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MIN-MAX THEORY FOR FREE BOUNDARY MINIMAL HYPERSURFACES

II - GENERAL MORSE INDEX BOUNDS AND APPLICATIONS

QIANG GUANG, MARTIN MAN-CHUN LI, ZHICHAO WANG, AND XIN ZHOU

Abstract. For any smooth Riemannian metric on an (n+1)-dimensional compact manifold with
boundary (M,∂M) where 3 ≤ (n + 1) ≤ 7, we establish general upper bounds for the Morse
index of free boundary minimal hypersurfaces produced by min-max theory in the Almgren-Pitts
setting. We apply our Morse index estimates to prove that for almost every (in the C∞ Baire
sense) Riemannan metric, the union of all compact, properly embedded free boundary minimal
hypersurfaces is dense in M . If ∂M is further assumed to have a strictly mean convex point, we show
the existence of infinitely many compact, properly embedded free boundary minimal hypersurfaces
whose boundaries are non-empty. Our results prove a conjecture of Yau for generic metrics in the
free boundary setting.

1. Introduction

In his celebrated 1982 Problem Section, S.-T. Yau raised the following question:

Question 1.1 ([33]). Does every closed three-dimensional Riemannian manifold (M3, g) contain
infinitely many (immersed) minimal surfaces?

Back in 1960s, Almgren [1, 2] initiated an ambitious program to find minimal varieties, in ar-
bitrary dimensions and codimensions, inside any compact Riemannian manifold (with or without
boundary) using variational methods. He proved that weak solutions, in the sense of stationary
varifolds, always exist. The interior regularity theory for codimension one hypersurfaces was de-
veloped about twenty years later by Pitts [24] and Schoen-Simon [25]. As a consequence, they
showed that in any closed manifold (Mn+1, g) there exists at least one embedded closed minimal
hypersurface, which is smooth except possibly along a singular set of Hausdorff codimension at
least 7. These fascinating results partly motivated Question 1.1 asked by Yau. In a very recent
work [13], the second and the last author developed a version of min-max theory for manifolds with
boundary and proved up-to-the-boundary regularity for the free boundary minimal hypersurfaces
produced by their theory, hence completing the program set out by Almgren in the hypersurface
case.

The foundational work of Almgren and Pitts left open an important (and very difficult) question
of determining the Morse index of such minimal hypersurfaces produced by min-max methods.
According to finite dimensional Morse theory, one expects the Morse index of the critical point
produced using k-parameter families should be at most k. There had been no progress to this
question for almost thirty years until the recent striking advances led by Marques and Neves. For
instance, a precise control of the Morse index plays a significant role in their remarkable solution
to the Willmore conjecture [16]. Later in [17], they established the general Morse index upper
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bounds for minimal hypersurfaces produced by Almgren-Pitts theory for compact manifolds without
boundary (the one-parameter case was studied earlier in the works of Marques-Neves [15] and the
last author [34, 35]). In [19], they raised the question where similar index bounds hold in other
min-max constructions as e.g. in [4, 5, 6, 21, 37].

In this paper, we prove general Morse index upper bounds analogous to the ones in [17] arising
from the min-max theory developed in [13] for compact manifolds with boundary in the Almgren-
Pitts setting. Our main result can be stated roughly as follow:

Theorem 1.2 (General index upper bound, simplified version). If Σ is the min-max free boundary
minimal hypersurface in a compact Riemannian manifold with boundary produced by min-max over
a k-dimensional homotopy class, then

index(spt (Σ)) ≤ k.

Here, the Morse index of the support of Σ = m1Σ1 + · · · + mkΣk is defined to be the sum of the
indices of its components

index(spt (Σ)) := index(Σ1) + · · · + index(Σk).

A more precise statement can be found in Theorem 2.1 in Section 2. We will explain the
technical aspects of our main result later towards the end of this section. Before that, we present
a few applications of our general Morse index upper bounds.

A. Song’s proof of Yau’s conjecture for closed Riemannian manifolds. In the last few
years, we have witnessed substantial progress towards Yau’s conjecture Question 1.1 leading to
a complete solution by Song [28] for closed Riemannian manifolds. Marques and Neves [18] made
the first progress by settling Yau’s conjecture for closed manifolds with positive Ricci curvature,
or more generally, for closed manifolds satisfying the “Embedded Frankel Property”. Song was
able to localize the arguments in [18] to produce infinitely many minimal hypersurfaces inside any
domain Ω bounded by stable minimal hypersurfaces. The minimal hypersurfaces he constructed
are limits of free boundary minimal hypersurfaces obtained from the min-max theory developed in
[13]. As pointed out in [28, §2.3], it was not known at that time whether the p-width ωp(M,g) of
a compact manifold with non-empty boundary is achieved by an integral varifold since the free-
boundary analogue of the index bounds in [17] was not yet available in the literature. Our general
Morse index upper bounds together with the compactness theorem in [11] provides the missing
piece (see Proposition 7.3), hence simplifying some of the arguments in [28].

Density of free boundary minimal hypersurfaces for generic metrics. Using the Weyl
Law for the volume spectrum [14], Irie, Marques and Neves [12] proved Yau’s conjecture for generic
metrics. In fact, they proved a stronger property that the union of all closed, smoothly embedded
minimal hypersurfaces is dense in any closed manifold M with a generic (in the C∞ Baire sense)
Riemannian metric g. As an application of our main index estimates, we prove the same result for
compact manifolds with boundary.

Theorem 1.3. (Density of minimal hypersurfaces) Let (Mn+1, ∂M) be a compact manifold with
boundary and 3 ≤ (n + 1) ≤ 7. Then for a C∞-generic Riemannian metric g on M , the union of
all compact, properly embedded, free boundary minimal hypersurfaces is dense.
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In particular, this provides an affirmative answer in the generic case to Yau’s conjecture Ques-

tion 1.1 for compact manifolds with boundary. In fact, we will prove a much stronger property
(Proposition 7.8) that there are infinitely many compact, properly embedded, free boundary min-
imal hypersurfaces intersecting any given relatively open set in M . Note that with the genericity
assumption, we are even able to prove the density results within the smaller class of properly em-
bedded free boundary minimal hypersurfaces instead of the almost properly embedded ones (see
[13, Definition 2.6] for the definitions). This is achieved by a perturbation argument in Proposition
7.7.

Existence of minimal hypersurfaces with non-empty free boundary. Our last application
addresses a major problem in many of the constructions of free boundary minimal surfaces, as for
example in [8, 13], that the minimal surface produced may in fact be closed (i.e. without boundary).
In [13], the second and the last author proved that there exist infinitely many properly embedded free
boundary minimal hypersurfaces, provided that the ambient manifold is compact with nonnegative
Ricci curvature and strictly convex boundary (note that no closed minimal hypersurfaces exist in
such manifolds by [9, Lemma 2.2]). Without any topological or curvature assumptions, it is in
general very difficult to prevent the free boundary components from degenerating through the limit
process (see e.g. [3] and [11, 29]). Making use of our strong density result (Proposition 7.8), we
are able to prove the same result by merely assuming strict mean convexity at one point of the
boundary ∂M for a generic metric.

Theorem 1.4 (Non-trivial free boundary). Let (Mn+1, ∂M) be a compact manifold with non-empty
boundary and 3 ≤ (n + 1) ≤ 7, equipped with a generic Riemannian metric g as in Theorem 1.3.
Suppose that ∂M has a strictly mean convex point x, i.e. H(x) > 0. Then there exist infinitely
many distinct compact, smooth, properly embedded minimal hypersurfaces in M with non-empty
free boundary.

Proof. We prove by contradiction. Assuming on the contrary that there are only finitely many
distinct compact, smooth, properly embedded minimal hypersurfaces in M with non-empty free
boundary, we can always take a point p ∈ ∂M and r > 0 so that H(p) > 0 and no such hypersurface
intersects Br(p), where Br(p) is the geodesic ball in M with center p and radius r.

Since H(p) > 0, the maximum principle of White ([31, Theorem 1]) implies that there exists an
ǫ > 0 (we may assume ǫ < r) such that any minimal hypersurface Σ having no boundary inside
Br(p) must satisfy dist(p,Σ) > ǫ. By Theorem 1.3, we know that there exists a properly embedded
free boundary minimal hypersurface Γ with Γ ∩Bǫ(p) 6= ∅. By the choice of ǫ, it follow that Γ has
non-empty free boundary in Bǫ(p). However, this contradicts our choice of p and r. �

Remark 1.5. From the proof of Theorem 1.4 we see that the union of the boundary of all compact,
properly embedded, free boundary minimal hypersurfaces is also dense (as a subset of ∂M) in the
strictly mean convex portion of ∂M . In particular, if ∂M is strictly mean convex everywhere, then
the union of their free boundaries is dense as a subset of ∂M .

Main ideas of the proof. We now explain the major ideas in proving the general index upper
bound in Theorem 2.1. While our arguments follow the basic strategy of [17], the presence of a
boundary, however, poses additional difficulties that have to be overcome.

First of all, the notion of Morse index for a free boundary minimal hypersurface Σ in M is a
subtle issue when Σ is improper (in other words, the touching set (Σ ∩ ∂M) \ ∂Σ is non-empty).
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Although it was shown in [13] that the hypersurface Σ is smooth and minimal even across the
touching set, a-priori it is not clear whether one should consider second variations moving the
touching set. Motivated by the compactness result in [11], we argue that the appropriate notion of
Morse index should only count the negative second variations supported away from the touching
set. This is natural already at the level of first variation as the stationarity of a varifold in M are
taken with respect to the diffeomorphisms of M generated by vector fields tangent to ∂M . As Σ
is necessarily tangent to ∂M along the touching set, any normal variations on Σ should vanish on
the touching set.

Second, the min-max theory for compact manifolds with boundary developed in [13] is formu-
lated in terms of the space of (equivalence classes) of relative cycles consisting of integer-rectifiable
currents; while the Weyl Law for the volume spectrum estabilshed in [14] was formulated using the
space of relative cycles consisting of integral currents. The first formulation has the advantage that
the regularity result of Grüter [10] can be readily deployed (the boundary regularity was irrelevant
in the work of [14]) and the second formulation follows the original setup in Almgren’s isomorphism
theorem [1]. Since we need both results in this paper, we give a rigorous proof of the equivalence
of two formulations in Section 3.

Third, the min-max theory in [13] is formulated in terms of sequences of maps defined on the
vertices of finer and finer grids measured with respect to the mass topology. While this is essential
for the regularity theory, for applications it is more useful to formulate a continuous min-max
theory where maps are defined on the full parameter space and are continuous with respect to the
F-topology. In Section 4, we explain how to use the original discretized setting to obtain a min-max
theory for maps that are continuous in the F-topology as above. A similar construction for the
mass topology was done by the second and the last author in [13]. We prove the Min-Max Theorem
(Theorem 4.5) and Deformation Theorem (Theorem 5.8) as in [17] in the continuous setting.

Finally, another crucial ingredient in proving the general Morse index bounds in [17] is Sharp’s
generic finiteness result [26] for minimal hypersurfaces with bounded index and area. Such a generic
finiteness result was very difficult to establish for free boundary minimal hypersurfaces (see [11, 29])
due to boundary degenerations and multiplicities. For our purpose of this paper, we only need the
countability of free boundary minimal hypersurfaces with bounded index and area in any compact
manifold with boundary equipped with a bumpy metric. We give a more direct inductive proof
of this weaker result in §5.1. Combining the Deformation Theorem with the generic countability
result, we argue as in [17] to prove the desired index bounds.

The organization of this paper is as follows. In Section 2, we set up some basic notations for
the rest of the article and give a precise statement of our general Morse index bounds. In Section
3, we recall the two formulations of min-max theory for manifolds with boundary and prove their
equivalence. In Section 4, we describe the min-max theory in a continuous setting using the F-
topology and prove the Min-max theorem (Theorem 4.5). In Section 5, we prove the generic
countability result (Proposition 5.3) and the Deformation Theorem (Theorem 5.8), which is similar
to [17, Deformation Theorem A] with slightly modifications. Using results in earlier sections, we
prove our general Morse index upper bounds in Section 6. Finally in Section 7, we give the proof
of the density theorem (Theorem 1.3) as a corollary. In the appendix, we recall a construction for
the logarithmic cut-off trick used in this paper.
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2. Definitions and main results

We now give a more precise statement of our general Morse index upper bounds in this section.
Let (Mn+1, ∂M, g) be an (n+1)-dimensional compact Riemannian manifold with boundary and 3 ≤
(n+1) ≤ 7. Denote G to be either the group Z or Z2. Let X be a simplicial complex of dimension k
and Φ : X → Zn(M

n+1, ∂M ;F;G) be a continuous map. Here, Zn(M,∂M ;G) is the space of integer
rectifiable n-currents T in M with coefficients in G and ∂T ⊂ ∂M , modulo an equivalence relation
(see §3.1). The notation Zn(M,∂M ;F;G) indicates that the space Zn(M,∂M ;G) is endowed with
the F-topology, to be defined later in §3.1. Basically, continuity in F-topology means that continuity
in both the flat and the varifold topologies.

Let Π denote the set of all continuous maps Ψ : X → Zn(M,∂M ;F;G) such that Φ and Ψ are
homotopic to each other in the flat topology. The width of Π is defined to be the min-max invariant:

L(Π) := inf
Ψ∈Π

sup
x∈X

{M(Ψ(x))},

where M(τ) denotes the mass of the equivalence class τ = [T ] ∈ Zn(M,∂M ;G), which is equal to
the n-dimensional area of the canonical representative of τ (see §3.1). Given a sequence {Φi}i∈N ⊂ Π
of continuous maps from X into Zn(M,∂M ;F;G), we set

L({Φi}i∈N) := lim sup
i→∞

sup
x∈X

M(Φi(x)).

When L({Φi}i∈N) = L(Π), we say {Φi}i∈N is a min-max sequence in the homotopy class Π.
Our main result below (Theorem 2.1) says that the width L(Π) can be realized by an integral

varifold V which is stationary in M with free boundary (see [13, Definition 2.1]) and supported on
a finite union ∪N

j=1Σj of smooth, almost properly embedded, free boundary minimal hypersurfaces
Σj whose sum of indices is at most k, the dimension of the parameter space X. Recall from
[13, Definition 2.6] that (Σ, ∂Σ) ⊂ (M,∂M) is an almost properly embedded hypersurface if Σ is
an embedded hypersurface in M whose ∂Σ is contained in ∂M . Such a hypersurface is called a
free boundary minimal hypersurface (FBMH) if the mean curvature of Σ vanishes and Σ meets
∂M orthogonally along ∂Σ. Given an almost properly embedded FBMH Σ in M , there are several
notions of Morse indices (see [11]) on Σ. The quadratic form of Σ associated to the second variation
formula is defined as

QΣ(v, v) :=

∫

Σ

(
|∇⊥v|2 − RicM (v, v) − |AΣ|2|v|2

)
dµΣ −

∫

∂Σ
h∂M (v, v) dµ∂Σ,

where v is a section of the normal bundle of Σ, RicM is the Ricci curvature of M , AΣ and h are
the second fundamental forms of the hypersurface Σ and ∂M , respectively. Note that we do not
need to assume Σ to be two-sided. Denoting the touching set of Σ in M by

Touch(Σ) := (Σ ∩ ∂M) \ ∂Σ,



6 QIANG GUANG, MARTIN MAN-CHUN LI, ZHICHAO WANG, AND XIN ZHOU

we define theMorse index of Σ, denoted by index(Σ), as the maximal dimension of a linear subspace
of sections of normal bundle NΣ compactly supported in Σ\Touch(Σ) such that the quadratic form
QΣ(v, v) is negative definite on this subspace. (Note that this is the same notion as the Morse
index of Σ on the proper subset defined in [11].)

With the definitions above (and the notions regarding varifolds in §3), we can now state our
main theorem on the general Morse index upper bounds for the min-max minimal hypersurfaces
with free boundary.

Theorem 2.1 (General index upper bounds). Let (Mn+1, g) be a smooth compact (n+1)-dimensional
Riemannian manifold with boundary and 3 ≤ (n+1) ≤ 7. Let X be a simplicial complex of dimen-
sional k and Φ : X → Zn(M,∂M ;F;G) be a continuous map. Denote Π as the associated homotopy
class of Φ with respect to the flat topology. Then there exists a integral varifold V ∈ Vn(M) such
that

(i) ‖V ‖(M) = L(Π);
(ii) V is stationary in M with free boundary;

(iii) there exists N ∈ N and mi ∈ N, 1 ≤ i ≤ N , such that V =
∑N

i=1 mi|Σi|, where each Σi is a
smooth, compact, connected, almost properly embedded free boundary minimal hypersurface
in M . Moreover,

N∑

i=1

index(Σi) ≤ k.

We will separate the proof of Theorem 2.1 into two parts. The first part (Theorem 4.5) handles
the regularity theory for the min-max theory in a continuous setting. The second part (Theorem
6.3) gives the required index bounds.

3. Equivalence of two formulations

In this section, we describe the two different formulations of min-max theory for manifolds with
boundary introduced in [13] and [14]. The goal is to show that the two formulations are equivalent.
The arguments are simple but a bit tedious. Readers can skip this section and refer back to the
definitions later if necessary.

Let (Mn+1, g) be a smooth compact connected Riemannian manifold with nonempty boundary
∂M . Without loss of generality, we can regard M as a compact domain of a closed Riemannian

manifold M̃ of the same dimension, which is isometrically embedded into R
L for some L large

enough. We recall some basic notations in geometric measure theory essentially following [13].
We use Vk(M) to denote the closure of the space of k-dimensional rectifiable varifolds in R

L with
support contained in M . Let G be either the group Z or Z2. Let Rk(M ;G) (resp. Rk(∂M ;G))
be the space of k-dimensional rectifiable currents in R

L with coefficients in G which are supported
in M (resp. in ∂M). Denote by sptT the support of T ∈ Rk(M ;G). Given any T ∈ Rk(M ;G),
denote by |T | and ‖T‖ the integer rectifiable varifold and the Radon measure in M associated
with T , respectively. The mass norm and the flat metric on Rk(M ;G) are denoted by M and F
respectively; see [7]. As we can regard any T ∈ Rk(M ;Z2) as an element inRk(M ;Z), we use spt2 T
and spt0 T to denote the support of T when regarded as an elements in Rk(M ;Z2) and Rk(M ;Z)
respectively. Similarly, we use M2(T ) and M0(T ) to denote their respective mass norms.
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3.1. Formulation using integer rectifiable currents. We now recall the formulation in [13]
using equivalence classes of integer rectifiable currents. Let

(3.1) Zk(M,∂M ;G) := {T ∈ Rk(M ;G) : spt (∂T ) ⊂ ∂M}.
We say that two elements T, S ∈ Zk(M,∂M ;G) are equivalent if T − S ∈ Rk(∂M ;G). We use
Zk(M,∂M ;G) to denote the space of all such equivalence classes. For any τ ∈ Zk(M,∂M ;G), we
can find a unique T ∈ τ such that Tx∂M = 0. We call such T the canonical representative of τ as
in [13]. For any τ ∈ Zk(M,∂M ;G), its mass and flat norms are defined by

M(τ) := inf{M(T ) : T ∈ τ} and F(τ) := inf{F(T ) : T ∈ τ}.
The support of τ ∈ Zk(M,∂M ;G) is defined by

spt (τ) :=
⋂

T∈τ
spt (T ).

By [13, Lemma 3.3], we know that for any τ ∈ Zk(M,∂M ;G), we have M(T ) = M(τ) and
spt (τ) = spt (T ), where T is the canonical representative of τ .

Recall that the varifold distance function F on Vk(M) is defined in [24, 2.1 (19)], which induces
the varifold weak topology on the set Vk(M) ∩ {V : ‖V ‖(M) ≤ c} for any c. We also need
the F-metric on Zk(M,∂M ;G) defined as follows: for any τ, σ ∈ Zk(M,∂M ;G) with canonical
representatives T ∈ τ and S ∈ σ, the F-metric of τ and σ is

F(τ, σ) := F(τ − σ) + F(|T |, |S|),
where F on the right hand side denotes the varifold distance on Vk(M).

For any τ ∈ Zk(M,∂M ;G), we define |τ | to be |T |, where T is the unique canonical representative
of τ and |T | is the rectifiable varifold corresponding to T .

We assume that Zk(M,∂M ;G) have the flat topology induced by the flat metric. With the topol-
ogy of mass norm or the F-metric, the space will be denoted by Zk(M,∂M ;M;G) or Zk(M,∂M ;F;G).

3.2. Formulation using integral currents. We now recall the formulation in [14] using equiva-
lence classes of integral cycles. For k ≥ 1, let Ik(M ;Z2) denote those elements of Rk(M ;Z2) whose
boundary lies in Rk−1(M ;Z2). The space Ik(∂M ;Z2) is defined similarly with M replaced by ∂M .
We also consider the space

(3.2) Zk,rel(M,∂M ;Z2) := {T ∈ Ik(M ;Z2) : spt
2 ∂T ⊂ ∂M},

endowed with the flat topology. We say that two elements T, S ∈ Zk,rel(M,∂M ;Z2) are equivalent
if T − S ∈ Ik(∂M ;Z2) and the space of such equivalence classes is denoted by Zk,rel(M,∂M ;Z2).
The mass norm and the flat metric on this space are defined respectively as follows:

M(τ) := inf{M(T ) : T ∈ τ} and F(τ) := inf{F(T ) : T ∈ τ},
where τ ∈ Zk,rel(M,∂M ;Z2).

3.3. Equivalence of two formulations. We now prove that the spaces Zn(M,∂M ;Z2) and
Zn,rel(M,∂M ;Z2) defined in (3.1) and (3.2) are isomorphic to each other. We begin by stat-
ing a preliminary lemma, which was proven in [13] for Z coefficients. The same proof actually
works for Z2 coefficients as well (c.f. [14, Theorem 2.3]).
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Lemma 3.1 (cf. [13, Lemma 3.8]). Given T ∈ Zk(M,∂M ;Z2), there exists a sequence Ti ∈
Zk,rel(M,∂M ;Z2) such that Ti−T ∈ Rk(∂M ;Z2) and limi→∞M(Ti−T ) = 0 (and thus limi→∞F(Ti−
T ) = 0).

Now we prove the main result of this section.

Proposition 3.2. The spaces Zn(M,∂M ;Z2) and Zn,rel(M,∂M ;Z2), endowed with the flat topol-
ogy, are homeomorphic. In fact, they are isometric with respect to F and M.

Proof. Step I: Construction of a map ι from Zn,rel(M,∂M ;Z2) to Zn(M,∂M ;Z2).
Let τ ∈ Zn,rel(M,∂M ;Z2) and T ∈ τ . Then T is an element in Zn(M,∂M ;Z2). Moreover, if

T ′ and T are equivalent in Zn,rel(M,∂M ;Z2), they are also equivalent in Zn(M,∂M ;Z2). Thus we
get a well-defined map ι : Zn,rel(M,∂M ;Z2) → Zn(M,∂M ;Z2).

Step II: Construction of a map η from Zn(M,∂M ;Z2) to Zn,rel(M,∂M ;Z2).
Let κ ∈ Zn(M,∂M ;Z2), Lemma 3.1 gives an element S ∈ κ such that ∂S ∈ Rn−1(∂M ;Z2).

Hence S ∈ Zn,rel(M,∂M ;Z2) by definition in §3.2. Denote by τS the equivalence class of S in
Zn,rel(M,∂M ;Z2). Define the map

η : Zn(M,∂M ;Z2) → Zn,rel(M,∂M ;Z2)

by η(κ) := τS. We now prove that η is well-defined. Suppose we have another S′ ∈ κ satisfying
∂S′ ∈ Rn−1(∂M ;Z2), then we have S − S′ ∈ In(M ;Z2). Recall that S, S′ ∈ κ implies that
spt (S − S′) ⊂ ∂M . Hence S − S′ ∈ In(∂M ;Z2), which means that S and S′ are equivalent in
Zn,rel(M,∂M ;Z2). Thus η is well-defined.

Step III: Check that ι and η are inverses to each other. Indeed, take τ ∈ Zn,rel(M,∂M ;Z2)
and T ∈ τ . Note that T ∈ In(M ;Z2). By definition, we have τ = τT = η(ι(τ)). Hence, η ◦ ι = id.
To prove that ι ◦ η = id, we take κ ∈ Zn(M,∂M ;Z2) and S ∈ κ such that ∂S ∈ Rn−1(∂M ;Z2).
Note that S ∈ τS. Therefore, ι(η(κ)) = ι(τS) = κ.

Step IV: Show that ι and η are isometries with respect to F and M.

It is clear from the definitions that both ι and η are linear maps. Let ν = F or M. Taking
τ ∈ Zn,rel(M,∂M ;Z2) and Tj ∈ τ so that ν(Tj) → ν(τ), we observe that ν(Tj) ≥ ν(ι(τ)) since
Tj ∈ ι(τ). It follows that ν(ι(τ)) ≤ ν(τ). On the other hand, taking κ ∈ Zn(M,∂M ;Z2) and
Sj ∈ κ so that ν(Sj) → ν(κ), by Lemma 3.1 there exists a sequence S′

j ∈ Zn,rel(M,∂M ;Z2) so that

S′
j − Sj ∈ Rn(∂M ;Z2) and M(S′

j − Sj) < 1/j. From the definition of η, we have S′
j ∈ η(κ). Thus,

ν(η(κ)) ≤ lim
j→∞

ν(S′
j) = lim

j→∞
ν(Sj) = ν(κ).

Together with η ◦ ι = id and ι ◦ η = id, we conclude that ν(κ) = ν(η(κ)) and ν(τ) = ν(ι(τ)). �

4. Min-max theory in continuous setting

In this section, we describe the min-max theory for manifolds with boundary in continuous
setting. Recall that in [13] the Almgren-Pitts min-max theory for compact manifolds with boundary
deals with discrete families of elements in Zk(M,∂M ;G). The essential tools connecting the discrete
and continuous settings are the discretization theorem (see [13, Theorem 4.12]) and the interpolation
theorem (see [13, Theorem 4.14]).

Let Im = [0, 1]m denote the m-dimensional cube. Suppose that X is a subcomplex of dimension
k of Im. We adopt the notations for cell complex as in Definition 4.1 of [13]. In particular, the
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cube complex X(j) denotes the set of all cells of I(m, j) whose support is contained in some cell of
X, and X(j)p denotes the set of all p-cells in X(j).

Suppose that Φ : X → Zn(M,∂M ;F;G) is a continuous map with respect to the F-metric. We
use Π to denote the set of all continuous maps Ψ : X → Zn(M,∂M ;F;G) such that Φ and Ψ are
homotopic to each other in the flat topology.

Definition 4.1. (Width and min-max sequences) The width of Π is defined by

L(Π) = inf
Φ∈Π

sup
x∈X

M(Φ(x)).

A sequence {Φi}i∈N ⊂ Π is called a min-max sequence if L(Φi) = supx∈X M(Φi(x)) satisfies

L({Φi}i∈N) = lim sup
i→∞

L(Φi) = L(Π).

Definition 4.2. (Critical set) The image set of {Φi}i∈N is defined by

Λ({Φi}i∈N) = {V ∈ Vn(M) : ∃ sequences {ij} → ∞, xij ∈ X

such that lim
j→∞

F(|Φij (xij )|, V ) = 0}.

Let {Φi}i∈N be a min-max sequence in Π such that L = L({Φi}i∈N). The critical set of {Φi}i∈N is
defined by

C({Φi}i∈N) = {V ∈ Λ({Φi}i∈N) : ‖V ‖(M) = L}.
Note that for any min-max sequence {Φi}i∈N ⊂ Π, by the tightening construction (see [13,

Proposition 4.17]), we can find another min-max sequence {Φ′
i}i∈N ⊂ Π such that C({Φ′

i}i∈N) ⊂
C({Φi}i∈N) and each V ∈ C({Φ′

i}i∈N) is stationary in M with free boundary (see [13, Defintion
2.1]).

Lemma 4.3. If Φ : X → Zn(M,∂M ;F;G) is a continuous map with respect to the F-metric, then
Φ has no concentration of mass.

Proof. This lemma follows from the definition directly (c.f. [17, p.472]). �

The next theorem tells us that we can construct a continuous map in the M-norm out of a
discrete map with small fineness.

Theorem 4.4. (Interpolation Theorem; [13, Theorem 4.14], [14, Theorem 2.11]) Let Mn+1 be a
compact Riemannian manifold with boundary and m ∈ N. Then there exists C0 > 0 and δ0 > 0
depending only on M and m such that if X is a cubical subcomplex of I(m, l) and

φ : X0 → Zn(M,∂M ;G)

has fM(φ) < δ0 [13, Definition 4.2], then there exists a map

Φ : X → Zn(M,∂M ;G)

which is continuous in the M-topology and satisfying

(i) Φ(x) = φ(x) for all x ∈ X0;
(ii) for any p-cell α in Xp, Φ|α depends only on the restriction of φ on the vertices of α and

max{M(Φ(x) − Φ(y)) : x, y ∈ α} ≤ C0fM(φ).
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We remark that in the above theorem, the map Φ is called the Almgren extension of φ.

Next, we will formulate the min-max theory for manifolds with boundary in continuous setting
(cf. [17, Theorem 3.8]).

Theorem 4.5. (Min-max Theorem) Let 3 ≤ n + 1 ≤ 7. Suppose that L(Π) > 0 and {Φi}i∈N ⊂ Π
is a min-max sequence. Then there exists a varifold V ∈ C({Φi}i∈N) such that

(i) ‖V ‖(M) = L(Π);
(ii) V is stationary in M with free boundary;
(iii) V is supported on a smooth, compact, almost properly embedded free boundary minimal

hypersurface.

Proof. The proof is parallel to the one in [17, Theorem 3.8]. Here, we adapt the arguments in the
proof of [17, Theorem 3.8] and make necessary modifications. By the tightening construction, we
may assume that every element of C({Φi}i) is stationary with free boundary.

Step one: The discretization process. For any Φi : X → Zn(M,∂M ;F;G), by Lemma 4.3,
we know that Φi has no concentration of mass. By the Discretization Theorem, [13, Theorem 4.12]
(see also [14, Theorem 2.10]), there is a sequence of maps

φj
i : X(kij)0 → Zn(M,∂M ;G)

with kij < kij+1 and a sequence of positive constants δij → ∞ as j → ∞ such that

(1) Si = {φj
i}j∈N is an (X,M)-homotopy sequence of mappings into Zn(M,∂M ;G) with fine-

ness fM(φj
i ) < δij ;

(2)

sup{F(φj
i (x)− Φi(x)) : x ∈ X(kij)0} ≤ δij ;

(3)

sup{M(φj
i (x)) : x ∈ X(kij)0} ≤ sup{M(Φi(x)) : x ∈ X}+ δij ;

(4) there exists a sequence lij → ∞ as j → ∞ such that for any y ∈ X(kij)0,

M(φj
i (y)) ≤ sup{M(Φi(x)) : α ∈ X(lij), x, y ∈ α}+ δij .

Since Φi is continuous with respect to the F-metric, we have that x ∈ X 7→ M(Φi(x)) is
continuous. Then property (4) implies that there exists ηij → 0 as j → ∞ such that for any

y ∈ X(kij)0,

(4.1) M(φj
i (y)) ≤ M(Φi(y)) + ηij .

By [13, Lemma 3.13], for any τ, τk ∈ Zn(M,∂M ;G), k ∈ N, then F(τ, τk) → 0 if and only if
F(τ, τk) → 0 and M(τk) → M(τ) as k → ∞. This together with property (2), (4.1) and a standard
compactness argument gives that

(4.2) sup{F(φj
i (x),Φi(x)) : x ∈ X(kij)0} → 0 as j → ∞.

Step two: The diagonal argument. Now combining properties (1)-(4) and (4.2), for each i,
we can choose j(i) → ∞ as i → ∞ such that the diagonal sequence

ϕi = φ
j(i)
i : X(kij(i))0 → Zn(M,∂M ;G)
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satisfies

• sup{F(ϕi(x),Φi(x)) : x ∈ X(kij(i))0} ≤ ai with limi→∞ ai = 0;

• sup{F(Φi(x),Φi(y)) : x, y ∈ α,α ∈ X(kij(i))} ≤ ai;

• the fineness fM(ϕi) tends to zero as i → ∞.

Moreover, using the interpolation result (Theorem 4.4), we can approximate ϕi by a continuous

map Ψ
j(i)
i : X → Zn(M,∂M ;M;G), which is called the Almgren extension of ϕi. By property (2)

and [14, Proposition 2.12], we can also require that Ψ
j(i)
i is homotopic to Φi in the flat topology.

Now we consider the sequence S = {ϕi}i∈N and we have

L(S) = lim sup
i→∞

max{M(ϕi(x)) : x ∈ X(kij(i))0}.

By (4.1), we have L(S) ≤ L({Φi}i) = L(Π). Since the Almgren extension Ψ
j(i)
i is homotopic to Φi,

we have Ψ
j(i)
i ∈ Π. This implies that L({Φi}i) = L(Π) ≤ L(S). Hence,

L(S) = L({Φi}i) = L(Π).

We can also prove that C(S) = C({Φi}i). By the choice of C({Φi}i), we know that every element
of C(S) is stationary with free boundary.

Next, we claim that there exists an element V ∈ C(S) such that V is almost minimizing in small
annuli with free boundary (see [13, Definition 4.19]). Otherwise, we can deform S homotopically

to another sequence S̃ as in the proof of [13, Theorem 4.21] such that L(S̃) < L(S), which is a
contradiction.

Finally, the conclusion follows directly from the regularity results in [13, Theorem 5.2] (when
G = Z) and Theorem 4.6 (when G = Z2). This completes the proof. �

Based on the work of Pitts [24], Schoen-Simon [25] and Grüter [10], Li-Zhou [13] proved the
regularity for stationary varifolds which is Z-almost minimizing in small annuli with free boundary.
As we explain below, the arguments also extend to Z2-coefficients.

Theorem 4.6 (Regularity of Z2-almost minimizing varifolds). Let 2 ≤ n ≤ 6. Suppose V ∈ Vn(M)
is a varifold which is

• stationary in M with free boundary and
• Z2-almost minimizing in small annuli with free boundary,

then there exists N ∈ N and ni ∈ N, i = 1, ..., N , such that

V =

N∑

i=1

ni|Σi|,

where each (Σi, ∂Σi) ⊂ (M,∂M) is a smooth, compact, connected, almost properly embedded free
boundary minimal hypersurface.

Proof. The interior regularity of V follows from [18, Theorem 2.11]. The regularity of V on the
boundary follows from a similar procedure as the proof in [13]. The only difference is to show
the regularity of replacements (see [13, Proposition 5.3] for definition) for a Z2-almost minimizing
varifold with free boundary. The last statement follows from [13, Lemma 5.5] (where regularity of
replacements for Z-almost minimizing varifold with free boundary was proved) by replacing [23,
Regularity Theorem 2.4] with Theorem 4.7. �



12 QIANG GUANG, MARTIN MAN-CHUN LI, ZHICHAO WANG, AND XIN ZHOU

Finally, we establish the regularity for locally area-minimizers with respect to Z2 coefficients. A
similar result was obtained earlier by Grüter [10] for Z coefficients.

Theorem 4.7 (Regularity of Z2-minimizers). Let S ⊂ R
n+1 be an n-dimensional submanifold of

class C2 and let U be an open set such that ∂S∩U = ∅. Suppose T ∈ Rn(R
n+1;Z2) with spt2 T ⊂ U

and spt2 ∂T ∩ U ⊂ S such that

(4.3) M2
W (T ) ≤ M2

W (T +X)

for all open W ⊂⊂ U and X ∈ Rn(U ;Z2) with spt2 X ⊂ W and spt2 ∂X ∩ U ⊂ S. Then we have

• sing(T ) = ∅ if 2 ≤ n ≤ 6;
• sing(T ) is discrete if n = 7;
• dim(sing(T )) ≤ n− 7 if n > 7.

In case x ∈ S ∩ reg(T ) we know that S and T intersect orthogonally in a neighborhood of x.

Proof. It suffices to consider the regularity for p ∈ S ∩ spt2 T . Denote by Br = Br(p). Take r small
enough so that Br(p)∩S is a n-ball and separates Br into B+

r and B−
r . Without loss of generality,

we can assume that spt2 T ∩B−
r = ∅ (see [10, §3] for more details).

For x ∈ Br, denote by σ the reflection across S (see [10, Remark 3.1]). We have σ2 = id and set

T̃ = T − σ#T.

Then spt2 T̃ ⊂ Vr and spt2 ∂T̃ ⊂ ∂Vr, where Vr = B+
r ∪ (S ∩Br)∪ σ(B+

r ). Furthermore, Br/3 ⊂ Vr

and M2(T̃ ) < ∞. Then by Slicing Lemma [27, §28], we can take α ∈ (1/4, 1/3) so that

T ′ := T̃xBαr ∈ In(Bαr;Z2).

Recall that T1 ∈ Rn(Bαr;Z) is a representative modulo 2 (see [22, Page 227]) of T ′ if T1 is of
multiplicity one such that T1 = T ′ (mod 2) and M(T1) = M2(T ′).

Now since ∂Bα is simply connected and Hn(spt2 ∂T ′) = 0, applying [22, Lemma 4.2] (letting
X1 = T ′ and X2 be half of ∂Bα separated by spt2 ∂T ′ therein), T ′ has a representative modulo
two, denoted as T1, so that spt0 ∂T1 = spt2 ∂T ′. Set

R := T1xB
+
αr.

We now prove that R is a Z-area minimizer, and hence the regularity follows from [10, Theorem
4.7]. To prove this, let W ⊂⊂ Bαr be an open set and X ∈ Rn(Bαr;Z) with sptX ⊂ W and
spt ∂X ∩ U ⊂ S. Then by the definition of M2, we have

M0
W (R +X) ≥ M2

W (R +X) = M2
W (X +RxB+

αr).

As we can see R = T ′
xB+

αr = T̃xB+
αr = TxBαr (mod 2), the inequality becomes

(4.4) M0
W (R+X) ≥ M2

W (X + TxBαr).

Note that (4.3) gives that

M2
W (X + TxBαr) ≥ M2

W (TxBαr) = M0
W (R).

Together with (4.4), we conclude that R is area minimizing in the sense of [10] and we are done. �
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5. Deformation Theorem

Our goal in this section is to prove the Deformation Theorem (Theorem 5.8) which is a crucial
ingredient in the proof of the Morse index estimates in the next section. We also establish a few
preliminary results including the generic countability of FBMHs with bounded index and area and
the notion of instability in the context of varifolds.

5.1. Generic countability. As remarked in the introduction, the generic finiteness result for
FBMH was proved in [11] and [29]. The construction of Jacobi fields in the aforementioned papers
is rather technical and complicated, especially for the higher multiplicity case in [29]. For the
purpose of this paper, we only need generic countability instead of finiteness. We now give a more
direct proof of this weaker result based on the work of [11]. (Recall Section 2 for our definition of
index(Σ) for almost properly embedded FBMH Σ in M .)

Definition 5.1. For any Λ > 0 and I ∈ N, we let M(Λ, I) be the collection of all smooth, almost
properly embedded FBMH Σ in M with Area(Σ) ≤ Λ and index(Σ) ≤ I.

First, we show that a sequence of FBMHs in M(Λ, I) with the same index would converge, after
passing to a subsequence, to a limiting FBMH in M(Λ, I) which is either degenerate or has strictly
lower index.

Proposition 5.2. Let {Σj}j∈N be a sequence of FBMHs in M(Λ, I) with index(Σj) = I for all
j. Then after passing to a subsequence, Σj will converge away from finitely many points locally
smoothly (with multiplicity) to some Σ ∈ M(Λ, I). Moreover, either index(Σ) ≤ I − 1 or Σ is
degenerate, i.e. Σ admits a non-trivial Jacobi field.

Proof. If Σj smoothly converges globally to Σ with multiplicity one, then Σ admits a non-trivial
Jacobi field by the arguments in [11].

It remains to consider the case that Σj does not globally smoothly converge to Σ. We assume
that index(Σ) = k. Since the convergence is not smooth, there exists p ∈ Σ so that for any r > 0,
Br(p) ∩ Σj does not smoothly converge to Br(p) ∩ Σ. We now prove that index(Σj) ≥ k + 1 for
some j large, which implies that k ≤ index(Σj)− 1 = I − 1.

Let X1, ...,Xk be k linearly independent normal vector fields on Σ so that they span a linear
subspace on which QΣ is negative-definite. By normalization, we can assume

∫
Σ |Xi|2 = 1 for

1 ≤ i ≤ k. Since Xi vanishes along the touching set of Σi, we can extend each Xi to a smooth
vector field on M which is tangential to ∂M . Let us still denote the extended vector field by Xi.

By shrinking the radius r if necessary, we can assume that {Xi|Σ\Br(p)}ki=1 is linearly independent.
Let ξr be a logarithmic cut-off function (see Appendix A) satisfying 0 ≤ ξr ≤ 1 and ξr|Br(p) = 0

and
∫
Σ |∇ξr|2 → 0 and ξr → 1 as r → 0. A direct computation yields that for 1 ≤ i ≤ k,

QΣ(ξrXi, ξrXi) ≤ QΣ(Xi,Xi) + C

∫

Σ
|∇ξr|2.

Since QΣ(Xi,Xi) < 0, for r small enough we have for 1 ≤ i ≤ k

QΣ(ξrXi, ξrXi) < 0.

Recall that δ2Σj(ξrXi, ξrXi) → mQΣ(ξrXi, ξrXi) as j → ∞, where m ∈ N is the multiplicity. Then
for sufficiently large j, we have

(5.1) δ2Σj(ξrXi, ξrXi) < 0 for 1 ≤ i ≤ k.
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On the other hand, since Σj ∩ Br(p) does not smoothly converge to Σ ∩ Br(p), Σj cannot be
stable away from touching set in Br(p) for some j by the compactness theorem in [11, Theorem
1.4]. Hence for this j, we can find a normal vector field of Σj (vanishing on touching set, so it can
be extended to all of M and tangential to ∂M) such that sptX ⊂ Br(p) and

(5.2) δ2Σj(X,X) < 0.

Therefore, (5.1) and (5.2) together imply that index(Σj) ≥ k + 1. This finishes the proof. �

We can now use an inductive argument to prove the generic countability result. Recall that a
Riemannian metric g on the compact manifolds M with non-empty boundary is said to be bumpy
if no almost properly embedded FBMH in M admits a non-trivial Jacobi field.

Proposition 5.3 (Generic countability). Let (M,∂M) be a compact manifold with boundary equipped
with a bumpy metric g. Then M(Λ, I) is at most countable for any fixed Λ, I ≥ 0.

Proof. We prove it by induction. It follows from Proposition 5.2 and the bumpiness of g that
M(Λ, 0) is finite. To establish the induction hypothesis, suppose that M(Λ, I) is countable for

some I ≥ 0. Then for any r > 0, M(Λ, I +1) \ ∪Σ∈M(Λ,I)B
F

r (Σ) is finite by Proposition 5.2. Since

M(Λ, I + 1) =

∞⋃

k=1

(
M(Λ, I + 1) \

⋃

Σ∈M(Λ,I)

B
F

1/k(Σ)
)
,

we conclude that M(Λ, I + 1) is countable. This completes the proof by induction. �

Remark 5.4. The proof of Proposition 5.3 can also be used to obtain countability of Wk+1 in
the proof of [36, Theorem 3.6] without assuming that every Σ ∈ Ph is properly embedded in the
definition of good pair in [36, Section 3.3].

5.2. Unstable varifolds. To prove the Deformation Theorem, one needs to generalize the concept
of Morse index for almost properly embedded FBMHs to the context of varifolds. In what follows,

we use Bk to denote the open unit ball (centered at origin) in R
k and B

F

r (V ) to denote the closed
ball of radius r > 0 centered at V ∈ Vn(M) with respect to the F-metric. A bar above it would
denote its closure (in the corresponding metric).

Definition 5.5 (cf. [17, Definition 4.1]). Let Σ ∈ Vn(M) be stationary in M with free boundary
and ǫ ≥ 0. We say that Σ is k-unstable in an ǫ-neighborhood if there exist 0 < c0 < 1 and a smooth

k-parameter family {Fv}v∈Bk ⊂ Diff(M) with F0 = Id, F−v = F−1
v for all v ∈ B

k
such that, for

any V ∈ B
F

2ǫ(Σ), the smooth function

AV : B
k → [0,∞), AV (v) = ‖(Fv)#V ‖(M)

satisfies:

• AV has a unique maximum at m(V ) ∈ Bk
c0/

√
10
;

• − 1
c0
Id ≤ D2AV (u) ≤ −c0 Id for all u ∈ B

k
.

Here (Fv)# denotes the push-forward operation. Also, because Σ is stationary in M with free
boundary, we necessarily have m(Σ) = 0.

We say that Σ is k-unstable if it is stationary and k-unstable in an ǫ-neighborhood for some
ǫ > 0.
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Remark 5.6. If Σ is a smooth, almost properly embedded FBMH with index(Σ) ≥ k, then Σ is
k-unstable in the sense of Definition 5.5 (c.f. [17, Proposition 4.3]). However, the converse may
not be true in general (e.g. when the touching set of Σ has a positive Hn-measure).

Lemma 5.7. For any δ < 1/4, there exists T = T (δ, ǫ,Σ, {Fv}, c0) ≥ 0 such that for any V ∈
B

F

2ǫ(Σ) and v ∈ B
k
with |v −m(V )| ≥ δ, we have

AV (φV (v, T )) < AV (0)− c0
10

, and |φV (v, T )| > c0
4
.

Proof. The proof is the same as that of [17, Lemma 4.5]. �

5.3. Deformation theorem. We now prove the key Deformation Theorem. Suppose that X is
a cubical complex of dimension k. Let {Φi}i∈N be a sequence of continuous maps from X into
Zn(M,∂M ;F;G). Set

L = L({Φi}i∈N) := lim sup
i→∞

sup
x∈X

M(Φi(x)).

We will adapt the Deformation Theorem A in [17] to our setting. Basically, the deformation theorem
can produce another sequence which is homotopic to {Φi}i∈N such that the new sequence avoids
free boundary minimal hypersurfaces with large index.

Theorem 5.8 (Deformation Theorem). Suppose that

(1) Σ ∈ Vn(M) is stationary in M with free boundary and (k + 1)-unstable;
(2) K ⊂ Vn(M) is a subset such that F(Σ,K) > 0 and F(|Φi|(X),K) > 0 for all i ≥ i0;
(3) ‖Σ‖(M) = L.

Then there exist ǭ > 0, j0 ∈ N, and another sequence {Ψi}i∈N of maps from X into Zn(M,∂M ;F;G)
so that

(i) Ψi is homotopic to Φi in the F-topology for all i ∈ N;
(ii) L({Ψi}i∈N) ≤ L;

(iii) F(|Ψi|(X),B
F

ǭ (Σ) ∪K) > 0 for all i ≥ j0.

Remark 5.9. Note that the subset K may not be compact in our applications.

Proof of Theorem 5.8. Since the strategy of the proof follows from those of [17, Theorem 5.1], we
will only sketch the main steps and point out necessary modifications for the free boundary setting.

Let d = F(Σ,K) > 0. By assumption (1), there exists a constant ǫ > 0 such that Σ is (k + 1)-
unstable in an ǫ-neighborhood. Suppose that {Fv}v∈Bk+1 and c0 are given as in Definition 5.5.

Since F(Σ,K) > 0, by possibly changing {ǫ, {Fv}, c0}, we may assume that for any V ∈ B
F

2ǫ(Σ),

(5.3) min
v∈Bk+1

F((Fv)#V,K) >
d

2
.

For each fixed i ∈ N, since Φi : X → Zn(M,∂M ;F;G) is continuous, we may assume that X(ki)
is a sufficiently fine subdivision of X such that

F(|Φi(x)|, |Φi(y)|) < δi

for any x, y belonging to the same cell in X(ki) with δi = min{2−(i+k+2), ǫ/4}. Recall that for
τ ∈ Zn(M,∂M ;F;G), |τ | is defined to be |T | where T ∈ Zn(M,∂M ;G) is the unique canonical
representative of τ .
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Note that AV : B
k+1 → [0,∞) is a smooth function for any V ∈ B

F

2ǫ(Σ), so we can assume that
for any x, y belonging to the same cell in X(ki) with F(|Φi(x)|,Σ) ≤ 2ǫ and F(|Φi(y)|,Σ) ≤ 2ǫ, we
have

|m(|Φi(x)|)−m(|Φi(y)|)| < δi.

For any η > 0, we use Ui,η to denote the union of all cells σ ∈ X(ki) so that F(|Φi(x)|,Σ) < η
for all x ∈ σ. Then Ui,η is a subcomplex of X(ki). If a cell β /∈ Ui,η, then there exists some point
x′ ∈ β such that F(|Φi(x

′)|,Σ) ≥ η. Hence, for any y ∈ β, we have

(5.4) F(|Φi(y)|,Σ) ≥ η − δi.

In the following, for any x ∈ Ui,2ǫ, we will use the notation

Ax
i = A|Φi(x)|, mi(x) = m(|Φi(x)|) and φx

i = φ|Φi(x)|.

Following the construction in [17, Theorem 5.1], we can construct a continuous homotopy

Ĥi : Ui,2ǫ × [0, 1] → Bk+1
2−i (0) so that Ĥi(x, 0) = 0 ∀x ∈ Ui,2ǫ,

and

(5.5) inf
x∈Ui,2ǫ

|mi(x)− Ĥi(x, 1)| ≥ ηi > 0 for some ηi > 0.

The key idea is that the subspaces

Ai = {(x, 0) ∈ X ×B
k+1

: x ∈ Ui,2ǫ} and Bi = {(x,mi(x)) ∈ X ×B
k+1

: x ∈ Ui,2ǫ}
have both dimension at most k and are contained in a space of dimension 2k + 1. So it is possible
to perturb Ai slightly such that Ai ∩Bi = ∅ which gives (5.5).

Let c : [0,∞) → [0, 1] be a cutoff function which is non-increasing, and c is equal to 1 in
a neighborhood of [0, 3ǫ/2], and 0 in a neighborhood of [7ǫ/4,∞). By (5.4), if y /∈ Ui,2ǫ, then
F(|Φi(y)|,Σ) ≥ 2ǫ− δi ≥ 7ǫ/4, since δi ≤ ǫ/4. Therefore,

c(F(|Φi(y)|,Σ)) = 0 for any y /∈ Ui,2ǫ.

We now consider a map Hi : X × [0, 1] → Bk+1
2−i (0) given by

Hi(x, t) = Ĥi(x, c(F(|Φi(x)|,Σ))t) if x ∈ Ui,2ǫ

and

Hi(x, t) = 0 if x ∈ X \ Ui,2ǫ.

Then Hi is continuous.
Now we are ready to construct the new sequence {Ψi} of maps from X into Zn(M,∂M ;F;G).

With ηi given by (5.5), let Ti = Ti(ηi, ǫ,Σ, {Fv}, c0) be given by Lemma 5.7. Set Di : X → B
k+1

such that

Di(x) = φx
i

(
Hi(x, 1), c(F(|Φi(x)|,Σ))Ti

)
if x ∈ Ui,2ǫ

and

Di(x) = 0 if x ∈ X \ Ui,2ǫ.

Then Di is continuous. Now we define

Ψi : X → Zn(M,∂M ;F;G), Ψi(x) = (FDi(x))#(Φi(x)).
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In particular, we have

Ψi(x) = Φi(x), if x ∈ X \ Ui,2ǫ.

Since the map Di is homotopic to the zero map in B
k+1

, we obtain that Ψi is homotopic to Φi

in the F-topology for all i ∈ N. Following the steps in [17, Theorem 5.1], one can check Ψ is the
desired map.

�

6. Index estimates

In this section, we will use the deformation theorem (Theorem 5.8) to prove the index estimates.
We will first prove such estimates for manifolds with bumpy metrics. Recall that a metric is bumpy
if every smooth almost properly embedded FBMH is non-degenerate, i.e. admits no non-trivial
Jacobi field (which can be non-zero on the touching set). It was proved by White (see [30], [32])
and Ambrozio-Carlotto-Sharp [3] (in the free boundary setting) that bumpy metrics are generic in
the Baire sense.

Theorem 6.1 (Index estimates for bumpy metrics). Let (Mn+1, ∂M) be a compact manifold with
boundary equipped with a bumpy metric g and 3 ≤ (n + 1) ≤ 7. Let X be a k-dimensional cubical
complex and Φ : X → Zn(M,∂M ;F;G) be a continuous map. Let Π be the class of all continuous
maps Φ′ : X → Zn(M,∂M ;F;G) such that Φ and Φ′ are homotopic to each other in the flat
topology. Suppose that {Φi}i∈N is a min-max sequence in Π such that

L = L({Φi}i∈N) = L(Π) > 0.

Then there is Σ ∈ C({Φi}i∈N) with support a smooth, compact, almost properly embedded, free
boundary minimal hypersurface such that

L(Π) = ‖Σ‖(M) and index(sptΣ) ≤ k.

Proof. By the compactness result [11, Theorem 1.1] for free boundary minimal hypersurfaces, it

suffices to show that for any r > 0, there exists a varifold Σ̃ ∈ Vn(M) which is stationary in M
with free boundary and whose support is a smooth compact embedded minimal hypersurface such

that F
(
Σ̃,C({Φi}i∈N)

)
< r,

L(Π) = ‖Σ̃‖(M), and index(spt Σ̃) ≤ k.

Once we have this, we can choose Σ̃j ∈ Vn(M) such that F
(
Σ̃j,C({Φi})

)
< j−1 and thus the

varifold limit Σ̃ of Σ̃j satisfies Σ̃ ∈ C({Φi}).
Let W be the set of all stationary varifolds V in M with free boundary such that ‖V ‖(M) = L

and the support of V is a smooth compact embedded free boundary minimal hypersurface. Now
we fix r > 0 and set

W(r) := {V ∈ W : F
(
V,C({Φi}i)

)
≥ r}.

We can easily argue by contradiction to obtain the following result.

Lemma 6.2. There exists i0 ∈ N and ǫ0 > 0 such that F(|Φi|(X),W(r)) > ǫ0 for all i ≥ i0.

Let Wk+1 be the collection of elements in W whose support has index greater than or equal to
(k + 1). Now it suffices to show W \ (W(r) ∪Wk+1) is non-empty.
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Since the metric g is bumpy, the set Wk+1 is countable by Proposition 5.3. So we can write

Wk+1 \BF

ǫ0(W(r)) = {Σ1,Σ2,Σ3, . . .}.
Note that for any i ∈ N, Σi satisfies index(sptΣi) ≥ (k + 1) and thus Σi is (k + 1)-unstable.

Then our argument from here is the same as that of [17], and we also present it here for the sake
of completeness.

Using our Deformation Theorem (Theorem 5.8) with K = B
F

ǫ0(W(r)) and Σ = Σ1 (recall that

F(|Φi|(X),K) > 0 for all i ≥ i0 by Lemma 6.2), we can find ǫ1 > 0, i1 ∈ N, and {Φ1
i }i∈N so that

• Φ1
i is homotopic to Φi in the F-topology for all i ∈ N;

• L({Φ1
i }i) ≤ L;

• F(|Φ1
i |(X),B

F

ǫ1(Σ1) ∪B
F

ǫ0(W(r))) > 0 for all i ≥ i1;

• no Σj belongs to ∂B
F

ǫ1(Σ1).(This can be easily satisfied since {Σ1,Σ2, · · · } is a countable
set.)

Next, we consider Σ2. If Σ2 /∈ B
F

ǫ1(Σ1), then we apply Theorem 5.8 again with K = B
F

ǫ1(Σ1) ∪
B

F

ǫ0(W(r)) and find ǫ2, i2 ∈ N, and {Φ2
i }i∈N so that

• Φ2
i is homotopic to Φi in the F-topology for all i ∈ N;

• L({Φ2
i }i) ≤ L;

• F(|Φ2
i |(X),B

F

ǫ2(Σ2) ∪B
F

ǫ1(Σ1) ∪B
F

ǫ0(W(r))) > 0 for all i ≥ i2;

• no Σj belongs to ∂B
F

ǫ1(Σ1) ∪ ∂B
F

ǫ2(Σ2).

If Σ2 ∈ BF
ǫ1(Σ1), we skip Σ2 and repeat the procedure with Σ3.

We keep applying the above procedure and eventually there are two possibilities. The first case is

that we can find for all l ∈ N, there exists a sequence {Φl
i}i∈N, ǫl, il ∈ N, and Σjl ∈ Wk+1\BF

ǫ0(W(r))
for some jl ∈ N so that

(i) Φl
i is homotopic to Φi in the F-topology for all i ∈ N;

(ii) L({Φl
i}i) ≤ L;

(iii) F(|Φl
i|(X),∪l

q=1B
F

ǫq(Σjq) ∪B
F

ǫ0(W(r))) > 0 for all i ≥ il;

(iv) {Σ1, . . . ,Σl} ⊂ ∪l
q=1B

F
ǫq (Σjq);

(v) no Σj belongs to ∂B
F

ǫ1(Σ1) ∪ · · · ∪ ∂B
F

ǫl
(Σjl).

The second case is that the process stops in finitely many steps. This means that we can find some

m ∈ N, a sequence {Φm
i }i∈N, ǫ1, . . . , ǫm > 0, im ∈ N, and Σj1 , . . . ,Σjm ∈ Wk+1 \BF

ǫ0(W(r)) so that

(a) Φm
i is homotopic to Φi in the F-topology for all i ∈ N;

(b) L({Φm
i }i) ≤ L;

(c) F(|Φm
i |(X),∪m

q=1B
F

ǫq(Σjq) ∪B
F

ǫ0(W(r))) > 0 for all i ≥ im;

(d) {Σj : j ≥ 1} ⊂ ∪m
q=1B

F
ǫq(Σjq).

For either case, we will choose a min-max sequence so that we can apply the Min-max Theorem
(Theorem 4.5). For the first case, we can choose a diagonal sequence {Φl

pl
}l∈N and set Ψl = Φl

pl
,

where {pl}l∈N is an increasing sequence such that pl ≥ il (the condition (iii) is satisfied) and

sup
x∈X

‖Φl
pl
(x)‖(M) ≤ L+

1

l
.
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For the second case, we simply choose the last sequence {Φm
l }l and set pl = l and Ψl = Φm

l . Now
it is easy to see that for both cases, the new sequence {Ψl}l∈N satisfies the following conditions:

(1) Ψl is homotopic to Φpl in the F-topology for all l ∈ N;
(2) L({Ψl}l) ≤ L;
(3) C({Ψl}l) ∩

(
Wk+1 ∪W(r)

)
= ∅.

Note that the condition (3) follows directly from (iii) or (c). Then Theorem 4.5 implies that there
exists a varifold V ∈ C({Ψl}l) such that V is stationary in M with free boundary, and V is
supported on a smooth compact embedded free boundary minimal hypersurface. By (3), we know
that W \

(
Wk+1 ∪W(r)

)
is non-empty and this completes the proof of index estimates for bumpy

metrics. �

Now we are ready to prove the general index estimates using Theorem 6.1 and the compactness
result of [11].

Theorem 6.3 (Index estimates for general metrics). Suppose that (Mn+1, g) is a smooth compact
manifold with boundary and 3 ≤ (n + 1) ≤ 7. Let X be a cubical complex of dimensional k and
Φ : X → Zn(M,∂M ;F;G) be a continuous map. Let Π denote the associated homotopy class of Φ.
Then there exists a varifold V ∈ Vn(M) such that

(i) ‖V ‖(M) = L(Π);
(ii) V is stationary in M with free boundary;

(iii) there exists N ∈ N and mi ∈ N, 1 ≤ i ≤ N , such that V =
∑N

i=1 mi|Σi|, where each Σi is a
smooth, compact, connected, almost properly embedded, free boundary minimal hypersurface
in M . Moreover,

index(sptV ) =
N∑

i=1

index(Σi) ≤ k.

Proof. Since bumpy metrics are generic in the Baire sense [3], we can take a sequence {gj}j∈N of
bumpy metrics converging smoothly to g. For each gj , we use Lj to denote the width of Π with
respect to gj . By Theorem 6.1, we know that there exists a varifold Vj ∈ Vn(M) which is stationary
in M with free boundary and whose support is a smooth, compact, almost properly embedded, free
boundary minimal hypersurface. Moreover,

Lj = ‖Vj‖(M) and index(sptVj) ≤ k.

Since the width is continuous with respect to metrics, we know that Lj → L(Π) as j → ∞. The
conclusion then follows directly from the compactness theorem in [11]. �

7. Density of free boundary minimal hypersurfaces

In the final section, we give a proof of the density result (Theorem 1.3). We shall need the
notions of p-widths for compact Riemannian manifolds (with or without boundary). We will first
recall the definitions and state the relevant results in the free boundary setting.

7.1. Width. Let X denote a cubical subcomplex of the m-dimensional cube Im = [0, 1]m.

Definition 7.1. Given p ∈ N, a continuous map in the flat topology

Φ : X → Zn(M,∂M ;Z2)
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is called a p-sweepout if the p-th cup power of λ = Φ∗(λ̄) is non-zero in Hp(X;Z2) where 0 6= λ̄ ∈
H1(Zn(M,∂M ;Z2);Z2) ∼= Z2. We denote by Pp(M) the set of all p-sweepouts that are continuous
in the flat topology and have no concentration of mass ([18, §3.7]).

Definition 7.2. The p-width of a Riemannian manifold (M,g) with boundary is defined by

ωp(M,g) := inf
Φ∈Pp(M)

sup{M(Φ(x)) : x ∈ dmn(Φ)},

where dmn(Φ) is the domain of Φ.

The following proposition says that the p-width ωp is realized by the area (counting multiplicities)
of min-max free boundary minimal hypersurfaces, which is an application of our Min-max Theorem
(Theorem 4.5) and general Morse index estimates (Theorem 6.3), together with the compactness
result of [11, Theorem 1.1].

Proposition 7.3 (cf.[12, Proposition 2.2]). Suppose 3 ≤ (n + 1) ≤ 7. Then for each k ∈ N, there
exist a finite disjoint collection {Σ1, ...,ΣN} of smooth, compact, almost properly embedded FBMHs
in (M,∂M ; g), and integers {m1, ...,mN} ⊂ N, such that

ωk(M,g) =

N∑

j=1

mj Areag(Σj) and

N∑

j=1

index(Σj) ≤ k.

Proof. Choose a sequence {Φi}i∈N ⊂ Pk(M) such that

(7.1) lim
i→∞

sup{M(Φi(x)) : x ∈ Xi = dmn(Φi)} = ωk(M,g).

Without loss of generality, we can assume that the dimension of Xi is k for all i (see [17, §1.5] or
[12, Proof of Proposition 2.2]).

By the Discretization Theorem [13, Theorem 4.12] and the Interpolation Theorem (Theorem
4.4), we can assume that Φi is a continuous map to Zn(M,∂M ;Z2) in the F-metric. Denote by Πi

the homotopy class of Φi. This is the class of all maps Φ′
i : Xi → Zn(M,∂M ;Z2), continuous in the

F-metric, that are homotopic to Φi in the flat topology. In particular, Φ′
i
∗(λ̄) = Φ∗

i (λ̄). Continuity
in the F-metric implies no concentration of mass (see Lemma 4.3), hence every such Φ′

i is also a
k-sweepout in the sense of Definition 7.1.

Claim 1. limi→∞ L(Πi) = ωk(M,g).

Proof of Claim 1. Note that

(7.2) L(Πi) ≤ sup{M(Φi(x)) : x ∈ Xi}.

Letting i → ∞, the right hand side tends to ωk(M,g) by (7.1). On the other hand, since that each
element in Πi is also a k-sweepout, then

ωk(M,g) ≤ inf
Φ′∈Πi

sup{M(Φ′(x)) : x ∈ Xi} = L(Πi).

Together with (7.2), the desired result follows. �
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To proceed with the arguments, Theorem 6.3 implies the existence of a finite disjoint collec-
tion {Σi,1, ...,Σi,Ni

} of almost properly embedded FBMHs in (M,∂M), and a sequence of integers
{mi,1, ...,mi,Ni

} ⊂ N, such that

L(Πi) =

Ni∑

j=1

mi,j Areag(Σi,j), and

Ni∑

j=1

index(Σi,j) ≤ k.

Note that the areas of non-trivial almost properly embedded FBMHs in (M,∂M ; g) are uni-
formly bound away from zero. Hence the number of components Ni and the multiplicities mi,j are
uniformly bounded from above. The desired results then follow immediately from the compactness
theorem [11, Theorem 1.1]. �

Since the two formulations of min-max theory for manifolds with boundary were shown to be
equivalent in Section 3, our p-widths defined using the space Zn(M,∂M ;Z2) also satisfy a Weyl
Law as in [14].

Theorem 7.4 (Weyl Law for the Volume Spectrum; [14]). There exists a constant α(n) such that,
for every compact Riemannian manifold (Mn+1, g) with (possibly empty) boundary, we have

lim
k→∞

ωk(M,g)k−
1

n+1 = α(n)Vol(M,g)
n

n+1 .

It is known that the normalized p-width is a locally Lipschitz function of the metric, with a
uniform local Lipschitz constant independent of p.

Lemma 7.5 ([12, Lemma 2.1],[20, Lemma 1]). Let g0 be a C2 Riemannian metric on (M,∂M),
and let C1 < C2 be positive constants. Then there exists K = K(g0, C1, C2) > 0 such that

|p− 1

n+1ωp(M,g) − p−
1

n+1ωp(M,g′)| ≤ K · |g − g′|g0
for all C2 metrics g, g′ such that C1g0 ≤ g ≤ C2g0, C1g0 ≤ g′ ≤ C2g0 and any p ∈ N.

7.2. Perturbation results. Given a Riemannian manifold (M,∂M ; g) with boundary and an
almost properly embedded free boundary minimal hypersurface Σ ⊂ M , in general Σ could be
degenerate and improper. We first prove that under a smooth perturbation of g, we can make Σ
non-degenerate.

Proposition 7.6. (cf.[12, Proposition 2.3], [20, Lemma 4]) Let Σ be a compact, smooth almost
properly embedded FBMH in (M,∂M ; g). Then there exists a sequence of metrics gi on M , i ∈ N,
converging to g smoothly such that Σ is a non-degenerate, almost properly embedded FBMH in
(M,∂M ; gi) for each i ∈ N.

Proof. If Σ is equal to the union of some components of ∂M , the result follows from [12, Proposition
2.3]. Otherwise, the points {xi} in [20, Lemma 4] can be chosen to lie in the interior ofM . Therefore,
Σ is still a FBMH under the locally conformally perturbed metrics. Finally, using the arguments
in [20, Lemma 4], the perturbations of g therein make Σ non-degenerate. �

Next, we prove that under suitable perturbation of the metrics and the hypersurface Σ, we can
make the FBMHs properly embedded.

Proposition 7.7. Let Σ be a compact, smooth almost properly embedded FBMH in (M,∂M ; g).
Then there exist a sequence of metrics gi on M , and a sequence of hypersurfaces Σi in M so that
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• gi converges to g in the smooth topology;
• Σi smoothly converges to Σ;
• Σi is a properly embedded FBMH in (M,∂M ; gi) for each i.

Proof. Recall that (M,g) can be regarded as a domain of a closed Riemannian manifold (M̃ , g̃)

of the same dimension. Let d be the signed distance to ∂M in M̃ so that ∇d|∂M is the unit

normal vector field on ∂M pointing out of M . Let V be an open set of M̃ so that V ∩ ∂Σ = ∅
and Touch(Σ) ⊂ V . Let ξ be a nonnegative cut-off function supported in V such that ξ(x) = 1

for all x ∈ Touch(Σ) and ξ∇d is a smooth vector field on M̃ . Denote by {Ft}t∈[0,1] the family of

diffeomorphisms of M̃ generated by ξ∇d.

Now let gi = F ∗
1/ig̃ and Σi = (F1/i)

−1(Σ). Since Ft is a diffeomorphism of M̃ , gi → g and

Σi → Σ smoothly. Note that Σ is a properly embedded FBMH in (Ft(M), g̃). In other words, Σi

is a properly embedded FBMH in M with respect to the metric gi. This completes the proof. �

7.3. Proof of Theorem 1.3. As in the proof of [12, Main theorem], Theorem 1.3 follows once we
have proved the following proposition.

Proposition 7.8. Let (Mn+1, ∂M ; g) be a compact Riemannian manifold with boundary and 3 ≤
(n + 1) ≤ 7. Let M be the space of all smooth Riemannian metrics on M , endowed with the
smooth topology. Suppose that U ⊂ M is a non-empty relatively open subset. Let MU be the set
of metrics g ∈ M such that there exists a non-degenerate, properly embedded FBMH Σ in (M,g)
which intersects U . Then MU is open and dense in M in the smooth topology.

Proof. Let g ∈ MU and Σ be as in the statement of the proposition. Because Σ is properly
embedded and non-degenerate, from the Structure Theorem of White [30, Theorem 2.1] (see [3,
Theorem 35] for a version in the free boundary setting), for every Riemannian metric g′ sufficiently
close to g, there exists a unique non-degenerate properly embedded FBMH Σ′ close to Σ. This
implies MU is open.

It remains to show the set MU is dense. Let g be an arbitrary smooth Riemannian metric on
M and V be an arbitrary neighborhood of g in the C∞ topology. By the Bumpy Metrics Theorem
([30, Theorem 2.1],[3, Theorem 9]), there exists g′ ∈ V such that every compact, almost properly
embedded FBMH with respect to g′ is non-degenerate. If one of these hypersurfaces is almost
properly embedded and intersects U , then by Proposition 7.7, there exist a sequence of metrics gi
on M , and a sequence of hypersurfaces Σi so that

• gi converges to g′ in the smooth topology;
• Σi smoothly converges to Σ;
• Σi is a properly embedded FBMH in (M,∂M ; gi) for each i ∈ N.

Then for i large enough, gi ∈ V and Σi is a properly embedded FBMH with respect to gi so that
Σi ∩ U 6= ∅. This implies that gi ∈ MU and we are done.

Hence we can suppose that every almost properly embedded FBMH with respect to g′ is contained
in the complement of U . Since g′ is bumpy, it follows from Proposition 5.3 M(Λ, I) is countable
with respect to g′ for any Λ > 0 and I ∈ N. Therefore, the set

C :=





N∑

j=1

mj Areag′(Σj)
∣∣∣ N ∈ N, {mj} ⊂ N, {Σj} disjoint collection of almost

properly embedded FBMHs in (M,∂M ; g′)
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is countable. Following the arguments in [12, Proposition 3.1] and using the Weyl Law (Theorem
7.4) and Proposition 7.3, there exists g′′ ∈ V so that (M,∂M ; g′′) admits an almost properly
embedded FBMH intersecting U . Then by Proposition 7.6 and 7.7, we have V ∩MU 6= ∅. �

Appendix A. logarithmic cut-off trick

We recall a construction of the logarithmic cut-off functions used in this paper.

Lemma A.1. Let (Mn+1, g) be a Riemannian manifold with n+1 ≥ 3 and Σ be a hypersurface in
M . For p ∈ Σ, there exists a family of cut-off functions {ξr} on M satisfying

(1) ξr|Br(p) = 0 and 0 ≤ ξr(x) ≤ 1 for x ∈ M ;

(2)
∫
Σ |∇ξr|2 → 0 and ξr → 1 as r → 0.

Proof. For simplicity, we denote |x| := dist(x, p). Now define ξr(x) as follows:

ξr(x) :=





0, |x| ≤ r;

2− 2 log |x|
log r

, r < |x| ≤ √
r;

1, |x| > √
r.

One can check directly that such a cut-off function satisfies all the requirements. �
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