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HIGHER LEVEL AFFINE SCHUR AND HECKE ALGEBRAS

RUSLAN MAKSIMAU AND CATHARINA STROPPEL

Abstract. We define a higher level version of the affine Hecke algebra and
prove that, after completion, this algebra is isomorphic to a completion of
Webster’s tensor product algebra of type A. We then introduce a higher level
version of the affine Schur algebra and establish, again after completion, an
isomorphism with the quiver Schur algebra. An important observation is that
the higher level affine Schur algebra surjects to the Dipper-James-Mathas cy-
clotomic q-Schur algebra. Moreover, we give nice diagrammatic presentations
for all the algebras introduced in this paper.
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Introduction

Let k be an algebraically closed field. Fix q ∈ k, q 6= 0, 1 and d ∈ Z>0. We study
in this paper several versions of Hecke and Schur algebras of type A including in
particular a new higher level affine Schur algebra.

Hecke algebras and their Schur versions. To introduce the players, let Hfin
d (q)

be the ordinary Hecke algebra of rank d over the field k (i.e., Hfin
d (q) is a q-

deformation of the group algebra kSd arising from the convolution algebra of com-
plex valued functions on the finite group GLd(Fq) which are constant on double
cosets for a chosen Borel subalgebra). Let Hd(q) be its (extended) affine version,

that means it equals Hfin
d (q) ⊗ k[X±1

1 , . . . , X±1
d ] as a vector space and with a cer-

tain multiplication such that both tensor factors are subalgebras. It naturally arises
from the convolution algebra of compactly supported functions defined on the p-
adic group GLd(Qq) which are constant on double cosets for an Iwahori subalgebra.
These algebras play a crucial role in p-adic representation theory, see e.g. [2], [7].

The algebra Hd(q) has a family of remarkable finite dimensional quotients HQ
d (q),

called cyclotomic Hecke algebras or Ariki-Koike algebras which are deformations of
the group algebra k(Sd ⋉ (Z/ℓZ)d). These algebras are well-studied objects in
representation theory. For an excellent overview we refer to [13].

The Dipper-James-Mathas cyclotomic q-Schur algebra SDJM
d,Q (q) was defined in

[4] in the following way. For each ℓ-composition λ of d they construct some element

mλ in HQ
d (q). Then they define the algebra SDJM

d,Q (q) as an endomorphism algebra
1
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2 R. MAKSIMAU AND C. STROPPEL

of the right HQ
d (q)-module

⊕
λmλH

Q
d (q). We would like to define an affine version

Sd,Q(q) of the algebra SDJM
d,Q (q) such that

• Sd,Q(q) has a nice faithful polynomial representation, and

• Sd,Q(q) surjects to SDJM
d,Q (q).

So, we ask the following question.
What should be the correct definition of the algebra Sd,Q(q)?

One might expect that the affine version Sd,Q(q) can be defined similarly as an
endomorphism algebra of the Hd(q)-module

⊕
λmλHd(q). However, this approach

does not work. The reason is that in the cyclotomic case, some polynomials appear
in the definition of the element mλ. These polynomials play an important role

for the structure of the HQ
d (q)-module mλH

Q
d (q). But in the affine case, these

polynomials do nothing with the Hd(q)-module mλHd(q). So, the Hd(q)-modules
mλHd(q) becomes quite boring.

However, this approach is known to work in the "no level" case: the (no level)
affine q-Schur algebra is defined in [21] as the endomorphism algebra of an Hd(q)-
module, very much in parallel to [4]. At the same time, the cyclotomic q-Schur

algebra SDJM
d,Q (q) is defined for higher levels. Our goal, is to give a higher level

version Sd,Q(q) of the affine q-Schur algebra Sd(q). The existence of such an algebra
seems to be natural from the analogy with the KLR algebras. Indeed, the affine
higher level Schur version of the KLR algebra (the higher level quiver Schur algebra)
is defined in [19]. However, the definition in [19] is purely geometric (as usually
happens for KLR-like algebras), while the definitions of the Hecke-like algebras are
algebraic. So the definition of the higher level quiver Schur algebra in [19] does not
tell us what the definition of the higher level affine q-Schur algebra should be.

Finally, we define the higher level affine q-Schur algebra Sd,Q(q) in the following
way: the definition is in two steps. First, we define the higher level version Hd,Q(q)
of Hd(q) by generators and relations. After that, we define Sd,Q(q) as the endomor-
phism algebra of some Hd,Q(q)-module. As we explained before, in the cyclotomic

case, the q-Schur algebra SDJM
d,Q (q) is defined in [4] in one step from HQ

d (q). However,
in the affine case, there is no known direct way to define Sd,Q(q) from Hd(q). This
is probably the reason why the algebra Sd,Q(q) was not known before.

One more important point is to define the polynomial representation of Sd,Q(q).
This is easy for the KLR-like algebras because the polynomial representations ap-
pears naturally from geometry. On the other hand, the construction of the polyno-
mial representation of Sd(q) is via long and difficult computations. We don’t want
to follow this approach, but instead give a more conceptual argument. We con-
struct a polynomial representation of Sd,Q(q) as a subrepresentation of the defining
representation of Sd,Q(q).

We believe that our methods can be transferred to the construction and study of
other types of Schur algebras. Although we stick to a very special class of algebras
in this paper, our approach seems to work in much more generality (including the
case of Clifford-Hecke algebras, [15] or affine zigzag algebras, [10]).

KLR algebras and their Schur versions. Around 10 years ago, Khovanov-
Lauda [8] and Rouquier [18] introduced the quiver Hecke algebra (also called KLR
algebra) Rν . Again it arises from a convolution algebra structure, but now on the
Borel-Moore homology of a Steinberg type variety defined using the moduli space
of isomorphism classes of flagged representations of a fixed quiver with dimension
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vector ν, [20], [18]. The major interest in these algebras is due to the fact that they
are naturally graded and are used to categorify the negative part of a quantum
group. This holds in particular for the finite or affine type A versions; the algebras
arise in several categorification results on the level of 2-morphisms. They were re-
cently also used to approach modular representation theory of general linear groups,
[17]. These KLR algebras again have a family of interesting (finite dimensional)
quotients RQ

ν (called cyclotomic KLR algebras). Apart from being interesting on
their own, these quotients RQ

ν categorify simple modules over the before-mentioned
quantum group, [11], but also give concrete descriptions of categories arising in
geometric and super representation theory.

A higher level version Rν,Q of the KLR algebra (called tensor product algebra)

was introduced by Webster [23]. The cyclotomic quotient RQ
ν,Q of the algebra Rν,Q

categorify tensor products of simple modules over a quantum group.
Let us give an overview on connections between these algebras. The cyclotomic

Hecke algebra HQ
d (q) has a block decomposition HQ

d (q) =
⊕

ν H
Q
ν (q). Brundan

and Kleshchev constructed in [1] an isomorphism between the block HQ
ν (q) and

the cyclotomic KLR algebra RQ
ν of type A. A different proof of this isomorphism

was given by Rouquier in [18] as a consequence of an isomorphism between (an
idempotent version of) a localization of Hd(q) and a localization of Rν . It is also
possible to give a similar proof, using completions instead of localizations, see [22],
[14]. (The completion/localization of Hd(q) depends on ν.)

To understand the relation between the parameters of the Hecke and KLR alge-
bras note that the Hecke algebra Hd(q) depends on q ∈ k\{0, 1}, and the cyclotomic

quotient HQ
d (q) of Hd(q) furthermore on an ℓ-tuple Q = (Q1, . . . , Qℓ) ∈ (k∗)ℓ. On

the other hand, the KLR algebra Rν depends on a quiver Γ and on a dimension
vector ν for Γ. The cyclotomic quotient RQ

ν of Rν depends also on an ℓ-tuple

Q = (Q1, . . . , Qℓ) of vertices of Γ. To describe the blocks HQ
ν (q) of HQ

d (q) in terms
of KLR algebras, we have to take the quiver Γ = ΓF as in Section 2.4. In particu-
lar, this choice of Γ allows us to consider Q ∈ (k∗)ℓ as an ℓ-tuple of vertices of the

quiver., see (2.4). For this choice of Γ we have then the isomorphism HQ
ν (q) ≃ R

Q
ν

from [1], [18].
The second author and Webster defined in [19] the quiver Schur algebra Aν (that

is a Schur version of the KLR algebra Rν) and its generalizations, the higher level

quiver Schur algebras Aν,Q together with a family of cyclotomic quotients AQ
ν,Q.

Moreover, in [19], the isomorphism HQ
ν (q) ≃ RQ

ν was extended to an isomorphism

SDJM
ν,Q (q) ≃ AQ

ν,Q, where SDJM
d,Q (q) =

⊕
ν S

DJM
ν,Q (q) is the Dipper-James-Mathas cy-

clotomic q-Schur algebra (that is the Schur version of HQ
d (q)).

On the other hand, an affine (no level) version of the isomorphism SQν,Q(q) ≃ AQ
ν,Q

was constructed by Miemietz and the second author, [14]. It was proved in [14,
Thm. 9.7] that a completion of the affine Schur algebra Sd(q) (the completion
depends on ν) is isomorphic to a completion of the quiver Schur algebra Aν .

The zoology. The zoology of the algebras discussed above can be grouped into
two big families:

the Hecke family and the KLR family.

An algebra in either family can be

affine or cyclotomic, higher level or no level, Schur or not Schur.
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We briefly describe all the possible cases.

(i) No level, not Schur, cyclotomic.

The algebra in the Hecke family is the cyclotomic Hecke algebra HQ
d (q), its

analogue in the KLR family is the cyclotomic KLR algebras RQ
ν . The isomor-

phism between a block of the algebra HQ
d (q) and the algebra RQ

ν is due to
Brundan-Kleshchev [1] and Rouquier [18].

(ii) No level, not Schur, affine.

The algebra in the Hecke family is the affine Hecke algebra Hd(q), its ana-
logue in the KLR family is the (affine) KLR algebra Rν . We have surjections

Hd(q) → HQ
d (q) and Rν → RQ

ν . However the isomorphism between a block

of HQ
d (q) and RQ

ν does in general not lift to the affine level. There are how-
ever isomorphisms after suitable completions of Hd(q) and of Rν (where the
completion of Hd(q) depends on ν), [22], [14]. A similar construction using
localizations instead of completions was already given in [18].

We observe a difference between the cyclotomic case and the affine case:
For the cyclotomic case, a block of the algebra in the Hecke family is isomorphic to
the algebra in the KLR family. In the affine case, the completion of the algebra in
the KLR family is isomorphic to the completion of the algebra in the KLR family.
We will see that exactly the same thing happens in all the remaining cases below.

(iii) Higher level, Schur, cyclotomic.

The algebra in the Hecke family is the cyclotomic Dipper-James-Mathas q-
Schur algebra SDJM

d,Q (q) from [4]. Its analogue in the KLR family is the cyclo-

tomic quiver Schur algebra AQ
ν,Q defined in [19]. It is proved in [19] that each

block of the algebra SDJM
d,Q (q) is isomorphic to the algebra AQ

ν,Q for some ν.

(iv) No level, Schur, cyclotomic.

These algebras have no special names. They (and the corresponding isomor-
phisms) can be obtained as idempotent truncations of the algebras in (iii).

(v) No level, Schur, affine.

The algebra in the Hecke family is the affine q-Schur algebra Sd(q) from e.g.
[5], [21]. Its analogue in the KLR family is the (no level, affine) quiver Schur
algebra defined in [19]. It is proved in [14] that the algebras Sd(q) and Aν are
isomorphic after completion. (The completion of Sd(q) depends on ν.)

A construction of the algebras in the Hecke families of the remaining cases is done in
our paper. All our constructions do not make any assumptions on the characteristic
of the underlying field.

(vi) Higher level, not Schur, affine.

The algebra in the KLR family is Webster’s tensor product algebra Rν,Q, [23].

We define the Hecke analogue Hd,Q(q) of Rν,Q, called the higher level affine Hecke
algebra, by generators and relations (algebraically and diagrammatically) in Sec-
tion 1 and then prove in Theorem 2.13 that the algebras Hd,Q(q) and Rν,Q are
isomorphic after completions. On the Hecke side this is with respect to maximal
ideals of the centre which we describe in Proposition 1.19.

After having finished writing this paper, we were informed that Webster had
defined already a similar algebra with an analogous isomorphism result in [22,
Sec. 4].
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(vii) Higher level, not Schur, cyclotomic.

The algebra in the KLR family is here the cyclotomic quotient RQ
ν,Q of the

tensor product algebra Rν,Q defined in [23].

The Hecke analogue of RQ
ν,Q is a similar quotient HQ

d,Q(q), see Definition 5.1, of the

algebra Hd,Q(q). We prove that each block of the algebra HQ
d,Q(q) is isomorphic to

the algebra RQ
ν,Q for some ν, see Theorem 5.5. As a byproduct we can determine

in Corollary 5.3 the possible eigenvalues of the Laurent polynomial algebra acting

on the regular representation HQ
d,Q(q), which is a well-known fact for ordinary

cyclotomic Hecke algebras, [6, Prop. 3.7]. It is important to know the possible

eigenvalues to be able to say that the corresponding algebra RQ
ν,Q is defined with

respect to the quiver ΓF as in Section 2.4. In particular, this is a quiver of type A.

(viii) Higher level, Schur, affine.

The algebra in the KLR family is the (affine higher level) quiver Schur algebra
Aν,Q, defined in [19].

We define a Hecke analogue Sd,Q(q) of this algebra in Section 3, and prove (Theo-
rem 4.5) that the algebras Sd,Q(q) and Aν,Q are isomorphic after completion (the
completion of Sd,Q(q) depends on ν). As an important tool, which we feel is im-
portant on its own, we construct in Corollary 3.30 a nice polynomial representation
involving partially symmetric polynomials.

Altogether, this completes the construction of the Hecke families in all cases
together with the corresponding isomorphism theorems.

All these algebras arise as algebras (or quotient algebras in the cyclotomic case)
of morphisms in some monoidal category. It is the universal higher level category,
Definition 1.5, in the not Schur cases and the universal thickened higher level cate-
gory, Definition 3.5, in the Schur cases.1 Both categories are generated on the level
of objects by sets Ib and Ir, but for the definition of the algebras the set Ir is only
involved in the higher level cases. These monoidal categories allow a diagrammatic
approach for all the involved algebras and in the non-Schur case diagrammatic
presentations.

The structure of the paper. The definition of the higher level affine Hecke
algebra Hd,Q(q) by generators and relations (algebraically and diagrammatically)
can be found in Section 1. Next, in Section 2 we construct an isomorphism between
a completion of Hd,Q(q) (this completion depends on ν) and a completion of Rν,Q.
To do this, we use the same strategy as in [14] (namely the identification of faithful
polynomial representations). This is also very much analogous to [22], where similar
algebras were introduced, but from a different point of view. Webster’s approach is
via weighted KLR algebras, whereas our focus is on Schur algebras. In particular
our approach is guided by giving a method how to Schurify different types of Hecke
algebras. A cyclotomic version of the isomorphism between the completions of
Hd,Q(q) and Rν,Q follows easily from the affine version. This is done in Section 5
and completes case (vii). Section 3 contains the definition of the higher level affine
Schur algebra Sd(q), the Hecke analogue Sd,Q(q) of the higher level quiver Schur
algebra Aν,Q. The isomorphism between a completion of Sd,Q(q) (this completion

1The former category is in fact a subcategory of the latter, but it is not a full subcategory and
to make the embedding compatible with the relations imposed later on, one needs to chose it in
a non-obvious way relying on Lemma 3.9.
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depends on ν) and a completion of Aν,Q can be found in Section 4 - completing
Case (viii).

Acknowledgments. We thank Alexander Kleshchev for sharing ideas that simplified
the construction of polynomial representations of the affine Schur algebras, and also
the referee for useful comments. R. M. is grateful for the support and hospitality
of the MPI for Mathematics in Bonn, where a big part of this work is done.

Conventions. We fix as ground field an algebraically closed field k and denote
k∗ = k − {0}. All vector spaces, linear maps, tensor products etc. are taken
over k if not otherwise specified. For a, b ∈ Z with a 6 b we abbreviate [a; b] =
{a, a+1, . . . , b− 1, b}. For d ∈ Z>0 we denote by Sd the symmetric group of order
d! with length function l.

1. Higher level affine Hecke algebras Hd,Q(q)

Setup 1.1. We fix q ∈ k∗, q 6= 1 and integers d > 0, ℓ > 0 called rank and level, and
parameters Q = (Q1, . . . , Qℓ) ∈ (k∗)ℓ. We denote J = {0, 1} and call its elements
colours with 0 viewed as black and 1 viewed as red.

1.1. The algebraic version. In this section we introduce the main new player, a
higher level version of the affine Hecke algebra.

Definition 1.2. Let Jℓ,d ⊂ Jℓ+d be the set of (ℓ + d)-tuples c = (c1, . . . , cℓ+d)

such that
∑ℓ+d
i=1 ci = ℓ (i.e., the tuples containing d black and ℓ red elements).

Let Sℓ+d act on Jℓ,d by permuting the entries of the tuple in the way such that
π(c)m = cπ−1(m) for π ∈ Sℓ+d.

Definition 1.3. The ℓ-affine Hecke algebra Hd,Q(q) is the k-algebra generated by
e(c) for c = (c1, . . . , cℓ+d) ∈ J

ℓ,d, Tr for r ∈ [1; ℓ+d−1] and Xj , X
′
j for j ∈ [1; ℓ+d],

subject to the following defining relations
∑

c∈Jℓ,d

e(c) = 1, and e(c)e(c) = e(c), (1.1)

Xie(c) = X ′
ie(c) = 0 if ci = 1, (1.2)

XiX
′
ie(c) = X ′

iXie(c) = e(c) if ci = 0, (1.3)

Xie(c) = e(c)Xi, and X ′
ie(c) = e(c)X ′

i , (1.4)

XiXj = XjXi, and X ′
iX

′
j = X ′

jX
′
i, (1.5)

TrTs = TsTr if |r − s| > 1, and TrXi = XiTr if |r − i| > 1, (1.6)

Tre(c) = 0 if cr = cr+1 = 1, and Tre(c) = e(sr(c))Tr, (1.7)

(TrXr+1 −XrTr)e(c) =

{
(q − 1)Xr+1 if cr = cr+1 = 0,

0 else,
(1.8)

(TrXr −Xr+1Tr)e(c) =

{
−(q − 1)Xr+1 if cr = cr+1 = 0,

0 else,
(1.9)

T 2
r e(c) =





(q − 1)Tre(c) + qe(c) if cr = cr+1 = 0,(
Xr −Q∑r+1

j=1 cj

)
e(c) if cr = 0, cr+1 = 1,(

Xr+1 −Q∑
r
j=1 cj

)
e(c) if cr+1 = 0, cr = 1,

(1.10)
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= (q − 1) + q

(1.12)

=

(1.13)

= + (q − 1)
(1.14)

= + (q − 1)
(1.15)

Figure 1. Affine Hecke algebra relations

(TrTr+1Tr − Tr+1TrTr+1)e(c)

=

{
0 if cr+1 = 0 and r < ℓ+ d− 1

(1 − q)Xr+2e(c) if cr+1 = 1, cr = cr+2 = 0 and r < ℓ+ d− 1
(1.11)

where i, j run through [1; ℓ+ d] and r, s through [1; ℓ+ d− 1].

Remark 1.4. In case ℓ = 0 (i.e., Q = 0 ∈ k0) the set Jℓ,d ⊂ Jℓ+d contains a single
element c = (0, 0, . . . , 0). Then e(c) = 1 by (1.1) and X ′

r = X−1
r by (1.3), and the

algebra Hd,Q(q) is nothing else than the ordinary (extended) affine Hecke algebra
Hd(q), see e.g. [9], in the normalization from e.g. [14]. If additionally q = 1 then
we get the smash product algebra k[Sd]#k[X±1

1 , . . . , X±1
d ].

Moreover it contains the ordinary finite dimensional Hecke algebra Hfin
d (q) at-

tached to Sd as subalgebra generated by the Tr for r ∈ [1; ℓ+ d− 1].

1.2. The diagrammatic version. We introduce a diagrammatic calculus gen-
eralizing the usual permutation diagrams of the symmetric group. It provides a
convenient way to display elements in the higher level affine Hecke algebra and is
done by realizing algebras of homomorphisms in some monoidal category.

Definition 1.5. Let Ib and Ir be sets not both empty. The universal higher level
category corresponding to this pair is the k-linear strict monoidal category generated
as monoidal category by objects i ∈ Ib, called black labels, and objects Q ∈ Ir, called
red labels, and by morphisms (for any i, j ∈ Ib, Q ∈ Ir)

i j
: i⊗ j −→ j ⊗ i,

Qi
: i⊗Q −→ Q⊗ i,

Q i
: Q⊗ i −→ i⊗Q

called crossings, and
i
: i −→ i called dot morphisms. The diagrams

i
and

Q

depict the identity for the black label i respectively for the red label Q.

The tensor product of morphisms is displayed by placing them horizontally next
to each other, whereas for the composition of morphisms we place them vertically.
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Q

=

Q

Q

− Q

Q

=

Q

− Q

Q

(1.16)

= =

(1.17)

= =

(1.18)

= − (q − 1)

(1.19)

(Omitted labels can be arbitrary, but of course fixed in each relation.)

Figure 2. Additional relations in the ℓ-affine Hecke algebra.

We omit indicating labels which can be arbitrary from Ib or Ir except that the
colour has to match the colour of the strand. Note that by definition two red
strands never cross.

Definition 1.6. Consider the universal higher level category attached to a pair Ib
and Ir. Then an (ℓ, d)-diagram is a morphism between two objects, that (both)
are the tensor product of exactly d black labels and ℓ red labels, which is a finite
composition of tensor products of generating morphisms.

We observe that for the existence of such a diagram the multiset of black labels
and the sequence of red labels for the two involved objects must agree.

Definition 1.7. Let |Ib| = 1 and Ir = k∗. We then define

(1) the higher level affine Hecke category as the universal higher level category
modulo the affine Hecke algebra relations (1.12)-(1.15) and the higher affine
Hecke algebra relations (1.16)-(1.19) on morphisms; and

(2) the ℓ-affine Hecke algebra Hd,Q(q) as the induced algebra structure on the
vector space spanned by all (ℓ, d)-diagrams with fixed red labels Q read
from from left to right.

The following easy observation justifies our notation Hd,Q(q).

Lemma 1.8. The algebras in Definitions 1.3 and 1.7 are isomorphic.
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Proof. One can easily verify by checking the relations that the following correspon-
dence on generators defines an isomorphism of the two algebras. The idempotent
e(c) corresponds to the diagram with vertical strands with colours determined by
the sequence c. The elementXie(c) (resp. X ′

je(c)) such that cr is black corresponds
to the diagram with vertical strands with colours determined by the sequence c and
a dot labelled by 1 (resp. −1) on the strand number i (counted from the left). (Note
that Xie(c) and X ′

ie(c) are zero if ci is red by (1.2).) The element Tre(c) such that
at least one of the colours cr, cr+1 is black corresponds to the diagram with the
r-th and (r+ 1)th strand intersecting once and all other strands just vertical, with
the colours on the bottom of the diagram determined by c. (By (1.7) we have
Tre(c) = 0 if cr = 1 = cr+1.) �

The usual affine Hecke algebra Hd(q) has an automorphism # given by (Xi)
# =

X−1
i and (Tr)

# = (q − 1) − Tr = −q(Tr)
−1. We would like to extend it to

the higher level affine Hecke algebra. However, we don’t get an automorphism
of Hd,Q(q) but we get an isomorphism between Hd,Q(q) and Hd,Q−1(q), where

Q−1 = (Q−1
1 , . . . , Q−1

ℓ ). The following is straightforward.

Lemma 1.9. There is an isomorphism of algebras

#: Hd,Q(q) → Hd,Q−1(q),
e(c) 7→ e(c),

Xie(c) 7→ X ′
ie(c), if ci = 0,

Tre(c) 7→ ((q − 1)− Tr)e(c) if cr = cr+1 = 0,
Tre(c) 7→ Tre(c) if cr = 1, cr+1 = 0,
Tre(c) 7→ −QrX

′
rTre(c) if cr = 0, cr+1 = 1.

1.3. The polynomial representation of Hd,Q(q). In this section we generalize
the polynomial representation of the affine Hecke algebra to our higher level version
by extending the action of Hd,Q(q) on a Laurent polynomial ring in d generators
to an action of Hd,Q(q) on a direct sum Pd,Q of Laurent polynomial rings.

Definition 1.10. For each c ∈ Jℓ,d consider the subring

Pd,Q(c) = k[x±1
1 , . . . , x±1

d ] ⊂ k[X±1
1 , . . . , X±1

ℓ+d]

generated by the variables xt = X±1
tc where 1c < 2c < . . . < dc are precisely the

positions of the black strands, that is those indices where c1c = · · · = cdc = 0. Set

Pd,Q =
⊕

c∈Jℓ,d

Pd,Q(c) =
⊕

c∈Jℓ,d

k[x±1
1 , . . . , x±1

d ]e(c). (1.20)

Here e(c) is a formal symbol distinguishing the different direct summands.

Proposition 1.11. There is an action of Hd,Q(q) on Pd,Q defined as follows.

• The element e(c) acts as the projector to the direct summand Pd,Q(c).
• The element Xie(c) acts by multiplication with Xi on Pd,Q(c), if ci = 0

and by zero otherwise. (Recall that Xie(c) = 0 if ci = 1.)
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• The element Tre(c) acts only non-trivially on the summand Pd,Q(c) where
it sends f ∈ Pd,Q(c) to























−sr(f) + (q − 1)
Xr+1

(Xr−Xr+1)
(sr(f)− f) ∈ Pd,Q(c) if cr = cr+1 = 0,

sr(f) ∈ Pd,Q(sr(c)) if cr = 1, cr+1 = 0,
(

Xr+1 −Q∑r+1
j=1 cj

)

sr(f) ∈ Pd,Q(sr(c)) if cr = 0, cr+1 = 1,

0 if cr = cr+1 = 1.

(Recall that Tre(c) = 0 if cr = 1 = cr+1.)

Proof. One directly verifies the relations from Definition 1.3. �

During the proof of Proposition 1.16 we will establish a crucial fact:

Proposition 1.12. The representation from Proposition 1.11 is faithful.

1.4. A basis of Hd,Q(q). The goal of this section is to construct a basis of the
algebra Hd,Q(q). To do this, it is enough to construct a basis of e(b)Hd,Q(q)e(c)
for each b, c ∈ Jℓ,d. First we define for each w ∈ Sd, b, c ∈ Jℓ,d an element
Tb,c
w ∈ e(b)Hd,Q(q)e(c). We define this element using the diagrammatic calculus

as follows: Consider the permutation w and draw a permutation diagram using
black strands representing w with a minimal possible number of crossings. Then
we create the sequence b (resp. c) on the top (resp. bottom) of the diagram by
adding accordingly ℓ red points on the top and ℓ red points on the bottom. Finally
we join the red points on the top with the red points on the bottom by red strands
in such a way that there are no intersections between red strands and such that
a red strand intersects each black strand at most once. The resulting element is
denoted Tb,c

w . By construction it depends on several choices, but we just fix such a
choice for any triple (b, c, w).

Example 1.13. Let d = 3, ℓ = 2, b = (1, 1, 0, 0, 0), c = (0, 1, 0, 0, 1), and w = s1s2s1.
Then there are precisely two choices for the permutation diagram of w, we displayed
one on the left in (1.21). The diagram Tb,c

w involves again a choice. Two of the
possible choices are as follows

(1.21)

Let Hd,Q(q)
6w be the span of the elements of the form T b,c

y f , where b, c ∈ Jℓ,d,

y 6 w and f ∈ Pd,Q(c). Define HQ,<w
ℓ,d similarly.

Lemma 1.14. (1) The subspaces Hd,Q(q)6w and Hd,Q(q)
<w of Hd,Q(q) are

independent of the choices of the elements Tb,c
x .

(2) The different choices of Tb,c
w attached to w, c,b by the construction above

are equal modulo HQ,<w
ℓ,d .

Proof. We prove both parts simultaneously by induction on the length of w. Assume
l(w) = 0. In this case the definition of the element Tb,c

w is independent of any choice
and there is noting to show. Assume now that the statements are true for all w
such that l(w) < n and let us prove them for l(w) = n.

By definition, the vector space Hd,Q(q)<w is spanned by Hd,Q(q)6z for all z < w.
By the induction hypothesis, the vector spaces Hd,Q(q)6z are independent of the
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choices of Tb,c
x such that x 6 z. Thus the vector space Hd,Q(q)

<w is independent of
the choices of Tb,c

y where y < w. This proves the second part of 1.). To prove 2.),

consider two different choices for the diagram Tb,c
w . Then one of them can be

obtained from the other one by applying relations in Definition 1.7, which might
create additional terms, but they are all contained in Hd,Q(q)

<w hence 2.) holds.
Now 1.) follows from 2.) and the part of 1.) which we already established. �

To give a basis of Hd,Q(q), it is convenient to introduce some new elements
x1, . . . , xd ∈ Hd,Q(q). Set xr =

∑
c∈Jℓ,d Xrce(c), where rc is the number of the

position in c where the colour black appears for the rth time (counted from the
left). Then the following statement is obvious from the relations (1.3)-(1.5).

Lemma 1.15. The elements x1, . . . , xd pairwise commute and are invertible.

The following provides two bases of Hd,Q(q).

Proposition 1.16. For each b, c ∈ Jℓ,d, the following sets

{Tb,c
w xm1

1 . . . xmd

d | w ∈ Sd,mi ∈ Z}, {xm1

1 . . . xmd

d Tb,c
w | w ∈ Sd,mi ∈ Z}

each form a basis of e(b)Hd,Q(q)e(c).

Proof. It is clear from the defining relations of Hd,Q(q) that the asserted basis
elements span e(b)Hd,Q(q)e(c). Indeed, we can use relations (1.12) - (1.19) to
write each diagram as a linear combination of diagrams where all dots are above
(resp. below) all intersections and such that two strands intersect at most twice. To
prove the linear independence, it suffices to show that the elements act by linearly
independent operators on the polynomial representation (1.20).

The element Tb,c
w takes k[x±1

1 , · · · , x±1
d ]e(b) to k[x±1

1 , · · · , x±1
d ]e(c) by sending

fe(b) to
∑
y∈Sd,y6w

Cyy(f)e(c), where the Cy ∈ k(x1, · · · , xd) are rational func-
tions such that Cw 6= 0. Since y ∈ Sd acts on the polynomial f by the obvious
permutation y(f) of variables, an expression of the form

∑
w awT

b,c
w or

∑
w T

b,c
w aw,

where aw ∈ k[x±1
1 , . . . , x±1

d ], w ∈ Sd, can only act by zero if each aw is zero. This
implies the linear independence. �

Remark 1.17. In the special case ℓ = 0 these bases are the standard bases of the
affine Hecke algebra from [12, Prop. 3.7], see also [14, Cor. 3.4].

1.5. The centre of Hd,Q(q). Consider the element ω = (1, . . . , 1, 0, . . . , 0) ∈ Jℓ,d.
This means that ω contains the colour red ℓ times followed by the colour black
d times. The following lemma shows that the affine Hecke algebra Hd(q) from
Remark 1.4 can be realised as an idempotent truncation of the higher level affine
Hecke algebra. In particular our diagrams generalize indeed the ordinary permuta-
tion diagrams.

Lemma 1.18. There is an isomorphism of algebras Hd(q) ≃ e(ω)Hd,Q(q)e(ω).

Proof. There is an obvious algebra homomorphism Hd(q)→ e(ω)Hd,Q(q)e(ω) that
adds ℓ red strands to the left of the diagram. It is an isomorphism, because it sends
the standard basis (see Remark 1.17) of the affine Hecke algebra Hd(q) to the basis
of e(ω)Hd,Q(q)e(ω) from Proposition 1.16. �

The group Sd acts on the Laurent polynomial ring Pd,Q(c) for each c ∈ Jℓ,d.
Moreover, the group Sℓ+d acts on Pd,Q such that the permutation w ∈ Sℓ+d sends
the element f ∈ Pd,Q(c) to w(f) ∈ Pd,Q(w(c)). For each c ∈ Jℓ,d, the restriction of
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the projection Pd,Q → Pd,Q(c) to P
Sℓ+d

d,Q yields an isomorphism P
Sℓ+d

d,Q ≃ Pd,Q(c)Sd

of vector spaces. By identifying Pd,Q(c) = k[x±1
1 , . . . , x±1

d ]e(c), we can view Pd,Q
as a subalgebra of Hd,Q(q) containing the algebra k[x±1

1 , . . . , x±1
d ] embedded di-

agonally. Moreover, the subalgebra k[x±1
1 , . . . , x±1

d ]Sd coincides with P
Sℓ+d

d,Q . The

centre Z(Hd,Q(q)) of Hd,Q(q) is then given as follows.

Proposition 1.19. We have Z(Hd,Q(q)) = k[x±1
1 , . . . , x±1

d ]Sd = P
Sℓ+d

d,Q .

Proof. It is clear that P
Sℓ+d

d,Q ⊂ Z(Hd,Q(q)). It suffices to show that the centre

contains not more elements. Let z ∈ Z(Hd,Q(q)). Write z =
∑

c∈Jℓ,d zc, where
zc = ze(c). Then zω ∈ Z(e(ω)Hd,Q(q)e(ω)). Since the centre of the affine Hecke
algebra is formed by symmetric Laurent polynomials, [12, Prop. 3.11], there ex-
ists, by Lemma 1.18, some f ∈ Pd,Q(ω)

Sd such that zω = f . To complete, it
is enough to show that zw(ω) = w(f) ∈ Pd,Q(w(c)) for each w ∈ Sℓ+d. Let

T = T
w(ω),ω
Id . Since z commutes with T , we must have zw(ω)T = Tzω. On the

other hand we have Tzω = Tf = w(f)T . This implies zw(ω) = w(f) because
the map e(w(ω))Hd,Q(q)e(w(ω)) −→ e(w(ω))Hd,Q(q)e(ω), y 7−→ yT is injective by
Proposition 1.16. �

1.6. Completion. For our main result we have to complete the higher level affine

Hecke algebra. We first recall the completion Ĥa(q) of Hd(q) from [14, Sec. 3.3] at
a maximal ideal of Z(Hd(q)). From now on we assume k to be algebraically closed.

For each a = (a1, . . . , ad) ∈ (k∗)d consider the central character χa : Z(Hd(q)) =
k[X±1

1 , . . . , X±1
d ]Sd → k obtained by restriction of the algebra homomorphism

which sends X1, . . . , Xd to a1, a2, . . . , ad respectively. Two such central characters
χa and χa′ coincide if and only if a′ is a permutation of a. Fix now a.

Definition 1.20. We denote by Ĥa(q) the completion of Hd(q) with respect to the
ideal ma of Hd(q) generated by kerχa.

Each finite dimensional Ĥa(q)-module decomposes into its generalised eigen-
spaces M =

⊕
i∈Sda

Mi, for the k[X±1
1 , . . . , X±1

d ]-action, where

Mi = {m ∈M | ∃N ∈ Z>0 such that (Xr − ir)
Nm = 0 ∀r}. (1.22)

For each i ∈ Sda, there is an idempotent e(i) ∈ Ĥa(q) which projects onto Mi when
applied to M . Obviously, 1 =

∑
i e(i) holds.

Definition 1.21. By a topological basis or Schauder basis of a topological k-vector
space V we mean a sequence vi, i ∈ Z>0 of vectors in V such that every element
of V can be expressed uniquely as a convergent series of the form

∑
i∈Z>0

aivi with

ai ∈ k.

We consider now Ĥa(q) with its ma-adic topology. It comes with the usual ma-
adic-order function, namely the order of an element is the minimal number j such

that f is not in m
j
a. This defines a norm on Ĥa(q) and hence we can talk about

topological bases, see [24, VII] for more details.

Proposition 1.22 ([14, Lemma 3.8]). The following set (viewed as a sequence by
picking any total ordering)

{Tw(X1 − i1)
m1 . . . (Xd − id)

mde(i) | w ∈ Sd,mi ∈ Z>0, i ∈ Sda}

forms a topological basis of Ĥa(q).
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Informally speaking this means that every element in Ĥa(q)e(i) can be written

uniquely as a power series in the (Xr − ir) with coefficients in Hfin
d (q), see [24, VII

(8)] for a precise statement. In particular Hd(q) is everywhere dense in Ĥa(q) in
the sense of [24, VII, Lemma 1].

Proposition 1.23 ([14, Cor. 3.13]). The algebra Ĥa(q) acts faithfully on

P̂a =
⊕

i∈Sda

k[[x1 − i1, . . . , xd − id]]e(i).

By Proposition 1.19, the algebra Z(Hd,Q(q)) is independent of the level ℓ and

so we can consider χa as a central character of Hd,Q(q) as well. Let Ĥa,Q(q) be
the completion of Hd,Q(q) with respect to the ideal ma generated by the kernel of
χa in Hd,Q(q). We have again the decomposition (1.22) for each finite dimensional

Ĥa,Q(q)-module M and an idempotent e(i) ∈ Ĥa,Q(q) projecting onto Mi. The
idempotents e(i) for i ∈ Sda commute with the idempotents e(c) for c ∈ Jℓ,d. Thus

we may define idempotents e(c, i) = e(c)e(i) in Ĥa,Q(q). We have 1 =
∑

c,i e(c, i).

Proposition 1.24. (1) The following set (viewed as a sequence by picking any
total ordering)
{
Tb,c
w (x1 − i1)

m1 . . . (xd − id)
mde(c, i)

∣∣∣∣
w ∈ Sd, mi ∈ Z>0,
b, c ∈ Jℓ,d, i ∈ Sda

}

forms a topological basis of Ĥa,Q(q).

(2) The algebra Ĥa,Q(q) acts (extending the actions from Propositions 1.11
and 1.23) faithfully on

P̂a,Q =
⊕

c∈Jℓ,d,i∈Sda

k[[x1 − i1, . . . , xd − id]]e(c, i).

where e(c, i) is just a formal symbol on which e(c, i) acts by the identity
and all other e(c′, j) as zero.

Proof. All statements follow directly from the definitions except the faithfulness.
The action is such that e(c, i) = e(c)e(i) acts as the projector to the direct summand

k[[x1 − i1, . . . , xd − id]]e(c, i). We then write P̂a,Q =
⊕

c∈Jℓ,d P (c), where P (c) =⊕
i∈Sda

k[[x1 − i1, . . . , xd − id]]e(c, i). Then the completion k[[x1 − i1, . . . , xd −

id]]e(i) ⊂ Ĥa,Q(q) acts just by the obvious multiplication on k[[x1 − i1, . . . , xd −
id]]e(i) and by zero on the other summands. There is an action of Sd on P (c)
such that w ∈ Sd sends f(x1 − i1, . . . , xd − id)e(c, i) to f(xw(1) − i1, . . . , xw(d) −
id)e(c, w(i)) where w(i) = (iw−1(1), . . . , iw−1(d)). The action of Sd on P (c) can
therefore be extended to an action on⊕

i∈Sda

k((x1 − i1, . . . , xd − id))e(c, i).

Then the element Tb,c
w takes P (c) to P (b) and sends an element fe(c),

f ∈
⊕

i∈Sda

k[[x1 − i1, . . . , xd − id]]e(c, i),

to an element of the form
∑
y∈Sd,y6w

y(ϕyf)e(b), where we have

ϕy ∈
⊕

i∈Sda

k((x1 − i1, . . . , xd − id))e(c, i)
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and ϕw 6= 0. This implies that an expression of the form
∑
w∈Sd

Tb,c
w aw with

aw ∈ k[[x1 − i1, . . . , xd − id]]e(i) acts on P̂a,Q by zero only if each aw is zero. This

means exactly that the set from the statement of Proposition 1.24 acts on P̂a,Q by

linearly independent operators. It is clear that this set spans the algebra Ĥa,Q(q)

in the topological sense. Hence it forms a topological basis of Ĥa,Q(q), and that

the representation P̂a,Q is faithful. �

2. Affine KLR and tensor product algebras Rν,Q(Γ)

The next goal is to identify our higher level Hecke algebras, after completion,
with Webster’s tensor product algebras, [23], attached to a type A quiver depending
on q and Q. Let J be as in Setup 1.1.

2.1. Tensor product algebras. Let Γ = (I, A) be a quiver without loops with
set of vertices I and set of arrows A. We call elements in I labels since they will be
used later as black and red labels.

Consider the set Icol = J × I with the two obvious projections c : Icol → J and
γ : Icol → I that forget the labels respectively the colours. Obviously, elements
z ∈ Icol are determined by their colour c(z) and their label γ(z), thus we call them
called labels. We call z black if c(z) = 0 and red otherwise. One can also think of
Icol as two copies of I, one copy coloured in black and the other copy coloured in
red.

We fix an ℓ-tuple Q = (Q1, . . . , Qℓ) ∈ I
ℓ.

Definition 2.1. Let ν ∈ Id. Then Icol(ν,Q) denotes the set of (ℓ + d)-tuples t =

(t1, · · · , tℓ+d) ∈ I
ℓ+d
col such that

•
∑ℓ+d

i=1 c(ti) = d (i.e., c(t) contains d black elements and ℓ red elements),
• the labels of black elements in t form a permutation of ν,
• the labels of the red elements of t are Q1, . . . , Qℓ (in this order).

Definition 2.2. A Γ-(ℓ, d)-diagram is an (ℓ, d)-diagram in the sense of Definition 1.6
for the set Ib = Ir = I of vertices of Γ. It is of type (ν,Q), if the sequence of
coloured labels is in Icol(ν,Q).

As before, the labels are read from left to right at the bottom of the diagram.
Since reds strands never cross, we could read off the type (although possibly realized
via a different sequence in the same orbit) at any horizontal slice of the diagram
instead of at the bottom.

Example 2.3. Take ν = (i, i, j) ∈ I3, Q = (i, k) ∈ I2 (in particular, we have d = 3
and ℓ = 2). Then the tuple t = ((i, 1), (j, 0), (i, 0), (i, 0), (k, 1)) is an element of
Icol. The labels of black elements in t are (j, i, i), which is a permutation of ν. The
labels of red elements in t are (i, k), this coincides with Q. If we forget the labels
in t, we get the tuple of colours c(t) = (1, 0, 0, 0, 1) ∈ J2,3.

To define the tensor product algebras we need one more definition. For each
i, j ∈ I we denote by hi,j the number of arrows in the quiver Γ going from i to j,
and define for i 6= j the polynomials

Qij(u, v) = (u− v)hi,j (v − u)hj,i .
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i j

=

i j

unless i = j

i i

=

i i

+

i i i i

=

i i

+

i i

i i

= 0 and

i j

=

ji

Qij(y1, y2) if i 6= j

ki j

=

ki j

unless i = k 6= j

ii j

=

ii j

+

ii j

Qij(y3, y2)−Qij(y1, y2)

y3 − y1
if i 6= j

Figure 3. Tensor product algebra relations I: The KLR relations

Definition 2.4. Fix a d-tuple ν ∈ Id. The tensor product algebra Rν,Q(Γ) (or
simply Rν,Q) is the induced algebra structure on the vector space spanned by all
Γ-(ℓ, d)-diagrams of type (ν,Q) modulo the tensor product algebra relations of KLR
type from Figure 3 and the tensor product algebra relations of the second type from
Figure 4.

Remark 2.5. The special case where we only allow black strands (that is ℓ = 0), is

the KLR algebra R̂ν originally introduced in [8] and [18]. The following elements
(defined for i = (i1, · · · , id) ∈ I

ν , i ∈ [1; d] and r ∈ [1; d− 1])

e(i) =

i1 i2

· · ·

ii

· · ·

id−1 id

and

yie(i) =

i1 i2

· · ·

ii

· · ·

id−1 id
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and

ψre(i) =

i1

· · ·

ir−1 ir ir+1 ir+2

· · ·

id

generate the algebra, see [8], [18].

Now, for i ∈ Icol(ν,Q), r ∈ [1; ℓ+ d − 1], j ∈ [1; ℓ + d] we define more generally
elements e(i), ψre(i), Yie(i) that will generate the algebra Rν,Q.

Definition 2.6. Let e(i) ∈ Rν,Q be the idempotent given by the diagram with only
vertical strands with colours and labels determined by the sequence i. Let Yje(i) be
the same diagram with additionally a dot on the strand number j (counting from
the left) in case ii is black, and set Yje(i) = 0 if ij is red. Finally let ψre(i) be the
same diagram as e(i) except that the r-th and (r + 1)th strand intersect once in
case not both ir and ir+1 are red, and set ψre(i) = 0 otherwise.

Example 2.7. For example, for i = ((i, 1), (j, 0), (i, 0), (i, 0), (k, 1)), we have

e(i) =

i j i i k

with Yre(i) = 0 for r = 1 and r = 5.

We preferred here to define the algebras diagrammatically instead of giving a
cumbersome definition similar to Definition 1.3. Analogously to the situation for
the algebra Hd,Q(q), it is convenient to introduce the elements y1, . . . , yd ∈ Rν,Q
defined as yr =

∑
i∈Id Yrie(i), with ri being the number of the position in i where

the colour black appears for the rth time (counted from the left).

2.2. Polynomial representation. Let Polν,Q be the direct sum

Polν,Q =
⊕

i∈Icol(ν,Q)

k[y1, . . . , yd]e(i),

of polynomial rings, where again e(i) is just a formal symbol. We can also view e(i)
as a projector in Polν,Q to the summand k[y1, . . . , yd]e(i).

For r ∈ [1; d− 1] denote by ∂r the Demazure operator

∂r : k[y1, . . . , yd]→ k[y1, . . . , yd], f 7→ (f − sr(f))/(yr − yr+1). (2.1)

For each i, j ∈ I such that i 6= j, consider the following polynomial Pi,j(u, v) =
(u − v)hi,j . In the case ℓ = 0 we write Rν instead of Rν,Q and Polν instead of
Polν,Q. (The algebra Rν is the usual KLR algebra.) Then we have the following
faithful representation, see [8, Sec. 2.3].

Lemma 2.8. The algebra Rν has a faithful representation on Polν such that

• the element e(i) acts as the projector onto k[y1, . . . , yd]e(i),
• the element yre(i) acts by multiplication with yr on k[y1, · · · , yd]e(i) and by

zero on all other direct summands of Polν ,
• the element ψre(i) acts nontrivially only on k[y1, . . . , yd]e(i) and there as

fe(i) 7→

{
∂r(f)e(i) if jr = jr+1,

Pir ,ir+1(yr, yr+1)sr(f)e(sr(i)) else.
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ij k

=

ij k

+

ij k

δi,j,k

= =

= =

i j

=

ji

δi,j

j i

=

ij

δi,j

Figure 4. Tensor product algebra relations II involving red strands

The following may be deduced from [19, Prop. 4.7, Prop. 4.9] (see also [19,
Fig. 3]). Hereby Polν,Q is realized as a subring of

⊕
i∈Icol(ν,Q) k[Y1, . . . , Yℓ+d]e(i)

via P (y1, . . . , yr)e(i) 7→ P (Y1i , . . . , Ydi)e(i).

Lemma 2.9. The algebra Rν,Q has a faithful representation on Polν,Q such that

• the element e(i) acts as the projector onto k[y1, . . . , yd]e(i),
• the element yre(i) acts by multiplication with yr on k[y1, · · · , yd]e(i) and by

zero on other direct summand of Polν,Q,
• the element ψre(i) acts only nontrivially on k[y1, . . . , yd]e(i), where it sends
fe(i) to





∂r(f)e(i) if c(jr) = c(jr+1) = 0, jr = jr+1,

Pγ(jr),γ(jr+1)(Yr, Yr+1)sr(f)e(sr(i)) if c(jr) = c(jr+1) = 0, jr 6= jr+1,

0 if c(jr) = c(jr+1) = 1,

Yr+1sr(f)e(sr(i)) if c(jr) = 0, c(jr+1) = 1, γ(jr) = γ(jr+1),

sr(f)e(sr(i)) for all other cases.

2.3. Completion. Let m be the ideal in k[y1, . . . , yd] generated by all yr, 1 6 r 6 d.

Definition 2.10. Denote by R̂ν the completion of the algebras Rν at the sequence of

ideals Rνm
jRν . Denote by R̂ν,Q the completion of the algebra Rν,Q at the sequence

of ideals Rν,Qm
jRν,Q.
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Remark 2.11. The faithful polynomial representation ofRν on Polν (see Lemma 2.8)

yields a faithful representation of R̂ν on

P̂olν =
⊕

i∈Iν

k[[y1, · · · , yd]]e(i). (2.2)

The faithful polynomial representation of Rν,Q on Polν,Q (see Lemma 2.9) yields

a faithful representation of R̂ν,Q on

P̂olν,Q =
⊕

i∈Icol(ν,Q)

k[[y1, · · · , yd]]e(i). (2.3)

2.4. The isomorphisms R̂ν ≃ Ĥa(q) and R̂ν,Q ≃ Ĥa,Q(q). Fix q ∈ k such that
q 6∈ {0, 1}. Fix an ℓ-tuple Q = (Q1, . . . , Qℓ) ⊂ (k∗)ℓ.

Consider the following set

F = {qnQm | n ∈ Z,m ∈ [1; ℓ]} ⊂ k∗. (2.4)

We can consider F as a vertex set of a quiver ΓF such that for i, j ∈ F we have
an arrow i → j if and only if we have j = qi. If q is an eth root of unity, then
the quiver ΓF is a disjoint union of at most ℓ oriented cycles of length e. If q is
not a root of unity, then the quiver ΓF is a disjoint union of at most ℓ (two-sided)
infinite oriented linear quivers. Then Q can be considered as an ℓ-tuple of vertices
of the quiver ΓF . In this section we assume that the KLR algebra and the tensor
product algebra are defined with respect to the quiver ΓF . In particular we have
I = F . We also assume ν = a. Then we have Iν = Sda.

First, we recall the isomorphism R̂ν ≃ Ĥa(q) from [14, Thm. 7.3]. For this we

identify the vector spaces P̂olν and P̂a via

P̂olν → P̂a, −iryre(i) 7→ (Xr − ir)e(i). (2.5)

Proposition 2.12 ([14, Thm. 7.3]). There is an isomorphism R̂ν ≃ Ĥa(q) of
algebras sending e(i) to e(i), yre(i) to −γ(ir)

−1(Xr − γ(ir))e(i) and ψre(i) to the
expression in (2.6) below.

Proof. It is enough to check that the induced actions of the generators and their
images agree on the (faithful) polynomial representations (2.5). This is straightfor-

ward noting that the element ψre(i) ∈ R̂ν acts as



− ir
Xr−qXr+1

(Tr + 1)e(i) if ir = ir+1,

i−1
r q−1((Xr −Xr+1)Tr + (q − 1)Xr+1)e(i) if qir = ir+1,(
1− Xr−Xr+1

Xr−qXr+1
(Tr + 1)

)
e(i) else,

(2.6)

and so the claim follows. �

We extend this now to an isomorphism Ĥa,Q(q) ≃ R̂ν,Q. First, note that we
have an obvious bijection Icol(ν,Q) ≃ Jℓ,d × Sda. This is important because the

algebra R̂ν,Q has idempotents parametrised by Icol(ν,Q) and the algebra Ĥa,Q(q)
has idempotents parametrised by Jℓ,d ×Sda.

We identify the vector spaces underlying the polynomial representations, P̂olν,Q
for R̂ν,Q and P̂a,Q for Ĥa,Q(q), via

P̂olν,Q → P̂a,Q, −γ(ir)Yre(i)→ (Xr − γ(ir))e(i) if c(ir) = 0. (2.7)

(Recall that both Yre(i) and Xre(i) are zero if c(ir) = 1.)
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Theorem 2.13. There is an isomorphism of algebras R̂ν,Q ≃ Ĥa,Q(q) extending
the isomorphism from Proposition 2.12.

Proof. Abbreviate (†) = q−1 1
γ(ir)

((Xr − Xr+1)Tr + (q − 1)Xr+1). We claim that

sending ψre(i) ∈ R̂ν,Q to the element




−γ(ir)
Xr−qXr+1

(Tr + 1) if ir = ir+1, c(ir) = c(ir+1) = 0,

(†) if qγ(ir) = γ(ir+1), c(ir) = c(ir+1) = 0,

(1− Xr−Xr+1

Xr−qXr+1
(Tr + 1))e(i) for all other cases with c(ir) = c(ir+1) = 0,

Tre(i) if c(ir) = 1, c(ir+1) = 0,
−1
γ(ir)

Tre(i) if c(ir) = 0, c(ir+1) = 1, γ(ir) = γ(ir+1),
1

(Xr+1−γ(ir+1))
Tre(i), if c(ir) = 0, c(ir+1) = 1, γ(ir) 6= γ(ir+1),

defines an isomorphism as claimed. Clearly this makes the map unique, since
we specified the image of on a set of generators and moreover surjective, since

the generators of Ĥa,Q(q) are in the image. To show well-definedness and that
it is an isomorphism it suffices to show that the action of the generators agrees
with that of their images on the (faithful) polynomial representations (2.7). For

the idempotents e(i) ∈ R̂ν,Q this is clear, and the element Yre(i) ∈ R̂ν,Q acts as

−γ(ir)
−1(Xr − γ(ir))e(i) ∈ Ĥa,Q(q) if c(ir) = 0. (Recall that if c(ir) = 1 then

both Xre(i) and Yre(i) are zero.) Since ψre(i) ∈ R̂ν,Q acts exactly as its proposed
image (recalling that if c(ir) = c(ir+1) = 1 then both Tre(i) and ψre(i) are zero),
the claim follows. �

Remark 2.14. It is useful to give an explicit inverse of the isomorphism from The-
orem 2.13. The element Tre(i) acts on the polynomial representation by the same
operator as




(−1 + (q − 1 + Yr − qYr+1)ψr) e(i) if ir = ir+1, c(ir) = c(ir+1) = 0,(
q(q−1)(Yr+1−1)
1−q−Yr+qYr+1

+ qψr

q−1−qYr+Yr+1

)
e(i) if qγ(ir) = γ(ir+1), c(ir) = c(ir+1) = 0,(

(1−q)γ(ir+1)(1−Yr+1)
γ(ir)(1−Yr)−γ(ir+1)(1−Yr+1)

−

γ(ir+1)(1−Yr)−qγ(ir)(1−Yr+1)
γ(ir+1)(1−Yr)−γ(ir)(1−Yr+1)

ψr

)
e(i), otherwise, with c(ir) = c(ir+1) = 0,

ψre(i) if c(ir) = 1, c(ir+1) = 0,

(γ(ir)(1− Yr+1)− γ(ir+1))ψre(i) if γ(ir) 6= γ(ir+1), c(ir) = 0, c(ir+1) = 1,

−γ(ir)ψre(i) if γ(ir) = γ(ir+1), c(ir) = 0, c(ir+1) = 1.

3. Higher level affine Schur algebras Sd,Q(q)

We recall the definition of the (ordinary) affine Schur algebra as it appears for
instance in [5], [14], [21] and then generalize it to a higher level version.

3.1. Affine Schur algebras. For each non-negative integer d, a composition of d
is a tuple λ = (λ1, . . . , λr) (the number r, called the length l(λ) of λ, is not fixed)
such that

∑r
i=1 λi = d and λi > 0. If λ is a composition of d, we write |λ| = d.

Denote by Cd the set of compositions of d. We use the convention that C0 contains
a unique composition which is empty. For each λ = (λ1, . . . , λr) ∈ Cd denote by Sλ

the parabolic (or Young) subgroup

Sλ = Sλ1 × . . .×Sλr
⊂ Sd. (3.1)
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Its unique longest element is denoted by wλ. Moreover, let Dλ,µ be the set of
shortest length representatives for the double cosets Sλ\Sd/Sµ. We also write
D∅,µ and Dλ,∅ for the sets of shortest length representatives of the cosets Sd/Sµ

and Sλ\Sd respectively. Attached to this subgroup, let mλ ∈ Hd(q) be defined by

mλ =
∑

w∈Sλ

(−q)l(wλ)−l(w)Tw. (3.2)

We consider mλHd(q) as a right Hd(q)-module.

Definition 3.1. The affine Schur algebra is the algebra

Sd(q) = EndHd(q)

(⊕

λ∈Cd

mλHd(q)

)
. (3.3)

The algebra Sd(q) has idempotents e(λ), λ ∈ Cd given by the projection tomλHd(q).

3.2. Generators of Sd(q) and thick calculus. Next we introduce the thick cal-
culus for the algebra Sd(q).

Let λ, µ ∈ Cd and assume that µ is obtained from λ by splitting one com-
ponent of λ. In other words, there is an index t such that µ is of the form
(λ1, . . . , λt−1, λ

′
t, λ

′′
t , λt+1, . . . , λl(λ)), where λ′t and λ′′t are positive integers such

that λ′t + λ′′t = λt. In this case we say that µ is a split of λ and that λ is a merge
of µ (at position t).

Definition 3.2. Assume µ is a split of λ. We define the special elements in Sd(q):

the split morphism mλx 7→ mµx ∈ HomHd(q)(mλHd(q),mµHd(q)),

the merge morphism mµx 7→ mλx ∈ HomHd(q)(mµHd(q),mλHd(q)).

More generally, if µ is a refinement of the composition λ we have the correspond-
ing split morphism, denoted (λ→ µ), and the corresponding merge morphism, de-
noted (µ→ λ), defined in the obvious way. They are the compositions of the splits
(respectively merges) describing the refinement. Note that the order in the compo-
sition does not matter because of the associativity property of splits and merges,
[14, Lemma 6.5 (twisted with the automorphism ♯)]. The idempotents e(λ), splits,
merges and multiplication with (invariant) polynomials generate the algebra Sd(q)
see [14, Prop. 6.19].

We draw the generators as diagrams that are similar to the diagrams for Hd(q)
from Definition 1.7. The differences are that the black strands are now allowed
to have a higher thickness (corresponding to multiplicities of the labels given by a
nonnegative integer), the diagrams representing the generators are now of the form

a b

a+ b a b

a+ b

(3.4)

and each strand with thickness b is allowed to carry now any symmetric Laurent
polynomial in b variables instead of dots.

Definition 3.3. Let λ, µ ∈ Cd. We draw the idempotent e(λ) ∈ Sd(q) given by the
identity endomorphism of the right Hd(q)-module mλHd(q) as a diagram with l(λ)
vertical strands labelled by the parts of λ,
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e(λ) 7→

λ1 λ2

· · ·

λl(λ)

Let f ∈ k[x±1
1 , . . . , x±1

d ]Sλ be of the form f = f1 · · · fl(λ), where fj is a symmetric
Laurent polynomial containing only variables with indices in [λ1+. . .+λj−1+1; λ1+
. . .+ λj ]. Then we associate to fe(λ) ∈ Sd(q) the diagram

fe(λ) 7→

λ1

f1

λ2

f2 · · ·

λl(λ)

fl(λ)

Since any f ∈ k[x±1
1 , . . . , x±1

d ]Sλ can be written as a sum of polynomials of the
form f1 . . . fl(λ), the notation fe(λ) makes sense for any such f . In the special case
where λi = 1 the ith strand is allowed to carry any Laurent polynomial in the
variable xi, in particular it can carry dots as in our notation before.

We assign to a split λ → µ of the form (a + b) → (a, b) (respectively a merge
(a, b)→ (a + b)) the first (resp. second) diagram in (3.4), and if the compositions
have more parts we add additionally vertical strands to the left and to the right
labelled by the remaining components.

Remark 3.4. The algebra Sd(q) can be realized more conceptually as a quotient of
the algebra structure on the direct sum of homomorphism spaces of certain objects
in the following category with Ib = (Z>0,+). The objects we take are all tensor
products of black labels such that the sum of the labels is d, and Ra is the ring of

symmetric Laurent polynomials in a variables. The strands with labels f is then

the image the dot morphism for f . Note that hereby Ir does not play any role.

Definition 3.5. Let Ir be a set and Ib an additive monoid. The universal thick-
ened higher level category corresponding to this pair is the k-linear strict monoidal
category generated as monoidal category by objects a ∈ Ib, called black labels and
objects Q ∈ Ir, called red labels, and by the following morphisms:

• the split morphisms a+b −→ a⊗b and the merge morphisms a⊗b −→ a+b
for any a, b ∈ Ib given abstractly by diagrams (3.4),

• the crossings
Qa

: a⊗Q −→ Q⊗ a and
Q i

: Q ⊗ i −→ i⊗Q,

• the dot morphisms
a

f
: a −→ a for a ∈ Ib and f ∈ Ra for some fixed

commutative ring Ra depending on a.

The monoidal structure is again horizontal placement, the composition of mor-
phisms vertical placement. We impose the relation that the composition of two
dot morphisms with the same thickness, say for f1 and f2 ∈ Ra, equals the dot
morphism for f1f2 ∈ Ra.

Remark 3.6. The affine Hecke algebra Hd(q) is an idempotent truncation of Sd(q).
The thick calculus in Sd(q) generalizes the diagrammatic calculus in Hd(q) in the
sense that each usual Hecke strand can be viewed as a strand of thickness 1 and
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R1 = k[X ], the usual polynomial ring in one variable. The dot morphism using •
is just the abbreviation for the dot morphism for X ∈ R1.

Remark 3.7. One would like to have an analogue of Lemma 1.8 for the Schur
algebras, that is an explicit presentation in terms of the generators in the universal
thickened higher level category modulo explicit relations. This is so far not known.
In [5] solved the analogous problem in case of generic q for a Morita equivalent
algebra using similar generators. It would be nice to be able to generalize this
result to our setting.

It is also convenient to explicitly specify a few more elements of Sd(q). For this
let λ, µ ∈ Cd and assume that µ is obtained from λ by swapping λt and λt+1 for
some t. Let ν be the merge of λ at position t. Denote by w(λ/µ) the shortest coset
representative in Sν/Sλ of wν . (As a permutation diagram one might draw a cross
as displayed in (3.5) indicating that λt elements get swapped with λt+1 elements
keeping the order inside the groups.) Then with T = Tw(λ/µ) ∈ Hd(q) it holds
Tmλ = mµT in Hd(q).

Definition 3.8. The corresponding black crossing is the element of Sd(q) which is
only nonzero on the summand mλHd(q) and there given by mλHd(q)→ mµHd(q),
mλh 7→ Tmλh = mµTh. We draw this element in the following way.

λ1

· · ·

λt λt+1

· · ·

λl(λ)
(3.5)

Lemma 3.9. A black crossing can be written as a product of splits, merges and
Laurent polynomials.

Proof. [14, Prop. 6.19] using [14, (3.6)] and the definition [14, (4.3)]. �

3.3. Demazure operators. For each w ∈ Sd, fix a reduced expression w =
sk1 . . . skr and define ∂w = ∂k1 . . . ∂kr using the Demazure operators from (2.1).
This definition is independent of the choice of a reduced expression, see [3, Thm. 1].

Definition 3.10. Set Dd = ∂wd
, where wd is the longest element in Sd. For positive

integers a and b such that a+b = d let Da,b = ∂wa,b
with wa,b ∈ Sd the permutation

wa,b(i) =

{
i+ b if 1 6 i 6 a,

i− a if a < i 6 a+ b.

We need the following well-known symmetrizing properties of these operators:

Lemma 3.11. (1) For each polynomial f , the polynomial Dd(f) is symmetric.
(2) In case f is Sa ×Sb-symmetric, then Da,b(f) is symmetric.

Proof. The first property follows directly from the definition. Moreover, it is easy
to see that each symmetric polynomial is in the image of the operator Dd.

Then the second statement follows because for each Sa×Sb-symmetric polyno-
mial f we can find a polynomial g such that Da,b(f) = Da+b(g). �
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3.4. Polynomial representation of Sd(q). By definition, the algebra Sd(q) has
a faithful representation on the vector space

⊕
λ∈Cd

mλHd(q). We will construct a

faithful polynomial representation of Sd(q) on

sPd =
⊕

λ∈Cd

k[x±1
1 , . . . , x±1

d ]Sλe(λ)

realized as a subrepresentation of the defining representation.
Fix λ ∈ Cd. We will say that the indices i, j ∈ [1; d] are in the same block for λ

if there exists some t such that
t−1∑

a=1

λa < i, j 6

t∑

b=1

λa.

Definition 3.12. We consider the following polynomials depending on λ:

−→p λ =
∏

i<j

(xi − qxj),
←−p λ =

∏

i<j

(xj − qxi)

where the product is taken over all i, j ∈ [1; d] such that i and j are in the same
block with respect to λ. Set also nλ =

∑
w∈Sλ

Tw and n′
λ =

∑
w∈Dλ,∅

Tw.

For instance, if λ = (2, 3) then
−→p λ = (x1 − qx2)(x3 − qx4)(x3 − qx5)(x4 − qx5),
←−p λ = (x2 − qx1)(x4 − qx3)(x5 − qx3)(x5 − qx4).

Definition 3.13. For each λ ∈ Cd we define the following linear map

Φλ : k[x±1
1 , . . . , x±1

d ]Sλ → mλHd(q), f 7→ mλ
−→p λfn

′
λ. (3.6)

which is in fact an inclusion by Corollary 3.17 below, since mλ
−→p λfn

′
λ =←−p λfnd.

Lemma 3.14. Let λ, µ ∈ Cd and assume that µ is a split of λ.

(1) The split in HomHd(q)(mλHd(q),mµHd(q)) applied to the image of Φλ is
contained in the image of Φµ.

(2) The merge in HomHd(q)(mµHd(q),mλHd(q)) applied to the image of Φµ is
contained in the image of Φλ.

The proof will be given in Section 3.5. We will also need the following auxiliary
polynomials. Assume that a and b are positive integers such that a+ b = d.

−→p ′
a,b =

∏

16i6a<j6b

(xi − qxj),
←−p ′
a,b =

∏

16i6a<j6b

(xj − qxi).

Proposition 3.15. The algebra Sd(q) has a faithful representation in sPd such that
the generators act as follows, using the abbreviation P = k[x±1

1 , . . . , x±1
d ].

• The idempotent e(λ), λ ∈ Cd, acts on sPd as the projection to PSλe(λ).
• For each g ∈ PSλ , λ ∈ Cd, the element ge(λ) sends fe(λ) ∈ PSλe(λ) to
gfe(λ).
• Assume µ is a split of λ at position j. Then the split map λ → µ acts by

sending fe(λ) ∈ PSλe(λ) to ←−p ′
a,bfe(µ) and the merge map acts by sending

fe(µ) ∈ PSµ to Da,b(f)e(λ) in case λ = (a+b) and µ = (a, b) with a+b = d.
In the general case they act by the same formulas with a = µj, b = µj+1,
where ←−p ′

a,b and Da,b are defined with respect to the variables xi such that

i ∈ [λ1 + . . .+ λj−1 + 1;λ1 + . . .+ λj−1 + λj ].
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Proof. The existence of such a representation follows from (3.3), Lemma 3.14 and
from the fact that the algebra Sd(q) is generated by the idempotents e(λ), splits,
merges and multiplications with (invariant) polynomials.

Assume this representation is not faithful. Then we can find λ, µ ∈ Cd and a
nonzero φ ∈ HomHd(q)(mλHd(q),mµHd(q)) such that φ acts by zero on the polyno-
mial representation. Let us compose φ with the split (d)→ λ on the right. Then we
get (as splits are injective) a nonzero element ψ ∈ HomHd(q)(mdHd(q),mµHd(q))
that acts by zero. By construction of the polynomial representation, this implies
ψ(md

−→p d) = 0 and thus ψ(md)
−→p d = 0. Since Hd(q) is a free right P -module, this

implies ψ(md) = 0 and thus ψ = 0. This is a contradiction. �

3.5. Some useful relations in the affine Hecke algebra. To prove Lemma 3.14
we need to establish some explicit formulas which we think are of interest by them-
selves. In particular we want to understand the action of the special elements

md =
∑

w∈Sd

(−q)l(wd)−l(w)Tw, nd =
∑

w∈Sd

Tw, n′
a,b =

∑

w∈D(a,b),∅

Tw

from Sections 3.2, 3.4 on the polynomial representation of Hd(q).

Lemma 3.16.

(1) The element md acts on the polynomial representation as Dd
←−p d.

(2) The element nd acts on the polynomial representation as −→p dDd.

Proof. Let A = k(X1, . . . , Xd)#k[Sd] be the subalgebra of linear endomorphisms of
k(X1, . . . , Xd) generated the multiplications with the Xi’s and by the permutations
of variables for w ∈ Sd. The algebra A is free as a left k(X1, . . . , Xd)-module with
for instance the bases

{w | w ∈ k[Sd]} respectively {Tw | w ∈ Sd}, (3.7)

where Tw is the endomorphism given as the composition of endomorphisms Tr =
Tsr = −sr − (q − 1)Xr+1∂r according to a reduced expression. Let N be the left
k(X1, . . . , Xd)-submodule of A generated by {w ∈ Sd | w 6= wd}. Note that N
is equal to the left submodule of A generated by {Tw | w 6= wd}. Moreover, the
submodule N does not change if we replace "left" by "right".

To prove the first statement write Dd
←−p d in the form Dd

←−p d =
∑
w Twaw, where

aw ∈ k(X1, . . . , Xd). We need to show aw = (−q)l(wd)−l(w). Since the Demazure
operator Dd sends rational functions to symmetric rational functions and Tr act by
−1 on symmetric rational functions, we have TrDd

←−p d = −Dd
←−p d for each r, hence

Tr

(∑

w

Twaw

)
= −

(∑

w

Twaw

)
.

This implies −qasrw = aw for each w such that l(w) < l(srw), and it suffices to

show awd
= 1. Because Tr can be written as Tr = −Xr−qXr+1

Xr−Xr+1
sr −

(q−1)Xr+1

Xr−Xr+1
we

have

Twd
≡ (−1)l(wd)

∏

16a<b6d

Xa − qXb

Xa −Xb
wd ≡ (−1)l(wd)wd

∏

16a<b6d

Xb − qXa

Xb −Xa
,

where ≡ means equality modulo the subspace N . Thus

wd ≡ (−1)l(wd)Twd

∏

16a<b6d

Xb −Xa

Xb − qXa
.



HIGHER LEVEL AFFINE SCHUR AND HECKE ALGEBRAS 25

Finally, we can write

Dd ≡
∏

16a<b6d

1

Xa −Xb
wd ≡ (−1)l(wd)wd

∏

16a<b6d

1

Xb −Xa

and therefore Dd = Twd

∏
16a<b6d

1
Xb−qXa

+ n for some n ∈ N . This implies

awd
= 1 and hence the first statement follows.

To prove the second statement write Dd in the form Dd =
∑

w bwTw, where
bw ∈ k(X1, . . . , Xd). It then suffices to show bw = 1

−→p d
. Since Dd sends rational

functions to symmetric rational functions and Tr acts by −1 on symmetric rational
functions, we have TrDd = −Dd. This yields

Tr

(∑

w

bwTw

)
= −

(∑

w

bwTw

)
.

Using the relation Trbw = sr(bw)Tr − (q − 1)Xr+1∂r(bw) we deduce that for each
w with l(srw) > l(w) we have

−bsrw = sr(bw) + (q − 1)sr(bsrw)− (q − 1)Xr+1∂r(bsrw). (3.8)

Clearly, the rational functions bw are determined by bwd
and (3.8). Thus it

suffices to show bwd
= 1

−→p d
and that bw = 1

−→p d
satisfy the relations (3.8). We have

−
1
−→p d

= sr

(
1
−→p d

)
+ (q − 1) sr

(
1
−→p d

)
− (q − 1)Xr+1∂r

(
1
−→p d

)
,

and since −→p d is a product of Xr − qXr+1 by an element that commutes with sr
and ∂r, it is enough to verify that − 1

Xr−qXr+1
equals

sr

(
1

Xr − qXr+1

)
+ (q − 1)sr

(
1

Xr − qXr+1

)
− (q − 1)Xr+1∂r

(
1

Xr − qXr+1

)
.

which is straightforward. The proof of bwd
= 1

−→p d
is similar to the arguments in the

first part, namely we have

Dd ≡
∏

16a<b6d

1

Xa −Xb
wd ≡

∏

16a<b6d

1

Xa − qXb
Twd

,

which implies the claim. �

We obtain the following generalization of the easy equality in Hd(q)

(Tr − q)(Xr − qXr+1) = (Xr+1 − qXr)(Tr + 1). (3.9)

Corollary 3.17. We have the equality md
−→p d =

←−p dnd in Hd(q).

Proof. This follows from Lemma 3.16 and from the symmetricity of ←−p d
−→p d. �

We also need to know how n′
a,b acts on the polynomial representation. In light of

Lemma 3.16 it would be natural to expect that n′
a,b acts as−→p ′

a,bDb,a. Unfortunately,
this is not true is general. However, the following lemma shows that this becomes
true in the presence of nan

+a
b on the left of n′

a,b. Here we mean that n+a
b is

defined with respect to the shifted indices a+1, . . . , a+b, i.e., with the composition
ν = (1, 1, . . . , 1, b) of d we have

n+a
b =

∑

w∈Sν

Tw.
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We will use analogously the notations m+a
b , −→p +a

b , ←−p +a
b and D+a

b .

Lemma 3.18. The element nan
+a
b n′

a,b acts on the polynomial representation as

(−→p aDa)(
−→p +a
b D+a

b )(−→p ′
a,bDb,a).

Proof. The statement follows directly from Lemma 3.16 (b). Indeed, the product
nan

+a
b n′

a,b is equal to na+b and the product (−→p aDa)(
−→p +a
b D+a

b )(−→p ′
a,bDb,a) is equal

to −→p a+bDa+b. �

Proof of Lemma 3.14. It is enough to prove these statements in the case where
µ has only two components and λ has only one component. Assume therefore
µ = (a, b) and λ = (a+ b). We have mµ = mam

+a
b and mλ = ma+b.

To prove the first part fix f ∈ k[x±1
1 , . . . , x±1

d ]Sλ . Then Φλ(f) = ma+b
−→p a+bf ,

and the split sends Φλ(f) to the element ma+b
−→p a+bf ∈ mµHd(q). We have to

check that it is in the image of Φµ. Now, we have

ma+b
−→p a+bf = ←−p a+bna+bf = ←−p a

←−p +a
b
←−p ′
a,bnan

+a
b n′

a,bf

= ←−p a
←−p +a
b nan

+a
b
←−p ′
a,bfn

′
a,b = mam

+a
b
−→p a
−→p +a
b
←−p ′
a,bfn

′
a,b

= Φµ(
←−p ′
a,bf).

Here the first and the fourth equalities follow from Corollary 3.17. The third
equality follows since ←−p ′

a,b is symmetric with respect to the first a and the last

b variables, and f is symmetric. Hence the split (a + b) → (a, b) sends Φλ(f) to
Φµ(
←−p ′
a,bf). This proves the first statement.

To prove the second part fix f ∈ k[x±1
1 , . . . , x±1

d ]Sµ . We show that Φµ(f) is sent
by the split to Φλ(Da,b(f)), in formulas

ma+b
−→p a
−→p +a
b fn′

a,b = ma+b
−→p a+bDa,b(f). (3.10)

By Lemmas 3.16, and 3.18 it suffices to verify, for any g ∈ k[x±1
1 , . . . , x±1

d ], that

Da+b

(←−p a+b−→p a−→p +a
b f−→p ′

a,bDb,a(g)
)

= Da+b (
←−p a+b

−→p a+bDa,b(f)g) . (3.11)

(Note that it is not obvious that we are allowed to apply Lemma 3.18 here,
because we have no "nan

+a
b " on the left of "n′

a,b" in the formula on the left hand

side of (3.10). But we can write ma+b in the form xmam
+a
b and rewrite the left

hand side of (3.10) using Corollary 3.17 as follows

ma+b
−→p a
−→p +a
b fn′

a,b = xmam
+a
b
−→p a
−→p +a
b fn′

a,b = x←−p a
←−p +a
b fnan

+a
b n′

a,b,

which allows us apply the lemma.) Since, the polynomials −→p a+b
←−p a+b and Da,b(f)

are symmetric, the right hand side of (3.11) is equal to −→p a+b
←−p a+bDa,b(f)Da+b(g).

It agrees with the left hand side of (3.11) by the calculation

Da+b

(
←−p a+b

−→p a
−→p +a
b f−→p ′

a,bDb,a(g)
)
= Da+b (

←−p a+b
−→p a+bfDb,a(g))

= ←−p a+b
−→p a+bDa+b (fDb,a(g)) =

←−p a+b
−→p a+bDa,bDaD

+a
b (fDb,a(g))

= ←−p a+b
−→p a+bDa,b

(
fDaD

+a
b Db,a(g)

)
= ←−p a+b

−→p a+bDa,b (fDa+b(g))
= ←−p a+b

−→p a+bDa,b(f)Da+b(g).

Here the second equality follows since ←−p a+b
−→p a+b is symmetric. The fourth

equality follows because f is symmetric in the first a and last b variables. The sixth
equality follows since Da,b(f) is symmetric. This proves (3.11). �
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3.6. Higher level affine Schur algebra. Now we define the higher level version
Sd,Q(q) of the algebra Sd(q) depending on Q = (Q1, . . . , Qℓ) ∈ kℓ.

Definition 3.19. An (ℓ+ 1)-composition of d is an (ℓ+ 1)-tuple λ = (λ(0), . . . , λ(ℓ))
such that λ(0), . . . , λ(ℓ) are compositions (of some non-negative integers) such that∑ℓ
i=0 |λ

(i)| = d. Denote by Cℓd the set of (ℓ + 1)-compositions of d. For λ =

(λ(0), . . . , λ(ℓ)) ∈ Cℓd let Sλ = Sλ(0) × . . . × Sλ(ℓ) ⊂ Sd be the corresponding

parabolic subgroup of Sd. For each (ℓ + 1)-composition λ of d we denote by [λ
(k)
r ]

the subset of {1, 2, . . . , d} that contains the elements

from 1 +

k−1∑

i=0

|λ(i)|+

r−1∑

j=1

λ
(k)
j to

k−1∑

i=0

|λ(i)|+

r∑

j=1

λ
(k)
j .

Note that the set [λ
(k)
r ] depends on λ, r and k (not only on the number λ

(k)
r ).

To λ ∈ Cℓd we attach the following element mλ ∈ Hd,Q(q),

mλ = mλ(0)

Q1

mλ(1)

Q2

· · ·

Qℓ−1

mλ(ℓ−1)

Qℓ

mλ(ℓ)

We consider mλHd,Q(q) as a right Hd,Q(q)-module.

Definition 3.20. The affine Schur algebra (of level ℓ) is the algebra

Sd,Q(q) = EndHd,Q(q)


⊕

λ∈Cℓ
d

mλHd,Q(q)


 . (3.12)

We could define nλ similarly to mλ and consider the following modification of
the affine Schur algebra defined in terms of nλ instead of mλ:

Sd,Q(q) = EndHd,Q(q)


⊕

λ∈Cℓ
d

nλHd,Q(q)


 .

Using the isomorphism #: Hd,Q(q)→ Hd,Q−1(q) in Lemma 1.9 we have (nλ)
# =

mλ (up to a sign). This implies directly the following.

Lemma 3.21. There is an isomorphism of algebras Sd,Q(q)→ Sd,Q−1(q).

We introduce now the thick calculus for the algebra Sd,Q(q) extending the dia-
grammatic calculus for Hd,Q(q) and Sd(q). We draw special elements of this algebra
as diagrams that are similar to the special diagrams for Hd,Q(q). The difference
is that the black strands are also allowed to have "multiplicities" (that are posi-
tive integers). We also allow the diagrams to contain locally elements of the form
(3.4). Instead of dots, a segment of a strand of multiplicity b is allowed to carry a
symmetric Laurent polynomial of b variables.

3.7. Generators of Sd,Q(q). For each λ ∈ Cℓd there is an idempotent e(λ) ∈ Sd,Q(q)
given by the identity endomorphism of the summand mλHd,Q(q). We draw it as

e(λ) =

λ
(0)
1 λ

(0)
2

· · ·

Q1λ
(1)
1 λ

(1)
2

· · ·

Q2λ
(2)
1 λ

(2)
2

· · · · · · · · ·

Qℓλ
(ℓ)
1 λ

(ℓ)
2

· · ·
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Let µ be another (ℓ + 1)-composition of d. We say that µ is a split of λ (and λ
is a merge of µ) if there is a t such that the component µ(t) of µ is a split of the
component λ(t) of λ (in the sense of Section 3.2) and µ(i) = λ(i) if i 6= t. In this
case we can define the split map λ → µ and the merge map µ → λ in Sd,Q(q) in
the same way as in Section 3.2. We draw the split and merge map for λ = (a+ b)
and µ = (a, b) as in (3.4) and for arbitrary λ, µ by adding the appropriate vertical
strands to the left and right.

Definition 3.22. Assume λ, µ ∈ Cℓd such that µ is obtained from λ by moving the

first component of λ(t) to the end of λ(t−1) for some t ∈ [1; ℓ]. More precisely, we

assume λ(i) = µ(i) for i 6= t − 1, t and µ(t−1) = (λ
(t−1)
1 , λ

(t−1)
2 , . . . , λ

(t−1)

l(λ(t−1))
, λ

(t)
1 )

and µ(t) = (λ
(t)
2 , λ

(t)
3 , . . . , λ

(t)

l(λ(t))
). In this case we say that µ is a left crossing of λ

and that λ is a right crossing of µ.

To a left crossing µ of λ we assign the two special elements in Sd,Q(q) given by
left multiplication with

Qt

. . .
respectively

. . .

Qt

(3.13)

where in either case we have λ
(t)
1 parallel black strands crossing the involved red

strand and all other strands (which we did not draw) are just vertical. Such a mul-
tiplication yields an element of HomHd,Q(q)(mλHd,Q(q),mµHd,Q(q)) respectively
of HomHd,Q(q)(mµHd,Q(q),mλHd,Q(q)) because of the relations (1.18). Thus by
extending by zero to the other summands we obtain indeed an element of Sd,Q(q).
We call these elements of Sd,Q(q) left crossings respectively right crossings, denote
them λ→ µ respectively λ→ µ and usually draw them just as

Qt λ
(t)
1

respectively

λ
(t)
1

Qt

(3.14)

(with possibly vertical strands to the left and right). Similarly to Section 3.2, for
each λ ∈ Cℓd and f ∈ k[x±1

1 , . . . , x±1
d ] we have an element fe(λ) ∈ Sd,Q(q).

Remark 3.23. Similarly, to Section 3.2, we could introduce a black crossing in
Sd,Q(q). But this element can be expressed in terms of other generators of Sd,Q(q).

Remark 3.24. One could again realize Sd,Q(q) as a quotient of an algebra structure
on the direct sum of homomorphism spaces in the universal thickened higher level
category, where we take Ir = k∗, Ib = (Z>0,+) and again for Ra the ring of
symmetric Laurent polynomials in a variables. The objects to consider are all tensor
products of black and red labels, such that the sum of the black labels is d and the
sequence of red labels is Q. Since we do not know the defining relations for Sd,Q(q)
we do not follow this viewpoint here. In particular, the faithful representation
constructed below becomes crucial. Similar remarks also apply to the (higher level)
quiver Schur algebras in Section 4.
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3.8. Polynomial representation of Sd,Q(q). By definition, (3.12), the algebra
Sd,Q(q) has a faithful representation on the vector space

⊕
λ∈Cℓ

d
mλHd,Q(q). In

this section we are going to construct a polynomial representation

sPd,Q =
⊕

λ∈Cℓ
d

k[x±1
1 , . . . , x±1

d ]Sλe(λ)

of the algebra Sd,Q(q) sitting inside the defining representation.

Definition 3.25. For each λ ∈ Cℓd we denote

• by λ the elements of Cd obtained by concatenation of the ℓ+1 components
of λ, i.e., we have λ = λ(0) ∪ . . . ∪ λ(ℓ), where ∪ denotes the concatenation
of compositions; and
• by e0(λ) the idempotent in Hd,Q(q) obtained from e(λ) by replacing each

vertical black strand of multiplicity a (for each positive integer a) by a usual
(multiplicity 1) vertical black strands; and
• by rλ the element of Hd,Q(q) represented by the diagram defined by the

following three properties. The top part of the diagram corresponds to the
idempotent e0(λ). At the bottom of the diagram, each red strand is on
the left of each black strand. The diagram may contain left crossings, but
neither dots, splits, merges nor right crossings.

Example 3.26. Take ℓ = 2, λ = ((1), (2, 1), (1, 2)). In this case we have

e(λ) =

1 Q1 2 1 Q2 1 2

e0(λ) =

Q1 Q2

rλ =

Q2Q1

Denote by ι the obvious inclusion of Hd(q) to Hd,Q(q) obtained by adding ℓ red
strands on the left. This defines an inclusion

Φλ : k[x
±1
1 , . . . , x±1

d ]Sλ → mλHd,Q(q), f 7→ rλι(Φλ(f)). (3.15)

Example 3.27. Let λ = ((2, 1), (1, 2)). Then the element Φλ(f) is displayed on the
right hand side in Figure 5. It equals the left hand side, since relations (1.17)-(1.18)
allow dots and black-black crossings to slide through red strands. This argument
shows in general that the element Φλ(f) is indeed in mλHd,Q(q). (Although this
is obvious for the left hand side of the equality in Figure 5, this was not completely
obvious for the original definition of Φλ(f).)

Lemma 3.28. Let λ, µ ∈ Cℓd and assume that µ is a split of λ.

(1) The split map in HomHd,Q(q)(mλHd,Q(q),mµHd,Q(q)) applied to the image
of Φλ is contained in the image of Φµ.

(2) The merge in HomHd,Q(q)(mµHd,Q(q),mλHd,Q(q)) applied to the image of
Φµ is contained in the image of Φλ.

Proof. The proof is totally analogous to the proof of Lemma 3.14. �
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m2 m2

x1 − qx2 x5 − qx6

f

n′

λ

Q1

=

m2

x5 − qx6m2

x1 − qx2

f

n′
λ

Q1

Figure 5. Well-definedness of the polynomial representation.

Lemma 3.29. Let λ ∈ Cℓd. Assume that µ is a left crossing of λ.

(1) The left crossing in HomHd,Q(q)(mλHd,Q(q),mµHd,Q(q)) applied to the im-
age of Φλ is contained in the image of Φµ.

(2) The right crossing in HomHd,Q(q)(mµHd,Q(q),mλHd,Q(q)) applied to the
image of Φµ is contained in the image of Φλ.

Proof. Fix f ∈ k[x±1
1 , . . . , x±1

d ]Sλ . It is clear from the definitions that the left
crossing map λ → µ acts by sending Φλ(fe(λ)) to Φµ(fe(µ)). Let t be the index

such that λ(t) = (µ
(t−1)

l(µ(t−1))
)∪µ(t). Set a = λ

(t)
1 and b =

∑t−1
i=1 |λ

(i)|. Relation (1.16)

implies that µ→ λ sends Φµ(fe(µ)) to Φλ(gfe(λ)), where g =
∏b+a
i=b+1(xi−Qt). �

Lemmas 3.28 and 3.29 will be used to deduce the following result which as a
special case establishes also a proof of Proposition 3.15.

Proposition 3.30. There is a unique action of the algebra Sd,Q(q) on sPd,Q sat-

isfying the following properties using the abbreviation P = k[x±1
1 , . . . , x±1

d ].

• The idempotent e(λ), λ ∈ Cℓd, acts on sPd,Q as projection to Pe(λ).
• For each g ∈ PSλ , the element ge(λ) sends fe(λ) to gfe(λ).
• Splits and merges act in the same way as in Proposition 3.15.
• Left crossing maps λ→ µ act by sending fe(λ), f ∈ PSλ to fe(µ).
• Right crossing maps µ→ λ act by sending fe(µ), f ∈ PSµ to gfe(λ) where

g =
∏b+a

i∈[λ
(t)
1 ]

(Qt − xi).

Moreover, the obtained representation of Sd,Q(q) in sPd,Q is faithful.

Proof. The proof of the existence and uniqueness will be spread over the whole
next section and then finally follow from Lemma 3.40 and the above lemmas.
The proof of faithfulness is similar to Proposition 3.15: Assume that there ex-
ist λ, µ ∈ Cℓd and a nonzero element φ ∈ HomHd,Q(q)(mλHd,Q(q),mµHd,Q(q))
such that φ acts on sPd,Q by zero. Consider the split λ′ → λ such that for

each r ∈ {0, 1, . . . , ℓ}, we have λ′(r) = (|λ′(r)|) (i.e., λ′ is the coarsest possi-
ble). Then, after composing φ with this split, we get a nonzero element of ψ ∈
HomHd,Q(q)(mλ′ Hd,Q(q),mµHd,Q(q)) that acts by zero on sPd,Q. The fact that ψ
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acts by zero on sPd,Q implies ψ(mλ′
−→p λ′rλ′ ) = ψ(Φλ′(1)) = 0, where

−→p λ′ = −→p λ′(0)

Q1

−→p λ′(1)

Q2

· · ·

Qℓ−1

−→p λ′(ℓ−1)

Qℓ

−→p λ′(ℓ)

This implies ψ(mλ′)−→p λ′rλ′ = 0. Moreover, it is clear from (1.16) that the element
rλ′ can by multiplied by an element of Hd,Q(q) on the right such that the product

is of the form Qe0(λ′), where Q ∈ k[x±1
1 , . . . , x±1

d ], Q 6= 0. We get

ψ(mλ′)−→p λ′Q = ψ(mλ′)−→p λ′Qe0(λ′) = 0.

Thus, ψ(mλ′) = 0, because Hd,Q(q) is free as a right k[x±1
1 , . . . , x±1

d ]-module. �

3.9. A basis of Sd,Q(q). The goal of this section is to obtain a basis of Sd,Q(q). For
this we first describe the space Hom(λ, µ) = HomHd,Q(q)(mλHd,Q(q),mµHd,Q(q)),

for λ, µ ∈ Cd in terms of the finite Hecke algebra Hfin
d (q), see Remark 1.4.

For λ ∈ Cd, denote by Hfin
λ (q) ⊂ Hfin

d (q) the Hecke algebra corresponding to Sλ

(see (3.1)) and by ǫλ the sign representation of Hfin
λ (q). The following is well-known:

Lemma 3.31. We have an isomorphism of right Hd(q)-modules

mλHd(q) ≃ ǫλ ⊗Hfin
λ

(q) Hd(q) (3.16)

Proof. Let v be a generator of the (one-dimensional) vector space ǫλ. We have an
obvious morphism of Hd(q)-modules

ǫλ ⊗Hfin
λ

(q) Hd(q)→ mλHd(q), v ⊗ x 7→ mλ · x.

It is well-defined because we have mλTr = −mλ for each r such that sr ∈ Sλ.
The bijectivity of this morphism follows from the fact that Hd(q) is a free left

Hfin
λ (q)-module. �

Now, we would like to extend (3.16) to the higher level affine Hecke algebra

Hd,Q(q). Given λ ∈ Cℓd, denote again by Hfin
λ (q) ⊂ Hfin

d (q) the Hecke algebra
corresponding to Sλ (the group Sλ is as in Definition 3.19). We can identify

Hfin
λ (q) with the unitary subalgebra in e0(λ)Hd,Q(q)e

0(λ) generated by the elements
Tre

0(λ) where the indices r correspond to simple reflection in Sλ.

Lemma 3.32. We have an isomorphism of right Hd,Q(q)-modules

mλHd,Q(q) ≃ ǫλ ⊗Hfin
λ

(q) e
0(λ)Hd,Q(q) (3.17)

Proof. Let Hλ(q) be the (non-unitary) subalgebra of Hd,Q(q) generated by Hfin
λ (q)

and k[x±1
1 , . . . , x±1

d ]. (This algebra is clearly isomorphic to a tensor product of the
algebras H

λ
(j)
i

(q).) We have

ǫλ ⊗Hfin
λ

(q) e
0(λ)Hd,Q(q) ≃ ǫλ ⊗Hfin

λ
(q) Hλ(q)⊗Hλ(q) e

0(λ)Hd,Q(q)

≃ mλHλ(q)⊗Hλ(q) e
0(λ)Hd,Q(q)

≃ mλHd,Q(q).

The first isomorphism is obvious, the second follows from Lemma 3.31 and the third
is true because the right Hλ(q)-module e0(λ)Hd,Q(q) is free by Proposition 1.16. �
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We thus have that Hom(λ, µ) is isomorphic to

HomHd,Q(q)

(
ǫλ ⊗Hfin

λ
(q) e

0(λ)Hd,Q(q), ǫµ ⊗Hfin
µ (q) e

0(µ)Hd,Q(q)
)

≃ HomHfin
λ

(q)

(
ǫλ, ǫµ ⊗Hfin

µ (q) e
0(µ)Hd,Q(q)e0(λ)

)
.

(3.18)

Above, we used the adjunction

HomA1(M ⊗A2 B,N) = HomA2(M,HomA1(B,N)),

where A1 and A2 are rings, N is a right A1-module, M is a right A2-module and B
is an (A2, A1)-bimodule. This adjunction is applied to A1 = Hd,Q(q), A2 = Hfin

λ (q),
N = ǫµ ⊗Hfin

µ (q) e
0(µ)Hd,Q(q), M = ǫλ, B = e0(λ)Hd,Q(q).

Now, we see that to get a basis of Sd,Q(q), we should understand the structure

of the (Hfin
µ (q),Hfin

λ (q))-bimodule e0(µ)Hd,Q(q)e0(λ) for λ, µ ∈ Cℓd.

Definition 3.33. Let λ, µ, ν ∈ Cd. Denote by λ ∩ µ the composition in Cd such that
Sλ∩µ = Sλ∩Sµ. Recall from Section 3.1 that we denote by Dλ,µ the set of minimal
length representatives of the double cosets Sλ\Sd/Sµ. If Sλ,Sµ are subgroups of
Sν we denote Dνλ,µ = Sν ∩Dλ,µ.

Let X be the set of Laurent monomials xa11 x
a2
2 . . . xadd with ar ∈ Z. Denote

by X+
λ the subset of X that contains only monomials such that (a1, a2, . . . , ad) is

non-decreasing inside of each component of λ, i.e., we have

X+
λ = {xa1 · · ·xad ∈ X | ar 6 ar+1, unless r = λ1 + . . .+ λt for some t} . (3.19)

For p = xa11 · · ·x
ad
d ∈ X

+
λ , denote by λ ∩ p the unique composition that is finer

than λ and such that its components correspond precisely to the segments where
(a1, a2, . . . , ad) is constant. In other words, the indices r, r+1 ∈ {1, 2 . . . , d} are in
the same component of the composition λ ∩ p if and only if they are in the same
component of the composition λ and ar = ar+1.

Example 3.34. If for instance λ = (2, 3), then p = x31x
3
2x

2
3x

6
4x

6
5 ∈ X

+
λ because 3 6 3

and 2 6 6 6 6, and λ ∩ p = (2, 1, 2).

Assume λ, µ ∈ Cd, w ∈ Dλ,µ. Denote by λ ∩ w(µ) the unique partition in Cd
such that Sλ∩w(µ) = Sλ ∩ wSµw

−1. (But w(µ) itself has no sense as a partition.
Note also that λ∩w(µ) has no sense for an arbitrary permutation w that is not an
element of Dλ,µ.)

Recall that for each (ℓ + 1)-composition λ ∈ Cℓ we denote by λ the associated
composition (i.e., the concatenation of the components of λ). If λ, µ and ν are
(ℓ + 1)-compositions in Cℓd, we can also use notation Dλ,µ, D

ν
µ,λ, λ ∩ µ, λ ∩ w(µ),

X+
λ etc. instead of Dλ,µ, D

ν
µ,λ

, λ ∩ µ, λ ∩w(µ), X+

λ
etc. (in this situations we just

consider each (ℓ+ 1)-composition as an associated composition).
For p ∈ X+

(d), denote by Sp the stabilizer of p in Sd. Then the notation Dp,∅
also makes sense.

Lemma 3.35. The set

B = {TwpTz | w ∈ Sd, p ∈ X
+
(d), z ∈ Dp,∅}

is a basis of Hd(q).
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Proof. First we show that B spans, that means we prove that the set

B′ = {pTz | p ∈ X
+
(d), z ∈ Dp,∅}

generates the left Hfin
d (q)-module Hd(q). To do this, it is enough to show that each

monomial p ∈ X can be written as an Hfin
d (q)-linear combination of elements of B′.

This can be proved by induction using the equality

p = q−1Trsr(p)Tr + (q−1 − 1)Tr∂r(Xrp).

For the linear independence it is enough to check that the elements of B act on
the polynomial representation k[x±1

1 , . . . , x±1
d ] by linearly independent operators.

This can be done similarly to the proof of Proposition 1.16. �

Corollary 3.36. Fix λ ∈ Cd. Consider the left Hfin
λ (q)-module Hd(q). Consider

two sets in this module:

X ⊂ Hd(q), and {pTz | p ∈ X
+
λ , z ∈ Dλλ∩p,∅} ⊂ Hd(q).

The elements of the two sets above can be expressed in terms of each other with an
invertible change of basis matrix.

Proof. The statement follows from the fact that both of the sets above form bases
in the left Hfin

λ (q)-module Hλ1(q)⊗ . . .⊗Hλl(λ)
(q). �

Remark 3.37. Let λ, µ ∈ Cℓd and pick w ∈ Dµ,λ and z ∈ Sλ∩w−1(µ). Setting

z′ = wzw−1 we obtain the equality wz = z′w and also TwTz = Tz′Tw in the
Hecke algebra Hd(q). Now, let b, c ∈ Jℓ,d be such that we have e0(µ) = e(b) and
e0(λ) = e(c). We also would like to have the following version of this equality in
Hd,Q(q) (see see Section 1.4 for the notation)

Tb,c
w Tz = Tz′T

b,c
w (3.20)

This is slightly delicate, because the element Tb,c
w depends on some choices. We

can however make these choices in a way such that indeed (3.20) holds. To do this,
we first choose for each w ∈ Dµ,λ some Tb,c

w arbitrarily and then define Tb,c
y for

any other y ∈ SµwSλ (dependent on these choices) inductively, by induction on
the length. Assuming we have constructed Tb,c

y for some y such that y(c) = b,
then for each simple reflection s ∈ Sλ such that l(ws) = l(w)l(s) (resp. for each

simple reflection s′ ∈ Sµ such that l(s′w) = l(s′)l(w)) we set T
b,s(c)
ws = Tb,c

w Ts

(resp. T
s′(b),c
s′w = Ts′T

b,c
w ).

Lemma 3.38. The set

B =
{
TxT

b,c
w pTy | w ∈ Dµ,λ, x ∈ Sµ, p ∈ X

+
λ∩w−1(µ), y ∈ Dλλ∩w−1(µ)∩p,∅

}

is a basis of e0(µ)Hd,Q(q)e0(λ).

Proof. It is a standard fact that each y ∈ Sd has a unique presentation of the
form y = xwz, where w ∈ Dµ,λ, x ∈ Sµ, z ∈ Dλλ∩w−1(µ),∅ and l(y) = l(x) +

l(w) + l(z). Together with Proposition 1.16 this shows that the left Hfin
µ (q)-module

e0(µ)Hd,Q(q)e0(λ) is free with a basis

B1 =
{
Tb,c
w Typ | w ∈ Dµ,λ, y ∈ Dλλ∩w−1(µ),∅, p ∈ X

}
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or alternatively with a basis

B2 = {Tb,c
w pTy | w ∈ Dµ,λ, y ∈ Dλλ∩w−1(µ),∅, p ∈ X}.

Indeed, we can find a bijection between B1 and B2 such that the base change matrix
in an appropriate order on the bases is triangular with invertible elements on the
diagonal. For w ∈ Dµ,λ, y ∈ Dλλ∩w−1(µ),∅, we define

Bw,y2 = {Tb,c
w pTy | p ∈ X}, Bw,y3 = {Tb,c

w pTzy | p ∈ X
+
λ∩w−1(µ), z ∈ D

λ∩w−1(µ)
λ∩w−1(µ)∩p,∅}.

By Corollary 3.36, the elements of the sets B2 and B3 can be written as Hfin
w(λ)∩µ(q)-

linear combinations of each other with an invertible change of basis matrix.
Since B2 =

∐
w,y B

w,y
2 is a basis of the left Hfin

µ (q)-module e0(µ)Hd,Q(q)e0(λ) so

is B3 =
∐
w,y B3w, y. The set B3 can be written in a slightly different way as

B3 = {Tb,c
w pTy | w ∈ Dµ,λ, p ∈ X

+
λ∩w−1(µ), y ∈ Dλλ∩w−1(µ)∩p,∅}.

This implies that B is a basis of the vector space e0(µ)Hd,Q(q)e0(λ). �

For each w ∈ Dµ,λ and p ∈ X+
λ∩w−1(µ) consider the element

bw,p ∈ Hom(mλHd,Q(q),mµHd,Q(q)) mλh 7→ mµT
b,c
w p(

∑

y

(−q)r−l(y)Ty)h,

where y runs through Dλλ∩w−1(µ)∩p,∅ and r denotes the length of the longest element
therein.

Corollary 3.39. The following is a basis of HomHd,Q(q)(mλHd,Q(q),mµHd,Q(q))

{bw,p | w ∈ Dµ,λ, p ∈ X
+
λ∩w−1(µ)}.

Proof. We have seen in (3.18) that HomHd,Q(q)(mλHd,Q(q),mµHd,Q(q)) is in bijec-

tion with the vector subspace of elements of ǫµ⊗Hfin
µ (q) e

0(µ)Hd,Q(q)e0(λ) on which

Hfin
λ (q) acts from the right by the sign representation. By Lemma 3.38, the right

Hfin
λ (q)-module ǫµ ⊗Hfin

µ (q) e
0(µ)Hd,Q(q)e

0(λ) is a direct sum of submodules Mw,p,

for w ∈ Dµ,λ and p ∈ X+
λ∩w−1(µ), with vector space basis

{ǫµ ⊗ T
b,c
w pTy | y ∈ Dλλ∩w−1(µ)∩p}.

We claim that the vector subspace of vectors of Mw,p that transform as a sign

representation of Hfin
λ (q) is one-dimensional . Indeed, the right Hfin

λ (q)-module

Mw,p is isomorphic to ǫξ ⊗Hfin
ξ

(q) H
fin
λ (q), where ξ = λ ∩w−1(µ) ∩ p. An element of

ǫξ ⊗Hfin
ξ

(q) H
fin
λ (q) can be written uniquely in the form

∑
y∈Dλ

ξ,∅
ay(ǫξ ⊗ Ty), where

ay ∈ k. This element transforms as a sign representation of Hfin
λ (q) if an only if for

each i we have 

∑

y∈Dλ
ξ,∅

ay(ǫξ ⊗ Ty)


Ti = −



∑

y∈Dλ
ξ,∅

ay(ǫξ ⊗ Ty)


 .

Standard computation shows that this is equivalent to the condition −ay = qaysi
whenever y, ysi ∈ Dλξ,∅ with l(ysi) > l(y). But this condition is simply equivalent

to the fact that the element is proportional to
∑

y∈Dλ
ξ,∅

ǫξ ⊗ (−q)r−l(y)Ty, where
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r is the length of the longest element of Dλξ,∅. Under the isomorphism (3.18) this
corresponds to the basis element bw,p. �

We can write the morphism bw,p as a composition as follows:

mλHd,Q(q)
b1,1
−→ mλ∩w−1(µ) Hd,Q(q)

b1,p
−→ mλ∩w−1(µ) Hd,Q(q)

bw,1

−→ mw(λ)∩µHd,Q(q)
b1,1
−→ mµHd,Q(q).

Note that the first and the last morphisms in this decompositions are obviously a
split and a merge, the morphism b1,p is a multiplication by a polynomial, whereas,
bw,1 is a composition of left, right and black crossings. The discussion above to-
gether with Lemma 3.9 proves the following lemma.

Lemma 3.40. The algebra Sd,Q(q) is generated by the idempotents e(λ), for λ ∈ Cℓd,
the splits, the merges, the left/right crossings and the polynomials.

3.10. Completion. This section is very similar to [14, Sec. 5]. As in Section 1.6,
we fix a ∈ (k∗)ℓ. The affine Schur algebra considered in [14] corresponds to the
case ℓ = 0 (no red lines). But the completion procedure only does something with
black lines.

We consider mλĤa,Q(q) as a right Ĥa,Q(q)-module.

Definition 3.41. We set Ŝa,Q(q) = EndĤa,Q(q)

(⊕
λ∈Cℓ

d
mλĤa,Q(q)

)
.

As for Hecke algebras, the affine Schur algebra gets more idempotents after
completion. They can be constructed in the following way. For each i ∈ Sda, we
have an idempotent e(λ, i) =

∑
j∈Sλi

e(j) ∈ Hd,Q(q). It is clear that e(λ, i) depends

only on the Sλ-orbit of i. Similarly to [14, Lemma 5.3], the idempotent e(λ, i)
commutes with mλ. Then we obtain

Ŝa,Q(q) = EndĤa,Q(q)(
⊕

λ∈Cℓ
d
,i∈Sλ\Sda

e(λ, i)mλĤa,Q(q)).

In particular, Ŝa,Q(q) has idempotents e(λ, i) projecting to e(λ, i)mλĤa,Q(q).

Remark 3.42. It is possible to give an equivalent definition of Ŝa,Q(q) as a comple-
tion of Sd,Q(q) with respect to some sequence of ideals (see [14, Sec. 5.1], where this

is done for ℓ = 0). In particular, this realizes Sd,Q(q) is a subalgebra of Ŝa,Q(q). The

idempotent e(λ) ∈ Sd,Q(q) is decomposed in Ŝa,Q(q) as e(λ) =
∑

i∈Sλ\Sda
e(λ, i).

3.11. Generators of Ŝa,Q(q). Let λ, µ ∈ Cℓd be such that µ is a split of λ. Fix

i ∈ Sda. Then we can define the following elements of Ŝa,Q(q):

the split element : (λ, i)→ (µ, i) = e(µ, i)(λ→ µ)e(λ, i),
the merge element : (µ, i)→ (λ, i) = e(λ, i)(µ→ λ)e(µ, i),

where λ → µ and µ → λ are the images of the usual split and merge with respect

to the inclusion Sd,Q(q) ⊂ Ŝa,Q(q).
If now µ is obtained from λ by a left crossing, then we define the left (λ, i)→ (µ, i)

respectively right crossing (µ, i)→ (λ, i) in the same way as for split and merges.

Proposition 3.43. The algebra Ŝa,Q(q) acts faithfully on

ŝPa,Q =
⊕

λ∈Cℓ
d
,i∈Sλ\Sda

k[[x1 − i1, . . . , xd − id]]
Sλ,ie(λ, i),
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where Sλ,i is the stabilizer of i in Sλ.

Proof. This can be proved as [14, Prop. 5.18]. �

3.12. Modified representation of Sd,Q(q). We now construct a modification of
the representation of Sd,Q(q) in sPd,Q which will be relevant later, see Remark 4.3.

Assume λ ∈ Cℓd. Let ←−p ′
λ be the polynomial such that ←−p λ

←−p ′
λ = ←−p d. (In

other words, we have ←−p λ =
∏

16i<j6d(xj − qxi), where the product is taken only

over i and j that are in different components of λ.) Note that this notation is a
generalization of ←−p ′

a,b used above.

Definition 3.44. Let sP′
d,Q be equal to sPd,Q as a vector space, but equipped with a

different action of Sd,Q(q). In this new action the element x ∈ Hom(λ, µ) ⊂ Sd,Q(q)
acts on sP′

d,Q as (←−p ′
µ)

−1x←−p ′
λ on sPd,Q.

A priori, the action of Sd,Q(q) defined above is only well-defined on some lo-
calization of sP′

d,Q (not on sP′
d,Q itself). But it can be checked on generators

(idempotents, polynomials, splits, merges, left and right crossings) that this action
is also well-defined on sP′

d,Q. The following lemma describes this action.

Lemma 3.45. (1) The idemponents e(λ), the (Sλ-symmetric) Laurent poly-
nomials, and the left and right crossings in Sd,Q(q) act on sP′

d,Q in the
same way as on sPd,Q.

(2) Let µ be a split of λ. Then in case λ = (a+ b) and µ = (a, b), the split map
λ→ µ acts by sending fe(λ) ∈ PSλe(λ) to fe(µ), whereas the merge map
acts by sending fe(µ) ∈ PSµ to Da,b(

←−p ′
a,bf)e(λ) with a + b = d. In the

general case split and merge act by the same formulae but in the variables
from the two blocks of µ that form one block of λ.

Proof. The statement follows directly from Proposition 3.30. �

The faithfulness of the representation sPd,Q implies the faithfulness of the rep-

resentation sP′
d,Q. A modification ŝP

′

a,Q of the faithful representation ŝPa,Q of

Ŝa,Q(q) can be defined similarly.

4. (Higher level) Quiver Schur algebras Aν,Q

4.1. Quiver Schur algebras. In this section we restrict the form of the quiver
Γ = (I, A). We assume that the quiver Γ has no loops and each vertex of the quiver
has exactly one incoming arrow and exactly one outgoing arrow. (This assumption
means that each connected component of the quiver is either an oriented cycle of
length > 2 or an infinite oriented chain.) Note that the quiver ΓF in Section 2.4
always satisfies this assumption. We make this assumption here, because the quiver
Schur algebra is defined in [19] only for type A, although the definition from [19]
could easily be generalized, but this is not our focus here.

As above, we fix ν ∈ Id and Q ∈ Iℓ. We first recall the definition of the quiver
Schur algebra Aν,Q, introduced by the second author and Webster in [19].

For each λ ∈ Cℓd and i ∈ Iν , let Sλ,i be the stabilizer of i in Sλ, and let Cℓν the
set of pairs (λ, i) such that λ ∈ Cℓd, i ∈ Sλ\I

ν . Consider the following vector space

sPolν,Q =
⊕

(λ,i)∈Cℓ
ν

k[y1, . . . , yd]
Sλ,ie(λ, i). (4.1)
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Remark 4.1. Note that if i, j ∈ Iν are in the same Sλ-orbit, and w is an element
of Sλ such that w(i) = j, then we have a canonical isomorphism

k[y1, . . . , yd]
Sλ,i ≃ k[y1, . . . , yd]

Sλ,j , P (y1, . . . , yd) 7→ P (yw(1), . . . , yw(d)).

This shows that sPolν,Q is well-defined.

The following was introduced in [19].

Definition 4.2. The quiver Schur algebra Aν,Q is the subalgebra of End(sPolν,Q)
generated by the following endomorphisms.

• The idempotents: e(λ, i) for (λ, i) ∈ Cℓν ,
defined as the projection onto the summand k[y1, . . . , yd]

Sλ,ie(λ, i).
• The polynomials: Pe(λ, i) for any (λ, i) ∈ Cℓν and P ∈ k[y1, . . . , yd]

Sλ,i ,
defined as multiplication by P on the summand k[y1, . . . , yd]

Sλ,ie(λ, i) (and
by zero on other summands).
• The split: (λ, i)→ (µ, i) for any (λ, i), (µ, i) ∈ Cℓν (the d-tuple i ∈ Iν is the

same for both pairs) such that µ is a split of λ in the component λ(r) at po-
sition j. It acts non-trivially only on the component k[y1, . . . , yd]

Sλ,ie(λ, i)
and we have there (in the notation from Definition 3.19)

fe(λ, i) 7→ fe(µ, i).

• The merge: (µ, i) → (λ, i) for any (λ, i) and (µ, i), as above. It acts non-
trivially only on the component k[y1, . . . , yd]

Sλ,ie(µ, i). There it acts by

fe(µ, i) 7→ (
∏

i∈I

Dai,bi)




∏

n∈[µ
(r)
j ],m∈[µ

(r)
j+1]

(yn − ym)


 fe(λ, i),

where the Demazure operatorDai,bi is defined as in Section 3.3 with respect

to the ai + bi polynomial variables yr with indices r ∈ [µ
(r)
j ] ∪ [µ

(r)
j+1] such

that ir = i and the product is taken only by the indices n,m such that we
have in → im. Hereby ai (resp. bi) denotes the number of occurrence of i

in i in the indices in [µ
(r)
j ] (resp. [µ

(r)
j+1]).

• The left crossing: (λ, i) → (µ, i) for any (λ, i), (µ, i) ∈ Cℓν such that µ is a
left crossing of λ, defined as fe(λ, i) 7→ fe(µ, i).
• The right crossing: (µ, i)→ (λ, i) for any (λ, i), (µ, i) ∈ Cℓν such that λ is a

right crossing of µ, moving the last component of µ(r) to the first of µ(r+1),
is defined as fe(µ, i) 7→ (

∏
n∈[λ

(r+1)
1 ],in=Qr+1

yn)fe(λ, i).

Remark 4.3. The definition of Aν,Q differs slightly from the original definition in
[19]. The difference is that the multiplication by the Euler class is moved from the
split to the merge and the Euler class is also reversed. The two algebras are how-
ever isomorphic, as proved (with an explicit isomorphism) in [14, Sec. 9.2-9.3] for
ℓ = 0. The arguments directly generalize to arbitrary ℓ. Passing to this modified
quiver Schur algebra is necessary to identify the completion of the algebra Aν,Q
with the completion of the algebra Sd,Q(q) via identification of the polynomial rep-
resentations. This approach does not work if we use the polynomial representation
of Aν,Q considered in [19]. The modification sP′

d,Q of sPd,Q was defined for the
same reason. For a geometric interpretation of Aν,Q we refer to [16].
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It is possible to introduce a diagrammatic calculus for Aν,Q similarly to the
diagrammatic calculus for Sd,Q(q) (see [19] for more details). The only difference
is that black strands in the diagrams for Aν,Q have labels in Z>0I instead of Z>0

(here Z>0I is the set of formal Z>0-linear combinations of elements of I).
We draw the idempotent e(λ, i) ∈ Aν,Q by the same diagram as the idempotent

e(λ) ∈ Sd,Q(q), except that we replace each integer label λ
(t)
r on a black strand by

the label
∑

j∈[λ
(t)
r ]

ij ∈ Z>0I. We draw polynomials, splits, merges, left and right

crossings in Aν,Q in the same way as for Sd,Q(q).

Let Âν,Q be the completion of Aν,Q with respect to the ideal generated by
the homogeneous polynomials of positive degrees. The definitions give rise to the
following completed version of the faithful representation (4.1) of Aν,Q.

Lemma 4.4. The algebra Âν,Q has a faithful representation in

ŝPolν,Q =
⊕

(λ,i)∈Cℓ
ν

k[[y1, . . . , yd]]
Sλ,ie(λ, i).

4.2. The isomorphisms Ŝa,Q(q) ≃ Âν,Q. Fix q ∈ k such that q 6∈ {0, 1}. Fix an
ℓ-tuple Q = (Q1, . . . , Qℓ) ⊂ (k∗)ℓ. As in Section 2.4, we consider the quiver ΓF

with the vertex set

F = {qnQr | n ∈ Z, r ∈ [1; ℓ]} ⊂ k∗.

and consider the algebra Aν,Q defined with respect to this quiver. We take ν = a.

We know, that Âν,Q acts faithfully on ŝPolν,Q and Ŝa,Q(q) acts faithfully on

ŝP
′

a,Q. On the other hand, there is an obvious isomorphism of algebras

ŝPolν,Q ≃ ŝP
′

a,Q, P (−i1y1, . . . ,−idyd)e(λ, i) 7→ P (x1 − i1, . . . , xd − id)e(λ, i).

To prove that the algebras Âν,Q and Ŝa,Q(q) are isomorphic, it is enough to

identify their actions on ŝPolν,Q ≃ ŝP
′

a,Q. As a result obtain such an isomorphism:

Theorem 4.5. There is an isomorphism of algebras Âν,Q ≃ Ŝa,Q(q).

Proof. It is clear that the idempotents e(λ, i) act on the faithful representation in

the same way. Obviously, the power series in Âν,Q yield the same operators on the

faithful representation as the power series in Ŝa,Q(q). It remains to match splits,
merges and left/right crossings.

Since splits and merges only use black strands, it is enough to treat the case ℓ = 0.
This is already done in [14, Sec. 9]. It is also easy to see that the left crossings in

Âν,Q and Ŝa,Q(q) act in the same way on the polynomial representations. Indeed,
both of them just change the idempotent without changing the power series.

Let now λ be a right crossing of µ, moving the last component of µ(t) to the
first component of µ(t+1), and fix i. We compare the actions of the right crossings

(µ, i)→ (λ, i) in Âν,Q and Ŝa,Q(q). The right crossing in Âν,Q acts by

P (y1, . . . , yd)e(µ, i) 7→




∏

n∈[λ
(t+1)
1 ],in=Qr+1

yn


P (y1, . . . , yd)e(λ, i).
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The right crossing in Ŝa,Q(q) acts by

P (x1, . . . , xd)e(µ, i) 7→




∏

n∈[λ
(t+1)
1 ]

(xn −Qt+1)


P (x1, . . . , xd)e(λ, i).

Then it is clear that these operators can be expressed in terms of each other because
we can divide by (xn −Qt+1) if in 6= Qt+1. This proves the theorem. �

5. Cyclotomic quotients and the isomorphism theorem

We finish by establishing a higher level version of the (cyclotomic) Brundan-
Kleshchev-Rouquier isomorphism. As above we fix Q = (Q1, . . . , Qℓ) ∈ (k∗)ℓ and
q ∈ k∗, q 6= 1 and consider the quiver ΓF as in section 2.4. We assume that all
KLR algebras and tensor product algebras in this section are defined with respect
to the quiver ΓF . We take ν = a.

5.1. Cyclotomic ℓ-Hecke algebras and tensor product algebras.

Definition 5.1. The cyclotomic ℓ-Hecke algebra HQ
d,Q(q) is the quotient of the alge-

bra Hd,Q(q) by the ideal generated by the idempotents e(c) such that c is of the
form c = (0, . . .). In other words, we kill all diagrams that have a piece of a black
strand on the left of all red strands.

Lemma 5.2. Let X1, X2 and T be three endomorphisms of a vector space V ,
satisfying the relations of H2(q), i.e.,

X1T = TX2 − (q − 1)X2, (T − q)(T + 1) = 0,
X2T = TX1 + (q − 1)X2, X1X2 = X2X1.

(We do not assume that X1 and X2 are invertible.) Let λ1, λ2 ∈ k∗ be such that λ1 6=
q±1λ2. Then if V has a simultaneous eigenvector for X1, X2 with eigenvalues λ1,
λ2, then V has also a simultaneous eigenvector with eigenvalues λ2, λ1 respectively.

Proof. Let v ∈ V , v 6= 0 such that X1(v) = λ1v and X2(v) = λ2v. Consider the
vector w = (q − 1)λ2v + (λ1 − λ2)T (v). It follows directly from the relations that
X1(w) = λ2w and X1(w) = λ2w. Note that w = 0 implies that T (v) is proportional
to v. In this case we have either T (v) = −v or T (v) = qv and then λ2 must equal
qλ1 or q−1λ1. But this is impossible by the assumptions on λ1 and λ2. �

Corollary 5.3. Let V be a finite dimensional representation of HQ
d,Q(q). Then for

each r ∈ {1, 2, . . . , d}, all eigenvalues of the action of xr on V are in F .

Proof. Assume that some xr has an eigenvalue λ /∈ F . Since xr is invertible, we
have λ 6= 0. Then there exists an idempotent e(c) ∈ Jℓ,d such that λ is an eigenvalue
of xre(c). (This simply means that e(c) does not annihilate the λ-eigenspace of

xr.) Let t be such that Xte(c) = xre(c) in Hd,Q(q) and set k =
∑t
i=1 ci (i.e., k

is the number of red strands to the left of the dot in the diagram of xre(c)). We
assume that the index t as above is as minimal as possible (for all possible r and

c). We clearly have t > 1, because X1 = 0 in HQ
d,Q(q) and λ 6= 0.

Assume ct−1 = 1. Let v be an eigenvector of xre(c) with eigenvalue λ, (in par-
ticular e(c)(v) = v). Then Tt−1(v) 6= 0. Indeed, we have T 2

t−1e(c) = (Xt−Qk)e(i).
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This implies T 2
t−1(v) = T 2

t−1e(c)(v) = (Xt − Qk)e(c)(v) = (λ − Qk)v 6= 0. More-
over, the vector Tt(v) is clearly an eigenvector of xre(st−1(c)) = Xt−1e(st−1(c))
corresponding to the eigenvalue λ. This contradicts the minimality of t.

Assume ct−1 = 0. Then we can find a vector v ∈ V such that v is a common
eigenvector for xr−1 and xr with e(i)(v) = v and xr(v) = λv. Let µ be such that
xr−1(v) = µv. We have µ 6= 0 because xr−1 is invertible. Moreover, the eigenvalue
µ must be in F (else, this contradicts the minimality of t). Then we can apply
Lemma 5.2 to xr−1e(c), xre(c) and Tt−1e(c). This shows that λ is an eigenvalue
of xr−1e(c) = Xt−1e(c). This contradicts the minimality of t. �

In HQ
d,Q(q), we have the idempotents e(i) such that 1 =

∑
i∈Fd e(i) and for

each index r, the element (xr − ir)e(i) is nilpotent (see Corollary 5.3). More-
over, for each a ∈ Fd we have a central idempotent 1a =

∑
a∈Sda

e(i). Set

HQ
a,Q(q) = 1aH

Q
d,Q(q). Then there is the following direct sum decomposition of

algebras HQ
d,Q(q) =

⊕
a∈Fd H

Q
a,Q(q).

Definition 5.4. The cyclotomic tensor product algebra RQ
ν,Q is the quotient of the

algebra Rν,Q by the ideal generated by the idempotents e(i) such that i ∈ Icol(ν,Q)
is such that c(i1) = 0. In other words, we kill all diagrams that have a piece of a
black strand on the left of all red strands.

It is clear from the definitions that the algebra HQ
a,Q(q) is a quotient of Ĥa,Q(q)

and the algebra RQ
ν,Q is a quotient of R̂ν,Q. We obtain

Theorem 5.5. There is an isomorphism of algebras HQ
a,Q(q) ≃ RQ

ν,Q.

Proof. This follows immediately from Theorem 2.13. �

5.2. Classical Brundan-Kleshchev-Rouquier isomorphism. In this section
we show how to deduce from Theorem 5.5 the usual Brundan-Kleshchev-Rouquier
isomorphism for cyclotomic KLR and Hecke algebras.

Definition 5.6. The cyclotomic Hecke algebra HQ
d (q) is the quotient of the algebra

Hd(q) by the ideal generated by the polynomial (X1 −Q1) . . . (X1 −Qℓ).

For each i = (i1, . . . , iℓ) ∈ F
d we have an idempotent e(i) ∈ HQ

d (q) such that 1 =∑
i∈Fd e(i) and for each index r, the element (Xr − ir)e(i) is nilpotent. Moreover,

with a ∈ Fd comes a central idempotent 1a =
∑

a∈Sda
e(i). Set HQ

a (q) = 1aH
Q
d (q).

There is a direct sum decomposition of algebras HQ
d (q) =

⊕
a∈Fd H

Q
a (q).

Definition 5.7. The cyclotomic KLR algebra RQ
ν is the quotient of the algebra Rν

by the ideal generated by y
Λi1
1 e(i). Here, Λi the multiplicity of i ∈ F in Q.

Recall the idempotent e(ω) ∈ Hd,Q(q) such that e(ω)Hd,Q(q)e(ω) ≃ Hd(q), see
Section 1.5. We have a similar idempotent e(ω) ∈ Rν,Q with e(ω)Rν,Qe(ω) ≃ Rν .

The following is proved in [23, Thm. 4.18].

Lemma 5.8. There is an isomorphism of algebras e(ω)RQ
ν,Qe(ω) ≃ R

Q
ν .

We can prove the following analogue of this statement.

Lemma 5.9. There is an isomorphism of algebras e(ω)HQ
d,Q(q)e(ω) ≃ HQ

d (q).
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Proof. We will identify Hd(q) with e(ω)Hd,Q(q)e(ω) as in Lemma 1.18.

Denote by K1 the kernel of Hd(q) → HQ
d (q). Denote by K2 the kernel of

e(ω)Hd,Q(q)e(ω)→ e(ω)HQ
d,Q(q)e(ω). We have to prove that K1 = K2.

First of all, it is clear that K1 ⊂ K2, because we have

Q1 Q2

· · ·

Qℓ

=

Q1 Q2

· · ·

Qℓ

(x1 −Q1) . . . (x1 −Qℓ)

Let us show K2 ⊂ K1. We need to show for each c ∈ Jℓ,d such that c1 = 0, it
holds e(ω)Hd,Q(q)e(c)Hd,Q(q)e(ω) ⊂ K1.

Denote by (c→ ω) the unique element of e(ω)Hd,Q(q)e(c) that is presented by
a diagram that contains right crossings only. Similarly, denote by (ω → c) the
unique element of e(c)Hd,Q(q)e(ω) that is presented by a diagram that contains
left crossings only. For example, for c = (0, 1, 0, 0, 0, 1), we have

(ω → c) = (c→ ω) =

By Proposition 1.16, each element of e(ω)Hd,Q(q)e(c) can be written as a ·
(c → ω) with a ∈ e(ω)Hd,Q(q)e(ω). Similarly, each element of e(c)Hd,Q(q)e(ω)
can be written as (ω → c) · b with b ∈ e(ω)Hd,Q(q)e(ω). Then each element of
e(ω)Hd,Q(q)e(c)Hd,Q(q)e(ω) can be written as a·(c→ ω)·(ω → c)·b. Since c1 = 0,
the element (c→ ω) · (ω → c) can be written as e(ω)P , where P ∈ k[x1, . . . , xℓ] is
a polynomial divisible by (x1 −Q1) . . . (x1 −Qℓ). This implies K2 ⊂ K1. �

Consequently, we get the Brundan-Kleshchev-Rouquier isomorphism, [1, Thm. 1.1],
[18, Cor. 3.20]:

Corollary 5.10. There is an isomorphism of algebras HQ
a (q) ≃ RQ

ν .

5.3. The DJM q-Schur algebra. We establish now a connection with the cyclo-

tomic q-Schur algebra SDJM
d,Q (q) defined in [4]. Denote by C0,ℓd the subset of Cℓd that

contains all λ such that λ(0) = 0 (here 0 is the unique (empty) composition of 0).

For each λ ∈ Cℓd, set uλ =
∏
(Xr−Qt) ∈ HQ

d (q), where the product is taken over

all indices r and t such that r 6 |λ(0)|+ . . .+ |λ(t−1)|.

Example 5.11. For example, for ℓ = 3 and λ = (0, (1, 1), (2), (1, 2)), we have

|λ(0)| = 0, |λ(1)| = 2, |λ(2)| = 2, |λ(3)| = 3

and uλ = (X1 −Q2)(X2 −Q2)(X1 −Q3)(X2 −Q3)(X3 −Q3)(X4 −Q3).

We consider uλnλH
Q
d (q) as a right HQ

d (q)-module.

Definition 5.12. The Dipper-James-Mathas cyclotomic q-Schur algebra SDJM
d,Q (q) is

the algebra

SDJM
d,Q (q) = EndHQ

d
(q)(

⊕

λ∈Cℓ
d

uλnλH
Q
d (q)).
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Remark 5.13. The algebra SDJM
d,Q (q) is defined in [4] with respect to the set C0,ℓd

instead of Cℓd. But there is no difference because, uλ = 0 in HQ
d (q) if λ ∈ Cℓd\C

0,ℓ
d .

Indeed, note that if λ ∈ Cℓd\C
0,ℓ
d , then (X1 − Q1) . . . (X1 − Qℓ) divides uλ. This

means that uλ = 0 in HQ
d (q).

Lemma 5.14. There is an isomorphism of algebras

SDJM
d,Q (q) ≃ EndHQ

d,Q
(q)


⊕

λ∈Cℓ
d

nλH
Q
d,Q(q)


 .

Proof. A similar description of the q-Schur algebra is given in [19, (5.8)]. To

get the statement we only need to identify HQ
d,Q(q) with RQ

d,Q, where RQ
d,Q =⊕

ν∈Sd\Fd R
Q
ν,Q. �

5.4. The Schur version. In this section we give the most general version of the
isomorphism above: the (higher level) Schur version.

We consider mλH
Q
d,Q(q) as a right HQ

d,Q(q)-module.

Definition 5.15. The cyclotomic q-Schur algebra SQd,Q(q) is the algebra

SQ
d,Q(q) = EndHQ

d,Q
(q)(

⊕

λ∈Cℓ
d

mλH
Q
d,Q(q)).

It is clear from the definition that the algebra SQd,Q(q) is a quotient of Sd,Q(q).

Remark 5.16. By Lemmas 3.21 and 5.14 we have SQ
d,Q(q) ≃ SDJM

d,Q−1(q) as algebras.

Similarly to the set Cℓν defined above, we denote by Cℓa the set of pairs (λ, i),

where λ ∈ Cℓd and i ∈ Sλ\Sda. The algebra SQd,Q(q) contains idempotents e(λ, i) ∈

SQd,Q(q) such that 1 =
∑

(λ,i)∈Cℓ
a
e(λ, i) and such that for each Laurent polynomial

P (x1, . . . , xd) ∈ k[x±1
1 , . . . , x±1

d ]Sλ , the element (P (x1, . . . , xd)−P (i1, . . . , id))e(λ, i)

is nilpotent. Moreover, for each a ∈ Fd we have a central idempotent 1a =∑
(λ,i)∈Cℓ

a
e(λ, i). Set SQa,Q(q) = 1a S

Q
d,Q(q). We have the following direct sum

decomposition of algebras SQ
d,Q(q) =

⊕
a∈Fd S

Q
a,Q(q).

Definition 5.17. The cyclotomic quiver Schur algebra AQ
ν,Q is the quotient of the

algebra Aν,Q by the ideal generated by the idempotents of the form e(λ, i) such

that l(λ(0)) 6= 0. In other words, we kill all diagrams that have a piece of a black
strand on the left of all red strands.

It is clear from the definitions that the algebra SQa,Q(q) is a quotient of Ŝa,Q(q)

and the algebra AQ
ν,Q is a quotient of Âν,Q. Theorem 4.5 implies the following:

Proposition 5.18. There is an isomorphism of algebras SQ
a,Q(q) ≃ A

Q
ν,Q.

Proof. It is clear from the definitions that for each λ ∈ Cℓd such that l(λ(0)) 6= 0,

the idemponent e(λ) is in the kernel of Sd,Q(q) → SQd,Q(q). This implies that the

isomorphism Ŝa,Q(q) ≃ Âν,Q in Theorem 4.5 yields a surjective homomorphism
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AQ
ν,Q → SQa,Q(q). To prove that this is an isomorphism, it is enough to show that

these algebras have the same dimensions. We have

dim(SQ
a,Q(q)) = dim(SDJMa,Q−1(q)) = dim(AQ−1

ν,Q−1) = dim(AQ
ν,Q).

The first equality holds by Remark 5.16, the second by [19, Thm. 6.2], and the
third since the quivers ΓF defined with respect to Q and Q−1 are isomorphic. �
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