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A B S T R A C T

Non-viral transfection protocols are typically optimized using standard cells and reporter proteins,
potentially underestimating cellular or transgene effects. Here such effects were studied for two human
(Jurkat, HEK-293) and two rodent (CHO-K1, L929) cell lines and three fluorescent reporter proteins.
Expression of the enhanced green fluorescent protein (EGFP) was studied under the control of the human
elongation factor 1 alpha promoter and three viral promoters (SV40, SV40/enhancer, CMV), that of
ZsYellow1 (yellow fluorescence) and mCherry (red fluorescence) for the CMV promoter. Results varied
with the cell line, in particular for the Jurkat cells. Pair-wise co-transfection of the CMV controlled
transgenes resulted in a significant fraction of monochromatic cells (EGFP for EGFP/YFP and EGFP/RFP co-
transfections, YFP in case of YFP/RFP co-transfections). Only Jurkat cells were almost incapable of
expressing YFP. Dilution of the plasmid DNA with a non-expressed plasmid showed cell line dependent
effects on transfection efficiency and/or expression levels.
ã 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Biotechnology Reports

journal homepage: www.else vie r .com/ locat e/btre
1. Introduction

Recombinant protein production in mammalian cells requires
the introduction of the respective DNA sequences into the cells’
nuclei (‘transfection’). For biotechnological applications, non-viral
transfection methods, involving, e.g., polycations such as PEI (poly
(ethyleneimine)) or PDMAEMA (poly(2-dimethylamino) ethyl
methacrylate), are preferred [1,2]. According to current under-
standing, the role of the polycation is to compact and charge-
compensate the plasmid DNA (formation of ‘polyplexes’), thereby
facilitating uptake by the cells. Depending on its chemistry, the
transfection agent may then also aid endosomal escape (e.g. via the
‘proton sponge’ effect described for PEI [3]), transport through the
cytosol, and finally release in the perinuclear area. In spite of some
undeniable progress over the last decade [4], non-viral transfec-
tion agents are still orders of magnitude less efficient than viral
ones [5]. This has led to intensive research on the effect of
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chemistry and structure of non-viral transfection agents. In this
context, it is generally assumed that the polycation determines the
transfection efficiency, i.e. the percentage of cells that take up the
DNA, but transfects the DNA indiscriminately of the encoded
information. Differences in transgene expression strength, on the
other hand, are determined by features of the transfected DNA
such as the promoter. Promoters are known to show some
variability in different cell lines. However, the compliance of their
performance with some general trends, e.g. in regard to relative
strength and species-dependency, is typically assumed [6–9].

Since the PDMAEMA chemistry is particularly suited to the
synthesis of well-defined homopolymers with varied topologies,
much of our knowledge on the structure-function-relationship of
polycationic transfection agents was derived from experiments
involving PDMAEMAs [2]. From these studies it was inter alia
deduced that non-linear polycations are significantly less cytotoxic
than linear ones of the same size and chemistry [10]. Based on this
observation, our group has recently demonstrated that PDMAEMA-
based star-shaped nanoparticles have high potential for trans-
fecting mammalian cells including primary human blood cells
[11,12]. Fine-tuning of the respective transfection protocols in
terms of optimizing efficiency and biocompatibility typically
involved the transfection buffer in terms of composition, ionic
strength, and pH as well as the N/P ratio (amount of nitrogen in the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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polymer/amount of phosphate in pDNA) of the polyplexes.
Pronounced heterogeneities in transgene expression were ob-
served among the cells of a given transfection batch in these
experiments, while the establishment of a truly generic transfec-
tion protocol has so far been elusive [13].

The basis for the investigation of transfection outcomes has
been changed some years ago by the advent of fluorescent reporter
proteins [14]. These transgenes allow a direct statistical evaluation
of the distribution of the expression strength over the individuals
of a (living) cell population by flow cytometry. In consequence it
becomes possible to differentiate whether a given amount of
transgene is produced by a small number of high producers within
the population or by a large number expressing low levels of the
protein. In contrast, only average values can be determined in the
case of reporter proteins requiring enzymatic conversion of added
substrates for detection, such as luciferase or ß-galactosidase [15],
since these assays are by necessity performed in the respective cell
lysates.

In view of the widespread use of recombinant reporter proteins
as tools, surprisingly little can be found in the literature in terms of
a systematic investigation of their transfection taking the various
putative impact factors into account. An area where this could be of
particular importance is the co-transfection of a fluorescent
reporter with another (fluorescent) transgene, where interference
or competition could bias the results. For instance, the combina-
tion of two or more fluorescent reporters is an important tool in
cell and tissue analytics (imaging). Molecular biosensors are used
to study cellular and molecular heterogeneity or the long-term
biological effects of signaling in stem cell research [16]. Fluorescent
proteins can also be paired for quantitative multiparameter
imaging of live systems in vivo and in vitro or for fluorescence
resonance energy transfer (FRET) studies. Recognized advantages
of the “two-color”-approach include the possibility of photo-
switching as well as of bimolecular fluorescence complementation
(BiFC) [17,18]. Since flow cytometry can be set up to quantify
several fluorescent dyes in parallel, it is a suitable technique for
studying such effects.

Here, a popular reporter transgene, namely enhanced green
fluorescent protein (EGFP) under the control of one out of four
different promoters was initially transfected into two human and
two rodent cell lines to test for putative promoter effects.
Subsequently, plasmids encoding for this or two other fluorescent
proteins each under the control of the cytomegalovirus (CMV)
immediate early promoter were transfected or (pair-wise) co-
transfected into the cells. Using three different fluorescent
transgenes allowed us to statistically quantify specific effects on
transfection efficiency as well as on the distribution of transgene
expression strength by flow cytometry. To our knowledge, this is
the first time that the co-expression strength distribution of
independently transfected reporter proteins was determined in
parallel.

2. Materials and methods

2.1. Materials

If not otherwise indicated, we used PAA Laboratories (Cölbe,
Germany) or Greiner bio-one (Frickenhausen, Germany) as
supplier for cell culture materials and Sigma-Aldrich for chemicals.
Fetal calf serum (FCS) was from Biochrom AG (Berlin, Germany).
Dulbecco’s Phosphate-Buffered Saline without Ca2+ and Mg2+

(DPBS) was from Lonza (Visp, Switzerland). HBG buffer (20 mM
Hepes, 5 wt% glucose, pH 5.5) was prepared in house and sterilized
by filtration. Cell culture media R10 (RPMI 1640 without gluta-
mine, add 10 vol% fetal calf serum, 2 mM L-glutamine, 100 IU/mL
Penicillin/100 mg/mL Streptomycin), MEM10 (MEM Earle’s without
L-glutamine/FCS, add 10 vol% FCS, 4 mM L-glutamine, 100 IU/mL
Penicillin/100 mg/mL Streptomycin), and Opti-MEM were from
Lonza (Cologne, Germany), Biochrom AG (Berlin, Germany), and
Thermo Fisher Scientific (Dreieich, Germany), respectively. For
pre-equilibration, media were incubated for 1–4 h in a standard
mammalian cell culture incubator (37 �C, 5% CO2, 95% humidity).

2.2. Cryogenic transmission electron microscopy (cryo-TEM)

For cryo-TEM studies, a drop (�2 mL) of the aqueous micellar
solution (concentration ca. 0.5 g/L) was placed on a lacey carbon-
coated copper TEM grid (200 mesh, Science Services, Munich,
Germany), where most of the liquid was removed with filter
paper, leaving a thin film. The specimens were shock vitrified by
rapid immersion into liquid ethane in a temperature-controlled
freezing unit (Zeiss Cryobox, Carl Zeiss NTS GmbH, Oberkochen,
Germany) and cooled to approximately 90 K. The temperature
was monitored and kept constant in the chamber during the
entire preparation. After freezing the specimen were inserted into
a cryo-transfer holder (CT3500, Gatan GmbH, Munich, Germany)
and transferred to a Zeiss EM922 OMEGA EFTEM instrument (Carl
Zeiss NTS GmbH). Measurements were carried out at approxi-
mately 90 K. The electron microscope was operated at an
acceleration voltage of 200 kV. Zero-loss filtered images (DE = 0
eV) were taken under reduced dose conditions. All images were
recorded digitally by a bottom mounted CCD camera system
(Ultrascan 1000, Gatan GmbH) and processed with a digital
imaging processing system (Gatan Digital Micrograph 3.9 for GMS
1.4, Gatan GmbH).

2.3. Transfection agent

The transfection agent was a poly(1,2-butadiene)-block-
PDMAEMA (B290D240) block-copolymer as described in [19].
B290D240 consists of a hydrophobic polybutadiene block with an
average length of 290 monomeric units and a polycationic
PDMAEMA block with an average length of 240 monomeric units.
The number average molecular weight, Mn, of the molecule is
54 kDa, the polydispersity (Mw/Mn) is <1.07. Stable star-shaped
micelles of B290D240 were formed by dissolving the block
copolymer in THF and dialyzing the solution against DPBS as
described elsewhere [11]. B290D240 micelles were prepared as a
10.7 mg/mL stock solution in sterile DPBS.

2.4. Aggregation number calculation

Aggregation numbers (Nagg) of the micelles were calculated
according to:

Nagg ¼ mcore

mchain
PB

¼ 4pNArPBR
3
core

3Mchain
PB

with mcore = mass of the core, mPB
chain = mass of one polybuta-

diene chain, NA= Avogadro’s constant, rPB = density of polybutadi-
ene (= 1 g/cm3), Rcore = radius of the core (as determined by TEM
data), and MPB

chain = molecular weight of one polybutadiene chain
(=15,700 g/mol).

2.5. Cell lines and maintenance

CHO-K1 (adherent, CCL-61, ATCC), Jurkat (human leukemia T
cells, suspension, TIB-152, ATCC), and HEK-293 (adherent, CRL-
1573, ATCC) cells were maintained in R10, L929 cells (adherent,
murine fibroblast, CCL-1, ATCC) in MEM10, as suggested by the
supplier. Cells were cultivated in the standard mammalian cell
culture incubator.
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2.6. Plasmids

Plasmids were pEGFP-N1 (4.7 kb) encoding for the enhanced
green fluorescent protein (EGFP) driven by the cytomegalovirus
(CMV) immediate early promoter, pmCherry-N1 (4.7 kb) encoding
for the mutant fluorescent protein derived from the tetrameric
Discosoma sp. red fluorescent protein (mCherry, RFP) driven by the
immediate early CMV promoter, pZsYellow1-N1 (4.7 kb) encoding
for the yellow fluorescent protein (ZsYellow1, YFP) driven by the
immediate early CMV promoter, all from Clontech Laboratories,
Inc. (Mountain View, CA) and pIVEX23UK (4.4 kb, Roche, Man-
nheim, Germany) encoding for a mouse urokinase under the
control of the bacteriophage T7 promoter. The latter was used as
control plasmid as due to the chosen promoter the gene product is
not expressed in mammalian cells. In addition, plasmids pSV40-
EGFP-N1 (4.1 kb) encoding for EGFP driven by the simian virus
40 early promoter (SV40) and pSV40/enhEGFP-N1 (4.3 kb) encod-
ing for EGFP driven by the SV40 promoter/enhancer were
constructed by excising the coding sequence of EGFP out of
pEGFP-N1 and subcloning it into the pGL3-promoter and pGL3-
control plasmids (both from Promega, Mannheim, Germany) after
deletion of the luciferase cDNA from these plasmids. pEF1a-EGFP-
N1 (7.0 kb) encoding for EGFP driven by the elongation factor
1 alpha promoter (EF-1a) was constructed by subcloning the
coding sequence of EGFP into plasmid pEAK8 (Edge BioSystem,
Gaithersburg, MD).

Plasmids were amplified in Escherichia coli (LB medium) using
standard laboratory techniques. The EndoFree Plasmid Kit (Giga
Prep/Maxi Prep) from QIAGEN (Hilden, Germany) was used for
purification (quality control: >80% supercoiled topology (agarose
gel; 1% TAE) and A260/A280� 1.8). Purified plasmids were solubi-
lized in sterile PCR-water (Sigma-Aldrich).

2.7. N/P-ratio calculation

N/P-ratios were calculated according to:

Number of equivalent ¼ mL polycation stock solution � N½ �
mg pDNA � 3

with [N] = concentration of nitrogen residues in mM.

2.8. Transfection

For transfection of adherent cells (CHO-K1, L929, HEK-293), the
cells were harvestedby trypsinizationupon reaching80% confluency
and seeded at a density of 2 � 105 cells in 2 mL growth medium per
well in six-well plates 24 h prior to transfection. CHO-K1 and
L929 cells were rinsed with DPBS one hour prior to transfection and
supplemented with 1 mL Opti-MEM. Afterwards the plate was put
back into the incubator. In the meantime, polyplexes of pDNA and
B290D240 were prepared in a final volume of 200 mL by first diluting
the desiredamountof pDNA stock solutionwith HBG buffer to a final
concentration of approximately 10 mg/mL in a 1.5 mL reaction tube
followed by the addition of the necessary amount of B290D240 stock
solution in a single drop (max. volume: 20 mL) to achieve the
intended N/P ratio (7.5 for CHO-K1, 10 for L929 cells). For the co-
transfection experiments, the indicated amounts of both pDNAs
were mixed before the addition of the B290D240. Afterwards, the
mixture was vortexed for 10 s and incubated for 20 min at room
temperature.1 mL Opti-MEM was added, followed by vortexing and
10 min incubation at room temperature. The polyplex mixture was
then added drop-wise to the cells and distributed by gently rocking
the plate. Cultures were then put back into the incubator. 4 h later
the medium was aspirated and replaced by 2 mL of fresh pre-
equilibrated growth medium.
HEK-293 cells (adherent) were transfected using a slightly
modified protocol (cells adhere only weakly, washing would have
led to considerable losses). Briefly, HEK-293 cells were harvested
and reseeded as described above for CHO-K1 and L929 cells, but
then maintained under regular growth conditions right up to the
time of transfection. The supernatant was cautiously aspirated and
immediately replaced by 1.2 mL of the polyplex mixture (N/P-ratio
7.5, drop-wise addition). Subsequently, HEK-293 cells were treated
as described above for the CHO-K1 and L929 cells.

For the transfection of Jurkat cells (suspension), cells were
harvested by centrifugation (200g, 5 min) from cultures in the
exponential growth phase (viability >90%) two hours prior to
transfection. Cells were washed twice with DPBS, and seeded at
2 � 105 cells per well in 1 mL Opti-MEM (6-well plate). The plate
was put back into the incubator for one hour. Polyplex preparation
and addition to the cells were as given for the adherent cells. N/P-
ratios were 7.5 in these experiments. After polyplex addition, the
plates were placed into the incubator for 4 h and subsequently
centrifuged (200g, 5 min). The supernatant was carefully aspirated
and replaced by 2 mL of fresh pre-equilibrated growth medium.

Transfection experiments used in the comparisons were always
done in parallel using one polyplex preparation (N/P-ratio 7.5); an
exception was made for the L929 cells, where a polyplex
preparation with an N/P-ratio of 10 was prepared instead and
used in parallel. N/P-ratios were chosen according to standard
protocols previously established in house for the different cell
lines. In general, transfection efficiencies increase with the N/P-
ratio, while the culture viability decreases. In order to choose the
N/P-ratio to be used for transfection, the ratio is step-wise
increased from the value sufficient to charge-compensate the
pDNA (N/P = 3 in case of B290D240, as verified by zeta potential
measurements of the formed polyplexes, Zetasizer Nano ZS,
Malvern, Herrenberg, Germany), until either no further improve-
ment in transfection efficiency is observed or the culture viability
drops below a value of 70%. The fact that polyplexes used for
transfection had a positive net-charge was verified by zeta
potential measurements.

2.9. Flow cytometry

For flow cytometry (Cytomics FC500, Beckman Coulter, Krefeld,
Germany), adherent cells were harvested by trypsinization (5 min),
resuspended in the original culture supernatant to include
detached/dead cells, recovered by centrifugation (200g, 5 min)
and resuspended in 500 mL DPBS containing 1 mg/mL propidium
iodide (PI) to counterstain the dead cells (except cells transfected
with pmCherry-N1, where the red fluorescence caused by PI would
have been indistinguishable from that of mCherry). Jurkat cells
were directly recovered by centrifugation and resuspended in the
500 mL DPBS containing the PI. Forward scatter (FSC), side scatter
(SSC), green fluorescence (em 510 nm), red fluorescence (em
620 nm) and yellow fluorescence (em 550 nm) were recorded. For
this, the flow cytometer filter block configuration was modified to
allow the simultaneous optical separation of green and yellow
fluorescence (EGFP/YFP), which cannot be separated with the
standard filters configuration due an extensive spectral overlap. To
assure comparability between the obtained data, care was taken to
use the same instrument settings in all experiments involving a
particular reporter protein. Cells were initially evaluated by scatter
properties (FSC/SSC) in order to select a region representing single,
non-apoptotic cells, while disregarding dead cells, debris and
cellular aggregates. Cells ‘transfected’ at N/P = 0, i.e. in the absence
of the transfection agent, were used to set the measurement
parameters. Histogram plots of the respective fluorescence
intensities (log scale) were used to estimate the percentage of
transfected cells and the expression strength distribution
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Fig. 1. Promoter effect on transfection efficiency and expression strength
distribution. EGFP expression under the control of the cellular (A = pEF1a-EGFP-
N1) and the three viral (B = pSV40-EGFP-N1, C = pSV40/enhEGFP-N1, D = pEGFP-N1,
i.e. CMV) promoters was quantified 48 h post transfection. The height of the bar
corresponds to the overall transfection efficiency, i.e. the percentage of transgene
expressing cells within the population. The transfected cell population was further
divided into: low producers (white, fluorescence signal between 1 and 10 a.u.),
middle producers (grey, fluorescence signal between 10 and 100 a.u.), and high
producers (dark grey, fluorescence signal >100 a.u.). Group data are reported as
mean � s.d. from three or more independent experiments. Statistical significance is
indicated by * (p < 0.05).
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according to: low producers (L): fluorescence intensity between
1 and 10 a.u.; middle producers (M): fluorescence intensity
between 10 and 100 a.u.; high producers (H): fluorescence
intensity >100 a.u.) in the non-apoptotic cell population; with a.
u.: arbitrary units.

2.10. Statistical analysis

Group data are reported as mean � SD. One-way ANOVA was
used to determine whether data groups differed significantly from
each other. Statistical significance was defined as p < 0.05.

3. Results and discussion

3.1. The transfection agent

To exclude any influence of the transfection agent, experiments
were exclusively conducted with B290D240, a polycationic agent,
which has previously been described for its ability to transfect
siRNA into CHO cells [11]. In aqueous solution B290D240 forms
stable star-shaped micelles with the polybutadiene block forming
a hydrophobic inner core, as confirmed by cryogenic TEM. This
micellar structure can therefore be considered a somewhat
unusual yet functional representation of the general design
principle of a star-shaped polycationic agent, which otherwise
[11,12] has been embodied in the form of polycationic arms
covalently grown from a solid central core. B290D240 is by now
routinely used for transfection in our group, as it gives superior
results for a large number of cells, some of which are included in
this publication.

Evaluation of approximately 100 micelles by image analysis of
TEM data allowed calculating an average core diameter of
Dcore = 18.2 � 2.5 nm, i.e. a core radius Rcore of 9.1 nm, for the
micelles. Under the assumption that the core of the micelles is
spherical and consists only of polybutadiene, an average aggrega-
tion number Nagg of 120 was calculated for the micelles. Compared,
e.g. to the gold standard among the polycationic transfection
agents, namely PEI, B290D240 has a very low polydispersity (<1.1),
while according to the TEM data, the corresponding micelles have a
narrow size distribution. This should reduce the contribution of the
transfection agent’s heterogeneity to the variability of the experi-
ments.

3.2. Influence of the promoter

The influence of the promoter on the transfection outcome for a
given cell line under otherwise identical experimental conditions
was tested using the enhanced green fluorescent protein (EGFP) as
reporter gene product. The transfection efficiency (percentage of
cells expressing the transgene within the population) and the
distribution of the expression strength (high, middle, and low
producers) among the successfully transfected cells was analyzed
48 h post transfection. Results are given in Fig. 1 together with the
culture viabilities.

Transfection efficiencies in Fig. 1 vary considerably in spite of
the fact that the same transfection agent and conditions had been
used. For a given transfection agent some dependency of the
transfection efficiency on the on cell type has to be expected. The
promoter, on the other hand, should have an effect on the strength
of the transgene expression. This is, e.g., seen in case of the CHO-
K1 cells for the three viral promoters. Expression was weakest
under the control of the SV40 promoter (Fig. 1, bar B). Better
expression was obtained in the presence of the SV40/enhancer
(Fig. 1, bar C). The CMV promoter was by far the most effective in
the CHO-K1 cells, leading to almost 80% of high producers (Fig. 1,
bar D). Interestingly, the human cellular promoter EF-1a
performed at least as well as the SV40/enhancer in the CHO-
K1 cells (Fig. 1, bar A).

A promoter effect on the transfection efficiency, i.e. DNA uptake,
was not expected, since for a given cell type/transfection agent,
DNA uptake should be independent of the sequence details of the
transfected DNA. If anything, the plasmid size has in the past been
shown to affect DNA uptake. However, this was not the case here,
where the percentage of transfected cells was similar for pEF1a-
EGFP-N1 (7.0 kb) and pSV40-EGFP-N1 (4.1 kb) or pSV40/enhEGFP-
N1 (4.3 kb). The significantly higher percentage of transfected cells
observed in all experiments involving the CMV promoter thus has
to be noted. It is possible that this is an artifact and that the
apparent higher percentage of transgene expressing cells found for
the CMV promoter is instead simply related to a stronger transgene
expression. Only a few low producers were obtained with the CMV
promoter. For the other promoters the low producer fraction was
much larger. It is possible that in such cases some very low
producers are lost during gating, thereby reducing the percentage
of transfected cells. However, a direct effect of the viral CMV
promoter on DNA uptake in addition to gene expression cannot be
excluded at this point.

Trends observed in the second rodent cell line (L929) for the
promoter effect on transfection efficiency and expression strength
were similar, with the exception of the human cellular promoter
EF-1a, for which the lowest transfection efficiency was observed in
case of the L929 cells. This we interpret as a size effect. As
mentioned above, plasmid size differences are known to cause
differences in transfection efficiency.

In the two human cell lines, the CMV and the human cellular
promoter EF-1a show a similar distribution of the expression
strength over high, middle and low producers, but the transfection
efficiency is again significantly lower in case of the larger pEF1a-
EGFP-N1 plasmid. If one compares the performance of the three
viral promoters in the human cell lines, expression driven by the
SV40 promoter is again weaker than for the CMV promoter, while
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contrarily to the rodent cells, expression strength is not improved
in the human cells by the presence of the SV40/enhancer. In
addition to the – expected – influence on the expression strength,
however, in the human cells as well we see a pronounced promoter
effect in the total transfection efficiency between the CMV
promoter and the three others, arguing once more for a promoter
effect on non-viral DNA uptake. Incidentally we never observed
any silencing of the CMV promoter as observed by Quin et al. [20]
in our experiments.

3.3. Influence of the transgene

In order to investigate putative effects of the reporter transgene,
two additional fluorescent proteins, namely YFP (yellow fluores-
cent protein) and RFP (red fluorescent protein) were expressed
under the control of the immediate early CMV promoter in the
investigated cell lines. Experiments were again performed in
parallel for the four cell lines keeping experimental conditions as
similar as possible. Results are summarized in Fig. 2. Since it is not
possible to distinguish between the fluorescence of PI and RFP, cell
viabilities could only be determined for cells transfected with EGFP
and YFP. However, all determinable viability values were in the
same range as those observed before and we assume this to be the
case for RFP-transfected cells as well.

Transfection efficiencies in these experiments showed no
statistically relevant variation in HEK-293 and CHO-K1 cells, while
the criterion for statistical significance, defined as p < 0.05, was
just slightly surpassed in case of the L929 cells. This result is not
surprising since the three vectors belong to the same plasmid
family and therefore have a similar backbone/size.

However, in spite of the fact that the same strong (CMV)
promoter was used to drive expression in all three vectors,
differences in the expression strength were observed. Whereas
EGFP and YFP showed a similar distribution over low, middle and
high producers, RFP expression was less strong in all investigated
cell lines (almost no high producers, mainly low producers). Codon
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Fig. 2. Transgene effect on transfection efficiency and expression strength
distribution. Expression of EGFP (G, diagonal top right lines), YFP (Y, diagonal
top left lines) and RFP (R, horizontal lines) all under the control of the intermediate
early CMV promoter was quantified 48 h post transfection. The height of the bar
corresponds to the overall transfection efficiency, i.e. the percentage of transgene
expressing cells within the population. The transfected cells population was further
divided into: low producers (white, fluorescence signal between 1 and 10 a.u.),
middle producers (grey, fluorescence signal between 10 and 100 a.u.), and high
producers (dark grey, fluorescence signal >100 a.u.). Group data are reported as
mean � s.d. from three or more independent experiments and the statistical
significance is indicated by * (p < 0.05). Statistical significance within a cell line is
indicated by # (p < 0.05).
usage in case of EGFP has been optimized for mammalian and in
case of YFP even for human cells. This is not the case for RFP.
However, it is unlikely that the lower expression observed for RFP
is due to suboptimal codon usage, as was verified by analysis of the
cDNA sequence [21]. Problems with incomplete maturation, which
have been reported for the tetrameric parent protein DsRed
[22,23], should not occur for the monomeric mutant mCherry
(RFP), which has been reported to have a halftime for maturation of
10 min (DsRed: 10 h). However, since we consistently observe ‘low
RFP expression’ in all investigated cell lines, it is possible that this is
simple due to difficulties in detecting the red fluorescence, i.e. a
lower ‘brightness’ of the protein. According to Shaner et al.,
mCherry is also more sensitive to photobleaching than, e.g., EGFP
[24].

While a consistently lower strength of transgene expression in
the case of mCherry can therefore be attributed to the reporter
protein itself, this is not the case for the transfection results
obtained for the Jurkat cells. While the comparatively low
transfection efficiencies found for EGFP (50%) and RFP (34%) were
within the range seen above for EGFP expression under the CMV
promoter, transfection of the Jurkat cells with YFP was almost
impossible (transfection efficiencies <20%). It should be noted that
in spite of the low overall transfection efficiency, the expression
strength distribution of the few YFP-transfected Jurkat cells
showed a significant fraction of high producers. In fact, in the
Jurkat cells the relative size (percentage) of the high producer
fraction was higher for YFP than for the other two investigated
fluorescent proteins. The optimized codon usage might be in that
case responsible for a more efficient translation of YFP in human
cells. Thus with pZsYellow1-N1 we have an example for a plasmid
which in spite of a similar backbone is much more difficult to
transfect into Jurkat cells than pEGFP-N1 or pmCherry-N1, but
which in the few successfully transfected cells is expressed with
superior strength.

Moreover, in spite of their size B290D240 micelles were found to
be very biocompatible. In particular, the direct correlation between
transfection efficiency and cytotoxicity reported for most non-viral
transfection agents was not seen in this case. Even Jurkat cells,
which are known to be sensitive to polycationic transfection
agents, showed viabilities >70% post transfection, whereas the
values for the other investigated cell lines were routinely above
80% (>90% in case of the CHO cells).

3.4. Pair-wise co-transfection of the reporter genes

Experiments involving more than one reporter protein have
significance beyond the investigation of promoter/transgene
effects. However, as far as we could ascertain, the co-expression
of two fluorescent proteins in mammalian cells has so far not been
studied in a systematic manner. Zhu et al. [25] reported the
simultaneous detection and quantification of EGFP, YFP, and CFP
(cyan fluorescent protein) expressed from di- and tricistronic
constructs after transfection with Lipofectamine in HEK 293 cells.
However, the authors only gave the MFI (mean fluorescence
intensity) for the cultures and did not discriminate between
transfected and non-transfected cells or low, medium and high
producers.

In order to investigate effects in co-transfection, the plasmids
encoding for the three fluorescent proteins under the control of the
CMV promoter were transfected pair-wise into the cells. Equal
amounts (by weight) of plasmid were used, while keeping the total
amount of plasmid DNA the same as in the previous experiments.
The results are summarized in Fig. 3. In this figure the percentage
of bichromatographic cells within the population as well as the
percentages of cells expressing only one of the respective reporter
proteins (“monochromatic” cells) are shown. Within each
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Fig. 3. Co-transfection experiments, involving pair-wise application of two encoding plasmid DNAs. Equal amounts (by weight) of pDNA encoding for the respective reporter
proteins under the control of the intermediate early CMV promoter were used, with the total amount of pDNA equaling that used in the experiments involving only one
reporter protein under otherwise identical experimental conditions. Expression of EGFP (diagonal top right lines), YFP (diagonal top left lines) and RFP (horizontal lines) under
the control of the intermediate early CMV promoter was quantified 48 h post transfection. Indicated are bichromatic cells expressing both proteins and monochromatic cells
expressing only one of the proteins. Transfected cells population was further divided into: low producers (white, fluorescence signal between 1 and 10 a.u.), middle producers
(grey, fluorescence signal between 10 and 100 a.u.), and high producers (dark grey, fluorescence signal >100 a.u.).
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subpopulation, the expression strength is again indicated by
shading. Please note that in this figure the overall transfection
efficiency corresponds to the sum of all transfected subpopula-
tions, i.e. the percentage of bichromatographic cell plus the
percentage of monochromatic cells of subtype 1 and the
monochromatic cells of subtype 2. Subpopulations with a strength
�1% are not shown in this presentation.

For all investigated cells, except the Jurkat cells, total
transfection efficiencies were highest for cells transfected with
EGFP/YFP, where they were roughly in the same order of
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magnitude as in the experiments involving only EGFP, see Fig. 1 for
comparison. In case of the EGFP/RFP transfection, overall
transfection efficiencies were slightly lower, while the lowest
values were obtained in the experiments involving YFP/RFP.
Moreover, instead of obtaining only – or at least mainly –

bichromatic cells, the co-expression experiments unexpectedly
resulted in significant numbers of monochromatic cells. In general,
the propensity for co-expression depended on both the cell type
and the reporter protein(s). For instance, the CHO-K1 cells
consistently showed the highest co-expression rates (�80% of
the transfected cells), whereas this fraction could be as low as 30%
in case of the Jurkat or L929 cells. In the co-expression experiments
involving EGFP, the majority of the monochromatic cells expressed
EGFP and not the respective other protein. In the YFP/RFP
experiments, all investigated cells, except for the Jurkat cells,
expressed either both proteins or only YFP. The fraction of
monochromatic RFP-expressing cells was less than 2% of the
transfected cells.

Results from the Jurkat cells, on the other hand, point again
towards a general difficulty with YFP. In the EGFP/YFP-co-
transfections an unusual high fraction (>70%) of the transfected
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cells were monochromatic and expressed EGFP, while in the EGFP/
RFP co-expression experiments the percentage of monochromatic
(green) cells was only 50% of the transfected cells. Moreover, the
Jurkat cells were the only ones, where a significant number of the
transfected cells (>40%) expressed only the red fluorescent protein
after co-transfection with YFP/RFP.

When cells expressing one or both fluorescence proteins were
further classified into high, middle, and low producers, Fig. 3, it
became clear that high producers were mainly found among the
bichromatic cells, whereas the monochromatic cells from the same
population tended to be middle and low producers. Thus cells that
strongly expressed the fluorescent proteins often were able to co-
express both proteins, while the inability to co-express the two
fluorescent proteins coincides with a low overall expression level.

3.5. Effect of pDNA dilution

If one considers transfection efficiencies per individual
transgene, for EGFP similar levels were reached in the co-
transfection experiments in spite of the fact that only half as
much pDNA had been used per individual reporter protein
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compared to the experiments involving only one type of pDNA. For
example, the CHO-K1 cell population in Fig. 3 co-transfected with
pEGFP-N1 and pZsYellow1-N1 contained a total of 83% EGFP
positive cells (66.7% bichromatic cells expressing both proteins,
15.1% monochromatic ones expressing only EGFP). It is thus
unlikely that the reduction in expression observed for the other
two fluorescent proteins in the co-transfection experiments was
due to the fact that less encoding pDNA was transfected in these
experiments. Such a reduction in protein expression as a function
of the amount of transfected plasmid has, e.g. been observed by Liu
et al. [26]. Instead, since in our case all proteins were under the
control of the same – strong – CMV promoter, a “saturation effect”,
e.g. due to competition for some transcription factors, could not be
excluded.

Subsequently, we therefore analyzed the effect of specific
plasmid content in a transfection cocktail. A simple reduction of
the pDNA amount was not suitable for this purpose, since this
would have affected the N/P-ratio, which is know to affect both
transfection efficiency and culture viability [27]. Adding varied
amounts of polyplexes to the cells was also no option. Instead, a
pDNA (pIVEX23UK) encoding for a mouse urokinase under the
control of the T7 promoter, was used to dilute the pDNAs encoding
for the various fluorescent proteins. T7 is a bacteriophagic
promoter and requires the presence of the bacteriophage
T7 RNA polymerase for activity. Unless mammalian cells are
genetically modified to express this polymerase, which was not the
case in our experiments, this promoter is not active [28,29]. The
presence of pIVEX23UK should therefore not interfere with the
expression of EGFP, YFP or RFP by the cells. The results of the
experiments are summarized in Fig. 4. Bars A–D represent
experiments in which 0, 25, 50, or 75 wt% of the specific pDNA
had been replaced by pIVEX23UK. In other words, bar A can be
directly compared to the experiments summarized in Fig. 1, while
the specific plasmid amounts in the experiments corresponding to
bar C were identical to the ones used in the experiments
summarized in Fig. 3.

Some differences are again observed as a function of the cell and
transgene type. CHO-K1 cells, for example, showed constant
transfection efficiencies independent of the dilution, with the
possible exception of perhaps the very lowest plasmid content (25
wt% of the original, bar D), where a statistical difference in
transfection efficiency can be observed at least for pZsYellow1-N1.
The expression strength distribution, on the other hand, was
increasingly shifting away from the high producers in the CHO cell
experiments as the plasmid was diluted. Thus, the number of cells
that take up the plasmid seems to be similar regardless of dilution,
but high producers are more likely to occur when the specific
plasmid is not diluted. This would argue against the hypothesis of a
transcription factor shortage at higher plasmid concentrations,
since more plasmid obviously still results in more protein. Hence
such a shortage is also unlikely to be directly responsible for the
decreased protein expression in some of the co-expression
experiments discussed above.

In the HEK-293 cells, on the other hand, neither the
transfection efficiency nor the expression strength is affected
by the plasmid dilution, except perhaps in case of RFP, where the
fraction of high and middle producers diminishes in case of the
highest plasmid dilution (bar D). A similar behavior, i.e.
comparable transfection efficiency and expression level distribu-
tion except for the highest dilution, is observed for the L929 cells,
but in this case for all three fluorescent proteins, while Jurkat cells
consistently show a statistically significant decrease in transfec-
tion efficiency, but not in the expression strength distribution
with dilution. A mechanistic interpretation of these observations
would require a detailed study of the intracellular events, which
is far beyond the scope of this work. However, a clear conclusion
can be drawn regarding the necessity to carefully evaluate the
applicability of fluorescence reporter proteins (pairs) for any
given cellular system.

4. Conclusions

The expression of a recombinant protein depends for a given
cell line and transfection protocol on both the promoter and the
transgene sequence. No general tendencies could be observed for
this behavior in our experiments, not even among the two
investigated human and rodent cell lines, respectively. ‘Standard’
conditions such as CMV promoter, EGFP as reporter gene product,
and the chosen standard transfection protocol worked well for the
CHO-K1 cells for which they had been originally developed, but
were not always equally successful for the other investigated cells.
Moreover, based on past experience in our group with the
development of transfection protocols, the effect achievable with
optimizing a given protocol is much smaller than the differences
observed here as a function of the promoter/transgene type. We
therefore propose that any development of a transfection protocol
for mammalian cells should start with a chemometric multi-
parameter investigation involving cell type, promoter type,
transgene, and last but not least also the transfection agent. This
aspect was not included in our investigation, but it is likely that not
all transfection agents show similar performance for all cell types.
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