
- Functional Magnetic Resonance Imaging (fMRI) provides informa-
tion about brain activity.

- We tried to model the joint distribution of brain response (fMRI) 
and task (experimental condition) using Generative Adversarial 
Network (GAN). 

IntroductionIntroduction
- Visual comparison 

- Evaluation of the generated images

For the training dataset, t-tests were conducted between images 
paired with task variable 0 (n=400) and images paired with task var-
iable 1 (n=400).
For the generated dataset, t-tests were conducted between 
images with task variables smaller than 0.1 (n=374) and images 
with task variables bigger than 0.9 (n = 433). 
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- We demonstrated that WGAN-GP is capable of estimating the data dis-
tribution of 2-dimensional fMRI signals and generating realistic fMRI 
data.  

- The generated images by the trained WGAN-GP replicated the task rel-
evant fMRI signals in motor cortex. 

- The result suggests that the WGAN-GP learned the joint task/response 
distribution of motor task fMRI.

ConclusionConclusion

Material
-  Task-evoked fMRI were acquired from Human Connectome Project 
WU-Minn HCP 1200 Subjects Data (HCP S1200) [2]

        Response:
        fMRI matrix
        (64 x 64)

        Task:            if left hand = 0
        hand movement
        (1)             if right hand = 1

Methods
- Wasserstein distance GAN with gradient penalty (WGAN-GP) [2]

D(x): Discriminator output         : Lipschitz constraint
       : pdf of generated data             : sampled from the line                                                  
       : pdf of real data               and 

- Generator network structure

- Disctiminator network structure
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Using Generative Adversarial Network for modeling joint task/response 
distribution in functional Magnetic Resonance Imaging
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