1 in Sµ. Thus we have

(X±
k )

† =
µk

∑
i=1

(
f±k,i

∏
µk

j 6=i(xk,i − xk,j)
t∓1
k,i

)

where f±k,1 = (1/µk) f±k and f±k,j = σ · f±k,1 for any σ ∈ Sµ such that σ[k](1) = j. For

the rest of this paragraph f±k,i will denote the polynomials appearing in the formulas

displayed above.
Fix a seed v, and let Ψ = Ψ(v) and W = W(Ψ). For each I = {(k, i), . . . , (k, j)} ⊂

Σ(µ) we denote by S(I) the group of permutations of the set I. This is a parabolic

subgroup of Sµ (usually called a Young subgroup) with minimal generating set {s
(k)
t |

i ≤ t ≤ j − 1} ⊂ Sµ. Using this notation we have W = ∏I∈I(µ,0) S(I) and Wz =

∏I∈I(µ,z) S(I) for each z ∈ Z(v), which are Young subgroups of Sµ.

The following lemma describes the action of U on V(Ω, T(v)) in terms of the basis
given in Theorem 8.3. In order to state the lemma we need to fix some notation
which we will also use in the irreducibility criterion Theorem 8.5. Given z ∈ Z(v)
and 1 ≤ k ≤ r′ we will denote by Ik(µ, z) the subset of I(µ, z) consisting of sets of

the form I = {(k, i), . . . , (k, j)}. We also write σ+(I) = (j j − 1 · · · i)(k) and σ−(I) =
(i i + 1 · · · j)(k).

Lemma 8.4. Let v ∈ Cµ be a seed and let z ∈ Z(v). For each 1 ≤ k ≤ r′ we have

(X±
k )

† = ∑
I∈Ik(µ,z)

1

|W̃a∓(I)|
∂σ∓(I)

(
f±
a∓(I)

∏(k,j)/∈I(xa∓(I) − xk,j)
t∓1
a∓(I)

)
; ,

Dv+z
σ ◦ (X±

k )
† = ∑

I∈Ik(µ,z,σ∓(I))
∑

τ≤σσ∓(I)

Dv+z
τ,σσ∓(I)




f±
a∓(I)

∏
(k,j)/∈I

(xa∓(I) − xk,j)


D

v+z+δ(∓I)
τ ,

where Ik(µ, z, σ∓(I)) is the subset of Ik(µ, z) consisting of all I such that ℓ(σσ∓(I)) = ℓ(σ)+

ℓ(σ∓(I)) and δ(∓I) = δa∓(I).

Proof. Set Ψ̃ = Ψ0(v + z), Ω̃ = Ω ∩ Ψ̃, and W̃ = Wz. It is immediate that {±ea±(I) |

I ∈ Ik(µ, z)} is a set of Ω̃-standard representatives of {±ek,1, . . . ± ek,µk
}/W̃. Let ω̃0 be

the longest word in W̃, and let W̃(k,t) be the stabilizer of ek,t in W̃. Then σ+(I) is the

shortest element of the left coclass ω̃0W(k,i), while σ−(I) is the shortest element of the

left coclass ω̃0W(k,j). Thus using part (b) of Proposition 7.2 we can rewrite (X±
k )

† as

in the statement, and the formula for Dv+z
σ ◦ (X±

k )
† is identical to the one obtained in

Theorem 7.4. �
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Note that for each z ∈ Z(v) the longest word in Wz is ∏I∈I(µ,z) ω0(I), where ω0(I)

is the longest word in S(I). We will say that z′ ∈ Z(v) refines z if the following holds:
for each J ∈ I(µ, z′) there exists I ∈ I(µ, z) such that J ⊂ I. For instance this always

happens if z = v. If z′ refines z then the longest element in Wz′
z is equal to

ω0(z, z′) = ∏
I∈I(µ,z)

ω0(I) ∏
J∈I(µ,z′)

σ+(J).

Now σ ∈ W lies in Wz if and only if for each I = {(k, i), (k, i + 1), . . . , (k, j)} in I(µ, z)
we have σ[k](i) < σ[k](i + 1) < · · · < σ[k](j). Hence if z′ refines z then the longest

word of Wz′ lies in Wz.
This observation will play a crucial role in the following simplicity criterion which

generalizes the simplicity criterion for modules over orthogonal Gelfand-Tsetlin alge-
bras [EMV, Theorem 11] to modules over standard Galois orders. Note that the non-
integrality condition in that statement is equivalent to the condition f±k,i(v + z) 6= 0

below when U is an orthogonal Gelfand-Tsetlin algebra.

Theorem 8.5. Let v be a seed. If f±k,i(v + z) 6= 0 for all z ∈ Z(v) and all (k, i) ∈ I(µ) then

V(Ω, T(v)) is an irreducible U-module.

Proof. Set V = V(Ω, T(v)). We will show that any nonzero submodule N ⊂ V is in
fact equal to V. For each z ∈ Z(v) denote by πz : V −→ D(Ω, v + z) the projection to
the direct summand. We proceed in four steps.
Step 1. If t ∈ V and z ∈ Z(v) are such that πz(t) 6= 0, then Dv+z

e is in the module Ut
generated by t.
Proof of Step 1. First notice that Lemma 4.3 implies πz(t) ∈ Ut. Now let m = ker Dv+z

e ⊂
Γ. By Theorem 6.2 there exists a minimal l ∈ N such that mlπz(t) = 0, and part c of

Proposition 6.4 implies that ml−1πz(t) = CDv+z′
e ⊂ Ut.

Step 2. Dv+z
e ∈ N for all z ∈ Z(v).

Proof of Step 2. Step 1 implies that there exists v′ = v + z′ with z′ ∈ Z(v) such that

Dv′
e ∈ N. To prove Step 2, we will show that if Dv+z

e ∈ N then Dv+z±δk,i

e ∈ N for any

(k, i) ∈ I(µ) such that v ± δk,i ∈ Z(v). Indeed, by Lemma 8.4 and the definition of the
action of a co-rational Galois order on Γ∗,

πz+δ(∓I)
(
X±

k · Dv+z
e

)
= πz+δ(∓I)

(
Dv+z

e ◦ (X±
k )

†
)

= ∑
τ≤σ∓(I)

Dv+z
τ,σ∓(I)




f±
a∓(I)

∏
(k,j)/∈I

(xa∓(I) − xk,j)


Dv+z+δ(∓I)

τ

so the coefficient of Dv+δ(∓I)
σ∓(I)

is:

f±
a∓(I)

(v + z)

∏
(k,j)/∈I

(va∓(I) + za∓(I) − vk,j − zk,j)
.
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Notice that this coefficient is well defined, since by the definition of I(µ, z) the denom-
inator is nonzero. Also the hypothesis on v implies that the denominator nonzero, so

πz+δ(∓I)(Dv+z
e ◦ X±

k ) 6= 0, and Step 1 implies that D
v+z+δ(∓I)
e ∈ N for all I ∈ I(µ, z).

Step 3. D(Ω, v + z) ⊂ N for all non-critical z, i.e. for all z ∈ Z(v) such that for each
I = {(k, i), . . . , (k, j)} ∈ I(µ, v) we have zk,i > zk,i+1 > · · · > zk,j.
Proof of Step 3. Notice that for non-critical z, the stabilizer of z is the trivial subgroup
of W so the longest element in Wz is ω0, the longest element of W. To prove Step 3,

we build a sequence z(0), z(1), . . . of elements in Z(v) as follows. First set z(0) ∈ Zµ

such that z
(0)
k,i = min{zl,j | (l, j) ∈ I(µ)}. Now suppose z(s) has been defined, and

consider the set Ls = {(l, j) ∈ I(µ) | z
(s)
l,j < zl,j}. If Lz = ∅ then z(s) = z and we set

z(s+1) = z, otherwise we take (ks, is) to be the minimal element in Ls with respect to

the lexicographic order and set z(s+1) = z(s) + δks,is . Clearly z(s) = z for s ≫ 0.

We prove by induction that Dv+z(s)

ω
(s)
0

∈ N, where ω
(s)
0 is the longest element in Wz(s) .

If s = 0 then by definition z(0) is a seed, and hence ω
(0)
0 = e. Since we already

know that Dv+z(0)
e ∈ N the base case of the induction follows. Now take s ≥ 0 and

set y = z(s), y′ = z(s+1) and (k, i) = (ks, is) so y′ = y + δk,i. The definition of (k, i)
implies that there exists j ≤ µk such that I = {(k, i), . . . , (k, j)} ∈ I(µ, y), and also that
{(k, i)} ∈ I(µ, y′). It follows from the characterization of the longest word in Wz that

ω
(s+1)
0 = ω

(s)
0 σ+(I). A simple computation shows that ℓ(ω

(s+1)
0 ) = ℓ(ω

(s)
0 ) + ℓ(σ+(I))

so using Lemma 8.4 as in the previous step and the fact that Dv
σ,σ = evv for all σ ∈ W,

we see that the coefficient of D
v+y′

ω
(s+1)
0

in D
v+y

ω
(s)
0

◦ (X−
k )

† is

f±
a∓(I)

(v + y)

∏
(k,j)/∈I

(va∓(I) + ya∓(I) − vk,j − yk,j)
.

and the hypothesis implies that this expression is nonzero. Hence by part (b) of Propo-

sition 6.4 D(Ω, v + y′) ⊂ N, and in particular D
v+y′

ω
(s+1)
0

∈ N.

Step 4. D(Ω, v + z) ⊂ N for arbitrary z. In particular, N = V(Ω, T(v)).

Proof of Step 4. Fix z ∈ Z(v). Then there exists non-critical y(0) ∈ Z(v) such that

y
(0)
k,i ≥ zk,i for all (k, i) ∈ I(µ). For each s ≥ 0 set y(s+1) to be y(s) − δ(ks,is), where

(ks, is) is the maximal element in the set {(k, i) ∈ I(µ) | y
(s)
k,i > zk,i} with respect to the

lexicographic order; and if this set is empty then we set y(s+1) = y(s) = z. We claim

that D(Ω, v + y(s)) ⊂ N, and prove this by induction on s. Since y(0) is non-critical
the base case of the induction follows from Step 3. Now assume that the inclusion

holds for some s ≥ 0, and set (k, i) = (ks, is). Since I(µ, y(s+1)) is a partition of the set

I(µ), there exists I ∈ (µ, y(s+1)) such that (k, i) ∈ I. If I = {(k, i)} then by construction

I(µ, y(s)) = I(µ, y(s+1)); otherwise we have I(µ, y(s)) = I(µ, y(s+1)) ∪ {I ′, (k, i)} \ {I}
for I ′ = I \ {(k, i)}. From this it follows that for each I ′ ∈ I(µ, y(s)) there exists

J ∈ I(µ, y(s)) such that I ′ ⊂ J. Thus y(s) refines y(s+1), and this implies that the
23



longest element of Wy(s+1)
lies in Wy(s) . If we denote this element by ω

(s+1)
0 then using

Lemma 8.4 and the hypothesis just as in the previous step we see that the coefficient of

D
v+y(s+1)

ω
(s+1)
0

in πv+y(s+1)

(
D

v+y(s)

ω
(s+1)
0

◦ (X+
k )

†

)
is not zero. Once again part (b) of Proposition

6.4 implies D(Ω, v + y(s+1)) ⊂ N, and since y(s
′) = z for s′ ≫ 0, Step 4 is proven. �
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E-mail address: luis.enrique@ufabc.edu.br,
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