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ABSTRACT27

Behavioral flexibility, the ability to change behavior when circumstances change based on learning from28

previous experience (Mikhalevich et al. 2017), is thought to play an important role in a species’ ability to29

successfully adapt to new environments and expand its geographic range (e.g., Lefebvre et al. 1997; Sol and30

Lefebvre 2000; Sol et al. 2002; Sol et al. 2005; Griffin and Guez 2014; Chow et al. 2016). However, it is31

possible that causal cognition, the ability to understand relationships beyond their statistical covariations,32

could play a significant role in rapid range expansions by allowing one to learn faster by making better33

predictions about outcomes and by exerting more control over events (Blaisdell et al. 2006). We aim34

to determine whether great-tailed grackles (Quiscalus mexicanus), a species that is rapidly expanding its35

geographic range (Wehtje 2003; Peer 2011), use causal inference and whether this ability relates to their36

behavioral flexibility (flexibility measured in these individuals by Logan CJ, MacPherson M, et al. (2019):37

reversal learning of a color discrimination and solution switching on a puzzle box). We found that grackles38

showed no evidence of making causal inferences when given the opportunity to intervene on observed events39

using a touchscreen apparatus, and that performance on the causal cognition task did not correlate with40

behavioral flexibility measures. This could indicate that causal cognition is not implicated as a key factor41

involved in a rapid geographic range expansion, though we suggest further exploration of this hypothesis42

using larger sample sizes and multiple test paradigms before considering this a robust conclusion.43

Video summary https://youtu.be/PriIcZECK0844

INTRODUCTION45

Behavioral flexibility, the ability to change behavior when circumstances change based on learning from46

previous experience (Mikhalevich et al. 2017), is thought to play an important role in a species’ ability to47

successfully adapt to new environments and expand its geographic range (e.g., Lefebvre et al. 1997; Sol and48

Lefebvre 2000; Sol et al. 2002; Sol et al. 2005; Griffin and Guez 2014; Chow et al. 2016). However, it is49

possible that causal cognition, the ability to understand the causality in relationships between events beyond50

their statistical covariations, could play a significant role in rapid range expansions by allowing one to learn51

faster and make more accurate predictions about outcomes, as well as by exerting more control over events52

(Blaisdell et al. 2006; Leising et al. 2008; Blaisdell and Waldmann 2012). Indeed, two out of three measures53

of behavioral flexibility positively correlated with causal inference abilities in children (Deák and Wiseheart54

2015), suggesting these two abilities might be linked. Our goal is to determine whether great-tailed grackles55

(Quiscalus mexicanus), a species that is rapidly expanding its geographic range (Wehtje 2003; Peer 2011),56

use causal inference and whether this ability relates to their behavioral flexibility. Flexibility is measured57

in these individuals by Logan CJ, MacPherson M, et al. (2019): using both reversal learning of a color58

discrimination and solution switching on a puzzle box as two independent measures. We aimed to determine59

whether grackles, like rats (Blaisdell et al. 2006), derive predictions about the outcomes of interventions60

(actions) after passive observational learning of different kinds of causal models. Causal models are causal61

representations between events that are estimated by observing the statistical regularity between continuous62

events, and can be combined into causal maps. Causal maps thus provide the causal structure in relationships63

that go beyond merely observing statistical covariation between events, and allow causal inferences to be64

derived, such as through diagnostic reasoning and reasoning about one’s own interventions on events within65

the causal model (Waldmann 1996; Blaisdell and Waldmann 2012).66

Blaisdell and colleagues (Blaisdell et al. 2006) taught rats that a light was a common cause of tone and food67

by presenting the light followed by the tone on some trials and by the food on other trials during training.68

Rats also learned that a noise was a direct cause of food by presenting noise and food simultaneously during69

training. At test, some rats observed the tone or the noise. When they did, they looked for food, suggesting70

the rat had made a diagnostic causal inference. This shows that rats had formed the causal models of a)71

that noise causes food, and b) that tone is caused by light, which itself is a cause of food. Other rats were72

given the opportunity to intervene to make the tone or noise occur at test. This was accomplished by giving73

the rats a novel lever that they had never seen before or been trained on. When they pressed the lever, this74

caused the tone (or noise) to turn on. When the noise was caused by a lever press, rats looked for food in75
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the food hopper, but when lever pressing caused the tone to turn on, rats did not look for food. This shows76

that rats understood that, by intervening on the lever to cause the noise to occur, because the noise was a77

cause of food, they should expect food. But by intervening on the lever to cause the tone to occur, the rats78

realized that they, and not the light (a previously established cause of the tone), had caused the tone. As a79

result of attributing the tone to their own action rather than the light, they did not expect there to be any80

food in the food hopper.81

The current experiment adapted the procedure used by Blaisdell et al. (2006) to study causal inference in82

rats for the study of causal inference in grackles using a touchscreen (Figure 4). Blaisdell et al. (2006; see83

also Leising et al. 2008) found that rats made different predictions about the presence of food based on a cue84

(a tone) that was an effect of a common-cause model, depending on whether the tone was merely observed85

at test or had been caused by the subject’s own intervention (a lever press) at test. A dissociation between86

seeing (observation) and doing (intervention) (Waldmann and Hagmayer 2005) suggests that rats represent87

associated relationships as causal, and derive rational inferences regarding an intervention on a cause versus88

an effect. We wished to determine whether grackles could also form causal models from contingency learning,89

and if so, whether their intervention could influence the type of causal inference made at test, depending on90

which causal model was being tested.91

Our results indicate whether grackles exhibited causal inference, whether it was related to behavioral flex-92

ibility, and whether causal cognition might be worth considering in the context of how a species is able to93

rapidly expand its geographic range.94

95

Figure 1. Actual design for experiment 1: Test figures adapted from Blaisdell et al. (2006). In the Training96

phase, subjects first learn to peck at a food key to elicit food from the food hopper. Subjects then receive97

trials during which the white star is presented on the screen followed by a tone, and then they receive two98

types of trials interspersed within each training session: 1) the white star followed by food or 2) the noise99

and food presented at the same time. In the Test phase, those individuals in the Observation condition hear100

a tone or a noise while seeing only the food key on the screen, but individuals in the intervene condition can101

elicit the tone or noise by pecking at separate response keys that elicit those auditory stimuli. The prediction102
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is that if individuals form a common cause model such that star produces tone and food, observing the tone103

should lead to individuals to expect food (indicated by the subject pecking the screen), because if tone is104

on, circle caused it, and it also caused food. Meanwhile, if they intervene to produce the tone, they will not105

expect food (i.e., they will not peck the screen) because they know their intervention caused the tone and106

not the circle (which also causes food). Additionally, observing noise should also lead an expectation of food107

(i.e., pecking the screen) because noise and food were paired simultaneously during training. Meanwhile,108

even if they intervene and cause the noise they should still expect food (i.e., peck the screen) because when109

the noise is on food is available regardless of what caused it (because the noise and the food were paired110

simultaneously). (T=tone, L=light, F=food, P=peck key)111

RESULTS112

Data are publicly available at the Knowledge Network for Biocomplexity (Logan and Blaisdell 2020). Details113

on how the grackles were trained to use the touchscreen are in Seitz et al. (2020).114

Do grackles show evidence of causal cognition?115

Evidence of causal cognition in grackles would be apparent by an interaction in responding to visual cue type116

(clover or triangle) and the associated audio cue (tone or noise). Specifically, if grackles learned the common117

cause structure, they should respond less to the screen when they intervene to cause the tone than when118

they merely observe the tone. However, there should be no difference in responses to the screen whether the119

grackles intervene to cause the noise or simply observe the noise; thus resulting in an interaction. To test this,120

we used a 2 (Audio Cue: Tone vs Noise) x 2 (Cue Type: Observe vs Intervene) repeated measures ANOVA121

(Table 1) in JASP (https://jasp-stats.org, see code in supplemental material). There was no significant122

interaction between audio cue and visual cue type, F (1,7) < 1.0, which suggests that there is no evidence of123

causal reasoning in grackles. However, note that the very low response rate in the Observe condition (Figure124

2) makes it difficult to rely on this conclusion.125

Table 1. Repeated measures ANOVA, within subjects effects, Type III sum of squares.126

Cases Sum of
squares

df Mean
square

F p eta^2

Audio cue 0.049 1 0.049 0.260 0.626 0.007
Residuals 1.314 7 0.188 NA NA NA
Cue type 1.643 1 1.643 3.698 0.096 0.249
Residuals 3.109 7 0.444 NA NA NA
Audio cue *
Cue type

0.018 1 0.018 0.270 0.620 0.003

Residuals 0.456 7 0.065 NA NA NA

127
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128

Figure 2. Mean screen pecks per trial per bird (n=8 grackles) in the Intervene (open circles) and Observe129

(black squares) conditions depending on whether the audio cue was the tone or noise. Within individual130

performances are shown by the lines connecting the circles to the squares. The bars indicate the group131

average per condition (light gray=Intervene, dark gray=Observe).132

Do causal cognition scores relate to behavioral flexibility performance?133

We devised an equation that would give each bird one causal cognition score, which would then make it134

possible to analyze the causal data as a dependent variable in the pre-planned GLMs. This equation weights135

differential responding to the tone (Intervene < Observe) and equal responding to the noise (Intervene =136

Observe) as being equally important in providing evidence for causal reasoning.137

Equation 1:138

0.5(pInterveneTone - pObserveTone) + 0.5(abs(pInterveneNoise - pObserveNoise))139

Where p is the average screen pecks per trial in each of the associated conditions. A lower negative score140

indicates that causal cognition was used, a score near zero indicates there is no evidence for or against causal141

cognitive abilities, and a positive score indicates no evidence for causal cognition. In these grackles, the142

causal scores indicated that there was no evidence of causal cognition (Table 2). That is, there were no birds143

who both responded more when they observed the tone, rather than when they intervened to turn it on, and144

also responded similarly to when they observed the noise and intervened to turn it on.145
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Table 2. Grackle causal cognition scores. The two flexibility measures (data from Logan CJ, MacPherson146

M, et al. 2019) are: the number of trials to reverse a preference in that bird’s most recent reversal, and the147

average number of seconds to switch to attempting a new option after having successfully solved a different148

option on the multi-access log (MAB). We used only data from the MAB log experiment and not the MAB149

plastic box experiment because the log and plastic scores did not correlate with each other (Logan CJ,150

MacPherson M, et al. 2019) and there was data for more birds for the log experiment that were in the causal151

cognition study. Note: Mole did not complete the causal cognition experiment because he had to be released152

before he was finished.153

Bird name Bird ID Causal score Number of trials
to reverse last

preference

Avg. seconds to
switch options

MAB
Diablo A064LR 0.08 40 NA
Burrito A068YS 1.75 23 391
Adobo A073OL 0.63 50 79
Chilaquile A086GB 0.92 30 170
Yuca A087AG 0.50 80 77
Mofongo A090SB 0.42 40 630
Pizza A088YR 0.00 60 1482
Taquito A007-S 0.17 160 100

154

There was no evidence that those birds with lower causal scores were faster to reverse their most recent155

preference or to switch more quickly to solving a new option on the multiaccess log because there was no156

relationship between these variables (Tables 3 and 4).157

Table 3. Results from the GLM: causal score ~ number of trials in last reversal. The estimate and (standard158

error) are shown.159

Causal score ~ Trials to reverse

(Intercept) 0.93 *

(0.34)

TrialsReverseLast -0.01

(0.00)

N 8

AIC 16.58

BIC 16.82

Pseudo R2 0.28

*** p < 0.001; ** p < 0.01; * p < 0.05.
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Table 4. Results from the GLM: causal score ~ average latency (seconds) to switch to attempting a new160

locus on the multiaccess log after having previously solved a different locus. The estimate and (standard161

error) are shown.162

Causal score ~ Avg switch latency

(Intercept) 0.79 *

(0.30)

AvgLatencySwitch -0.00

(0.00)

N 7

AIC 16.19

BIC 16.03

Pseudo R2 0.16

*** p < 0.001; ** p < 0.01; * p < 0.05.

To further tease apart potential cognitive components underlying flexibility, we developed a more mechanistic163

measure of behavioral flexibility that takes into account all choices in the reversal learning experiment164

(“Flexibility comprehensive”). Through a computational Bayesian reinforcement learning model including165

bird and experimenter ID as random effects, we obtained individual-level estimates for each bird’s random166

choice and learning rates (see Analysis Plan > Prediction 1 > Flexibility comprehensive for details). We167

validated the model by analyzing data previously collected from great-tailed grackles in Santa Barbara,168

California (Logan 2016), and we found that this parameterization accurately reproduces learning curves169

observed in real animals (see Figure 3).170
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171

Figure 3. Proportion of correct choices per color preference trial for Santa Barbara, California great-172

tailed grackles (N = 8; top), and “birds” simulated from the reinforcement learning model using parameter173

estimates (N = 8; bottom). Dashed vertical lines indicate color reversal. Error bars show standard errors of174

the means.175

The following results are presented as posterior means and 89% highest posterior density intervals (HPDI).176

Using the individual-level estimates to predict causal scores in a GLM, we did not find robust associations177

between either learning rate (𝛽𝜙 = 0.03, HPDI = -0.63 - 0.69) or random choice rate (𝛽𝜆 = -0.40, HPDI178

= -0.96 - 0.25) and birds’ causal scores. There was also no interaction between the estimates of the two179

learning parameters in the model (𝛽𝜙𝜒𝜆 = 0.01, HPDI = -0.95 - 0.97).180

DISCUSSION181

We attempted to produce a conceptual replication of the experiment conducted by Blaisdell et al. (2006) in182

rats, to study causal cognition in the great-tailed grackle. We failed to find evidence that grackles represent183

8



as causal the statistical relations between visual cues presented on a touchscreen and food delivered in a184

food hopper. We also failed to find evidence that grackles derive causal inferences from their interventions.185

Why did we fail to find evidence for causal cognition in grackles? There are a number of reasons to consider.186

First, grackles may not have been very attentive to visual events presented on the touchscreen. While187

touchscreen operant techniques have been hugely successful in the study of learning, memory, perception,188

and cognition in pigeons, this apparatus might not be well suited for use with grackles. Touchscreen operant189

procedures have been tried in many other species of birds, with success in some instances (Kangas and190

Bergman 2017; Schmitt 2018), but not in others (e.g., Blaisdell et al. unpublished; California scrub jays191

Aphelocoma californica). If grackles do not naturally relate to events presented on a touchscreen, then they192

might not perceive such events as causally related either to other events in the operant task, such as other193

cues, or to delivery of food in a hopper.194

Even if grackles do attend to events in the touchscreen operant tasks, these events might be incompatible with195

their feeding behavior system. It is possible that because grackles feed more interactively with food items196

(Davis and Arnold 1972), the touchscreen might be inappropriate for testing causal processes associated197

with obtaining food. Grackles are generalist omnivores that forage on a wide variety of food types, including198

insects, grubs, lizards, nestlings, eggs, shellfish, fruits, and seeds. They learn to hunt, extract, and forage199

using a variety of behaviors, rather than the stereotypical pecking behavior that other species, such as200

pigeons, use. Importantly, there have not been, to our knowledge, studies investigating visual cue-food201

associative learning in grackles.202

In contrast to grackles, touchscreen operant procedures have been wildly successful in pigeons. Pigeons are203

granivores and learn what to eat by associating the visual properties of ingested items (e.g., grains and seeds)204

with their caloric effects (Balsam et al. 1992). Thus, the pigeon’s feeding behavior system is prepared for205

associating 2D visual cues presented on a touchscreen with food delivery, as in an autoshaping procedure206

such as the one used in this experiment, to which the pigeons will acquire sign tracking behavior (i.e., pecking207

or other behaviors directed at the cue) to the associated visual cues. The grackle behavior system is unlikely208

to be as highly specialized as that of the pigeon in forming visual cue-food associations. Thus, grackles may209

not be prepared to easily learn to associate visual cues on a touchscreen with food delivery – the primary210

means of training causal relations in our experiment.211

Despite these caveats, in a separate study using the same operant touchscreen apparatus, we were able212

to successfully train these grackles to interact with visual displays on the screen (Logan CJ, McCune KB,213

et al. 2019). Using a simple Go/No-Go procedure, in which the bird would receive a food reward for214

pecking at the Go stimulus but not for pecking at the No-Go stimulus, grackles successfully learned to make215

significantly more pecks at the Go stimulus than at the No-Go stimulus. Thus, grackles appear capable of216

learning simple operant visual discriminations using the touchscreen apparatus. Nevertheless, success with217

the visual discrimination does not require the bird to perceive the visual cues as causal of the food reward,218

nor even the instrumental peck at the visual cue as causal. Success could rely on simpler non-cognitive (e.g.,219

S-R associative, model free learning) mechanisms, such as changes in peck rate due to reinforcement and220

non-reinforcement of Go and No-Go stimuli, respectively.221

This failure to find evidence of causal cognition in the grackle provides a cautionary tale for comparative psy-222

chologists interested in testing wild-caught animals using traditional laboratory apparatuses and techniques.223

Given the nuance in each species’ foraging niche, and their specialized behavior systems for feeding, mat-224

ing, sensing predators, etc (Timberlake 1994), these individual factors need to be taken into account when225

adapting standard laboratory techniques for use with atypical or wild-caught species. Nevertheless, the costs226

involved are typically quite low, and the rewards can be high if tasks and procedures can be adapted to such227

species. This opens up possibilities for the investigation of the types of learning and cognitive processes that228

are typically only studied in a small number of laboratory species, thereby extending our knowledge of the229

evolution and development of these processes.230

That we did not find evidence of causal cognition in grackles could indicate that it is not implicated as a231

key factor involved in a rapid geographic range expansion, where behavioral flexibility might play a role.232

Nevertheless, we must acknowledge the caveats stated above that our method to assess causal cognition in233

the grackle may have been poorly suited to detect it, even if it were present. We suggest further exploration234
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of this hypothesis using a variety of apparatuses and species-relevant experimental design adaptations before235

considering this a robust conclusion.236

METHODS: below is the preregistration that passed pre-study peer review237

A. STATE OF THE DATA238

NOTE: all parts of the preregistration are included in this one manuscript.239

Prior to collecting any data: This preregistration was written, underwent two rounds of peer reviews240

and received an in principle recommendation at PCI Ecology (see the review history).241

Post data collection: how the actual methods differed from the planned methods (May 2020)242

1) We met our minimum sample size of 8 grackles per experiment: our sample size for Experiment243

1 (the only experiment that was conducted because evidence of causal inference was not found) was244

eight. We were not able to test many more individuals, as we initially predicted, for several reasons245

that were beyond our control in the 2.5 years we were at this field site: the grackles in Tempe, Arizona246

are extremely difficult to catch; only about half of the ~30 grackles that were brought into the aviaries247

volunteered to participate in experiments; of those that did participate, many were extremely slow,248

only participating in a few trials per day; the test battery, of which the causal cognition experiment249

was one, took much longer than expected and many birds did not complete the whole battery before250

they had to be released because they came to the end of their six months in the aviaries (the maximum251

duration we are permitted to hold them) or it became too hot in the aviaries to continue testing and252

they had to be released for the summer. A ninth bird was tested (Mole), but he only completed the253

intervene condition and had to be released before he began the observe condition.254

2) We were unable to maintain a sex balance because of the difficulties encountered in point 1 and255

because the females were less willing than males to participate in experiments. Therefore, our sample256

size consists of 1 female and 7 males.257

3) The testing protocol changed multiple times over the course of the data collection period in an258

effort to adapt the test to increase the motivation of this species to participate in the test trials. See the259

test protocol for details. As such, we combined the two dependent variables into one (see Dependent260

Variables for details).261

4) Hypothesis > Predictions: we corrected the typo that we were going to compare causal inference262

abilities with “latencies to successfully solve new tasks after previously solved tasks become unavailable263

on a multiaccess box” by changing “successfully” to “attempt to solve”, which makes it consistent with264

our Methods > Independent variables. The former measures innovation, the latter measures flexibility.265

As such, we also removed that we were comparing causal inference with “innovation” in Alternative 3266

because this research is focused on the relationship between flexibility and causal cognition.267

5) Analysis plan: we realized that we forgot to include a sentence stating that we would replicate the268

analyses used in Blaisdell et al. (2006) because, as originally stated in the Objective, this grackle269

experiment is an adaptation of the rat research and we intended to directly compare the rat and270

grackle results. We therefore conducted the same analyses as in Blaisdell et al. (2006) to assess causal271

cognition in addition to the previously described analyses.272

6) Analysis plan:273

• We modified a dependent variable (number of key pecks to food key) because we removed the food274

key from the experiment. The food key was a white square and this was the stimulus used to train them275

in how to use the touch screen. Consequently, in the causal experiment, they focused only on pecking276

the food key and ignored the other stimuli on the screen. We then changed this dependent variable to277

10

https://ecology.peercommunityin.org/public/rec?id=25&reviews=True
https://docs.google.com/document/d/1ksqCHG0mXPtskOoedXGIMc_2V5rFmeCe15mvCS-ytTg/edit?usp=sharing


measure the number of screen pecks to anywhere on the screen (inside or outside the stimulus if there278

was a stimulus on the screen, or pecks to a blanck screen if there was no stimulus). This was because279

the grackles did not peck the screen very often in general so we wanted to increase the amount of data280

that were collected.281

• We investigated adding adding two dependent variables (number of feeder inspections and number282

of seconds spent searching for food) because the grackles were not motivated to peck the stimuli on the283

screen, resulting in almost no data. They appeared to inspect the feeder more often than touching the284

screen, therefore we decided to add this variable to increase our chances of obtaining usable data. After285

conducting interobserver reliability on the dependent variables, there was not enough interobserver286

agreement to indicate that we are able to objectively code these variables (interobserver reliability287

code and data were added below). Therefore, in the analyses, we used only the automated screen288

pecking data collected by PsychoPy (which is not entirely accurate because there were many occasions289

where the screen did not register a screen peck and the experimenter had to remotely use the mouse290

to click where the bird pecked).291

7) Analysis plan > Alternative analyses: after reading (McElreath 2016), we decided to run the GLMM292

in Prediction 1 for only one independent variable at a time because including more independent293

variables can confound the interpretation of the results.294

8) We obtained permission from permitting agencies to temporarily hold grackles in aviaries for up295

to 6 months per bird (it was previously 3 months).296

B. PARTITIONING THE RESULTS297

We may decide to present these results in two separate papers: 1) determining whether grackles have causal298

inference abilities, and 2) linking variation in performance on causal inference tasks to measures of flexibility.299

NOTE: everything in the preregistration is included in this one manuscript.300

C. HYPOTHESIS301

Individuals that are more behaviorally flexible (faster at functionally changing their behavior302

when circumstances change), as measured by reversal learning and switching between options303

on a multi-access box, are better able to derive accurate causal inferences (see Mikhalevich304

et al. (2017) for theoretical background about the distinction between flexibility and complex305

cognition). This is because causal cognition may facilitate flexibility: an individual could be306

faster at switching to new solutions that are more functional if it makes causal inferences about307

how the problem works, rather than relying solely on trial and error learning to indiscrimi-308

nately switch to new solutions. In this procedure, we assess whether grackles are able to derive309

correct predictions about causal interventions after observational learning, a core component310

of causal reasoning that can not be reduced to associative learning (Waldmann and Hagmayer311

2005).312

Predictions: Individuals that are faster to reverse preferences on a serial reversal learning task and who313

also have lower latencies to attempt to solve new tasks after previously solved tasks become unavailable on314

a multiaccess box (two measures of flexibility in a separate preregistration), perform better in two causal315

inference experiments. Specifically, the more flexible individuals are predicted to316

• P1: form causal models from contingency learning (i.e. observational learning). Contingency informa-317

tion could be represented in one of two ways. On the one hand, relations between events could be318

encoded as associations. On the other, they could be represented as causal. For example, if the sound319

of a bell is followed by delivery of food, one could represent the bell as associated with the food, and320

thus the sounding of the bell calls to mind an expectancy of food. Or, the subject could represent the321

bell as a cause of food. Blaisdell et al. (2006) (see also Leising et al. (2008)) report evidence that rats322
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can represent statistical relationships between events as causal.” Thus, we predict the more flexible323

indivuals will better learn the causal maps between all pairwise events (visual and auditory cues and324

food delivered from a food dispenser), and integrate these individual maps into larger causal map325

structures, including a common-cause, two-effect map (if observing T, L caused it, thus F is present),326

and a direct cause-effect map (if N is present, it will cause F).327

• P2: behave as if intervention can influence the type of causal inference made at test, depending on328

which causal model is being tested: dissociate between seeing and doing as evidenced by a lower rate of329

pecking a key to release food when they had the opportunity to intervene in a common cause condition,330

while intervening on a direct cause or a causal chain will have no effect on key pecks.331

Alternative 1: If there is no correlation between flexibility measures and performance on causal inference332

tasks, this suggests that learning about associations (on which the flexibility tasks are based) is different333

from learning about causal inferences.334

Alternative 2: If there is a negative correlation between flexibility measures and performance on causal335

inference tasks, this suggests that some individuals may prefer to rely on information acquired previously336

(i.e., they are slow to reverse, but good at remembering prior information in causal inference tasks) rather337

than relying on current cues (e.g., the food is in a new location (flexibility), the light is absent in the test338

trials (causal inference)). For example, relying solely on current cues (i.e., the immediate stimulus (e.g., tone,339

noise) or lack thereof) in the causal cognition test will not give them enough information to consistently solve340

the task. They will need to draw on their memory of what the presence or absence of the current stimulus341

means about the food reward based on their experience in previous trials to perform well on this task.342

Alternative 3: If the flexibility measures do not positively correlate with each other (P2 alternative 2 in343

the flexibility preregistration), this indicates they measure different traits. In this case, we are interested in344

how each flexibility measure (reversal learning and task switching latency on the multiaccess box) relates to345

performance on causal inference tasks.346
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347

Figure 4. Planned design for experiment 1: Test figures adapted from Blaisdell et al. (2006). In the Training348

phase, subjects first learn to peck at a food key to elicit food from the magazine. Subjects then receive trials349

during which the yellow circle is presented on the screen followed by a tone, and then they receive two types350

of trials interspersed within each training session: 1) the yellow circle followed by food or 2) the noise and351

food presented at the same time. In the Test phase, those individuals in the Observation condition will hear352

a tone or a noise while seeing only the food key on the screen but individuals in the intervene condition can353

elicit the tone or noise by pecking on separate response keys that elicit those auditory stimuli. The prediction354

is that if individuals form a common cause model such that circle produces tone and food, observing the tone355

should lead to individuals to expect food (indicated by the subject pecking the food key), because if tone is356

on, circle caused it, and it also caused food. Meanwhile, if they intervene to produce the tone, they will not357

expect food (i.e., they will not peck the food key) because they know their intervention caused the tone and358

not the circle (which also causes food). Additionally, observing noise should also lead an expectation of food359

(i.e., pecking the food key) because noise and food were paired simultaneously during training. Meanwhile,360

even if they intervene and cause the noise they should still expect food (i.e., peck the food key) because when361

the noise is on food is available regardless of what caused it (because the noise and the food were paired362

simultaneously). (T=tone, L=light, F=food, P=peck key)363

13



364

Figure 5. Planned design for experiment 2: Test figures adapted from Blaisdell et al. (2006). In Training365

phase 2a, subjects learn the same common cause model as in experiment 1 such that the circle predicts tone366

and also the circle predicts food. Note that there is no training of the noise in 2a. In the training phase367

of 2b, subjects learn that a tone comes before a circle on screen and that a circle on screen is followed by368

receiving food. In the Test phase, those individuals in the Observation condition hear a tone while seeing369

only the food key on the screen and those in the intervene condition can elicit the tone by pecking at a blue370

square. For subjects trained in 2a, the prediction is that if individuals form a common cause model such371

that circle produces tone and food, observing the tone should lead to individuals to expect food because, if372

tone is on, the circle caused it, and the circle also causes food. If individuals intervene to create the tone,373

they should not peck for food because it was their action that caused the tone and not the circle that caused374

it. For subjects trained in 2b, the prediction is that if they observe the tone they should expect food because375

food follows the circle which follows the tone. Likewise, even if subjects intervene to produce the tone, if376

they have formed the causal chain, they should still expect that the tone produces the circle which produces377

food and hence they should look for food. (T=tone, L=light, F=food, P=peck key)378

Objective:379

The aim is to determine whether grackles, like rats (Blaisdell et al. (2006)), derive predictions about the380

outcomes of interventions (actions) after passive observational learning of different kinds of causal mod-381

els. Causal models are theoretical entities that are estimated, combining cues to infer causal structure in382

relationships that go beyond merely obseriving statstical covariations between events.383

Blaisdell and colleagues (Blaisdell et al. (2006)) taught rats that a light was a common cause of tone and food384

by presenting the light followed by the tone on some trials and by the food on other trials during training.385

Rats also learned that a noise was a direct cause of food by presenting noise and food simultaneously during386

training. At test, some rats observed the tone or the noise. When they did, they looked for food. This shows387
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that rats had formed the causal models of noise causes food and that tone is caused by light, which itself is388

a cause of food. Other rats were given the opportunity to intervene to make the tone or noise occur at test.389

This was done by giving the rats a novel lever that they had never seen before or been trained on. When the390

pressed the lever, this caused the tone (or noise) to turn on. When the noise was caused by a lever press,391

rats looked for food in the food hopper, but when lever pressing caused the tone to turn on, rats did not392

look for food. This shows that rats understood that, by intervening on the lever to cause the noise to occur,393

since the noise was a cause of food, they then expected food. But by intervening on the lever to cause the394

tone to occur, the rats realized that they had caused the tone, and not the light (which was an alternative395

cause of tone). As a result of attributing the tone to their own action rather than the light, they did not396

expect there to be any food in the food hopper.397

This experiment adapts the procedure used by Blaisdell et al. (2006) to study causal inference in rats398

for the study of causal inference in birds (e.g., pigeons and grackles) using a touchscreen. Blaisdell et al.399

(2006) (see also Leising et al. (2008)) found that rats made different predictions about the presence of food400

based on a cue (a tone) depending on the causal relationship between them (direct cause or two effects of401

a common cause) and whether the tone was merely observed at test or had been caused by the subject’s402

own intervention (a lever press). This dissociation between seeing and doing suggests that subjects represent403

associated relationships as causal, and derive rational inference regarding an intervention on a cause versus404

an effect. We wish to determine whether grackles can also form causal models from contingency learning,405

and if so, whether their intervention can influence the type of causal inference made at test, depending on406

which causal model is being tested.407

D. METHODS408

Planned Sample409

Great-tailed grackles will be caught in the wild in Tempe, Arizona USA for individual identification (colored410

leg bands in unique combinations). Some individuals (~32: ~16 per experiment) will be brought temporarily411

into aviaries for testing, and then they will be released back to the wild. Grackles are individually housed in412

an aviary (each 244cm long by 122cm wide by 213cm tall) at Arizona State University for a maximum of six413

months where they have ad lib access to water at all times and are fed Mazuri Small Bird maintenance diet414

ad lib during non-testing hours (minimum 20h per day), and various other food items (e.g., peanuts, grapes,415

bread) during testing (up to 3h per day per bird). Individuals are given three to four days to habituate to416

the aviaries and then their test battery begins on the fourth or fifth day (birds are usually tested six days417

per week, therefore if their fourth day in the aviaries occurs on a day off, then they are tested on the fifth418

day instead).419

Sample size rationale420

We will test as many birds as we can in the three years we have at this field site given that the birds only421

participate in tests in aviaries only during the non-breeding season (approximately September - March). The422

minimum sample size will be 8 birds per experiment (n=16 total), however we expect to be able to test many423

more.424

Data collection stopping rule425

We will stop testing birds once we have completed two full aviary seasons (likely in March 2020). NOTE:426

the two full aviary seasons concluded in May 2020.427

Open materials428

1) Touchscreen training protocol429

2) Experiment 1 protocol430
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Apparatus431

Testing was conducted on an operant touchscreen mounted on a platform (49 cm wide x 70 cm long x 8 cm432

tall) and placed on a cart (89 cm tall) inside an individual subject’s aviary. All stimuli were presented by433

computer on a color LCD monitor (NEC MultiSync LCD1550M). Pecks to the monitor were detected by an434

infrared touchscreen (Carroll Touch, Elotouch Systems, Fremont, CA) mounted in front of the monitor. A435

food hopper (Coulbourn Instruments, Allentown, PA) was located below the monitor with an access hole436

situated flush with the floor. When in the raised position, the hopper provided access to peanut pieces. Dell437

laptop speakers delivered a pure tone (3000 hz) or a clicking noise, 8 db above background noise (average438

background noise = 70 dB, measured on an iPhone7 with the Decibel Meter app by Dmytro Hrebeniuk).439

Geometric symbols could be displayed on the touchscreen monitor. These consisted of a white star with gray440

lines (formerly yellow circle), and a clover (formerly a square) and triangle. The latter two shapes were both441

white with gray lines on them (formerly one was blue the other green) (the shape-sound pairings will be442

counterbalanced across subjects, while the star is for all subjects). All experimental events were controlled443

and data recorded with a laptop (Dell Inspiron 15). A video card in the Dell laptop controlled the monitor444

using the standard dynamic range color space SVGA graphics mode (1366x768 pixels for the Dell display445

and also for the display on the touchscreen). All experimental procedures were programmed using PsychoPy446

(v1.85.2, Peirce (2009)).447

Touch screen training448

For the most up to date description of how we conducted the touchscreen training, please see our protocol449

and Seitz et al. (2020) for the training data and a summary of what happened.450

Training: food hopper451

We would like grackles to associate the sound of the hopper moving with food being available (note: a light452

also turns on when the food hopper is available, however this experiment is conducted in outdoor aviaries453

where it is bright and thus the light might not be the most obvious cue). Every time the grackle approached454

the food hopper, we opened it remotely. The opening makes a distinct sound, and the food hopper is left open455

until the grackle looked in before closing. End goal behavior for hopper training: grackle lands on platform,456

hopper is moved forward within reach, grackle retrieves food, hopper is moved out of reach, grackle can not457

obtain food.458

1. Position the food hopper so it is in the accessible position. Draw attention to it by placing food crumbs459

around the area. Allow the bird to eat from the hopper for 20 seconds, then go into aviary and add460

more crumbs at/around hopper. Repeat until the bird eats from the hopper without the crumbs.461

2. To habituate the bird to the sound of the hopper moving, use 1.Press_Space_for_food_2.Basic_mag_training_.psyexp462

program which lets you press the spacebar to raise, and lower the hopper. Raise and lower the hopper463

many times when the bird is attending to the apparatus, especially when the bird is on the platform.464

Allow the bird to come to the platform and eat from the hopper, than immediately after press the465

spacebar to lower it while the bird is watching. Continue to do this until the bird is no longer jumpy.466

3. To train the grackle to eat quickly from the hopper, the experimenter uses the 1.Press_Space_for_food_2.Basic_mag_training_.psyexp467

program. Again use the spacebar to raise the hopper into the open position when the grackle is on the468

platform. Allow the food hopper to be available for eating for 20 s. After this time period, move the469

hopper out of reach. Wait 5-10 seconds (so that the grackle has noticed food is not longer available),470

then initiate another trial to move the hopper back into a reachable position. Allow grackle to eat for471

5-20 s (or until it is seen with 3 food items in its bill, so it has eaten at least 3 food items). Repeat.472

At first, let the food stay available for 20s and gradually decrease it to ~8 s (which is what it will473

be during testing). Gradually increase this speed until the grackle does not retreat or show signs of474

fear (e.g., flying away, jumping backwards, reluctant to return to hopper, reluctant to put head in475

hopper). If grackle leaves the platform, make the food unavailable and only return it when the grackle476

is on the platform facing the hopper. Once grackle has habituated to going to, and eating from, the477

food hopper when it opens, proceed with trials to assess whether grackle passes hopper training.478
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4. Open a new run on the PsychoPy hopper training program. Enter the bird’s ID and S1 T1 to indicate479

the first session and first trial of hopper training trials (or subsequent sessions/trials as appropriate).480

Once program is running, turn on camera and use board to again indicate experiment, session, and481

trial number. Then put a small piece of cracker in front of the hopper before leaving the cage. Once the482

grackle comes to the platform, let it take the free piece of cracker, then press the spacebar to raise the483

hopper. Count to 5, if the grackle sticks it’s head in the hopper, let it eat up to 3 pieces of food. Lower484

the hopper and count to 10 before raising the hopper again for the next trial. In the data_reversaw485

sheet, put a “1” in CorrectChoice if the grackle ate within 5 sec from the food hopper. If the grackle486

does NOT stick its head into the hopper within 5 seconds, lower the hopper. Count to 10 before raising487

the hopper again for the next trial. In the data_reverseaw sheet, put a “0” in CorrectChoice if the488

grackle did NOT eat within 5 sec from the food hopper. If the grackle leaves the platform after you489

raise the hopper, put a “-1” in CorrectChoice and repeat the trial the next time the grackle comes to490

the platform. If the grackle left the platform and does not come back within 5 min of the start of the491

previous trial, end the session and try again after giving the grackle a break. Grackles should get 20492

trials - ideally 2 sessions of 10 trials.493

5. Criterion: Subject needs at least 17 of the most recent 20 trials correct (with the hopper moving494

forward and backward at maximum speed), with at least 8/10 or 9/10 correct in the most recent two495

10 trial blocks (as in Bateson et al. (2015)). Intertrial interval = 10s (food is not available during496

this time so the grackle learns it must pay attention to when it is available). NOTE: if a bird passed497

criterion the previous day, re-run that program to make sure they retained the information before498

moving on to the next program.499

Training: touch screen500

General Notes:501

• Once a bird is habituated to the food hopper and touchscreen, only put the touchscreen in their aviary502

when you want them to pay attention to it and, if they make the correct response, they get a reward.503

Because hand shaping works the best for training grackles on the touchscreen, all training sessions504

must be attended by the experimenter who must pay attention the entire time (see the video on “how505

Dazzle learns to blow bubbles” to learn about how hand shaping works: http://www.dogtrainingology.506

com/concepts/shaping-behavior-definition/).507

• If a bird is having trouble with motivation/focus:508

– Take them back to the last program they were successful at and let them have a few good trials509

before trying the more advanced program. Also, if they are giving up on participating in a program510

because they are frustrated, end on a good note by taking them back to a program they already511

know and give them a few successful trials to make sure they stay interested in interacting with512

the touchscreen513

– Demonstrate by touching the screen how to use the program514

– If the bird touches the correct stimulus on the screen, but it doesn’t activate due to a program515

error, use your cursor to click the button for them so they are rewarded for the correct behaviors516

and continue to progress with their learning.517

Passing criterion for each training program: Subject needs at least 17 of the most recent 20 trials518

correct (touch the screen and eat from the hopper after each correct touch) with at least 8/10 or 9/10 correct519

in the most recent 2 sessions (each consisting of 10 trials). After each session, check the data file for the520

number of correct trials.521

Peck food key for food522

Program: 4.Food_Key_Only_2FullControl.psyexp523

How it works: a white square (3.5cm by 3.5cm) is on screen, when pecked, it disappears and the food hopper524

automatically becomes available. The experimenter must press the space bar to make the food unavailable,525
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and then the white square re-appears. Experimenter can open or close the food hopper at any time by526

pressing space bar.)527

Begin the program. To get the grackle interested in the screen, tape a goldfish cracker to the screen on top528

of the white square - Try to create a tape “hammock” so that the sides and bottom are taped on, but there529

is a gap in the center top where you can drop in crackers - Put a cracker piece in the tape “hammock”,530

when the grackle takes the piece press the spacebar to raise the hopper - Let the grackle eat 2-3 pieces from531

the hopper before pressing the spacebar to close it - If the grackle does not notice the hopper, close it after532

about 8 seconds. - If they don’t come back to the table, bait the tape again with a very small cracker crumb533

- Once the grackle is taking the cracker comfortably, remove the cracker from the screen - To get the grackle534

to associate the white square food key with food, hand shape by rewarding (giving them enough time to eat535

a couple of pieces of food) when the bird’s bill is near the white square, and then when it is closer to the536

square, and then when it is touching the square. The hopper automatically comes up when the bird pecks537

the square (but if it doesn’t and the bird gave the correct response, then press the space bar to move the538

hopper up), and then press the space bar to move the hopper out of reach after the bird gets one or two539

pieces of food.540

Experiment 1541

We changed the protocol for conducting Experiment 1 over the course of the experiment to try to increase the542

grackle’s motivation to participate. Please see our experimental protocol for a complete description of how543

we conducted Experiment 1.544

Before contingency training, subjects completed response key autoshaping and instrumental conditioning.545

Subjects were trained to peck at the response key to activate the food hopper using a mixed autoshap-546

ing/instrumental training procedure.547

Contingency training follows the procedure outlined in Figure 4. The light is a white star (4cm wide x 4.5cm548

tall), the tone is 400hz presented for 10s, and the noise is a clicking noise presented for 10s. In the first549

training phase, subjects will receive trials during which the star will be presented on the screen followed550

by presentation of the tone. The star and tone will each be presented for 10s with the onset of the tone551

coinciding with the termination of the star. During the second training phase, subjects will receive two types552

of trials interspersed within each training session. On some trials, the star will be presented for 10 seconds553

followed by the delivery of food from the hopper. On other trials, the 10s noise and 10s delivery of food will554

onset and terminate together.555

At test, the grackles will receive four types of tests. Half of the tests involve the presentation of the Tone556

and the Noise on separate trials. The other half of the tests involve trials on which when the grackle pecks at557

one of two novel response keys (white square with gray lines (2.2cm wide x 2.2cm tall; formerly blue square)558

and white triangle with gray lines (3cm base x 3cm height; formerly green triangle) made available on the559

touchscreen, this is followed immediately by the presentation of the Tone (for pecking one response key) or560

the Noise (for the other response key). Thus, these latter tests involve the grackle intervening on the Tone561

and the Noise. If grackles have formed the causal models shown in Figure 4, then they should expect food on562

test trials on which the Tone and the Noise are observed (but not intervened on). This is due to the causal563

inferences derived from observing a direct cause (Noise) of an effect (Food), or an effect (Tone) of a direct564

cause (Light) of the Food. We predict different expectation of food in the Intervention test trials, however.565

When the grackle intervenes on the Noise, they should still expect Food since the Noise is a direct cause566

of Food. When the grackle intervenes on the Tone, however, they should treat the Tone as caused by their567

own action (key peck) and thus discount the possibility that the Light had just occurred. By discounting568

the Light, they should also not expect Food. Thus, we expect less Food seeking on test trials on which569

grackles intervene on the Tone compared to the other three trial types. If causal inference is demonstrated570

in Experiment 1, we will begin Experiment 2.571

Experiment 2572
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The materials used in Experiment 2 were identical to those used in Experiment 1. Grackles experience either573

common-cause training (as in Experiment 1) or causal-chain training, which is the same as the common-cause574

training except that the tone preceded the light during observational learning (in common cause training, L575

-> T). In experiment 2, in both common-cause and causal-chain training there was no training of the noise.576

At test, grackles in the Intervene condition hear a tone every time a key is pecked, whereas those in the577

Observe condition hear a tone periodically presented in the absence of a key peck. Both the Observe and578

Intervene grackles in the causal chain experiment should expect food after the tone. In contrast, grackles in579

the common cause experiment Observe condition should expect food if they hear the tone, but not those in580

the Intervene condition who have only experienced the light causing the tone or the food, but not the tone581

causing the light or the food. Also note there was no testing of the noise in experiment 2.582

Assignment to conditions: counterbalancing and randomization583

Sex is balanced across each experiment (50% female in each experiment) and allocated evenly across treat-584

ment conditions.585

Experiment 1: Each individual will experience all four conditions in Experiment 1: 1) Intervene-Tone, 2)586

Intervene-Noise, 3) Observe-Tone, and 4) Observe-Noise. The Intervene condition will occur in one test587

session and the Observe condition in a separate test session, and the order will be counterbalanced across588

subjects.589

Experiment 2: Individuals will be randomly assigned to Experiment 2a or 2b, and individuals within each590

experiment will receive Observe and Intervene conditions.591

To prevent their previous history with causal inference experiments from confounding the results, grackles592

that participated in Experiment 1 will not participate in Experiment 2 - new individuals will be selected for593

Experiment 2.594

Blinding of conditions during analysis595

No blinding is involved in this study.596

Dependent variables597

1) The number of key pecks to the food delivery symbol (food key) on the touchscreen that releases food598

into the food dispenser599

2) The number of key pecks to the novel stimuli (square and triangle) on the touchscreen600

Modified DV: The number of pecks to anywhere on the screen (inside or outside of the novel stimuli or food601

key). NOTE: in June 2020, we decided to combine these dependent variables into one (modified DV): the602

number of pecks to the screen (inside or outside of the novel stimuli or food key). This is because it was603

difficult to get the grackles to engage with the task and provide data in the form of screen pecks. Therefore,604

we broadened the category to all screen pecks to increase the amount of data.605

Independent variables606

Prediction 1: causal map607

1) Condition (Intervene Tone, Intervene Noise, Observe Tone, Observe Noise)608

2) Number of trials to reverse a preference in the last reversal that individual participated in609

3) Average latency to attempt to solve a new locus after solving a different locus (multi-access box)610

19

https://github.com/corinalogan/grackles/blob/master/EasyToReadFiles/g_flexmanip.md
https://github.com/corinalogan/grackles/blob/master/EasyToReadFiles/g_flexmanip.md


4) Flexibility comprehensive: This measure is currently being developed and is intended be a more ac-611

curate representation of all of the choices an individual made, as well as accounting for the degree of612

uncertainty exhibited by individuals as preferences change. If this measure more effectively represents613

flexibility (determined using a modeled dataset and not the actual data), we may decide to solely rely614

on this measure and not use independent variables 2 and 3. If this ends up being the case, we will615

modify the code in the analysis plan below to reflect this change.616

NOTE (Aug 2020): we developed the flexibility comprehensive model, which estimates flexibility in a different617

way than the other two flexibility measures and is therefore not a replacement.618

5) ID (random effect because multiple measures per individual)619

6) Experimenter (random effect because multiple experimenters collected data in Experiment 1; if this620

variable makes no difference in the results, it will be removed)621

Note: per Hypotheses > Alternative 3, if independent variables 2-4 are correlated with each other, we will622

only use one in the model.623

Prediction 2: common-cause vs causal chain624

1) Condition (Intervene, Observe)625

The rest are the same as in P1.626

Unregistered analysis: Interobserver reliability of dependent variables627

To determine whether experimenters coded the dependent variables in a repeatable way, a hypothesis-blind628

video coder, Sierra Planck, was first trained in video coding the dependent variables (number of times the629

bird pecked the screen, number of times the head entered the food hopper, and number of seconds spent630

searching for food per trial), and then she coded 25% of the videos in this experiment. We randomly chose631

two (Diablo and Yuca) of the eight birds who participated in this experiment using random.org. Planck then632

analyzed all videos from these two birds. The experimenter’s data was compared with Planck’s data using633

the intra-class correlation coefficient (ICC) to determine the degree of bias in the regression slope (Hutcheon634

et al. (2010), using the irr package in R: Gamer et al. (2012)).635

To pass interobserver reliability (IOR) training, Planck needed an ICC score of 0.90 or greater to636

ensure the instructions were clear and that there was a high degree of agreement across coders. For training,637

Planck coded two videos: 1) A087AG 2020-01-22 Causal Test Intervene S1 T1, and 2) A064LR 2019-12-20638

Causal Test Observe S1 T1. When Planck’s results were compared with the experimenter’s, the scores were639

as follows:640

• ICC (PeckedScreen) = 0.16641

• ICC (HeadEnteredFoodHopper) = 0.51642

• ICC (SecondsSearchingForFood) = 0.71643

The extremely low scores indicated that either the variables were not repeatable, or something about the644

instructions was incorrect. Therefore, Logan additionally coded these videos and compared her data with645

Planck’s:646

• ICC (PeckedScreen) = 0.69647

• ICC (HeadEnteredFoodHopper) = 0.79648

• ICC (SecondsSearchingForFood) = 0.09649
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The first two scores improved, while the third got worse. The instructions were then clarified and Logan650

and Planck coded two additional videos to determine whether this improved the ICCs: videos 3) A064LR651

2019-12-19 Causal Test Intervene S1 T1 (pt. 1) and 4) A064LR 2019-12-19 Causal Test Intervene S1 T1 (pt.652

2). We expected the screen pecks and food hopper head entry variables to improve, however it appears that653

searching for food is highly subjective and might be unusable. The scores for data from all four videos were654

as follows:655

• ICC (PeckedScreen) = 0.68656

• ICC (HeadEnteredFoodHopper) = 0.85657

• ICC (SecondsSearchingForFood) = 0.39658

The first score stayed the same, while the second and third improved. However, none of the scores passed659

our threshold of 0.90, which means that Planck did not pass IOR training. However, this is more of an660

indication that these variables are not able to be objectively coded. We moved forward with having Planck661

code the full 25% of the videos in this experiment for one variable (hopper entries). We excluded the662

searching for food variable because its scores were so low and unrepeatable, and we decided to use only the663

computer-generated data for screen pecks because it was available to us and it is objective. The score was664

as follows:665

• ICC (HeadEnteredFoodHopper) = 0.70 (95% confidence interval: 0.52-0.82)666

This lower score indicates that this variable is not able to be objectively coded, therefore we decided to use667

only the computer-generated data for number of screen pecks in our analyses. However, we must note that668

the computer-generated data was not entirely accurate: there were many occasions where the screen did not669

register a screen peck and the experimenter had to remotely use the mouse to click where the bird pecked.670

library(irr) #ICC package

# did Sierra Planck pass interobserver reliability training?
# No, but unclear whether the original coders were correct so
# CL coded bird 87's video to check.

# Number of times pecked screen = SC & CL match enough after
# a bit more coding, MM doesn't match (in Intervene didn't
# seem to count the peck to the screen that initiated the
# trial)
pmm <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1,

1, 0, 0, 3, 0, 0)
# live coder data from NumberOfTimesPeckedScreen for videos
# below (bird 64 then 87)
psc <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 1, 1, 2,

1, 1, 1, 1, 1, 1)
# video coder data from for video A064LR 2019-12-20 Causal
# Test Observe S1 T1 and A087AG 2020-01-22 Causal Test
# Intervene S1 T1
pcl <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 2,

1, 1, 1, 2, 1, 1)
# video coder data from for video A064LR 2019-12-20 Causal
# Test Observe S1 T1 and A087AG 2020-01-22 Causal Test
# Intervene S1 T1
da <- data.frame(pmm, psc)
da2 <- data.frame(pcl, psc)
icc(da, model = "oneway", type = "consistency", unit = "single",
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conf.level = 0.95)
# =0.16
icc(da2, model = "oneway", type = "consistency", unit = "single",

conf.level = 0.95)
# =0.69. Would be 0.92 if the 4 in SC's was changed to a 1 bc
# of the clarification in the instructions (only count the
# peck that starts the tone, not the pecks before it bc the
# trial hasn't technically started yet). Have CL & SC code 1
# more video w data in this column to pass

# Number of times head entered food hopper = SC & CL almost
# exactly match, MM doesn't match
hmm <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,

1, 0, 1, 0, 0, 0)
# live coder data from NumberOfTimesHeadEnteredFoodHopper for
# videos below (bird 64 then 87)
hsc <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0)
# video coder data from for video A064LR 2019-12-20 Causal
# Test Observe S1 T1 and A087AG 2020-01-22 Causal Test
# Intervene S1 T1
hcl <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0)
# video coder data from for video A064LR 2019-12-20 Causal
# Test Observe S1 T1 and A087AG 2020-01-22 Causal Test
# Intervene S1 T1
data <- data.frame(hmm, hsc)
data2 <- data.frame(hcl, hsc)
icc(data, model = "oneway", type = "consistency", unit = "single",

conf.level = 0.95) #=0.51
icc(data2, model = "oneway", type = "consistency", unit = "single",

conf.level = 0.95) #=0.79 only 1 point different

# Number of seconds searching for food = no pairs pass
smm <- c(1, 0, 1, 1, 6, 0, 0, 0, 1, 0, 1, 0, 2, 3, 2, 3, 2, 3,

1, 1, 2, 3, 3, 1)
# live coder data from NumberOfTimesHeadEnteredFoodHopper for
# videos below (bird 64 then 87)
ssc <- c(4, 2, 2, 2, 5, 1, 1, 0, 2, 0, 1, 0, 1, 2, 2, 4, 3, 2,

1, 1, 1, 2, 3, 1)
# video coder data from for video A064LR 2019-12-20 Causal
# Test Observe S1 T1 and A087AG 2020-01-22 Causal Test
# Intervene S1 T1
scl <- c(8, 3, 5, 4, 10, 3, 1, 2, 7, 6, 5, 1, 5, 5, 5, 6, 3,

7, 1, 3, 3, 4, 5, 2)
# video coder data from for video A064LR 2019-12-20 Causal
# Test Observe S1 T1 and A087AG 2020-01-22 Causal Test
# Intervene S1 T1
dat <- data.frame(smm, ssc)
dat2 <- data.frame(scl, ssc)
icc(dat, model = "oneway", type = "consistency", unit = "single",

conf.level = 0.95) #=0.71
icc(dat2, model = "oneway", type = "consistency", unit = "single",
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conf.level = 0.95) #=0.09

## 26 March 2020: SC & CL additionally coded bird 64's
## intervene videos to see if it improved matching (after
## revising the instructions as well). Data analyzed here are
## the videos above plus: A064LR 2019-12-19 Causal Test
## Intervene S1 T1 (pt. 1) and A064LR 2019-12-19 Causal Test
## Intervene S1 T1 (pt. 2) Number of times pecked screen = SC
## & CL don't match enough after a bit more coding
psc <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 1, 1, 2,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) #37 data points
pcl <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 2,

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1)
da <- data.frame(pcl, psc)
icc(da, model = "oneway", type = "consistency", unit = "single",

conf.level = 0.95) #=0.69

# Number of times head entered food hopper = SC & CL almost
# match
hsc <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) #37 data points
hcl <- c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)
data <- data.frame(hcl, hsc)
icc(data, model = "oneway", type = "consistency", unit = "single",

conf.level = 0.95) #=0.85

# Number of seconds searching for food = don't match
ssc <- c(4, 2, 2, 2, 5, 1, 1, 0, 2, 0, 1, 0, 1, 2, 2, 4, 3, 2,

1, 1, 1, 2, 3, 1, 1, 2, 2, 2, 2, 0, 6, 2, 4, 8, 10, 8, 4) #37 data points
scl <- c(8, 3, 5, 4, 10, 3, 1, 2, 7, 6, 5, 1, 5, 5, 5, 6, 3,

7, 1, 3, 3, 4, 5, 2, 4, 7, 4, 8, 4, 2, 9, 4, 2, 13, 7, 11,
4)

dat <- data.frame(scl, ssc)
icc(dat, model = "oneway", type = "consistency", unit = "single",

conf.level = 0.95) #=0.39

#### PASSING interobserver reliability - the final result from
#### 20% of the videos FINAL 31 March 2020: 20% of videos coded,
#### final comparison of Sierra & live coders (all videos from
#### birds 64 and 87, n=6 videos) Number of times head entered
#### food hopper

# Download the datasheet as a .csv file and put in a folder
# where you know the file path. Load the datasheet here
data <- read.csv("/Users/corina/ownCloud/Documents/Experiments/Interobserver Reliability/InterObsRelCausalLCSierra.csv",

header = TRUE, sep = ",", stringsAsFactors = FALSE)
data #Check to make sure it looks right
# Note: c(2,3) is telling R to look at columns 2
# ('1HeadEnteredHopper') and 3 ('2HeadEnteredHopper') and
# compare them. Double check this:
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data[, 2]
data[, 3]
icc(data[, c(2, 3)], model = "oneway", type = "consistency",

unit = "single", conf.level = 0.95)
# ICC = 0.70 (95% Confidence Interval: 0.52-0.82)

E. ANALYSIS PLAN671

We do not plan to exclude any data. When missing data occur, the existing data for that individual will672

be included in the analyses for the tests they completed. Analyses will be conducted in R (current version673

3.6.3; R Core Team (2017)). When there is more than one experimenter within a test, experimenter will be674

added as a random effect to account for potential differences between experimenters in conducting the tests.675

If there are no differences between models including or excluding experimenter as a random effect, then we676

will use the model without this random effect for simplicity.677

We realize that there are other variables that are not included in the analyses below that may have an678

influence in our models if they were included (e.g., individual differences in body size, sex, exploration,679

boldness, etc.). Many of these variables we will have measured on these particular individuals. We have680

chosen to keep the models as simple as possible because the sample sizes for each experiment are small.681

These experiments were designed to determine whether grackles attend to causal cues or not. If results show682

that they do, then we will conduct further tests to investigate the extent of these abilities. The combination683

of conducting multiple experiments on the same cognitive ability on different individuals at different times684

and locations will not only increase our overall sample size, but it will show that we were able to detect the685

trait we we were measuring.686

Ability to detect actual effects687

To begin to understand what kinds of effect sizes we will be able to detect given our sample size limitations688

we used G*Power (v.3.1, Faul et al. (2007), Faul et al. (2009)) to conduct power analyses based on confidence689

intervals. G*Power uses pre-set drop down menus and we chose the options that were as close to our analysis690

methods as possible (listed in each analysis below). We realize that these power analyses are not fully aligned691

with our study design and that these kinds of analyses are not appropriate for Bayesian statistics (e.g., our692

MCMCglmm analyses below), however we are unaware of better options at this time. Additionally, it is693

difficult to run power analyses because it is unclear what kinds of effect sizes we should expect due to the694

lack of data on this species for these experiments.695

To roughly estimate our ability to detect actual effects (because these power analyses are designed for696

frequentist statistics, not Bayesian statistics), we ran a power analysis in G*Power with the following settings:697

test family=F tests, statistical test=linear multiple regression: Fixed model (R^2 deviation from zero), type698

of power analysis=a priori, alpha error probability=0.05. The number of predictor variables was restricted699

to only the fixed effects because this test was not designed for mixed models. We reduced the power to 0.70700

and increased the effect size until the total sample size in the output matched our projected sample size701

(n=16). The protocol of the power analysis applies to each of the models below because all have the same702

sample sizes and the same number of fixed effects (explanatory variables):703

Input:704

Effect size f² = 0,77705

� err prob = 0,05706

Power (1-� err prob) = 0,7707

Number of predictors = 3708

Output:709
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Noncentrality parameter � = 12,3200000710

Critical F = 3,4902948711

Numerator df = 3712

Denominator df = 12713

Total sample size = 16714

Actual power = 0,7052261715

This means that, with our sample size of 16 (for each experiment), we have a 71% chance of detecting a716

large effect (approximated at f^2=0.35 by Cohen (1988)).717

Data checking718

The data will be visually checked to determine whether they are normally distributed. Normality is indicated719

when the histograms of actual data match those with simulated data (Zuur et al. 2009).720

NOTE: July 2020: We realized that using the number of key pecks to the screen as a dependent variable and721

placing condition as an independent variable, would not tell us anything about whether the bird used causal722

cognition. To determine whether they use causal cognition, we needed one score per bird that accounts for723

their performance in the intervene conditions relative to the observe conditions (see the Results section for724

equation details). Therefore, we replaced screen pecks with the causal score in this data checking section.725

cause <- read.csv(url("https://raw.githubusercontent.com/corinalogan/grackles/master/Files/Preregistrations/g_causal_datasummary.csv"),
header = T, sep = ",", stringsAsFactors = F)

d <- data.frame(cause)

## Check the dependent variables for normality: Histograms
op <- par(mfrow = c(2, 2), mar = c(4, 4, 2, 0.2))
# This is what the distribution of actual data looks like
hist(d$CausalScore, xlab = "Causal score", main = "Actual Data")
# it has a tail on the right, but not on the left

# Given the actual data, this is what a normal distribution
# would look like
Y2 <- rnorm(1281, mean = mean(d$CausalScore), sd = sd(d$CausalScore))
hist(Y2, xlab = "Causal score", main = "Simulated Data")

## Check the dependent variable for normality: Q-Q plot
op <- par(mfrow = c(1, 4), mar = c(4, 4, 2, 0.2))
plot(glm(d$CausalScore ~ d$TrialsReverseLast))
# residuals look normally distributed, Cook's distance 0.8 or
# lower. So the data are clear to analyze.

If the data do not appear normally distributed, visually check the residuals. If they are patternless, then726

assume a normal distribution (Figure 4) (Zuur et al. 2009). The data were normally distributed.727

Prediction 1: causal map728

Analysis: Because the independent variables could influence each other, we will analyze them in a single729

model: Generalized Linear Mixed Model (GLMM; MCMCglmm function, MCMCglmm package; (Hadfield730

2010)) with a Poisson distribution and log link using 13,000 iterations with a thinning interval of 10, a burnin731

of 3,000, and minimal priors (V=1, nu=0) (Hadfield 2014). We will ensure the GLMM shows acceptable732

convergence (lag time autocorrelation values <0.01; (Hadfield 2010)), and adjust parameters if necessary733
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to meet this criterion. We will determine whether an independent variable had an effect or not using the734

Estimate in the full model.735

NOTE: July 2020: We realized that using the number of key pecks to the screen as a dependent variable and736

placing condition as an independent variable, would not tell us anything about whether the bird used causal737

cognition. To determine whether they use causal cognition, we needed one score per bird that accounts738

for their performance in the intervene conditions relative to the observe conditions (see the Results section739

for equation details). Now that we have one score per bird, the model changed from a GLMM to a GLM740

because there will only be one row of data per bird, and we removed condition as an independent variable.741

Additionally, the causal score has a Gaussian distribution because it is a continuous measurement.742

cause <- read.csv(url("https://raw.githubusercontent.com/corinalogan/grackles/master/Files/Preregistrations/g_causal_datasummary.csv"),
header = T, sep = ",", stringsAsFactors = F)

d <- data.frame(cause)

# GLM with response variable = causal cognition score
m1 <- glm(CausalScore ~ TrialsReverseLast, family = "gaussian",

data = d)
# summary(m1)

m2 <- glm(CausalScore ~ AvgLatencySwitch, family = "gaussian",
data = d)

summary(m2)

Call: glm(formula = CausalScore ~ AvgLatencySwitch, family = “gaussian”, data = d)743

Deviance Residuals: 2 3 4 5 6 7744

1.1119 -0.1324 0.1938 -0.2632 -0.1228 -0.2032745

8746

-0.5841747

Coefficients: Estimate Std. Error t value Pr(>|t|)748

(Intercept) 0.7939132 0.2990201 2.655 0.0452 * AvgLatencySwitch -0.0003986 0.0004730 -0.843 0.4379749

— Signif. codes:750

0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1751

(Dispersion parameter for gaussian family taken to be 0.351658)752

Null deviance: 2.0079 on 6 degrees of freedom753

Residual deviance: 1.7583 on 5 degrees of freedom (1 observation deleted due to missingness) AIC: 16.194754

Number of Fisher Scoring iterations: 2755

# m3 <- glm(CausalScore ~ FlexComp, family='gaussian',
# data=d) summary(m3)

# load packages for the output table
library(jtools)
# library(huxtable)
base::suppressMessages(jtools::export_summs(m1, model.names = c("Causal score ~ Trials to reverse"),

digits = getOption("jtools-digits", default = 2), model.info = getOption("summ-model.info",
TRUE), model.fit = getOption("summ-model.fit", TRUE),

pvals = getOption("summ-pvals", FALSE)))
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Causal score ~ Trials to reverse

(Intercept) 0.93 *

(0.34)

TrialsReverseLast -0.01

(0.00)

N 8

AIC 16.58

BIC 16.82

Pseudo R2 0.28

*** p < 0.001; ** p < 0.01; * p < 0.05.

# suppressMessages gets rid of the text saying that the broom
# package overwrites something in jtools. Need to specify the
# package before the function to avoid a message popping up
# and preventing the PDF from rendering
knitr::knit_hooks$set(document = function(x) {

sub("\\usepackage{xcolor}", "\\usepackage{xcolor}", x, fixed = TRUE)
})
# this prevents an issue with xcolor package when rendering
# to PDF

Flexibility comprehensive: In addition to the number of trials it took birds to reverse a preference, we756

also developed a more mechanistic measure of behavioral flexibility that takes into account all choices in the757

reversal learning experiment. Specifically, we use multilevel Bayesian reinforcement learning models that,758

from trial to trial, update the latent values of different options and use those attractions to explain observed759

choices.760

There are two basic components:761

First, we have an updating or learning equation that tells us how attractions to different behavioral options762

𝐴𝑖,𝑗,𝑡+1 (i.e., how preferable option 𝑖 is to the bird 𝑗 at time 𝑡 + 1) change over time as a function of previous763

attractions 𝐴𝑖,𝑗,𝑡 and recently experienced payoffs 𝜋𝑖,𝑗,𝑡 (i.e., whether they received a reward in a given trial764

or not). Attraction scores thus reflect the accumulated learning history up to this point.765

𝐴𝑖,𝑗,𝑡+1 = (1 − 𝜙𝑗)𝐴𝑖,𝑗,𝑡 + 𝜙𝑗𝜋𝑖,𝑗,𝑡.766

The (bird-specific) parameter 𝜙𝑗 describes the weight of recent experience. The higher the value of 𝜙𝑗, the767

faster the bird updates their attraction. It thus can be interpreted as the learning or updating rate of an768

individual. This corresponds to the first and third connotation of behavioral flexibility as defined by (Bond769

et al. 2007), the ability to rapidly and adaptively change behavior in light of new experiences.770

The second major part of the model expresses the probability an individual 𝑗 chooses option 𝑖 in the next771

round, 𝑡 + 1, based on the latent attractions:772

𝑃(𝑖)𝑡+1 = exp(𝜆𝑗𝐴𝑖,𝑗,𝑡)
2

∑
𝑚=1

exp(𝜆𝑗𝐴𝑚,𝑗,𝑡)
.773

The parameter 𝜆𝑗 represents the random choice rate of an individual (also called inverse temperature). It774

controls how sensitive choices are to differences in attraction scores. As 𝜆𝑗 gets larger, choices become775
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more deterministic, as it gets smaller, choices become more exploratory (random choice if 𝜆𝑗 = 0). This776

closely corresponds to the second connotation of internally generated behavioral variation, exploration or777

creativity (Bond et al. 2007). To account for potential differences between experimenters, we also included778

experimenter ID as a random effect (omitted from previous equations to enhance readability, but available779

in the code below).780

This analysis yields posterior distributions for 𝜙𝑗 and 𝜆𝑗 for each individual bird. To use these estimates in781

a GLM that predicts their causal score, we need to propagate the full uncertainty from the reinforcement782

learning model, which is achieved by directly passing the variables to the linear model within a single large783

stan model. We include both parameters (𝜙𝑗 and 𝜆𝑗) as predictors and estimate their respective independent784

effect on causal score as well as an interaction term.785

# Load data
cause <- read.csv(url("https://raw.githubusercontent.com/corinalogan/grackles/master/Files/Preregistrations/g_causal_datasummary.csv"),

header = T, sep = ",", stringsAsFactors = F)

d <- read.csv(url("https://raw.githubusercontent.com/corinalogan/grackles/master/Files/Preregistrations/g_flexmanip_data_reverseraw.csv"),
header = T, sep = ",", stringsAsFactors = F)

# Process data for reinforcement learning model

d <- subset(d, d$Reversal != "Control: Yellow Tube")
d <- subset(d, d$CorrectChoice != -1)

d$Reversal <- as.integer(d$Reversal)
d$Correct <- as.integer(d$CorrectChoice)
d$Trial <- as.integer(d$Trial)
d <- subset(d, is.na(d$Correct) == FALSE)

# Construct choice variable
d$Choice <- NA
for (i in 1:nrow(d)) {

if (d$Reversal[i] %in% seq(0, max(unique(d$Reversal)), by = 2)) {

if (d$Correct[i] == 1) {
d$Choice[i] <- 1

} else {
d$Choice[i] <- 2

}
} else {

if (d$Correct[i] == 1) {
d$Choice[i] <- 2

} else {
d$Choice[i] <- 1

}
}

}

# Combined model

# Only birds with causal score
d_cause <- subset(d, d$ID %in% cause$BirdName)

# Sort birds alphabetically
d_cause <- d_cause[with(d_cause, order(d_cause$ID)), ]
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cause <- cause[with(cause, order(cause$BirdName)), ]

d_cause$id <- sapply(1:nrow(d_cause), function(i) which(unique(d_cause$ID) ==
d_cause$ID[i]))

d_cause$Expid <- sapply(1:nrow(d_cause), function(i) which(unique(d$Experimenter) ==
d$Experimenter[i]))

d_cause <- subset(d_cause, select = c(id, Expid, Choice, Correct))

dat <- as.list(d_cause)
dat$N <- nrow(d_cause)
dat$N_id <- length(unique(d_cause$id))
dat$N_exp <- length(unique(d_cause$Expid))
dat$z <- cause$CausalScore

library(rstan)

combined_reinforcement_GLM <- "

// This model combines reinforcement learning model and regression of other stuff
// Including interaction on GLM

data{
int N;
int N_id;
int N_exp;
int id[N];
int Expid[N];
int Choice[N];
int Correct[N];
real z[N_id];

}

parameters{

// Learning model
real logit_phi;
real log_L;

// Varying effects clustered on individual
matrix[2,N_id] z_ID;
vector<lower=0>[2] sigma_ID;
cholesky_factor_corr[2] Rho_ID;

// Varying effects clustered on experimenter
matrix[2,N_exp] z_EXP;
vector<lower=0>[2] sigma_EXP;
cholesky_factor_corr[2] Rho_EXP;

// GLM
real alpha;
real b_phi;
real b_lambda;
real b_int;
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real<lower=0> sigma;
}

transformed parameters{

matrix[N_id,2] v_ID; // varying effects on individuals
matrix[N_exp,2] v_EXP; // varying effects on experimenter

v_ID = ( diag_pre_multiply( sigma_ID , Rho_ID ) * z_ID )';
v_EXP = ( diag_pre_multiply( sigma_EXP , Rho_EXP ) * z_EXP )';
}

model{

matrix[N_id,2] A; // attraction matrix
vector[N_id] phi_i;
vector[N_id] lambda_i;

vector[N_id] phi_i_s ;
vector[N_id] lambda_i_s ;

alpha ~ normal(0,1);
b_phi ~ normal(0,1);
b_lambda ~ normal(0,1);
b_int ~ normal(0,1);

sigma ~ exponential(1);

logit_phi ~ normal(0,2);
log_L ~ normal(0,2);

// varying effects
to_vector(z_ID) ~ normal(0,1);
sigma_ID ~ exponential(1);
Rho_ID ~ lkj_corr_cholesky(4);

to_vector(z_EXP) ~ normal(0,1);
sigma_EXP ~ exponential(1);
Rho_EXP ~ lkj_corr_cholesky(4);

// initialize attraction scores
for ( i in 1:N_id ) A[i,1:2] = rep_vector(0,2)';

// loop over Choices

for ( i in 1:N ) {
vector[2] pay;
vector[2] p;
real L;
real phi;

// first, what is log-prob of observed choice
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L = exp(log_L + v_ID[id[i],1] + v_EXP[Expid[i],1]);
p = softmax(L*A[id[i],1:2]' );
Choice[i] ~ categorical( p );

// second, update attractions conditional on observed choice

phi = inv_logit(logit_phi + v_ID[id[i],2] + v_EXP[Expid[i],2]);
pay[1:2] = rep_vector(0,2);
pay[ Choice[i] ] = Correct[i];
A[ id[i] , 1:2 ] = ( (1-phi)*to_vector(A[ id[i] , 1:2 ]) + phi*pay)';

}//i

// Define bird specific values on the outcome scale and standardize

lambda_i = exp(log_L + v_ID[,1]);
phi_i = inv_logit(logit_phi + v_ID[,2]);

lambda_i_s = (lambda_i - mean(lambda_i)) / sd(lambda_i);
phi_i_s = (phi_i - mean(phi_i)) / sd(phi_i);

z ~ normal(alpha + b_lambda * lambda_i_s + b_phi * phi_i_s + b_int * lambda_i_s .* phi_i_s, sigma);

}

"

m <- stan(model_code = combined_reinforcement_GLM, data = dat,
iter = 5000, cores = 4, chains = 1, control = list(adapt_delta = 0.9,

max_treedepth = 13))

### NOTE: To make the model work, you need to set up a few
### things... (this took Logan a few days because at every
### stage there is an error message and it isn't clear what the
### problem is or what to do next). It's best to go to
### https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
### for instructions on how to install stan (and other
### dependencies) on your computer and get started. There are
### also plenty of stan fora where you can find answers to most
### common problems at https://discourse.mc-stan.org/.

Prediction 2: common-cause vs causal chain786

Analysis: Because the independent variables could influence each other, we will analyze them in a single787

model: Generalized Linear Mixed Model (GLMM; MCMCglmm function, MCMCglmm package; (Hadfield788

2010)) with a Poisson distribution and log link using 13,000 iterations with a thinning interval of 10, a burnin789

of 3,000, and minimal priors (V=1, nu=0) (Hadfield 2014). We will ensure the GLMM shows acceptable790

convergence (lag time autocorrelation values <0.01; (Hadfield 2010)), and adjust parameters if necessary791

to meet this criterion. We will determine whether an independent variable had an effect or not using the792

Estimate in the full model.793
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cause <- read.csv("/Users/corina/GTGR/data/data_cause.csv", header = T,
sep = ",", stringsAsFactors = F)

# Select only data from Experiment 2
cause <- cause[cause$Experiment == "2a" | cause$Experiment ==

"2b", ]

# GLMM
library(MCMCglmm)
prior = list(R = list(R1 = list(V = 1, nu = 0), R2 = list(V = 1,

nu = 0), R3 = list(V = 1, nu = 0)), G = list(G1 = list(V = 1,
nu = 0)))

# GLMM with response variable = key pecks to the food key
cause2 <- MCMCglmm(KeyPecksFood ~ Condition + AvgTrialsReverse +

AvgLatencySwitch, random = ~ID, family = "poisson", data = cause,
verbose = F, prior = prior, nitt = 13000, thin = 10, burnin = 3000)

summary(cause2)
# autocorr(cause2$Sol) #Did fixed effects converge?
# autocorr(cause2$VCV) #Did random effects converge?

# GLMM with response variable = key pecks to the stimulus key
cause2a <- MCMCglmm(KeyPecksNovel ~ Condition + AvgTrialsReverse +

AvgLatencySwitch, random = ~ID, family = "poisson", data = cause,
verbose = F, prior = prior, nitt = 13000, thin = 10, burnin = 3000)

summary(cause2a)
# autocorr(cause2a$Sol) #Did fixed effects converge?
# autocorr(cause2a$VCV) #Did random effects converge?

Alternative Analyses794

Logan anticipates that she will want to run additional/different analyses after reading (McElreath 2016).795

We will revise this preregistration to include these new analyses before conducting the analyses above.796

29 May 2020 (pre data analysis): after reading (McElreath 2016), we decided to run the GLMM in Prediction797

1 for only one independent variable at a time because including more independent variables can confound798

the interpretation of the results.799
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