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Gravitomagnetic quasi-normal modes of neutron stars are resonantly excited by tidal effects during
a binary inspiral, leading to a potentially measurable effect in the gravitational wave signal. We take
an important step towards incorporating these effects in waveform models by developing a relativistic
effective action for the gravitomagnetic dynamics that clarifies a number of subtleties. Working in
the slow-rotation limit, we first consider the post-Newtonian approximation and explicitly derive the
effective action from the equations of motion. We demonstrate that this formulation opens a novel
way to compute mode frequencies, yields insights into the relevant matter variables, and elucidates
the role of a shift symmetry of the fluid properties under a displacement of the gravitomagnetic
mode amplitudes. We then construct a fully relativistic action based on the symmetries and a power
counting scheme. This action involves four coupling coefficients that depend on the internal structure
of the neutron star and characterize the key matter parameters imprinted in the gravitational waves.
We show that, after fixing one of the coefficients by normalization, the other three directly involve
the two kinds of gravitomagnetic Love numbers (static and irrotational), and the mode frequencies.
We discuss several interesting features and dynamical consequences of this action. Our results
provide the foundation for deriving precision predictions of gravitomagnetic effects, and the nuclear
physics they encode, for gravitational-wave astronomy.

I. INTRODUCTION

Gravitational waves from inspiraling binary neutron
stars encode unique information on the matter at supra-
nuclear densities in their interiors [1–6]. Understanding
the properties of matter at such extreme density remains
an important frontier in subatomic physics [7, 8]. Among
the most interesting imprints of matter on the gravita-
tional waves during a binary inspiral are signatures of
tidal effects. Tidal effects comprise a rich set of phenom-
ena associated with the excitation of the stars’ quasi-
normal modes. The mode excitation can be either reso-
nant or adiabatic, depending on the rate of variations in
the tidal fields due to the spacetime curvature produced
by the orbiting companion compared to the characteristic
mode frequency. The excitation of quasi-normal modes
is most commonly considered for the ringdown signals
in black hole binaries, where the merger excites a broad
spectrum of quasi-normal modes of the remnant which
damp away due to gravitational radiation. Neutron stars
have a much richer mode spectrum than black holes due
to the presence of matter. Several classes of neutron star
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modes have sufficiently low frequencies to become indi-
vidually excited during a binary inspiral. This opens
the possibility for a detailed, spectroscopic characteriza-
tion of the ground-state matter in neutron star interiors
from gravitational waves emitted during their inspiral,
provided that the modes have sufficiently large tidal cou-
pling strengths to lead to a noticeable effect. The funda-
mental modes typically have the largest tidal couplings.
They are an example of gravitoelectric phenomena as-
sociated with the tidal deformability, a parameter that
is measurable in the gravitational-wave signals [2, 4, 9].
There are also several other interesting classes of modes
predominantly connected with gravitoelectric tides [10].
An intriguing feature of general relativity is the emer-

gence of new types of gravitomagnetic tides, which have
no Newtonian analogues. Gravitomagnetic tides most
strongly excite the magnetic (odd-parity) sector of iner-
tial modes of a rotating star. Inertial modes are associ-
ated with the Coriolis effect and include the r-modes [11–
14], which are inertial modes with purely magnetic par-
ity. The r-modes have received significant attention due
to their unusual properties and the fact that they can be-
come unstable to gravitational radiation see, e.g. [13, 15–
22]. The remaining inertial modes have no specific name
and are of mixed parity. In the slow-rotation limit, only
their magnetic parts are directly relevant for gravitomag-
netic tides. The inertial mode frequencies are approx-
imately proportional to the rotation frequency of the
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star. Consequently, the gravitomagnetic inertial-mode
resonances in a binary generally lie well within the sen-
sitive frequency band of gound-based gravitational-wave
detectors [23–26]. This opens interesting prospects for
probing properties of neutron star matter beyond the
information encoded in gravitoelectric tidal deformabil-
ity or radius. However, it is currently not possible to
measure this new physics because a relativistic model-
ing framework of gravitomagnetic dynamical tides is not
developed.

The tidal excitation of a quasi-normal mode on the bi-
nary dynamics and gravitational waves is analogous to
a harmonic oscillator with a quasi-periodic force. The
effect of gravitomagnetic tidal mode excitation was es-
timated in Refs. [18–20, 22]; see Refs. [12, 27, 28] for
studies based on the weaker coupling to gravitoelectric
fields. These results indicated that the impact on the
gravitational-wave phasing is large enough to be poten-
tially measurable with the planned future upgrades to
current detectors and third-generation facilities. The
gravitational-wave signatures from mode excitations di-
rectly depend on key matter parameters: the Love num-
bers characterizing how strongly the mode couples to the
tidal field, and the mode frequency. These parameters are
computed from linearized perturbations to a relativistic
star in equilibrium. The gravitomagnetic mode frequen-
cies were obtained, e.g., in [10, 17, 29–31]. The Love
numbers, however, require taking the limit that the per-
turbing frequency goes to zero, which has proved sub-
tle, and leads to two distinct Love numbers. They are
associated with the different assumptions of a static or
irrotational perturbed fluid. These unusual features of
the response of a neutron star to a gravitomagnetic tidal
perturbation have prompted several discussions in the
literature [32–37], and were recently re-examined in the
context of a post-Newtonian star in Refs. [19–21].

The promising prospects for measuring the gravito-
magnetic modes motivate the need for modern gravita-
tional wave models to include these phenomena. A cru-
cial foundation for developing state-of-the-art waveform
models of matter effects in binary inspirals is a relativistic
effective action for the dynamics. The Love numbers and
mode frequencies immediately appear in the coupling co-
efficients in this effective action. In this paper, we derive
a relativistic effective action for gravitomagnetic tidal ef-
fects in the slow-rotation limit. We develop the theory
by first considering a post-Newtonian approximation of
the neutron-star interior. This enables us to identify a
new way to compute the mode frequencies from the per-
spective of a rotation-induced shift away from its vanish-
ing value for nonrotating stars. It also yields important
insights into the relevant matter variables for the dynam-
ics, and their connection to the mode functions. Further,
these studies reveal the important role of a shift sym-
metry, whereby a displacement of the gravitomagnetic
mode amplitudes leaves the global properties of the fluid
unchanged. Ensuring that the action respect this sym-
metry has direct consequences for its formulations in the

corotating and inertial frames.

Next, we develop the fully relativistic theory based on
the symmetries and a power counting scheme. We find
that within our approximations, the dominant effects are
described by four nontrivial couplings that come with
coefficients that encode the microphysics of neutron star
interiors. We discuss the matching of these coefficients
to the relativistic magnetic tidal deformabilities (Love
numbers) and mode frequencies. Notably, we show that
both kinds of magnetic Love numbers, the static and ir-
rotational ones, appear in the action and are thus rel-
evant for gravitational waves. The static Love number
corresponds to the coefficient of a nonlinear field con-
tribution, as discussed in the post-Newtonian context in
Ref. [21]. The difference between static and irrotational
Love numbers characterizes the direct contribution from
the magnetic modes. To identify and match the mode
frequency we calculate the relativistic response function
and discuss its features. We also derive its limiting form
in several regimes after clarifying various subtleties. Our
new action provides a key foundation for accurately mod-
eling gravitomagnetic effects in gravitational waves and
interpreting the information on subatomic physics they
encode.

The paper is organized as follows. In Sec. II we re-
view the treatment of dynamical gravitomagnetic tides
in a first post-Newtonian approximation from Ref. [18].
We work to linear order in the rotation of the star and
derive an action that encodes the excitation of magnetic
modes by an external gravitomagnetic field. We discuss
the relevant degrees of freedom and their relation to con-
tributions from individual modes. We also highlight the
shift symmetry that occurs in the gravitomagnetic sector
and its importance for the Lagrangians in the corotat-
ing and inertial frames. In Sec. III we construct a fully
relativistic action in the framework of effective field the-
ory. We briefly discuss the power counting scheme, and
further specialize to the four interaction terms that are
most important based on the post-Newtonian limit. In
Sec. IV we perform the matching of the coefficients in
the effective action to the relativistic mode frequencies
and tidal deformabilities. We also discuss the physical
insights and dynamical consequences of this action. At
the end of Sec. IV we provide a brief summary of the rela-
tivistic Lagrangian and the coupling coefficients involved,
and discuss the various limiting forms of the frequency-
dependent response function in different regimes. Sec-
tion V summarizes our conclusions, and Appendix A con-
tains a short compilation of useful formulas.

We use geometric units with G = c = 1, with G being
the gravitational constant and c the speed of light, except
in cases where we make the post-Newtonian counting ex-
plicit as a formal expansion in c−2. We denote spatial
tensors expressed in the corotating frame of the star by
capital Latin letters I, J,K, . . ., and use boldface nota-
tion for three-dimensional vectors in this frame. We use
lowercase letters i, j, k, . . . for the inertial frame. Greek
letters denote four-dimensional spacetime coordinate in-
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dices in the inertial frame, and a calligraphic index B
indicates the magnetic part of a quantity.

II. DYNAMICAL MAGNETIC TIDES OF

ROTATING STARS

In this section, we briefly review the description of
gravitomagnetic modes of a neutron star in the presence
of an external gravitomagnetic field from Ref. [18]. We
work within a double perturbative expansion in the post-
Newtonian and slow rotation approximations. From the
equations of motion we develop an effective action in the
corotating frame of the neutron star. The Lagrangian for-
mulation provides a clean, elegantly concise description
of the unusual features of the gravitomagnetic dynam-
ics compared to the more familiar gravitoelectric tides.
We formulate the action in terms of symmetric-trace-free
tensors of magnetic parity, which conveniently isolates
the relevant contributions from associated modes into ef-
fective degrees of freedom and elucidates the underlying
physics of gravitomagnetic tides. We give an explicit ex-
ample demonstrating the utility of the Lagrangian by
exhibiting a novel way to calculate the gravitomagnetic
mode frequency. We also discuss the important role of
a shift symmetry, whereby a displacement in the mode
amplitudes leaves the fluid properties unchanged. Re-
quiring that the Lagrangian respect this symmetry has
an impact on its form in the inertial frame. The insights
on the matter variables and symmetries developed in this
section will be important for constructing the relativistic
theory in Sec. III.

A. Metric of slowly rotating neutron star

We consider a (approximately) spherical neutron star
of mass M that is slowly rotating with angular veloc-
ity Ω and immersed in an external gravitomagnetic tidal
potential of first post-Newtonian (1PN) order. The post-
Newtonian approximation can be understood as a formal
expansion in the squared inverse of the speed of light c.
To highlight similarities with electromagnetism, it is con-
venient to write the metric for the neutron star in the
inertial1 frame, denoted by indices i, j, k, . . . , in the
form [38–40]

ds2 =− exp

[
2φ

c2

] [

c dt− 1

c3
Aidx

i

]2

+ exp

[

−2φ

c2

]

γij dx
idxj ,

(2.1)

1 We understand here an inertial frame in the global Newtonian
sense. The metric asymptotically approaches the Minkowski one
in the inertial frame.

where φ is the gravitoelectric (Newtonian) potential, Ai

is the gravitomagnetic potential, and to 1PN order γij =
δij +O(c−4). We next make a spatial coordinate change
that keeps t unchanged from the inertial frame xi to the
corotating frame xI (denoted by capitalized indices I, J ,
K, . . . ). This transformation is given by

xj = RI
jxI , RI

j = CJ
j exp(∗Ω t)I

J , (2.2)

where Ω is the angular velocity vector, ∗ΩIJ ≡ ΩIJ =
ǫIJKΩK is its antisymmetric dual tensor, RI

j is a ro-
tation matrix (RI

kRJk = δIJ) expressed here using a
matrix exponential of ∗Ω t, and CI

j a constant rotation
matrix identical to RI

j at t = 0. We adopt the con-
vention that boldface notation for spatial vectors refers
to components in the corotating frame, e.g., Ω = (ΩI),
and that spatial indices are raised and lowered using the
Kronecker delta. The angular velocity can be expressed
as

ΩI =
1

2
ǫIJKΩJK , ΩJK = ṘJ

iRKi. (2.3)

Applying this coordinate change to the line element (2.1)
is straightforward. The differentials of the coordinates
are related by

dxj = RI
j [dxI − (x×Ω)Idt], (2.4)

which leads to the corotating-frame 1PN line element

ds2 =−
[

c2 + 2φ+
2φ2

c2
− 2

c2
Ω · (x×A)

]

dt2

+ 2

[

−x×Ω

(

1− 2φ

c2

)

+
A

c2

]

· dx dt

+

[

1− 2φ

c2

]

dx · dx+O(c−4,Ω2).

(2.5)

We have only kept terms linear in the angular velocity,
since we are interested in slowly rotating stars. In the
next section, we use the metric in Eq. (2.5) to obtain the
Euler equation for the matter inside the slowly rotating
neutron star.

B. Fluid perturbation in the corotating frame

We describe the matter inside the neutron star as a
perfect fluid with energy-momentum tensor

T µν =
(

ρ+
p

c2

)

uµuν + p gµν , (2.6)

where ρ is the mass density, p is the pressure, and uµ

is the 4-velocity of the fluid normalized as uµu
µ = −c2.

The neutron star matter is subject to energy-momentum
conservation T µν

;ν = 0, where the semicolon denotes the
covariant derivative. Evaluating the energy-momentum
conservation using the metric in Eq. (2.5) leads to
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the corotating-frame Euler equation in Lagrangian form
given by

u̇+ 2Ω× u+ u ·∇u = −∇p

ρ
−∇φ+

ζ

c2
+ . . . . (2.7)

Here, at 1PN order (c−2) we show only the terms involv-
ing the gravitomagnetic potential defined by

ζ = −Ȧ−Ω×A+(Ω×x) ·∇A+(u+Ω×x)×(∇×A),
(2.8)

where the overdot denotes a time derivative ˙ = ∂/∂t.
Recall that we also work to linear order in the angular
velocity. This is the reason for the absence of the cen-
tripetal force that is quadratic in Ω from Eq. (2.7).

Next, we consider Eq. (2.7) for small linearized pertur-
bations about an equilibrium background configuration.
We denoted the background quantities by a subscript
’0’ and use a δ in front of the perturbed quantities, as
in u = u0 + δu. Let us recapitulate the arguments in
Ref. [18] that lead to the finding that the magnetic part
of the perturbation equation for the fluid at the leading
1PN order simply reduces to the Newtonian one aug-
mented by a 1PN driving force from ζ. We assume that
the fluid perturbation is only generated by an external
gravitomagnetic field Aext, which is of 1PN order. This
implies that all perturbed quantities must also be of 1PN
order, e.g., δu = O(c−2). The perturbed magnetic Euler
equation at 1PN order is then given by a perturbation of
the Newtonian terms and ζ, that is, all the terms shown
in Eq. (2.7). The matter inside the perturbed neutron
star is not static, and thus there is a gravitomagnetic
field emanating from the neutron star. However, the per-
turbations sourcing this field are of 1PN order and the
gravitomagnetic field equation is 1PN order, so the grav-
itomagnetic field of the neutron star perturbation is of
2PN order, which we can ignore for our purposes here.
On the other hand, the fluid perturbations source a 1PN
gravitoelectric field δφ. Altogether, the 1PN perturbed
field equations are given by

∆δA = 0, ∆δφ = 4πGδρ. (2.9)

This implies that the perturbed gravitomagnetic poten-
tial only has contributions from sources external to the
star δA = Aext. Without loss of generality, we as-
sume that there is no external gravitoelectric potential,
φext = 0; we will show in the next section that even a
nonvanishing φext at 1PN order does not couple to mag-
netic modes in our approximation.

Having identified the relevant field contributions, and
terms at 1PN order, we now consider the perturbed fluid
and no longer exhibit powers of c explicitly. The back-
ground fluid is at rest in the corotating frame, u0 = 0.
The external gravitomagnetic perturbation induces a La-
grangian fluid displacement ξ(x, t) in the star, such that

δu = ξ̇. Calculating the perturbations to the Euler equa-
tion (2.7) and keeping only 1PN terms up to linear order

in the perturbations and in the angular velocity leads to

ξ̈ + 2Ω× ξ̇ = −∇δp

ρ0
+

∇p0
ρ20

δρ−∇δφ+ aext. (2.10)

The fluid acceleration induced by the external field
aext = δζ is given by

aext =− Ȧext −Ω×Aext + (Ω× x) ·∇Aext

+ (Ω× x)× (∇×Aext).
(2.11)

We emphasize that the above results are in the corotating
frame; the analogous fluid perturbation equation in the
inertial frame can be found in Eq. (5.16) of Ref. [18].
Note that the background quantities in Eq. (2.10) re-

fer to the zeroth order in the double expansion of post-
Newtonian and rotational corrections: it is the equilib-
rium configuration computed for a Newtonian, nonrotat-
ing star. The feature that the background is identical
to a nonrotating star at linear order in angular velocity
is due to the fact that the Coriolis force on the back-
ground vanishes and the centripetal force is quadratic in
Ω. Hence the background quantities ρ0, p0 are spheri-
cally symmetric in our approximations. In the following
section, we obtain the Lagrangian for the perturbed Eu-
ler equation (2.10).
Before proceeding, we highlight the following. To

define the tidal deformability or Love number requires
studying the response of the star to the external field
Aext that is encoded in the induced gravitomagnetic field
A. In our approximation, this response is sourced by the
fluid perturbation ξ and hence of 2PN order. At that
order, the nonlinear terms in the field equations lead to
another source for the response field [20, 34]. Likewise,
in our relativistic theory developed in Sec. III, we re-
cover two contributions to the response, which can be
attributed to the fluid displacement and field nonlinear-
ities, respectively. In the present section, however, we
only consider the effect of the external field on the 1PN
fluid displacement and focus instead on understanding
the matter variables.

C. Magnetic tidal Lagrangian for slow rotation

We assume that the fluid is characterized by a simple
temperature- and composition-independent equation of
state of the form p = p(ρ). Then the pressure perturba-
tion is δp = δρ dp/dρ and the forcing terms on the right
hand side of Eq. (2.10) can be written as

− ∇δp

ρ0
+

∇p0
ρ20

δρ−∇δφ = −∇

(

c2s
δρ

ρ0
+ δφ

)

, (2.12)

where c2s = dp/dρ is the speed of sound. We also use
that δρ = −∇ · (ρ0ξ), which follows from perturbing
the Newtonian continuity equation ρ̇ = −∇ · (ρu), and a
solution for δφ from its field equation (2.9). Inserting the
relation (2.12) into the equations of motion (2.10) yields

ξ̈ + 2Ω× ξ̇ = −Dξ + aext, (2.13)
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where the linear operator D is defined as

Dξ = −∇

{[
c2s
ρ0

+ 4πG∆−1

]

∇ · (ρ0ξ)
}

. (2.14)

Note that D is the differential operator describing per-
turbations of a nonrotating Newtonian star, and effects
of rotation are included explicitly as the Coriolis term on
the left hand side of Eq. (2.13). The operator D is Her-
mitian under the product 〈ξ, ξ′〉 =

∫
d3xρ0 ξ

∗ · ξ′ [41].
Hence, its eigenvectors ξnℓm—the normal modes—form
an orthonormal basis with

〈ξnℓm, ξn′ℓ′m′〉 = δnn′δℓℓ′δmm′ . (2.15)

Their eigenvalues ω̄2
nℓ are real

Dξnℓm = ω̄2
nℓξnℓm. (2.16)

We can decompose a generic fluid displacement ξ into
this basis as

ξ =
∑

nℓm

qnℓm(t)ξnℓm(x), qnℓm = 〈ξnℓm, ξ〉 , (2.17)

with time-dependent amplitudes qnℓm(t). The fact that
the fluid displacement is real, ξ = ξ∗, implies that
q∗nℓm = (−1)kqnℓ−m due to the analogous relation for the
spherical harmonics, which arise because in the corotat-
ing frame and to linear order in the rotation, the modes
are the same as for a non-rotating star and can be decom-
posed into vector spherical harmonics. In general, three
types of vector harmonics contribute to the modes, each
with different parity: the parity-even electric and radial
harmonics, and the parity-odd magnetic-type ones [42].
For the gravitomagnetic tidal dynamics considered here,
only the magnetic-type (B) contributions are relevant,
and we henceforth drop the other contributions. The
magnetic modes have the general decomposition into a
radial dependence ξBnℓ(r) and the magnetic vector spher-
ical harmonic,

ξBnℓm =
ξBnℓ(r)

√

ℓ(ℓ+ 1)
x×∇Y ℓm(θ, ϕ). (2.18)

Here, the ordinary spherical harmonic Y ℓm(θ, ϕ) depends
on the polar and azimuthal angles (θ, ϕ). The prefactors

1/
√

ℓ(ℓ+ 1) are chosen to satisfy Eq. (2.15), with the
normalization and completeness relations for the real ra-
dial mode functions ξBnℓ given by

∫

dr ρ0r
2ξBnℓ(r)ξ

B
n′ℓ(r) = δnn′ , (2.19)

∑

n

ξBnℓ(r)ξ
B
nℓ(r

′) =
δ(r − r′)

ρ0r2
. (2.20)

Note that at linear order in spin (and for the perfect
fluid used here), the radial functions ξBnℓ(r) are rather
degenerate [11] and we can pick them to be any complete

basis of functions labeled by n. An important property
of the magnetic modes that directly follows from this
decomposition (2.18) is that ∇ ·(ρ0ξB) = 0 and DξBnℓm =
0. Equation (2.16) then tells us that the magnetic modes
of the nonrotating star all have zero frequency,

ω̄B
nℓ = 0. (2.21)

As a result, the equations of motion (2.13) simplify to

ξ̈B + 2Ω× ξ̇B = aext. (2.22)

The Lagrangian for these equations of motion (2.22) is

LB
DT =

1

2
〈ξ̇B, ξ̇B〉 − 〈ξB,Ω× ξ̇B〉+ 〈aext, ξ〉. (2.23)

Note that the magnetic modes do not couple to the
gravitoelectric potential, 〈∇φext, ξ

B〉 = 0. Indeed, us-
ing the definition of the inner product, the coefficient
〈∇φext, ξ

B〉 is given by
∫

d3xρ0 ∇φext · ξB = −
∫

d3xφext∇ · (ρ0ξB) = 0,

(2.24)
where we dropped a surface term since ξB = 0 on the
surface of the star and used that ∇ · (ρ0ξB) = 0.
In the next section, we discuss an interesting appli-

cation of this Lagrangian that illustrates the utility of
our formalism to calculate the gravitomagetic mode fre-
quency for the slowly rotating neutron star.

D. Gravitomagnetic mode frequency

The operator D associated with the non-rotating star
has eigenvalues (ω̄B

nℓ)
2 = 0. However, the Coriolis term

will give rise to non-zero eigenvalues which correspond to
the gravitomagnetic mode frequency. The calculation of
the mode frequency does not require the external gravit-
omagnetic force term; it is sufficient to consider the free
oscillations described by the Lagrangian from Eq. (2.23)

LB
DT,free =

1

2
〈ξ̇B, ξ̇B〉 − 〈ξB,Ω× ξ̇B〉. (2.25)

Using the decomposition into mode amplitudes (2.17)
and aligning the angular momentum as Ω = (0, 0,Ω),
the terms in the Lagrangian simplify as follows:

1

2
〈ξ̇B, ξ̇B〉 =

∑

nℓm

1

2
q̇B∗
nℓm(t)q̇Bnℓm(t), (2.26a)

〈ξB,Ω× ξ̇B〉 =
∑

nℓm

qB∗
nℓm(t)q̇Bnℓm(t)

−imΩ

ℓ(ℓ + 1)
. (2.26b)

We insert the results (2.26) into the free Lagrangian
(2.25) and obtain the equations of motion for the mode
amplitudes qBnℓm(t)

q̈Bnℓm(t) =
2imΩ

ℓ(ℓ+ 1)
q̇Bnℓm(t). (2.27)
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To determine the mode frequency, we insert the ansatz

qnℓm(t) = Ce−iωB

ℓm
t into Eq. (2.27) and find that it is a

solution for frequencies given by

ωB
ℓm = − 2mΩ

ℓ(ℓ+ 1)
. (2.28)

Our calculation makes explicit that the effect of rotation
is to shift the mode frequency away from its nonspinning
value of ω̄B

nℓ = 0 to the finite value given in Eq. (2.28).
We recall that these gravitomagnetic mode frequencies
are expressed in the co-rotating frame.
An important point to note is that the force-free equa-

tions (2.27) have an additional solution with ωB
ℓm = 0,

which describes a constant mode amplitude. This zero-
mode is associated with the trivial displacements ana-
lyzed in Ref. [43] (see also [18]). Constant displacements
in the gravitomagnetic modes corresponding to the trans-
formation

qBnℓm → qBnℓm + constnℓm, (2.29)

leave the macroscopic properties of the fluid (density,
pressure, velocity) unchanged.

E. Lagrangian in the symmetric trace-free basis

Next, we transform from the description in terms of
(ℓ,m) modes to an equivalent one in terms of symmetric-
trace-free tensors. This is advantageous for making the
connection to the relativistic effective action in the next
section.
We start by decomposing the Lagrangian (2.23) into

the normal modes, using that

1

2
〈ξ̇B, ξ̇B〉 =

∑

nℓm

Nℓ

2
q̇B∗
nℓm(t)q̇Bnℓm(t)Y∗ℓm

S1...Sℓ
Yℓm
S1...Sℓ

(2.30a)

〈ξB,Ω× ξ̇B〉 =
∑

nℓm

ℓNℓ

ℓ(ℓ+ 1)
qB∗
nℓm(t)q̇Bnℓm(t)Y∗ℓm

AS1...Sℓ−1

× Yℓm
BS1...Sℓ−1

ΩAB,

(2.30b)

where Nℓ = 4πℓ/(2ℓ+ 1)!!, and we have used the identi-
ties from Appendix A. We define the symmetric tracefree
tensors Y lm

s1s2...sl
as in Ref. [42]:

Ylm(θ, φ) = Y lm
s1s2...sl

ns1ns2 . . . nsl , (2.31)

where ni = xi/r is the unit radial vector.
We now specialize to the quadrupole case ℓ = 2 as

it contributes the largest effect in a binary. We write
the external quadrupolar gravitomagnetic field as BKL(t)
which is related to the potential by [18]

Aext
I =

2

3
ǫIJKBKL(t)x

JxL. (2.32)

The fluid acceleration due to the external field from
Eq. (2.11) then reduces to

aIext =− 2

3
ǫIJK ḂKLx

JxL − 2

3
ΩJBJLxIx

L

− 2

3
ΩJBILx

JxL +
2

3
uJǫIJKBKLx

L

+
2

3
uJǫIKLBLJx

K − 2uJǫIJKBKLx
L

(2.33)

For the coefficient 〈aext, ξ〉 and ℓ = 2 we obtain

〈aext, ξ
B〉 =

∑

nm

16π

15
√
6
Inq

B∗
n2m(t)ḂIJY∗2m

IJ , (2.34)

where

In =

∫

dr ρ0r
4ξBn2 (2.35)

is the gravitomagnetic overlap integral [18].
The quadrupolar mode amplitudes can be written in

terms of symmetric-tracefree tensors as

QIJ
Bn =

∑

m

32π

15
√
6
InY2m

IJ qBn2m(t). (2.36)

With this definition, and after dropping total time deriva-
tives, the Lagrangian becomes

LB
DT =

∑

n

45

128πI2n

(

Q̇IJ
BnQ̇

IJ
Bn − 2

3
ΩJKQ̇IJ

BnQ
KI
Bn

)

− 1

2
BIJ

∑

n

Q̇IJ
Bn. (2.37)

As we are mainly interested in the interaction of the star
with the gravitomagnetic field rather than the dynamics
of individual radial modes QIJ

Bn, it is convenient to define
an effective internal degree of freedom as

QIJ
B =

∑

n

QIJ
Bn. (2.38)

Its equation of motion follows from those for the individ-
ual modes QIJ

Bn and is given by

45

64πI2B

(

Q̈IJ
B +

2

3
ΩK(IQ̇

J)K
B

)

= −1

2
BIJ , (2.39)

where

I2B =
∑

n

I2n. (2.40)

We can write the Lagrangian for the effective gravito-
magnetic degrees of freedom as

LB
DT = CB

Q̇2Q̇
IJ
B Q̇IJ

B + CB

ΩQQ̇
ΩJKQ̇IJ

B QKI
B − 1

2
BIJQ̇

IJ
B .

(2.41)
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Note that this action is not identical to Eq. (2.37) yet
describes a physically equivalent interaction of the star
with the gravitomagnetic field. Here, we have kept the
coefficients of the interaction terms as general constants,
as will become important for the relativistic extension
discussed in the next section. For a neutron star approx-
imated to 1PN order they take the values

CB

Q̇2 =
45

128πI2B
, CB

ΩQQ̇
= −2

3
CB

Q̇2 . (2.42)

Note that, using the completeness relation of the
modes (2.20) and the definition of the In, we find the
relation

I2B =

∫

dr ρ0r
6, (2.43)

which only depends on the background density ρ0; com-
pare also to Eq. (6.13) in Ref. [34]. The overlap integral
in Eq. (2.43) is directly related to the post-Newtonian
magnetic tidal deformabilities, c.f., Eq. (6.20) in [34].
We will elucidate the concrete connection to the Love
numbers in the relativistic case in Sec. III below.
Since ΩIJ = const for an isolated star, the action (2.41)

exhibits a shift symmetry

QIJ
B → QIJ

B + constIJ , (2.44)

as expected from the symmetry of the fluid under triv-
ial displacements of the gravitomagnetic mode ampli-
tudes [43].
The Lagrangian in Eq. (2.41) is expressed in the coro-

tating frame. The transformation to the inertial frame
is accomplished similarly as discussed for the metric in
the beginning of Sec. II, e.g., QIJ

B = RI
iRJ

jQij
B . This

implies that the time derivatives transform as

Q̇IJ
B = RI

iRJ
j
(

Q̇ij
B − 2Ωk(iQ

j)k
B

)

︸ ︷︷ ︸

Q′ij
B

, (2.45)

where Ωij = RI
iṘIj. In order to maintain the shift sym-

metry (2.44), we express the inertial-frame action using

the quantity Q′ij
B which is invariant under the symmetry.

The action then becomes

LB
DT = CB

Q̇2Q
′ij
B Q′ij

B + CB

ΩQQ̇
ΩjkQ′ij

B Qki
B − 1

2
BijQ

′ij
B .

(2.46)
The insights about the relevant effective degrees of free-
dom and the role of the shift symmetry will be important
inputs for constructing the relativistic effective action, as
we discuss in the next section.

III. RELATIVISTIC EFFECTIVE ACTION

In this section, we go beyond the 1PN corotating-
frame Lagrangian for the magnetic modes by developing

a fully relativistic action along a worldline. We follow
an effective-field-theory approach [44–49], and construct
an ansatz for such an action from symmetries, keeping
interaction terms only up to a certain order (accuracy)
in some power counting, e.g, the multipole counting.
The coefficients of the resulting terms in this action de-
pend on the internal structure of the star and are fixed
through a matching calculation that we will discuss in
Sec. IV below. Similar effective-field-theory treatments
of dynamical tides and tidal absorption can be found in
Refs. [50, 51], of spin in Refs. [52–54], and spin-tides in
Refs. [55, 56]. Recently, effective-field-theory calculations
of tidal effects in scattering events have also come into
focus [57, 58], see also Ref. [59], and Refs. [60–63] for
analogous work based on massive quantum fields or scat-
tering amplitudes.
We consider here a worldline zµ(τ) as a macroscopic,

coarse-grained, effective description for a compact star.
We write the action as an integral of a Lagrangian L over
the proper time τ here,

S =

∫

dτ L. (3.1)

The simplest example of the Lagrangian is L = m0 =
const which describes a point mass and neglects tides and
spin. The oscillation modes of the star are represented
by dynamical variables that evolve along the worldline.
We start with an analysis of the symmetries of the prob-
lem, and demand that the building blocks of the action
transform irreducibly under the symmetries.
Equipped with such an relativistic effective action, it

is straightforward to calculate the orbital dynamics and
gravitational radiation [44–49], see Ref. [64] for a pub-
licly available code and Refs. [65–68] for an applications
to tidal effects. The development of a relativistic effec-
tive action for gravitomagnetic tides is hence a crucial
step towards more realistic waveform models for neutron
stars.

A. Spherical symmetry and dynamical variables

The most important symmetry assumption is the
spherical symmetry of the nonrotating star in equilib-
rium. This symmetry means that tidal degrees of free-
dom, or any other quantity from which we build the
action, can be arranged into 3-dimensional symmetric-
tracefree tensors, which transform irreducibly under ro-
tations [the SO(3) group]. For generic spinning stars, the
spherical symmetry is broken and only an axial symmetry
remains. However, since we treat the spin perturbatively
we can still base our description on the rotation sym-
metry and the symmetric-tracefree tensor representation
of the nonrotating case, as in the previous section. Fol-
lowing the effective action approach for electric tides [51],
we consider a dynamical variableQµν(τ) along the world-
line representing quadrupolar (ℓ = 2) oscillation modes.
This quantity should be symmetric Q[µν] = 0, tracefree
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Qµ
µ = 0, and have physical components in the rest-frame

only, QµνUν = 0. The rest-frame is aligned with the
tangent to the worldline, i.e., the normalized 4-velocity
Uµ = żµ with UµU

µ = −1 and in this section, an overdot
denotes a derivative with respect to proper time ˙ = d/dτ .
We thus have a description of the mode in the coordinate
frame with indices µ, ν . . . running through 0, 1, 2, 3.
It is convenient to express the action manifestly in

terms of only the physical components of all quantities.
To achieve this, we introduce a corotating (body-fixed)
frame ΛI

µ with labels I, J, · · · = 1, 2, 3 and assume or-
thonormality, ΛI

µΛJµ = δIJ . The temporal part Λ0
µ is

aligned with the rest-frame,

Λ0
µ = Uµ, or ΛI

µUµ = 0. (3.2)

Hence ΛI
µ contains three independent angular degrees

of freedom, as expected. The three independent compo-
nents of the angular velocity are

ΩI =
1

2
ǫIJKΩJK (3.3)

with

ΩJK = −ΩKJ =
DΛJ

µ

dτ
ΛKµ, (3.4)

and D is the covariant differential, see also [56, 69]. This
is a covariant generalization of the Newtonian angular
momentum (2.3). Now, the independent components
of the dynamical quadrupole are given by a symmetric
tracefree 3-tensor in the corotating frame

QIJ = ΛI
µΛ

J
νQ

µν , Q[IJ] = 0 = QI
I . (3.5)

Other internal or tidal degrees of freedom can likewise be
expressed as symmetric-tracefree tensors in the corotat-
ing frame, such as an (ℓ = 3) octupole QIJK and higher
multipoles QIJK.... In this section we omit the label n for
enumerating different (families of) modes for simplicity.

B. Coordinate invariance and external fields

Another important symmetry of the action is general
coordinate invariance, which requires that external fields
coupling to the worldline must be tensors on spacetime.
However, in our setup, the external fields such as the
curvature tensor entering the action must also be ex-
pressed in the corotating frame, followed by a decom-
position into symmetric-tracefree parts. The curvature
tensor Rµναβ can be decomposed into the Weyl tensor
Cµναβ and the Ricci tensor Rµν . The latter can be re-
moved from the worldline action through redefinitions of
the metric [44, 50], which essentially corresponds to using
the vacuum field equations Rµν = 0. Furthermore, the
Weyl tensor can be decomposed into symmetric-tracefree
electric EIJ and magnetic BIJ parts as

EIJ =CI0J0 = ΛI
µΛ0

αΛJ
νΛ0

βCµανβ , (3.6)

BIJ = ∗CI0J0 = ΛI
µΛ0

αΛJ
νΛ0

β ∗Cµανβ , (3.7)

with the dual ∗Cµναβ = 1/2ǫµνρσC
ρσ

αβ . Derivatives of
the Weyl curvature can be decomposed into the tensors
(for s ≥ 2)

EK1...Ks
=Λ0

αΛ0
βΛ(K1

µ1 . . .ΛKs)
µs∇µ3...µs

Cµ1αµ2β ,

(3.8)

BK1...Ks
=Λ0

αΛ0
βΛ(K1

µ1 . . .ΛKs)
µs∇µ3...µs

∗Cµ1αµ2β.

(3.9)

Other components can be written as time derivatives via
Λ0

µ∇µ ≡ D/dτ , see Ref. [54] for more details. We indi-
cate the parity of the modes by a subscript: QIJK...

E are
even parity (electric) and QIJK...

B are odd parity (mag-
netic) modes.

C. Final set of building blocks for the action

Based on the considerations above, the tensors entering
the effective action are

ǫIJK , ΩI , QIJ...
E , QIJ...

B , EIJ..., BIJ..., (3.10)

together with their τ -derivatives, and the tensors δIJ ,
δIJ . Recall that U I = ΛIµUµ = 0, which implies that the
four-velocity cannot appear explicitly in the action. All
of these building blocks for the action are conveniently
written in the corotating frame.

D. Symmetry restrictions on the possible couplings

Overall, we require the following symmetries from the
effective worldline action, see also [54]:

1. General coordinate invariance, required by general
relativity.

2. SO(3) symmetry of internal degrees of freedom due
to the spherical symmetry of the body in the non-
rotating limit. We already discussed one of the im-
plications of this symmetry in the context of the
building blocks of the action above.

3. An “external” SO(3) symmetry of the corotating
frame describing the orientation of the body.2 In
the case considered here, this SO(3) symmetry ap-
pears together with the internal SO(3) symmetry
of 2. as one, which is very economic.

2 A point-particle is characterized by an irreducible representation
of the Poincaré group. The “external” SO(3) symmetry is the so
called little group of that representation and is associated to the
spin, see also [56].
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4. Spacetime parity invariance. In principle, weak in-
teractions could violate this symmetry, however,
they play a subdominant role for the structure of a
neutron star.

5. Time reversal invariance. This would be broken
by dissipative effects such as tidal heating or fluid
viscosity, which we neglect here.3

6. Shift symmetry of the gravitomagnetic dynamical
tidal variables

QIJ...
B → QIJ...

B + constIJ..., (3.11)

which is related to macroscopically unobservable
fluid displacements, as explained in the previous
section. This realization (3.11) of the symmetry
was only demonstrated for ΩIJ = const and might
need to be amended in a more general setting.

The consequences of the above symmetries on the
terms in the action are the following. The first three
symmetries imply that interactions must be composed
of scalar contractions between the tensors in Eq. (3.10)
and their τ -derivatives. Symmetry 4 requires interac-
tions to contain an even number of odd-parity variables
{ǫIJK ,ΩI , QIJ...

B , BIJ...}. Symmetry 5 requires an even
number of variables that are odd under time reversal,
which comprises ΩI and BIJ..., plus a number of extra
τ -derivatives. Finally, symmetry 6 requires that terms
in the action either depend on QIJ...

B only via Q̇IJ...
B , or

are of the form QIJ...
B times a total τ -derivative. It is in-

teresting to note that the terms that are not allowed by
these symmetry requirements exactly match to what one
would call selection rules, in analogy to atomic physics,
for the overlap integrals appearing in Sec. II.

We note that in contrast to Ref. [54], here, we as-
sume time-reversal invariance and spell out parity invari-
ance explicitly. Furthermore, we find it more convenient
here to not include worldline reparametrization and spin-
gauge invariance from the beginning. Those symmetries
are important for calculating the post-Newtonian binary
dynamics and can readily be introduced at a later stage
by changing the evolution parameter from proper time τ
to a generic affine parameter and performing a boost of
the corotating frame, as explained in Sec. 3.2 of Ref. [54].
For the purpose of post-Newtonian calculations, it is also
convenient to promote the spin (conjugate to ΩI) to an
additional dynamical variable via a Legendre transfor-
mation. The spin variable then absorbs the derivative
coupling to the metric contained in ΩI . This leads to
considerable simplifications but will not be needed here.

3 An action-based treatment of dissipative tidal effects requires a
more general approach, see Refs. [55, 56, 69–71]. In this paper,
we consider only conservative effects at the body scale.

E. Power counting

The next step in constructing an effective action is to
include all interaction terms allowed by the symmetries
listed above and up to a certain order in some power
counting in a ratio of scales. Here, two distinct types
of scale-ratios are relevant: (i) for spatial scales we use
the multipole counting in the ratio of the object’s size
and the radius of curvature of the external fields and
(ii) for the time scales, we consider powers of the ratio
of the various internal relaxation times and variatons of
the external tidal field. In the case where the external
field is sourced by the companion in a binary system, (i)
involves the orbital separation and (ii) multiples of the
orbital period. These power countings must in general
be treated as independent, e.g. for eccentric orbits. We
are interested here in the leading (quadrupolar) gravit-
omagnetic interaction, so we work to quadratic order in
the odd-parity quadrupolar variables QIJ

B , BIJ . We do
not introduce a cutoff in a ration of time scales from
the beginning, i.e., allow for an arbitrary number of time
derivatives.

Furthermore, we consider the angular velocity (spin)
and its associated time (length) scale as an independent
parameter and work to linear order in the angular veloc-
ity in the tidal interactions. Finally, field/variable redefi-
nitions can in general be used to remove some interaction
terms from the action. In particular higher-order time
derivatives of the dynamical degrees of freedom on the
worldline can be removed in this way [72]. In the present

case, this means that we can disregard
...
Q

IJ

B or Ω̇IJ or
even higher time derivatives from the ansatz.

F. Relativistic action

We now have all the inputs for deriving the relativistic
tidal Lagrangian following the procedure outlined above.
The complete Lagrangian consists of a nontidal and a
magnetic tidal part,

L = LNT + LB
DT. (3.12)

The nontidal part contains terms such as

LNT = −m0 +CΩ2ΩIΩI +CEΩ2EIJΩ
IΩJ + . . . , (3.13)

where CΩ2 is related to the moment of inertia and CEΩ2

to the spin-induced quadrupole moment of the star [73–
75]. Following the symmetries listed above and assuming
a single type of gravitomagnetic modes QIJ

B , we obtain
the following relativistic effective action in the corotating
frame for dynamical magnetic tides to quadratic order in
the tidal variables and linear order in the angular velocity
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of the star,

LB
DT ≈ CB

Q̇2Q̇
IJ
B Q̇IJ

B + CB

ΩQQ̇
ΩJKQ̇IJ

B QKI
B

−1

2
BIJQ̇

IJ
B +BIJ

∞∑

k=0

[

CBB(2k)

(2k)

B IJ

+CBB(2k+1)ΩΩ
KI

(2k+1)

BJK

]

,

(3.14)

where (k) denotes the k-th τ -derivative. We have chosen
the convention for the normalization of QIJ

B such that
the coefficient in front of the last term is − 1

2 , as in the
1PN case. The second term is invariant under the shift
symmetry (3.11) since Ω̇IJ ≈ 0 + O(E,B).4 We note
that BIJ ≈ BIJ to 1PN order. Higher τ -derivatives on
ΩIJ and QIJ

B can be removed by variable redefinitions in
the action.
In the PN approximation, e.g., for a bound binary sys-

tem, each time derivative on BIJ leads to a further sup-
pression of the term. At leading order, we may therefore
neglect all but the term without τ -derivatives in the sec-
ond line of Eq. (3.14). By contrast, terms with time
derivatives on QIJ

B must be kept, since the fluid modes
can be resonantly excited. This yields the simplified ac-
tion

LB
DT ≈ CB

Q̇2Q̇
IJ
B Q̇IJ

B + CB

ΩQQ̇
ΩJKQ̇IJ

B QKI
B

− 1

2
BIJ Q̇

IJ
B + CB2BIJBIJ ,

(3.15)

with CB2 ≡ CBB(0) . The star’s current or flux
quadrupole SIJ (not to be confused with the spin) in
the corotating frame can be identified from the action: it
is the quantity that couples to BIJ as 2/3BIJS

IJ , and is
given by

SIJ ≡ 3

2

∂L

∂BIJ

≈ −3

4
Q̇IJ

B + 3CB2BIJ . (3.16)

The flux quadrupole is the source term for the gravito-
magnetic response field of the star. The first contribution
in Eq. (3.16) is due to the odd-parity fluid perturbation
described by QIJ

B . In the absence of any additional fluid
modes besides QIJ

B , as we assume here, the second term
in Eq. (3.16) may be interpreted as a nonlinear field con-
tribution. This interpretation is in agreement with the
post-Newtonian analysis in Ref. [34] and in the last sec-
tion.
It is straightforward to rewrite the action in the coor-

dinate frame using the transformation matrices ΛI
µ,

LB
DT ≈ CB

Q̇2Q
′µν
B Q′B

µν + CB

ΩQQ̇
ΩνρQ

′µν
B Qρ

Bµ

− 1

2
BµνQ

′µν
B + CB2BµνB

µν ,
(3.17)

4 Strictly speaking, the shift symmetry has to hold without using
equations of motion. We leave a rigorous treatment of this term
for the case Ω̇ 6= 0 for future work.

where Ωµν = ΛI
µDΛIν/dτ . We have defined the quan-

tity

Q′µν
B =

DQµν
B

dτ
+ 2Ω(µ

ρQ
ν)ρ
B , (3.18)

which is invariant under the shift symmetry (3.11). We
note that even though we work to O(Ω), the dependence
on the angular velocity in Eq. (3.18) should not be ex-
panded out, to ensure that the zero-mode is preserved.
Also, since ΛI

µUµ = 0, the variables in the coordinate-
frame action are subject to constraints (or supplementary
conditions),

ΩµνUν = 0, Qµν
B Uν = 0. (3.19)

From this effective action (3.17), one can follow Refs. [51,
54, 64] to work out the post-Newtonian description of a
binary system by performing a Legendre transform in
Ωµν and Q̇µν

B , introducing worldline reparametrization-
and spin-gauge invariance, implementing a gauge fixing,
deriving the Feynman rules, and calculating observables.
The post-Newtonian predictions for observables de-

pend on the coefficients in the action (3.17). The next
important step is thus to match them for a given fully
relativistic neutron-star model. Before doing so, it is
illustrative to compare (3.17) to the corresponding La-
grangian for dynamical, electric fundamental (f-)modes
for a nonrotating star given by [51]

LE
DT ≈ 1

4λω2
f

[

Q̇µν
E Q̇E

µν − ω2
fQ

µν
E QE

µν

]

− 1

2
EµνQ

µν
E ,

(3.20)

where ωf is the f-mode frequency and λ the electric
quadrupolar Love number. The differences to the mag-
netic action (3.17) are due to the different parity and
time-reversal properties of the magnetic variables and the
shift symmetry (3.11). In particular, the latter implies
the absence of a Q2

B-term, meaning that the magnetic
modes have zero frequency in the nonrotating case. As a
consequence, the adiabatic limit of the magnetic action is
not immediately obvious, in particular when the nonro-
tating limit is taken at the same time (see also Ref. [20]).
In fact, as we show below, in the nonrotating adiabatic
case the coefficients in the action are connected to both
the irrotational and static versions of the Love numbers.

IV. MATCHING THE COEFFICIENTS

The relativistic effective action (3.15) for dynamical
gravitomagnetic tides has an immediate connection to
gravitational-wave observables. The action can be di-
rectly used in a post-Newtonian approximate calculation
of the binary dynamics as in Refs. [65–68] or used in the
effective one body model [51] to predict the effect of these
tidal interactions on the gravitational waves emitted by a
binary inspiral. This prediction generally depends on the
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coefficients in the effective action. Hence the constants
C... can be measured or constrained with gravitational-
wave observations.

In order to link measurements to the nuclear physics of
neutron stars, it is essential to theoretically calculate the
coefficients in the action for relativistic neutron star mod-
els. In this section, we use matching arguments to relate
the constants C... in Eq. (3.15) to the quadrupolar rela-
tivistic magnetic mode frequencies ωB

2m and the tidal de-
formabilities (Love numbers) σirr and σstat. Two distinct
magnetic Love numbers have been defined in the litera-
ture for nonrotating neutron stars: negative irrotational
ones σirr < 0 [32] and positive static ones σstatic > 0 [33],
which differ by the boundary conditions imposed in the
fluid. These can be computed numerically from linear
perturbations of neutron stars, for ωB

2m see Refs. [17, 29–
31, 76] and for σ... see Refs. [32–35, 37].

Note that the matching of tidal coefficients is inher-
ently difficult and the definition of Love numbers may
even be seen as ambiguous [77]. But those ambiguities
are expected to be comparable to rather small effects at
6PN order for magnetic tides (5PN for electric tides). For
the black hole case, it is crucial to understand these sub-
tleties since tidal effects, if nonzero, would be very small.
Here, for neutron stars described by a perfect fluid equa-
tion of state, we can take a more heuristic approach to
the matching as explained below. But when accounting
for more realistic physics such as different classes of mag-
netic modes, more terms in the effective action become
relevant and it becomes important to work out a more
general and rigorous approach to the matching. Indeed,
tidal parameters, defined by coefficients in the effective
action, should be matched based on observables (e.g.,
binding energy, redshift, or scattering angle). We leave
this for future work.

Finally, we note that quasi-universal relations for the
magnetic Love numbers for neutron stars, i.e., relations
that are approximately independent of the nuclear equa-
tion of state, were studied in Ref. [78]. The result was
that these relations hold only to approximately 5% (10%)
for irrotational (static) Love numbers; for irrotational
Love numbers this was also found in recent follow-up
work in Refs. [79, 80]. This should be compared to the
nearly sub-percent-level universality for the electric-type
Love numbers [81], and opens interesting prospects for
learning new information about the equation of state.

A. Matching the static Love number

We start by considering the case of no rotation ΩI = 0
and a static fluid Q̇IJ

B = 0, and identify which coeffi-

cients can be fixed. The condition Q̇IJ
B = 0 means a

vanishing fluid velocity perturbation, which corresponds
to the static Love number σstat [34]. In the static case,
the flux quadrupole (3.16) and the action (3.15) reduce

to

SIJ
stat ≈ 3CB2BIJ , LB

stat ≈ CB2BIJBIJ . (4.1)

In general, the magnetic quadrupolar Love numbers
σ ≡ σ2 can be defined either as the proportionality con-
stant between the magnetic tidal field BIJ and the flux
quadrupole moment SIJ , or as a coefficient in the adia-
batic tidal action,

SIJ = 2σBIJ , or LB
ad =

2σ

3
BµνB

µν . (4.2)

This definition holds for both the irrotational σirr and
static σstat Love numbers. Since we considering a static
fluid in this subsection, we use the static Love number
σstat. Comparing either definition in Eq. (4.2) with the
above relations, we can match CB2 as

CB2 =
2

3
σstat. (4.3)

B. Matching the irrotational Love number

The irrotational Love number σirr for a nonrotat-
ing fluid ΩI = 0 can be obtained by keeping the
time/frequency dependence of QIJ

B [32, 37]. The
corotating-frame action (3.15) then simplifies to

LB
irr ≈ CQ̇2Q̇

IJ
B Q̇B

IJ − 1

2
BIJQ̇

IJ
B + CB2BIJBIJ . (4.4)

Varying QIJ
B leads to the equation of motion Q̈IJ

B =

ḂIJ/(4CQ̇2). Integrating this equation with respect to
τ and dropping the integration constant, which would
lead to a permanent flux quadrupole, we obtain

Q̇IJ
B ≈ BIJ

4CQ̇2

. (4.5)

Inserting this into Eqs. (3.16) or (4.4) and comparing to
the definition of the Love number (4.2) leads to

σirr =
3CB2

2
− 3

32CQ̇2

. (4.6)

To make the matching of the coefficients in the ac-
tion more transparent, we split the Love number into its
matter σM and field σF contributions (analogous to the
post-Newtonian case in Ref. [20]),

σM ≡ σirr − σstat < 0, σF ≡ σstat > 0, (4.7)

These quantities are related to coefficients in the nonro-
tating action by

CQ̇2 = − 3

32σM

> 0, CB2 =
2σF

3
> 0. (4.8)

Indeed, we must have CQ̇2 > 0 for consistency since
the energy of the modes must be bounded from below.
To the leading post-Newtonian order, the static and ir-
rotational defomabilities are approximately related by
σstat ≈ −3σirr [34], which implies that σF ≈ −3σM/4.
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C. The response function

The quadrupolar tidal response function, or
quadrupole propagator on the worldline, was intro-
duced for the description of dissipative tides in the
effective-field theory context in Refs. [50, 55]. For
conservative electric dynamical tides, it was further
explored numerically in Refs. [82, 83]. An extension of
this work to magnetic tides and slow rotation would be
valuable. In this section, we derive the response function
from the effective action in Eq. (3.14).
Let us write the corotating-frame action (3.14) of an

isolated neutron star at rest in spherical-harmonic basis,
using QIJ

B =
√
N2

∑

m Y2m
IJ QB

m (where N2 = 8π/15) and
similarly for BIJ . Assuming that the angular velocity is
constant Ω = (0, 0,Ω), the action (3.14) then reads

LB
DT ≈

2∑

m=−2

[

CB

Q̇2Q̇
B∗
m Q̇B

m +
imΩ

2
CB

ΩQQ̇
Q̇B∗

m QB
m

−1

2
B∗

mQ̇B
m +B∗

m

∞∑

k=0

(

CBB(2k)

(2k)

B m

+
imΩ

2
CBB(2k+1)Ω

(2k+1)

Bm

)]

.

(4.9)

The reality conditions QIJ
B = QIJ

B∗ imply that QB∗
m =

(−1)mQB
−m and similarly for Bm. We next transform to

Fourier domain by using

QB
m(τ) =

∫
dω

2π
Q̃B

m(ω)e−iωτ , (4.10)

and similarly for Bm. This yields the dynamical tidal
action SB

DT =
∫
dτ LB

DT in the form

SB
DT ≈

∫
dω

2π

2∑

m=−2

[

ω2CB

Q̇2Q̃
B∗
m Q̃B

m

− mωΩ

2
CB

ΩQQ̇
Q̃B∗

m Q̃B
m +

iω

2
B̃∗

mQ̃B
m

+ B̃∗
mB̃m

∞∑

k=0

(iω)2k
(

CBB(2k) +
mωΩ

2
CBB(2k+1)Ω

)]

.

(4.11)

The flux quadrupole in the spherical-harmonic decompo-
sition in the frequency domain S̃m can be obtained from

S̃m =
3

2

∂L̃

∂B̃∗
m

=
3

4
iωQ̃B

m

+ 3B̃m

∞∑

k=0

(iω)2k
(

CBB(2k) +
mωΩ

2
CBB(2k+1)Ω

)

.

(4.12)

Based on S̃m, we define the linear response F̃B
m(ω) of the

neutron star in the corotating frame as a generalization
of the Love number,

S̃m = 2F̃B
mB̃m. (4.13)

This response is the relativistic analogue of the Love ten-
sor from Ref. [21], see also Ref. [84] for the black-hole
case. To obtain its explicit expression requires a solution
for Q̃B

m which can be calculated as follows. Varying the
action (4.11) leads to

2ω2CB

Q̇2Q̃
B
m −mωΩCB

ΩQQ̇
Q̃B

m =
iω

2
B̃m, (4.14)

Solving for Q̃B
m and using the definition of S̃m, we arrive

at the response function

F̃B
m = − 3

16

ω

2ωCB

Q̇2
−mΩCB

ΩQQ̇

+
3

2

∞∑

k=0

(iω)2k
(

CBB(2k) +
mωΩ

2
CBB(2k+1)Ω

)

.

(4.15)

With this, the action can be written as

SDT ≈
∫

dω

2π

2∑

m=−2

2

3
F̃B
mB̃mB̃∗

m. (4.16)

Here, although we are working only to linear order in the
spin, we do not expand the denominator. The reason is
similar as for the textbook example of an anharmonic os-
cillator [85], where one perturbatively expands all terms
at the level of the equations of motion yet leaves any de-
nominators of the solution unexpanded. This is crucial in
order to preserve essential features of the dynamics, i.e.,
poles at resonances. For the same reason, it is important
to keep the shift symmetry (3.11) without expanding in
spin, so that the zero-frequency mode is preserved.

D. Matching the mode frequency

We can identify the corotating-frame frequencies of the
magnetic modes ωB

2m as the poles in ω of the response
function (4.15),

ω̂B ≡ ωB
2m

mΩ
=

CB

ΩQQ̇

2CB

Q̇2

. (4.17)

We can thus match the coefficient CB

ΩQQ̇
as

CB

ΩQQ̇
= 2CB

Q̇2 ω̂B = − 3ω̂B

16σM

. (4.18)

The relativistic frequencies ωB
2m for polytropes were

computed in Ref. [29]. In the slow-rotation limit they
differ by a few percent from the Newtonian result (2.28).
Relativistic frequencies for nuclear physics-based equa-
tions of state were computed in Ref. [30]. This sug-
gests that the Newtonian frequencies (2.28) can be used
as a reasonably good estimate in these cases, that is
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ω̂B ≈ −1/3. See Ref. [17] for a review of the magni-
tude and equation-of-state dependence of relativistic and
higher-order rotational corrections. For superfluid stars,
a second family of r-modes emerges, which has interesting
consequences [31, 76]. Such a scenario can be described
in our effective theory framework by introducing effective
dynamical tidal variables QIJ

Bn and corresponding coeffi-
cients for each family of modes, where n labels the family
of modes.
The corotating-frame response function (4.15) can be

extended to the case of several mode families by summing
over the contributions from the individual QIJ

Bn,

F̃B
m = − 3

32

∑

n

ω

2ωCB

nQ̇2
−mΩCB

nΩQQ̇

+
3

2

∞∑

n=0

(iω)2n
(

CBB(2n) +
mωΩ

2
CBB(2n+1)Ω

)

.

(4.19)

In the presence of more than one family of modes, a
more general matching procedure than outlined above
is needed to fix all the coefficients. This could be accom-
plished through a numerical investigation of the mag-
netic tidal response F̃B

m based on relativistic linear per-
turbation theory, similar to Ref. [82] for the nonrotat-
ing electric case. A fit of such a numerical result for
F̃B
m to Eq. (4.19) should in principle fix all the (linear,

conservative) tidal coefficients: The behavior of the re-
sponse around its poles fixes the number of mode families
and their coefficients CB

nQ̇2 , C
B

nΩQQ̇
, while the global fre-

quency dependence fixes the CBB(2k) , CBB(2k+1) .

E. Asymptotic limits of the response function in

the inertial frame

Returning to the case of a single family of modes, we
next discuss the response in the inertial frame. The fre-
quency in the inertial frame follows from that in the coro-
tating frame via the relation

ω̃ = ω +mΩ. (4.20)

Likewise, the inertial-frame mode frequency is ω̃B
2m =

ωB
2m + mΩ. The gravitomagnetic response can then be

expressed as

F̃B
m ≈ σM

ω̃ −mΩ

ω̃ − (1 + ω̂B)mΩ
︸ ︷︷ ︸

ω̃B
2m

+ σF , (4.21)

where ω̂B was defined in (4.17) and σM,F in (4.7). We
note that the adiabatic limit ω̃ → 0 and the nonrotating
limit Ω → 0 of the response do not commute [20]. Physi-
cally, this is not a problem since neither the neutron star
rotation frequency Ω nor the frequency of the external
tidal field ω̃ in a binary system are ever exactly zero.

What matters is the relation between ω̃ and Ω. Away
from the mode resonances, the response behaves as

F̃B
m ≈

{ σM

1 + ω̂B

+ σF for |ω̃| ≪ |Ω|,m 6= 0

σM + σF = σirr for |ω̃| ≫ |Ω| or m = 0
.

(4.22)
However, we note that a proper treatment of the post-
resonance regime |ω̃| ≫ |Ω| requires a more careful treat-
ment, in particular an analysis of the mode damping after
resonant excitation.

F. Summary

Summarizing our findings, magnetic dynamical tides
are approximately described by an effective action in the
corotating frame given by

LB
DT ≈ − 3

32σM

(

Q̇IJ
B Q̇IJ

B + 2ω̂BΩ
JKQ̇IJ

B QKI
B

)

− 1

2
BIJQ̇

IJ
B +

2σF

3
BIJBIJ ,

(4.23)

where

σM ≡ σirr − σstat, σF ≡ σstat, ω̂B ≡ ωB
2m

mΩ
, (4.24)

and σirr,stat are the irrotational and static magnetic tidal
deformabilities. In the post-Newtonian limit, ω̂B ≈ −1/3
and σF ≈ −3σM/4. However, this may become insuffi-
cient for a realistic inclusion of the microphysics of the
neutron star, for instance, the presence of superfluidity
implies several families of magnetic modes [31, 76] and
hence a more involved matching of the tidal parame-
ters, as explained above. Yet these complications also
open new prospects for extracting precious information
on neutron-star structure from gravitational waves.
The response function in the corotating frame is

F̃B
m ≈ σM

ω

ω −mΩω̂B

+ σF . (4.25)

In the inertial frame, where the frequency is ω+mΩ, the
limiting forms of the response for |ω +mΩ|/|ω| → 0,∞
are

F̃B
m ≈







σirr + ω̂Bσirr

1 + ω̂B

, |ω̃| ≪ |Ω|,m 6= 0

σirr, |ω̃| ≫ |Ω| or m = 0
. (4.26)

V. CONCLUSIONS

The observation of gravitational waves from binary
neutron stars opens up exciting opportunities for ex-
ploring matter at supra-nuclear density in their interiors.
This requires understanding how the nuclear physics of
neutron star matter translates into tidal effects during
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the long inspiral phase of the binary, which constitutes
a substantial part of the observed gravitational-wave sig-
nal. In this paper, we made important progress on this
topic by investigating how relativistic gravitomagnetic
tides of neutron stars can be modelled with an effec-
tive action, both in the highly dynamical regime close
to oscillation-mode resonances and away from resonance.
To gain intuition, we started from the 1PN description

of a slowly rotating isolated neutron star, composed of an
idealized fluid, in the presence of a gravitomagnetic tidal
field. We derived a Lagrangian formulation of the lin-
earized perturbations to the Euler equations for the fluid
displacement. We used this Lagrangian in a novel way
to calculate the gravitomagnetic mode frequencies and to
develop an effective action for composite degrees of free-
dom characterizing the gravitomagnetic interactions of
the star. A crucial finding was a symmetry of the action
under shifts of the dynamical mode degrees of freedom.
The major new result of this paper is the fully rela-

tivistic effective action for gravitomagnetic tidal effects
for slowly rotating neutron stars that we developed. We
started from symmetry principles to construct the terms
in the action, where the shift symmetry played an es-
sential role. Each of these interaction terms comes with
undetermined coefficients that encode the neutron-star
structure. We demonstrated how the most important co-
efficients in the action match to the magnetic Love num-
bers and mode frequencies of the neutron star, showing
that both kinds of magnetic Love numbers have physical
relevance. We also discussed several interesting dynam-
ical consequences and unusual features compared to the
gravitoelectric case.
An important goal for future work is to construct wave-

form models for gravitational waves from binary inspirals
based on our effective action. The tidal coefficients in the
action directly characterize the potentially measurable
parameters in gravitational waves. These coefficients are
related to the magnetic Love numbers and mode frequen-
cies, which contain valuable information to better under-

stand the extreme states of matter inside neutron stars.
Another target for future work is to formulate the match-
ing in terms of the tidal response function, which would
allow a generalization to more realistic microphysics, e.g.,
the inclusion of several mode families in the presence of
a superfluid.
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Appendix A: Useful formulas

In the main text, we make use of the identity,

∫

dΩnjna′

(ns1 ...nsℓ−1)Y∗ℓm
s1..sℓ

(ns1′ ...ns
ℓ′−1)Yℓ′m′

s1′ ..sℓ′

=
4π

(2l + 1)!!

[
δja

′

(ℓ− 1)!Y∗ℓm
s1..sℓ−1sl

Yℓm′

s1..sℓ−1sℓ

+ (ℓ− 1)(ℓ− 1)!Y∗ℓm
js1..sℓ−2sℓ

Yℓm′

a′s1..sℓ−2sℓ

]
if ℓ = ℓ′

= 0 if ℓ 6= ℓ′.
(A1)

One can prove this using the following relations,

1. ǫijk
∫
ninjns1 ...nsℓ = 0,

2.
∫
dΩni...nℓ = 0 if ℓ is odd,

3.
∫
dΩni1 . . . ni2ℓ =

4π
(2l+1)!!

(
δi1i2δi3i4 . . . δi2ℓ−1i2ℓ + . . .

)
,

4. Y∗ℓm
s1..sℓ

is symmetric and trace-free, which means

any two same indices (a trace) gives zero, Y∗ℓm
s1..s1

=
0.
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