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ABSTRACT

Current datasets for video-based person re-identification (re-ID) do not include structural knowledge
in form of human pose annotations for the persons of interest. Nonetheless, pose information is very
helpful to disentangle useful feature information from background or occlusion noise. Especially
real-world scenarios, such as surveillance, contain a lot of occlusions in human crowds or by obsta-
cles. On the other hand, video-based person re-ID can benefit other tasks such as multi-person pose
tracking in terms of robust feature matching. For that reason, we present PoseTrackReID, a large-
scale dataset for multi-person pose tracking and video-based person re-ID. With PoseTrackReID,
we want to bridge the gap between person re-ID and multi-person pose tracking. Additionally, this
dataset provides a good benchmark for current state-of-the-art methods on multi-frame person re-ID.
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1 Introduction

Multi-person pose tracking [1, 2, 3] and video-based person re-identification (re-ID) [4, 5, 6, 7] are two very active
research fields in computer vision, relevant for many applications like sports, autonomous driving and security. Both
tasks are challenging due to different viewpoints, varying (low) image resolutions, illumination changes, occlusions,
motion blur and crowded scenes.

In multi-person pose tracking, the target is to estimate all human poses for all frames of a video and link them over
time. Person re-identification, on the other hand, aims to find a person of interest across multiple sequences and
non-overlapping cameras. Although both tasks are mainly studied separately, they can benefit from each other. For
example, person re-identification can benefit from human pose estimation by utilizing the semantic structure of the
person of interest [8]. Person re-ID, on the other hand, can be utilized to link all instances of the same person across
time [9].

Common datasets for person re-ID [10, 11, 12, 13] provide tight person crops and mostly contain the person of interest
only. Though, in many real world scenarios such as surveillance or sports, persons are often occluded by obstacles.
Further, these scenarios contain a lot of crowded scenes in which persons frequently occlude each other. This leads to
a lot of ambiguities, especially if a person is partially visible or multiple persons are present within a single crop. To
overcome problems such as occlusion, Miao et al. [8] propose the Occluded-DukeMTMC dataset as an extension of
the DukeMTMC-ReID dataset [12] and provide keypoint information obtained from an off-the-shelf pose estimator
[14]. However, off-the-shelf pose estimators such as [14] perform poorly in crowded scenes with severe occlusions,
resulting in misplaced keypoints.

Video keypoint annotations, on the other hand, are costly and time consuming. Consequently, a limited amount of
training data is publicly available, especially for the task of multi-person pose tracking. We argue that pose tracking
and person re-ID are two related tasks which should be solved jointly. For that reason, we extended a large-scale multi-
person pose estimation and tracking dataset (PoseTrack [15]) and propose PoseTrackReID. PoseTrackReID combines
both tasks of multi-person pose tracking and video-based person re-ID with the aim to improve pose-based person re-
ID methods in videos. To the best of our knowledge, this is the first dataset combining person re-ID and multi-person
pose tracking.
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2 Dataset

We briefly describe the PoseTrack 2018 dataset [15] in Section 2.1 and introduce PoseTrackReID as well as its anno-
tation process in Section 2.2.

2.1 PoseTrack

The PoseTrack 2018 dataset1 [15] is a large-scale dataset for multi-person pose estimation and tracking, containing
823 sequences. Following the split of the MPII Human Pose dataset [16], the sequences are split into 293, 170 and
375 videos for training, validation and testing. The majority of sequences range from 41 to 151 frames and contain
30 densely annotated frames around the middle of each sequence. On top, validation and test sequences are annotated
with a step size of four frames. In total, PoseTrack 2018 consists of 46,933 labeled frames.

PoseTrack provides ignore regions to exclude crowds and small people, keypoint annotations, head bounding boxes to
estimate the scale of a person and track ids. Unfortunately, track ids are not unique throughout the dataset, not even
within a single sequence. If a person leaves a scene and re-enters, for instance, it is assigned a new track id. This can
result in ambiguities for appearance-based similarity approaches.

2.2 PoseTrackReID

The PoseTrack 2018 dataset contains multiple sequences sampled from the same video. For that reason, the dataset
is well suited to be extended by person IDs as the same person appears in multiple sequences. In addition, PoseTrack
contains a lot of challenging sequences with a high degree of occlusion and motion blur. In contrast to related person
re-ID datasets [10, 11, 12, 13], this results in person bounding boxes with a high degree of occlusion and multiple
persons within a single person crop. Due to its challenging nature, our proposed dataset can provide a new measure
of robustness for current state-of-the-art approaches. The provided keypoint annotations further allow to incorporate
structural pose information paving the way for pose-based person re-ID methods. On the other hand, our dataset opens
ways for re-ID based pose tracking methods. .

2.3 Data Annotation

We developed a new tool to annotate the PoseTrack 2018 dataset and adopt the same annotation format. At the moment,
we only provide annotations for the training and validation sets.

The annotation process was performed in four steps. First, we re-annotated the existing bounding boxes on the training
and validation set as the bounding boxes provided by PoseTrack have been an artifact of the annotation process and
were therefore not accurately annotated. Specifically, most bounding boxes only contained the visible part of a person.
We extended all bounding boxes to cover the entire portion of a person, including occluded body parts. To increase the
difficulty of person re-ID, we further annotated bounding boxes for small persons and persons in crowds. Then, we
interpolated and revised the bounding boxes between non-keyframes2. This results in additional 25,478 and 11,238
annotated frames on the training and validation sets, respectively. Second, we adapted the ignore regions on the
training set such that the newly added persons are not anymore excluded. In a third step, we annotated unique person
identities throughout the training and validation sets. Additionally, we added head bounding boxes for newly added
persons for all frames on the validation set. On the training set, we only provide head bounding boxes from PoseTrack
2018.

In a final step, we adapt and annotate person keypoints for all keyframes on the training and validation sets. The
original annotations of the PoseTrack 2018 dataset consist of 15 keypoints where each keypoint contains a flag, whether
it is annotated or not. Unfortunately, there exist several cases in which these flags are not set reliably. In our dataset,
we re-define the purpose of the keypoint flags and include occluded keypoints. In that way, pose estimation and re-
ID approaches can utilize occlusion information within their training pipelines. We define a joint j = (x, y, v) as
occluded, if x ≥ 0, y ≥ 0 and v = 0. A joint is truncated if x = −1, y = −1 and v = 0. Otherwise, a joint is defined
as visible if v = 1. After refining the original keypoints, we ran an off-the-shelf pose estimator [3] to estimate the
poses for all newly added bounding boxes on keyframes only, which were then refined manually afterwards.

1We refer to the final version of PoseTrack 2018 which was released in 2019, containing more sequences as described in [15].
2We denote as keyframe all frames which were annotated in PoseTrack 2018.
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