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Abstract. Few-shot learning methods operate in low data regimes. The aim is
to learn with few training examples per class. Although significant progress has
been made in few-shot image classification, few-shot video recognition is rela-
tively unexplored and methods based on 2D CNNs are unable to learn temporal
information. In this work we thus develop a simple 3D CNN baseline, surpassing
existing methods by a large margin. To circumvent the need of labeled exam-
ples, we propose to leverage weakly-labeled videos from a large dataset using
tag retrieval followed by selecting the best clips with visual similarities, yielding
further improvement. Our results saturate current 5-way benchmarks for few-shot
video classification and therefore we propose a new challenging benchmark in-
volving more classes and a mixture of classes with varying supervision.

1 Introduction

In the video domain annotating data is very time-consuming due to the additional time
dimension. The lack of labeled training data is more prominent for some fine-grained
action classes at the “tail” of the skewed long-tail distribution (see Figure 1), e.g.,
“arabesque in ballet”. It is thus important to learn to classify videos in the limited
labeled training data regime. Visual recognition methods that operate in the few-shot
learning setting aim to generalize a classifier trained on base classes with enough train-
ing data to novel classes with only a few labeled training examples. While considerable
attention has been devoted to this scenario in the image domain [41,28,29,4], few-shot
video classification is relatively unexplored.

Existing few-shot video classification approaches [48,2] are mostly based on frame-
level features extracted from a 2D CNN, which essentially ignores the important tempo-
ral information. Although additional temporal modules have been added at the top of a
pre-trained 2D CNN, necessary temporal cues may be lost when temporal information
is learned on top of static image features. We argue that under-representing temporal
cues may negatively impact the robustness of the classifier. In fact, in the few-shot sce-
nario it may be risky for the model to rely exclusively on appearance and context cues
extrapolated from the few available examples. In order to make temporal information
available we propose to represent the videos by means of a 3D CNN.

While obtaining labeled videos for target classes is time-consuming and challeng-
ing, there are many videos tagged by users available on the internet. For example, there
are 400,000 tag-labeled videos in the YFCC100M [36] dataset. Our second goal is thus
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Fig. 1. Our 3D CNN approach combines a few class-labeled videos (time-consuming to obtain)
and tag-labeled videos. It saturates existing benchmarks, so we move to a more challenging gen-
eralized many-way few-shot video classification task.

to leverage such tag-labeled videos (Figure 1) to alleviate the lack of labeled training
data.

Existing experimental settings for few-shot video classification [48,2] are limited.
Predicting a label among just 5 novel classes in each testing episode is in fact relatively
easy. Moreover, restricting the label space to only novel classes at test time, and ignoring
the base classes is unrealistic. In real-world applications test videos are expected to
belong to any class.

In this work, our goal is to push the progress of few-shot video classification in
three ways: 1) To learn the temporal information, we revisit spatiotemporal CNNs in
the few-shot video classification regime. We develop a 3D CNN baseline that maintains
significant temporal information within short clips; 2) We propose to retrieve relevant
videos annotated with tags from a large video dataset (YFCC100M) to circumvent the
need for labeled videos of novel classes; 3) We extend current few-shot video classi-
fication evaluation settings by introducing two challenges. In our generalized few-shot
video classification task, the label space has no restriction in terms of classes. In many-
way few-shot video classification with, the number of classes goes well beyond five, and
towards all available classes. Our extensive experimental results demonstrate that on ex-
isting settings spatiotemporal CNNs outperform the state-of-the-art by a large margin,
and on our proposed settings weakly-labeled videos retrieved using tags successfully
tackles both of our new few-shot video classification tasks.

2 Related work

Low-shot learning setup. The low-shot image classification [26,29,15] setting uses a
large-scale fully labeled dataset for pre-training a DNN on the base classes, and a low-
shot dataset with a small number of examples from a disjoint set of novel classes. The
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terminology “k-shot n-way classification” means that in the low-shot dataset there are
n distinct classes and k examples per class for training. Evaluating with few examples
(k small) is bound to be noisy. Therefore, the k training examples are often sampled
several times and accuracy results are averaged [15,6]. Many authors focus on cases
where the number of classes n is small as well, which amplifies the measurement noise.
For that case [29] introduces the notion of “episodes”. An episode is one sampling of n
classes and k examples per class, and the accuracy measure is averaged over episodes.

It is feasible to use distinct datasets for pre-training and low-shot evaluation. How-
ever, to avoid dataset bias [37] it is easier to split a large supervised dataset into disjoint
sets of “base” and “novel” classes. The evaluation is often performed only on novel
classes, except [15,45,32] who evaluate on the combination of base+novel classes.

Recently, a low-shot video classification setup has been proposed [48,7]. They use
the same type of decomposition of the dataset as [29], with learning episodes and ran-
dom sampling of low-shot classes. In this work, we follow and extend the evaluation
protocol of [48].

Tackling low-shot learning. The simplest low-shot learning approach is to extract em-
beddings from the images using the pre-trained DNN and train a linear classifier [1]
or logistic regression [15] on these embeddings using the k available training exam-
ples. Another approach is to cast low-shot learning as a nearest-neighbor classifier [44].
The “imprinting” approach [28], consists in building a linear classifier from the embed-
dings of training examples, then fine-tune it. Note that this is close to a nearest-neighbor
classifier, since it is equivalent to doing class-mean similarity search with a cosine dis-
tance. As a complementary approach, [19] has looked into exploiting noisy labels to aid
classification. By leveraging tags of 100M images from the YFCC100M dataset [36],
they show improvements over Imagenet-pretraining. In this work, we use videos from
YFCC100M retrieved by tags to augment and improve training of our few-shot classi-
fier.

In a meta-learning setup, the low-shot classifier is assumed to have hyper-parameters
or parameters that must be adjusted before training. Thus, there is a preliminary meta-
learning step that consists in training those parameters on simulated episodes sampled
from the base classes. Both Matching networks [41] and Prototypical Networks[34]
employ metric learning to “meta-learn” deep neural features and adopt a nearest neigh-
bor classifier. [29] meta-learns the optimization algorithm via an LSTM that maps the
low-shot training examples into a classifier. Feature hallucination [15] meta-learns how
to generate additional training data for novel classes, directly in the feature space. In
MAML [11], the embedding classifier is meta-learned to adapt quickly and without
overfitting to fine-tuning. Ren et al. [30] introduce a semi-supervised meta-learning ap-
proach that includes unlabeled examples in each training episode. While that method
holds out a subset from the same target dataset as the unlabeled images, our retrieval-
enhanced approach leverages weakly-labeled videos from another heterogeneous dataset
which may have domain shift issues and a huge amount of distracting videos.

Recent works [4,44] suggest that state-of-the-art performance can be obtained by
methods that do not need meta learning. In particular, [4] show that meta-learning meth-
ods are less useful when the image descriptors are expressive enough, which is the case
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Fig. 2. Our approach comprises three steps: representation learning, few-shot learning and testing.
In representation learning, we train a R(2+1)D CNN using the base classes of our target dataset
starting from a random initialization or from a Sports1M-pretrained model. In few-shot learning,
given few-shot support videos from novel classes, we first retrieve a list of candidate videos for
each class from YFCC100M [36] using their tags, followed by selecting the best matching short
clips from the retrieved videos using visual features. Those clips serve as additional training
examples to learn classifiers that generalize to novel classes at test time.

when they are from high-capacity networks trained on large datasets. Therefore, we
focus on techniques that do not require a meta-learning stage.
Deep descriptors for videos. Moving from hand-designed descriptors [5,24,31,42] to
learned deep network based descriptors [9,10,21,33,43,38] has been enabled by labeled
large-scale datasets [22,21], and parallel computing hardware. Deep descriptors are
sometimes based on 2D-CNN models operating on a frame-by-frame basis with tem-
poral aggregation [13,47]. More commonly they are 3D-CNN models that operate on
short sequences of images that we refer to as video-clips [38,40]. Recently, ever-more-
powerful descriptors have been developed leveraging two-stream architectures using
additional modalities [10,33], factorized 3D convolutions [40,39], or multi-scale ap-
proaches [8]. While most of these descriptors are trained in a fully supervised way,
advances in learning deep descriptors in either weakly supervised [46,12,25] or self
supervised fashion have been explored as well [23,27].

3 Learning spatiotemporal features of videos

In the few-shot learning setting [48], classes are split into two disjoint label sets, i.e.,
base classes (denoted as Cb) that have a large number of training examples, and novel
classes (denoted as Cn) that have only a small set of training examples. Let Xb denote
the training videos with labels from the base classes and Xn be the training videos with
labels from the novel classes (|Xb| � |Xn|). Given the training data Xb and Xn, the
goal of the conventional few-shot video classification task (FSV) [48,2] is to learn
a classifier which predicts labels among novel classes at test time. As the test-time
label space is restricted to a few novel classes, the FSV setting is unrealistic. Thus, in
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this paper, we additionally study the generalized few-shot video classification (GFSV)
which allows videos at test time to belong to any base or novel class.

3.1 3D CNN for FSV (3DFSV)

In this section, we introduce our spatiotemporal CNN baseline for few-shot video clas-
sification (3DFSV). Our approach in Figure 2 consists of 1) a representation learning
stage which trains a spatiotemporal CNN on the base classes, 2) a few-shot learning
stage that trains a linear classifier for novel classes with few labeled videos, and 3) a
testing stage which evaluates the model on unseen test videos. The details of each of
these stages are given below.
Representation learning. Our model adopts a 3D CNN [40] φ : RF×3×H×W → Rdv ,
encoding a short, fixed-length video clip of F RGB frames with spatial resolution
H ×W to a feature vector in a dv-dimensional embedding space. On top of the feature
extractor φ, we define a linear classifier f(•;Wb) parameterized by a weight matrix
Wb ∈ Rdv×|Cb|, producing a probability distribution over the base classes. The objec-
tive is to jointly learn the network φ and the classifier Wb by minimizing the cross-
entropy classification loss on video clips randomly sampled from training videos Xb of
base classes. More specifically, given a training video x ∈ Xb with a label y ∈ Cb, the
loss for a video clip xi ∈ RF×3×H×W sampled from video x is defined as

L(xi) = − log σ(WT
b φ(xi))y (1)

where σ denotes the softmax function that produces a probability distribution and σ(•)y
is the probability at class y. Following [4], we do not do meta-learning, so we can use
all the base classes to learn the network φ.
Few-shot learning. This stage aims to adapt the learned network φ to recognize novel
classes Cn with a few training videos Xn. To reduce overfitting, we fix the network φ
and learn a linear classifier f(•,Wn) by minimizing the cross-entropy loss on video
clips randomly sampled from videos in Xn, where Wn ∈ Rdv×|Cn| is the weight matrix
of the linear classifier. Similarly, we define the loss for a video clip xi sampled from
x ∈ Xn with a label y as

L(xi) = − log σ(WT
n φ(xi))y (2)

Testing. The spatiotemporal CNN operates on fixed-length video clips ofF RGB frames
and the classifiers make clip-level predictions. At test time, the model must predict the
label of a test video x ∈ RT×3×H×W with arbitrary time length T . We achieve this
by randomly drawing a set L of clips {xi}Li=1 from video x, where xi ∈ RF×3×H×W .
The video-level prediction is then obtained by averaging the prediction scores after the
softmax function over those L clips. For few-shot video classification (FSV), this is:

1

L

L∑
i=1

f(xi;Wn). (3)
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For generalized few-shot video classification (GFSV), both base and novel classes are
taken into account and we concatenate the base class weight Wb learned in the repre-
sentation stage with the novel class weight Wn learned in the few-shot learning stage:

1

L

L∑
i=1

f(xi; [Wb;Wn]). (4)

3.2 Retrieval-enhanced 3DFSV (R-3DFSV)

During few-shot learning, fine-tuning the network φ or learning the classifier f(•;Wn)
alone is prone to overfitting. Moreover, class-labeled videos to be used for fine-tuning
are scarce. Instead, the hypothesis is that leveraging a massive collection of weakly-
labeled real-world videos would improve our novel-class classifier. To this end, for each
novel class, we propose to retrieve a subset of weakly-labeled videos, associate pseudo-
labels to these retrieved videos and use them to expand the training set of novel classes.
It is worth noting that those retrieved videos may be assigned with wrong labels and
have domain shift issues as they belong to another heterogeneous dataset, making this
idea challenging to implement. For efficiency and to reduce the label noise, we adopt
the following two-step retrieval approach.
Tag-based video retrieval. The YFCC100M dataset [36] includes around 800K videos
collected from Flickr, with a total length of over 8000 hours. Processing a large col-
lection of videos has a high computational demand and a large portion of them are
irrelevant to our target classes. Thus, we restrict ourselves to videos with tags related to
those of the target class names and leverage information that is complementary to the
actual video content to increase the visual diversity.

Given a video with user tags {ti}Si=1 where ti ∈ T is a word or phrase and S is the
number of tags, we represent it with an average tag embedding 1

S

∑S
i=1 ϕ(ti). The tag

embedding ϕ(.) : T → Rdt maps each tag to a dt dimensional embedding space, e.g.,
Fasttext [18]. Similarly, we can represent each class by the text embedding of its class
name and then for each novel class c, we compute its cosine similarity to all the video
tags and retrieve the N most similar videos according to this distance.
Selecting best clips. The video tag retrieval selects a list of N candidate videos for
each novel class. However, those videos are not yet suitable for training because the
annotation may be erroneous, which can harm the performance. Besides, some weakly-
labeled videos can last as long as an hour. We thus propose to select the best short clips
of F frames from those candidate videos using the few-shot videos of novel classes.

Given a set of few-shot videos Xc
n from novel class c, we randomly sample L video

clips from each video. We then extract features from those clips with the spatiotemporal
CNN φ and compute the class prototype by averaging over clip features. Similarly, for
each retrieved candidate video of novel class c, we also randomly draw L video clips
and extract clip features from φ. Finally, we perform a nearest neighbour search with
cosine distance to find the M best matching clips of the class prototype:

max
xj

cos(pc, φ(xj)) (5)
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where pc denotes the class prototype of class c, xj is the clip belonging to the retrieved
weakly-labeled videos. After repeating this process for each novel class, we obtain a
collection of pseudo-labeled video clips Xp = {Xc

p}
|Cn|
c=1 where Xc

p indicates the best
M video clips from YFCC100M for novel class c.
Batch denoising. The retrieved video clips contribute to learning a better novel-class
classifier f(•;Wn) in the few-shot learning stage by expanding the training set of novel
classes from Xn to Xn

⋃
Xp. Xp may include video clips with wrong labels. During the

optimization, we adopt a simple strategy to alleviate the noise: half of the video clips
per batch come from Xn and another half from Xp at each iteration. The purpose is to
reduce the gradient noise in each mini-batch by enforcing that half of the samples are
trustworthy.

4 Experiments

In this section, we first describe the existing experimental settings and our proposed
setting for few-shot video recognition. We then present the results comparing our ap-
proaches with the state-of-the-art methods in the existing setting on two datasets, the
results of our approach in our proposed settings, model analysis and qualitative results.

4.1 Experimental settings

Here we describe the four datasets we use, previous few-shot video classification pro-
tocols and our settings.
Datasets. Kinetics [22] is a large-scale video classification dataset which covers 400
human action classes including human-object and human-human interactions. Its videos
are collected from Youtube and trimmed to include only one action class. The UCF101 [35]
dataset is also collected from Youtube videos, consisting of 101 realistic human ac-
tion classes, with one action label in each video. SomethingV2 [14] is a fine-grained
human action recognition dataset, containing 174 action classes, in which each video
shows a human performing a predefined basic action, such as “picking something up”
and “pulling something from left to right”. We use the second release of the dataset.
YFCC100M [36] is the largest publicly available multimedia collection with about 99.2
million images and 800k videos from Flickr. Although none of these videos are anno-
tated with a class label, half of them (400k) have at least one user tag. We use the
tag-labeled videos of YFCC100M to improve the few-shot video classification.
Prior setup. The existing practice of [48] and [2] indicates randomly selecting 100
classes on Kinetics and on SomethingV2 datasets respectively. Those 100 classes are
then randomly divided into 64, 12, and 24 non-overlapping classes to construct the
meta-training, meta-validation and meta-testing sets. The meta-training and meta-validation
sets are used for training models and tuning hyperparameters. In the testing phase of
this meta-learning setting [48,2], each episode simulates a n-way, k-shot classification
problem by randomly sampling a support set consisting of k samples from each of the
n classes, and a query set consisting of one sample from each of the n classes. While
the support set is used to adapt the model to recognize novel classes, the classification
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# classes # videos
train val test train val test

Kinetics 64 12 24 6400 1200 2400+2288
UCF101 64 12 24 5891 443 971+1162
SomethingV2 64 12 24 67013 1926 2857+5243

Table 1. Statistics of our data splits on Kinetics, UCF101 and SomethingV2 datasets. We follow
the train, val, and test class splits of [48] and [2] on Kinetics and SomethingV2 respectively.
In addition, we add test videos (the second number under the second test column) from train
classes for GFSV. We also introduce a new data split on UCF101 and for all datasets we propose
5-,10-,15-,24-way (the maximum number of test classes) and 1-,5-shot setting.

accuracy is computed at each episode on the query set and mean top-1 accuracy over
20,000 episodes constitutes the final accuracy.

Proposed setup. The prior experimental setup is limited to n = 5 classes in each
episode, even though there are 24 novel classes in the test set. As in this setting the
performance saturates quickly, we extend it to 10-way, 15-way and 24-way settings.
Similarly, the previous meta-learning setup assumes that test videos all come from novel
classes. On the other hand, it is important in many real-world scenarios that the classifier
does not forget about previously learned classes while learning novel classes. Thus, we
propose the more challenging generalized few-shot video classification (GFSV) setting
where the model needs to predict both base and novel classes.

To evaluate a n-way k-shot problem in GFSV, in addition to a support and a query
set of novel classes, at each test episode we randomly draw an additional query set
of 5 samples from each of the 64 base classes. We do not sample a support set for
base classes because base class classifiers have been learned during the representation
learning phase. We report the mean top-1 accuracy of both base and novel classes over
500 episodes.

Kinetics, UCF101 and SomethingV2 datasets are used as our few-shot video clas-
sification datasets with disjoint sets of train, validation and test classes (see Table 1 for
details). Here we refer to base classes as train classes. Test classes include the classes we
sample novel classes from in each testing episode. For Kinetics and SomethingV2, we
follow the splits proposed by [48] and [2] respectively for a fair comparison. It is worth
noting that 3 out of 24 test classes in Kinetics appear in Sports1M, which is used for
pretraining our 3D ConvNet. But the performance drop is negligible if we replace those
3 classes with other 3 random kinetics classes that are not present in Sports1M (more
details can be found in the supplementary material). Following the same convention,
we randomly select 64, 12 and 24 non-overlapping classes as train, validation and test
classes from UCF101 dataset, which is widely used for video action recognition. We
ensure that in our splits the novel classes do not overlap with the classes of Sports1M.
For the GFSV setting, in each dataset the test set includes samples from base classes
coming from the validation split of the original dataset.
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Kinetics SomethingV2
Method 1-shot 5-shot 1-shot 5-shot
CMN [48] 60.5 78.9 - -
CMN++ [2] 65.4 78.8 34.4 43.8
TAM [2] 73.0 85.8 42.8 52.3
3DFSV (ours, scratch) 48.9 67.8 57.9 75.0
3DFSV (ours, pretrained) 92.5 97.8 59.1 80.1
R-3DFSV (ours, pretrained) 95.3 97.8 - -

Table 2. Comparing with the state-of-the-art few-shot video classification methods. We re-
port top-1 accuracy on the novel classes of Kinetics and SomethingV2 for 1-shot and 5-shot
tasks (both in 5-way). 3DFSV (ours, scratch): our R(2+1)D is trained from scratch; 3DFSV (ours,
pretrained): our model is trained from the Sports1M-pretrained R(2+1)D. R-3DFSV (ours, pre-
trained): our model with retrieved videos, trained from the Sports1M-pretrained R(2+1)D.

Implementation details. Unless otherwise stated our backbone is a 34-layer R(2+1)D [40]
pretrained on Sports1M [21] which takes as input video clips consisting ofF = 16 RGB
frames with spatial resolution of H = 112 ×W = 112. We extract clip features from
the dv = 512 dimensional top pooling units of the R(2+1)D.

In the representation learning stage, we fine-tune the R(2+1)D with a constant learn-
ing rate 0.001 on all datasets and stop training when the validation accuracy of base
classes saturates. We perform standard spatial data augmentation including random
cropping and horizontal flipping. We also apply temporal data augmentation by ran-
domly drawing 8 clips from a video in one epoch. In the few-shot learning stage, the
same data augmentation is applied and the novel class classifier is learned with a con-
stant learning rate 0.01 for 10 epochs on all the datasets. At test time, we randomly draw
L = 10 clips from each video and average their predictions for a video-level prediction.

As for the retrieval approach, we use the 400 dimensional (dt = 400) fasttext [17]
embedding trained with GoogleNews. We first retrieve N = 20 candidate videos for
each class with video tag retrieval and then selectM = 5 best clips among those videos
with visual similarities.

4.2 Comparing with the state-of-the-art

In this section, we compare our model with the state-of-the-art in existing evaluation
settings which mainly consider 1-shot, 5-way and 5-shot, 5-way problems and evaluate
only on novel classes, i.e., FSV. The baselines CMN [48] and TAM [2] are considered
as the state-of-the-art in few-shot video classification. CMN [48] proposes a multi-
saliency embedding function to extract video descriptor, and few-shot classification is
then done by the compound memory network [20]. TAM [2] proposes to leverage the
long-range temporal ordering information in video data through temporal alignment.
They additionally build a stronger CMN, namely CMN++, by using the few-shot learn-
ing practices from [4]. We use their reported numbers for fair comparison. The results
are shown in Table 2. As the code from CMN [48] and TAM [2] is not available at the
time of submission we do not include UCF101 results.
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On Kinetics, we observe that our 3DFSV (pretrain) approach, i.e. without retrieval,
outperforms the previous best results by over 19% in 1-shot case (73.0% of TAM vs
92.5% of ours), and by 12% in 5-shot case (85.8.0% of TAM vs 97.8% of ours). On
SomethingV2 dataset, we would like to first highlight that our 3DFSV (scratch) signif-
icantly improves over TAM by 15.1% in 1-shot (42.8% of TAM vs 57.9% of ours) and
by surprisingly 22.7% in 5-shot (52.3% of TAM vs 75.0% of ours). This is encouraging
because the 2D CNN backbone of TAM is pretrained on ImageNet, while our R(2+1)D
backbone is trained from random initialization.

Our 3DFSV (pretrain) yields further improvement after using the Sports1M-pretrained
R(2+1)D. We observe that the effect of the Sports1M-pretrained model on SomethingV2
is not as significant as on Kinetics because there is a large domain gap between Sports1M
to SomethingV2 datasets. Those results show that a simple linear classifier on top of a
pretrained 3D CNN, e.g. R(2+1)D [40], performs better than sophisticated methods
with a pretrained 2D ConvNet as a backbone.

Although as shown in C3D [38], I3D [3], R(2+1)D [40], spatiotemporal CNNs have
an edge over 2D spatial ConvNet [16] in the fully supervised video classification with
enough annotated training data, we are the first to apply R(2+1)D in the few-shot video
classification with limited labeled data. It is worth noting that our R(2+1)D is pretrained
on the Sports1M while the 2D ResNet backbone of CMN [48] and TAM [2] is pretrained
on ImageNet. A direct comparison between 3D CNNs and 2D CNNs is hard because
they are designed for different input data. While it is standard to use an ImageNet-
pretrained 2D CNN in image domains, it is common to apply a Sports1M-pretrained
3D CNN in video domains. One of our goals is to establish a strong few-shot video
classification baseline with 3D CNNs. Intuitively, the temporal cue of the video is better
preserved when clips are processed directly by a spatiotemporal CNN as opposed to
processing them as images via a 2D ConvNet. Indeed, even though we train our 3DFSV
from the random initialization on SomethingV2 dataset which requires strong temporal
information, our results still remain promising. This confirms the importance of 3D
CNNs for few-shot video classification.

Our R-3DFSV (pretrain) approach, i.e. with retrieved weakly-labeled video clips,
lead to further improvements in 1-shot case (3DFSV (pretrain) 92.5% vs R-3DFSV (pre-
train) 95.3) on Kinetics dataset. This implies that weakly-labeled videos retrieved from
the YFCC100M dataset include discriminative cues for Kinetics tasks. In 5-shot, our
R-3DFSV (pretrain) approach achieves similar performance as our 3DFSV (pretrain)
approach however with an 97.8% this task is almost saturated. We do not retrieve any
weakly-labeled videos for the SomethingV2 dataset because it is a fine-grained dataset
of basic actions and it is unlikely that YFCC100M includes any relevant video for that
dataset. As a summary, although 5-way classification setting is still challenging to those
methods with 2D ConvNet backbone, the results saturate with the stronger spatiotem-
poral CNN backbone.

4.3 Increasing the number of classes in FSV

Although prior works evaluated few-shot video classification on 5-way, i.e. the number
of novel classes at test time is 5, our 5-way results are already saturated. Hence, in this
section, we go beyond 5-way classification and extensively evaluate our approach in the
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Fig. 3. Results of 3DFSV and R-3DFSV on both Kinetics and UCF101 in the one-shot video
classification setting (FSV). In this experiment we go beyond the classical 5-way classification
setting. We use 5, 10, 15 and 24 (all) of the novel classes in each testing episode. We report the
top-1 accuracy of novel classes.

more challenging, i.e., 10-way, 15-way and 24-way few-shot video classification (FSV)
setting. Note that from every class we use one sample per class during training, i.e.
one-shot video classification.

As shown in Figure 3, our R-3DFSV method exceeds 95% accuracy both in Kinetics
and UCF101 datasets for 5-way classification. With the increasing number of novel
classes, e.g. 10, 15 and 24, as expected, the performance degrades. Note that, our R-
3DFSV approach with retrieval consistently outperforms our 3DFSV approach without
retrieval and the more challenging the task becomes, e.g. from 5-way to 24-way, the
larger improvement retrieval approach can achieve on Kinetics, i.e. our retrieval-based
method is better than our baseline method by 2.8% in 5-way (ours 3DFSV 92.5% vs
our R-3DFSV 95.3% ) and the gap becomes 4.3% in 24-way (our 3DFSV 82.0% vs our
R-3DFSV 86.3%).

The trend with a decreasing accuracy by going from 5-way to 24-way indicates that
the more realistic task on few-shot video classification has not yet been solved even
with a spatiotemporal CNN. We hope that these results will encourage more progress
in this challenging setting of many-way few-shot video classification setting.

4.4 Evaluating base and novel classes in GFSV

The FSV setting has a strong assumption that test videos all come from novel classes.
In contrast to the FSV, GFSV is more realistic and requires models to predict both base
and novel classes in each testing episode. In other words, 64 base classes become dis-
tracting classes when predicting novel classes which makes the task more challenging.
Intuitively, distinguishing novel and base classes is a challenging task because there are
severe imbalance issues between the base classes with a large number of training ex-
amples and the novel classes with only few-shot examples. In this section, we evaluate
our methods in the more realistic and challenging generalized few-shot video classifi-
cation (GFSV) setting.
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Kinetics UCF101
Method novel base novel base

1-shot
3DFSV 7.5 88.7 3.5 97.1
R-3DFSV 13.7 88.7 4.9 97.1

5-shot
3DFSV 20.5 88.7 10.1 97.1
R-3DFSV 22.3 88.7 10.4 97.1

Table 3. Generalized few-shot video clas-
sification (GFSV) results on Kinetics and
UCF101 in 5-way 1-shot and 5-shot tasks.
We report top-1 accuracy on both base and
novel classes.

PR SS RL VR BD BC Acc
X 27.1

X 48.9
X X 51.9

X X 92.5
X X X 91.4
X X X X 93.2
X X X X X 95.3

Table 4. 5-way 1-shot results ablated on Kinetics.
PR: pretraining on Sports1M; SS: self-supervised
pretraining [23]; RL: representation learning on
base classes; VR: retrieve videos with tags [36];
BD: batch denoising. BC: best clip selection.

In Table 3, on the Kinetics dataset, we observe a large performance gap between
base and novel classes in both 1-shot and 5-shot cases, i.e., 3DFSV only achieves 7.5%
on novel classes vs 88.7% on base classes. The reason is that predictions of novel classes
are dominated by the base classes. Interestingly, our R-3DFSV improves 3DFSV on
novel classes in both 1-shot and 5-shot cases, e.g., 7.5% of 3DFSV vs 13.7% of R-
3DFSV in 1-shot. A similar trend can be observed on the UCF101 dataset. Those re-
sults demonstrate that our retrieval-based approach can alleviate the imbalance issues
to some extent. At the same time, we find that generalized few-shot video classification
(GFSV) setting, e.g. not restricting the test time search space only to novel classes but
considering all of the classes even though base classes are distracting, is still a challeng-
ing task and hope that this setting will attract interest of a wider community for future
research.

4.5 Ablation study and retrieved clips

In this section, we perform an ablation study to understand the importance of each
component of our approach. After the ablation study, we evaluate the importance of the
number of retrieved clips to the few-shot video classification (FSV) performance.
Ablation study. We ablate our model in the 1-shot, 5-way video classification task
on Kinetics dataset with respect to six critical parts including pretraining R(2+1)D on
Sports1M (PR), self-supervised model of [23] as the backbone (SS), representation
learning on base classes (RL), video retrieval with tags (VR), batch denoising (BD)
and best clip selection (BC). Table 4 shows the results.

We start from a model with only a few-shot learning stage on novel classes. If a
PR component is added to the model (first result row in Table (4), the newly-obtained
model can achieve 27.1% accuracy which is only slightly better than random guessing
performance (20%). It demonstrates that a pretrained 3D CNN alone is not sufficient for
a good performance. Besides, it also indicates that there exists a domain shift between
the pretraining dataset, i.e. Sports1M, and our target Kinetics dataset.

Adding RL component to the model (the second result row) means to train rep-
resentation on base classes from scratch, which results in a worse accuracy of 48.9%
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Fig. 4. The effect of increasing the number of retrieved clips, left: on Kinetics, right: on UCF101.
Both experiments are conducted on the one-shot, five-way classification task, reporting top-1
accuracy in the few-shot video classification (FSV) setting.

compared to our full model. The primary reason for worse results is that optimizing the
massive number of parameters of R(2+1)D is difficult on a train set consisting of only
6400 videos. Interestingly, if we adopt the self-supervised pretrained 3D CNN (MC3
pretrained on Kinetics without using any label) of [23], i.e., SS, we immediate get
3.0% performance gains (the third result row) over training from random initializa-
tion. Adding both PR and RL components (the fourth row) obtains an accuracy of 92.5
which significantly boosts adding PR and RL components alone.

Next, we study two critical components proposed in our retrieval approach. Com-
paring to our approach without retrieval (the fourth row), directly appending retrieved
videos from YFCC100M (VR) to the few-shot training set of novel classes (the fifth
result row) leads to 0.9% performance drop, while performing the batch denoising (the
sixth row) in addition to VR obtains 0.7% gain. This implies that noisy labels from
retrieved videos may hurt the performance but our batch denoising technique handles
the noise well. Finally, adding the best clip selection (BC, the last row) after VR and
BD gets a big boost of 2.8% accuracy. In summary, those ablation studies demonstrate
the effectiveness of the six different critical parts in our approach.

Influence of the number of retrieved clips. Intuitively, when the number of retrieved
clips increases, the retrieved videos become more diverse, but at the same time, the
risk of obtaining negative videos becomes higher. We show the effectiveness of our
R-3DFSV with the increasing number of retrieved clips in Figure 4.

On the Kinetics dataset (left of Figure 4), without retrieving any videos, the per-
formance is 92.5%. As we increase the number of retrieved video clips for each novel
class, the performance keeps improving and saturates at retrieving 8 clips per class,
reaching an accuracy of 95.4%. On the UCF101 dataset (right of Figure 4), retrieving
1 clip gives us 1.6% gain. Retrieving more clips does not further improve the results,
indicating more negative videos are retrieved. On the other hand, our batch denoising
strategy is able to tolerate the noise to some extent. We observe a slight performance
drop at retrieving 10 clips because the noise level becomes too high, i.e. there are 10
times more noisy labels than clean labels.
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Fig. 5. Top-5 retrieved video clips from YFCC100M for 8 novel classes on Kinetics. The left
column is the class name with its one-shot query video and the right column shows the retrieved
16-frame video clips (middle frame is visualized) together with their users tags. Negative re-
trievals are marked in red.

4.6 Qualitative results

In Figure 5, we visualize the top-5 video clips we retrieve from YFCC100M dataset
with video tag retrieval followed by the best clips selection. Here we only show 8 novel
classes of Kinetics dataset due to the space limitation and visualization of other classes
are in supplementary.

We observe that the retrieved video clips of some classes are of high quality, mean-
ing that those videos truly reveal the target novel classes. For instance, retrieved clips of
class “Busking” are all correct because user tags of those videos consist of words like
“buskers”, “busking” that are close to the class name, and the best clip selection can
effectively filter out the irrelevant clips. It is intuitive those clips can potentially help to
learn better novel class classifiers by supplementing the limited training videos.

Failure cases are also common. For example, videos from the class “Cutting water-
melon” do not retrieve any positive videos. The reasons can be that there are no user
tags of cutting watermelon or our tag embeddings are not good enough. Those negative
videos might hurt the performance if we treat them equally, which is why the batch
denoising is critical to reduce the effect of negative videos.

5 Conclusion

In this work, we point out that a spatiotemporal CNN trained on a large-scale video
dataset saturates existing few-shot video classification benchmarks. Hence, we propose
new more challenging experimental settings, namely generalized few-shot video clas-
sification (GFSV) and few-shot video classification with more ways than the classical
5-way setting. We further improve spatiotemporal CNNs by leveraging the weakly-
labeled videos from YFCC100M using weak-labels such as tags for text-supported and
video-based retrieval. Our results show that generalized more-way few-shot video clas-
sification is challenging and we encourage future research in this setting.
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