
SIGNATURES OF TOPOLOGICAL BRANCHED COVERS

CHRISTIAN GESKE, ALEXANDRA KJUCHUKOVA, JULIUS L. SHANESON

Abstract. Let X4 and Y 4 be smooth manifolds and f : X → Y a branched cover with
branching set B. Classically, if B is smoothly embedded in Y , the signature σ(X) can
be computed from data about Y , B and the local degrees of f . When f is an irregular
dihedral cover and B ⊂ Y smoothly embedded away from a cone singularity whose link
is K, the second author gave a formula for the contribution Ξ(K) to σ(X) resulting from
the non-smooth point. We extend the above results to the case where Y is a topological
four-manifold and B is locally flat, away from the possible singularity. Owing to the
presence of non-locally-flat points on B, X in this setting is a stratified pseudomanifold,
and we use the Intersection Homology signature of X, σIH(X). For any knot K whose
determinant is not ±1, a homotopy ribbon obstruction is derived from Ξ(K), providing
a new technique to potentially detect slice knots that are not ribbon.

1. Introduction

We give formulas for the signatures of branched covers in several contexts. First, suppose
Bn−2 ⊂ Y n is an inclusion of one topological manifold into another. Any connected
unbranched cover of Y − B can be uniquely extended to a branched cover f : X → Y , a
construction formalized in [14]. If B happens to be embedded locally flatly in Y , then X,
too, is a topological manifold, and we can compute the signature of X.

Theorem 1. Let X and Y be closed 4-dimensional topological manifolds, and let f : X →
Y be an n-fold branched cover with branching set a closed, locally flat surface B embedded
in Y . Assume that X and Y are compatibly oriented. Denote A := f−1(B) and let Ar ⊂ A
be the union of components of branching index r; denote the normal Euler number of Ar
in X by e(Ar). The following formula holds:

(1) σ(X) = nσ(Y )−
∞∑
r=2

r2 − 1

3
e(Ar).

This extends classical results on the signatures of smooth branched covers [17, 26]. The
conclusion of Theorem 1 appears to have been taken for granted by many yet viewed with
uncertainty by others. As far as we know, it has never appeared in print.

Our second signature formula applies to dihedral covers branched along surfaces embedded
in the base with finitely many cone singularities. For simplicity, we state the formula for
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the case of one singular point. The covering spaces we obtain are topological pseudomani-
folds [1, Definition 4.1.1]. Over a neighborhood of each cone singularity, the covering map
is the cone on a branched cover in the usual sense. Here, we use σIH(X), the intersection
homology signature of X, which in the case of isolated singularities equals the Novikov
signature of the manifold with boundary obtained by removing a small open neighborhood
of the singular set. The definition and properties of irregular dihedral covers are recalled
in Section 3.

Theorem 2. Let B ⊂ Y be the inclusion of a closed, surface with one cone singularity of
type K into a closed, oriented topological 4-manifold. Suppose also that f : X → Y is an
irregular dihedral branched cover with branching set B, and which induces a p-coloring on
the knot K. Then:

(2) σIH(X) = pσ(Y )− p− 1

4
e(B)− Ξp(K).

Here e(B) denotes the self-intersection of B in Y , and Ξp(K) is an invariant of the knot
K, together with its p-coloring, as introduced in [21].

Here, Ξp(K) is an invariant of K defined in [21] for singularities that arise on dihedral covers
between PL four-manifolds. By allowing the total space of the cover to be a topological
pseudomanifold, we extend the definition of Ξp to a much larger class of p-colorable knots
K. The invariant Ξp can be computed by a formula given in [21, Theorem 1.4 (1.3)], which
we now recall. Given a knot K as above, let V be a Seifert surface for K and let κ ⊂ V ◦ be
a mod p characteristic knot for K (as defined in [8]), corresponding to the p-coloring of K
induced by the map f . Denote by LV the symmetrized linking form for V and by σζi the

Tristram-Levine ζi-signature, where ζ is a primitive pth root of unity. Finally, let W (K,κ)
be the cobordism constructed in [8] between the p-fold cyclic cover of S3 branched along
κ and the p-fold irregular dihedral cover of S3 branched along K and determined by the
p-coloring. We extend Theorem 1.4 of [21] to show that, for all such K,

(3) Ξp(K) =
p2 − 1

6p
LV (κ, κ) + σ(W (K,κ)) +

p−1∑
i=1

σζi(κ).

Using the above formula, Ξp(K) can be evaluated directly from a p-colored diagram of K,
without reference to the manifoldX. An explicit algorithm for performing this computation
is given in [4]. When Y = S4, an alternative method for computing Ξp(K) is to produce a
trisection of X from a colored diagram of K [6].

When the branching set has multiple singularities of types K1, . . . ,Kn, each of the knots Ki

contributes −Ξp(Ki) to σ(Y ) in Equation (2). This follows from the fact that Theorem 2 is
proved by modifying the given branched cover in a neighborhood of the singular point. In
the case of multiple singularities, this local procedure can be performed for all cone points
simultaneously.
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Our third main result relates dihedral branched covers of S4 to the Slice-Ribbon Conjecture
of Fox in a new way. Specifically, we use the invariant Ξp(K) with p square-free to obtain
a homotopy ribbon obstruction for K. We show that for K a p-colorable ribbon knot,
the values of Ξp(K) must fall within a bounded range. The analogous statement does not
obviously hold for slice knots.

Theorem 3. Assume p > 1 is odd and square-free. Suppose K ⊂ S3 is a knot which
admits p-colorings. If K is homotopy ribbon, then there is a p-coloring on K for which:

|Ξp(K)| ≤ rk H1(M) +
p− 1

2
.(4)

where M → S3 is the irregular dihedral cover branched along K induced by the p-coloring.

This result significantly expands the class of knots covered by the obstruction in [6], which
applies to slice knots with dihedral covers S3. In contrast, Theorem 3 includes all slice
knots that admit p-colorings for some square-free p. Any slice knot whose determinant is
not ±1 is therefore covered by this theorem and could potentially be shown non-ribbon
using the Ξp(K) invariant.

2. Signatures of branched covers between topological four-manifolds

This section is dedicated to the proof of Theorem 1. For the convenience of the reader,
we recall that for B2 ⊂ Y 4 a locally flat submanifold as in the statement of the theorem,
and the normal Euler number is defined as follows: If B happens to be orientable, then
a choice of fundamental class determines an element [B] ∈ H2(Y ) as well as its Poincaré
dual νB ∈ H2(Y ). Then e(B) is the evaluation νB[B] ∈ Z. If B is not orientable, select
a neighborhood T of B such that B ↪→ T induces an isomorphism of fundamental groups.

Then the oriented double cover B̃ → B induces a double cover T̃ → T . A choice of
fundamental class for B̃ determines an element [B̃] ∈ H2(T̃ ) and its Poincaré dual ν

B̃
∈

H2
c (T̃ ). The normal euler number is 1

2νB̃[B̃] ∈ Z (see, for example, [19, Section 3]).

We will need the following lemmas.

Lemma 4. Suppose Y is an oriented topological 4-manifold. There exists an oriented
4-manifold Z such that Y#Z admits a smooth structure and σ(Y#Z) = σ(Y ) or 2σ(Y ).

Proof. The first obstruction to Y admitting a smooth structure is the Kirby-Siebenmann
invariant, ks(Y ). Since this is a Z/2Z-valued invariant which is additive with respect to
the connected sum operation, if it does not vanish for Y , it does for Y#Y . By further
taking the connected sum with finitely many copies of S2 × S2, we obtain a four-manifold
which admits a smooth structure [23]. Put together, we have found an oriented 4-manifold
Z such that the connect sum Y#Z admits a smooth structure. Here, if Z is non-empty, we
have Z ∼= #k(S2×S2) or Z ∼= Y#k(S2×S2). Since σ(S2×S2) = 0, by Novikov additivity
we have that σ(Y#Z) = σ(Y ) or 2σ(Y ). �
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Every locally flat embedding of a surface B into a topological 4-manifold Y comes with a
normal bundle, as follows from [15, Section 9.3]. Here by a normal bundle of the embedding
B ↪→ Y , we mean a two-dimensional vector bundle E → B, together with an embedding
E ↪→ Y , which when restricted to the zero-section of E is the given embedding of B.
Observe that the embedding of E into Y is open by invariance of domain.

We need to consider the possible smooth structures on a vector bundle E over a surface B.
Observe that E admits at least one smooth structure: select a smooth structure on B, then
E can be endowed with a smooth structure as a vector bundle over a smooth manifold. On
the other hand, we will need to consider the smooth structure induced on E when regarded
as an open submanifold of the smooth manifold Y#Z of Lemma 4.

Definition 1. Two smooth structures ζ and ζ ′ on a manifold W are concordant if there
is a smooth structure on W × [0, 1] which restricts to ζ on W × 0 and to ζ ′ on W × 1. We
call this smooth structure on W × [0, 1] a concordance.

Lemma 5. Suppose E → B is a two-dimensional vector bundle over a surface B. Any
two smooth structures on E are concordant.

Proof. By [15, Theorem 8.7B], concordance classes of smooth structures on E are classified
by elements H3(E;Z2). Since E has the homotopy type of a surface, H3(E;Z2) is trivial.

�

Lemma 6. Let f : X → Y be a branched cover between topological manifolds such that:

(i) Y is smooth.

(ii) the branching set B ⊂ Y is a smooth codimension two submanifold of Y .

Then X admits a unique smooth structure for which f is a smooth branched cover in the
sense of [26].

Proof. The statement follows from [11] Proposition 1.1. �

Viro’s original formula for the signatures of branched covers [26] applies in higher dimen-
sions as well, and requires the following notion of self-intersections of manifolds. If A is a
closed smooth submanifold of an oriented smooth manifold Y , then we can slightly isotope

the inclusion A ↪→ X to obtain a smooth embedding f : A → X whose image Ã is trans-

verse to A in X. Define the self-intersection A2 of A in X to be the intersection Ã ∩ A.
The manifold A2 can be equipped with a canonical orientation which does not depend up
to oriented cobordism on the choice of small isotopy (see [26, Section 1.2]). In particular,
we may unambiguosly discuss the signature of A2.

Lemma 7. Suppose A is a closed smooth submanifold of an oriented smooth manifold X,
and Z is a closed smooth, oriented manifold. Consider A ⊂ X and A× Z ⊂ X × Z. The
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self-intersections A2 × Z and (A × Z)2 determine the same oriented cobordism class. In
particular, we have the following relation among signatures of self-intersections:

σ
(

(A× Z)2
)

= σ(A2) · σ(Z).

Proof. If Ã ⊂ X is a transverse copy of A, then Ã × Z ⊂ X × Z is a transverse copy of

A× Z. The intersection of A× Z and Ã× Z is A2 × Z. �

Proof of Theorem 1. Our strategy is to modify the manifolds and covering maps involved
until we produce a smooth branched cover in the sense of [26] whose signature we can
(i) express in terms of the signature of X; (ii) compute from the original map f and its
branching set.

Step 1. Reduce to the case where the base Y admits a smooth structure.

Fix a branched cover f : X4 → Y 4 as in the statement of the theorem, with Y potentially
non-smooth. By Lemma 4, there exists an oriented 4-manifold Z such that Y#Z admits
a smooth structure. Perform the connected sum operation away from the branching set
so that the n-sheeted branched cover f : X → Y induces an n-sheeted branched cover
f ′ : X ′ → Y ′ whose downstairs (resp. upstairs) branching set is also B (resp. A) and such
that X ′ ∼= X#nZ is the connect sum of X with n copies of Z.

By Novikov Additivity, the signature of Y ′ is σ(Y ) + σ(Z) and the signature of X ′ is
σ(X)+nσ(Z). The normal Euler number of Ar, being a local invariant around Ar, remains
constant whether we consider Ar as a subset of X or as a subset of X ′.

Let’s assume Theorem 1 has been proven for f ′ : X ′ → Y ′. Combining the signature
formula with the observations of the previous paragraph we find:

σ(X) + nσ(Z) = nσ(Y ) + nσ(Z)−
∞∑
r=2

r2 − 1

3
· e(Ar)

from which Theorem 1 is shown to hold for f : X → Y .

Thus, it suffices to prove the theorem for the case where the base manifold Y admits a
smooth structure.

Step 2. Provided that Y admits a smooth structure, relate the given branched cover to a
smooth branched cover.

Fix a smooth structure ζ on Y and let E be the total space of the normal bundle of B in
Y . Select also a smooth structure on the surface B. Being a vector bundle over the smooth
manifold B, E inherits a smooth structure ζ ′ . This smooth structure on E is good for our
purposes, because it renders B a smoothly embedded submanifold of E. Unfortunately,
this smooth structure is not necessarily extendable to a smooth structure on Y .
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But E admits another smooth structure: the restriction ζ|E of the already existing smooth
structure on Y . Lemma 5 shows that ζ|E and ζ ′ are concordant. Let Γ be such a concor-
dance of smooth structures. In other words, Γ is a smooth structure on E × [0, 1] which
restricts to ζ|E on E×{0} and to ζ ′ on E×{1}. We would like to extend this concordance
to one on Y .

To that end, we consider the product of all our spaces with CP 2, which will allow us to
apply smoothing theorems that work only in higher dimensions. This gives the n-sheeted
branched cover:

f × id : X × CP 2 → Y × CP 2

with downstairs branching set B×CP 2 and upstairs branching set A×CP 2. Let α be the
standard smooth structure on CP 2. The base Y × CP 2 admits product smooth structure
ζ × α. The restriction of this smooth structure to E × CP 2 is:

(ζ × α)|E×CP 2 = ζ|E × α.

We have also the product smooth structure Γ× α on E × [0, 1]× CP 2. The restriction of
this smooth structure to E × {0} × CP 2 is ζ|E × α and the restriction to E × {1} × CP 2

is ζ ′ × α. Therefore the smooth structures (ζ × α)|E×CP 2 and ζ ′ × α on E × CP 2 are
concordant.

By [20, Concordance Extension Theorem] this concordance of smooth structures on E×CP 2

extends to a concordance of smooth structures on the enlarged product Y × CP 2, i.e. a
concordance which restricts to ζ×α on Y ×{0}×CP 2 and restricts to ζ ′×α on E×{1}×CP 2.
In particular, the restriction of the extended concordance to all of Y × {1} × CP 2 gives
a smooth structure on Y × CP 2 that extends the smooth structure ζ ′ × α on E × CP 2.
Note that we have not changed the topological structure of Y ×CP 2 in any way, but have
merely found for it a particular smooth structure.

Equip Y × CP 2 with the smooth structure extending ζ ′ × α whose existence we just es-
tablished. For this structure, the branching set B × CP 2 (which again has not changed
topologically) becomes a smoothly embedded submanifold. By Lemma 6, the branched
cover X × CP 2 → Y × CP 2 is smooth. Viro’s original formula [26] now applies.

Step 3. Apply Viro’s formula to the smooth branched cover f × id : X ×CP 2 → Y ×CP 2.

Recall that the upstairs branching set of the cover f × id is A× CP 2.

Using multiplicativity of the signature, and σ(CP 2) = 1, the formula yields:

σ(X) = nσ(Y ) + local contributions near A× CP 2.

These local contributions take into account iterated self-intersections of Ar ×CP 2 in X ×
CP 2, where we recall that Ar is the union of those components of A with branching index
r ≥ 2. By Lemma 7, the self-intersection (Ar×CP 2)2 is A2

r ×CP 2. Because Ar is a closed
two-dimensional submanifold of a four-manifold, A2

r is a finite set of points in X. So the
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space A2
r × CP 2 has empty self-intersection, and all further iterated self-intersections will

vanish. Therefore, the formula gives:

σ(X) = nσ(Y )−
∞∑
r=2

r2 − 1

3r
· σ(A2

r × CP 2) = nσ(Y )−
∞∑
r=2

r2 − 1

3r
· σ(A2

r).

But σ(A2
r) counts the number of points of self-intersection with sign, and is exactly the

normal Euler number e(Ar) of Ar in X. �

3. Signatures of dihedral branched covers

In this section, we prove Theorem 2. For the rest of this paper we focus on irregular
dihedral branched covers, whose definition is recalled below. We denote the dihedral group
of order 2p by Dp and, throughout this article, we assume that p is odd.

Let B ⊂ Y be a codimension-two inclusion of topological manifolds. Let X → Y be a
connected branched cover with branching set B. Recall that such a branched cover is
determined by a connected unbranched cover of Y −B, which is in turn determined by the
conjugacy class of a subgroup of π1(Y −B).

Definition 2. We say that the branched cover X → Y is irregular dihedral if it corresponds
to a conjugacy class ρ−1(Z2) where ρ : π1(Y − B) � Dp is some surjection and Z2 is the
conjugacy class of elements of order 2 in Dp.

Note that surjectivity of ρ implies that an irregular dihedral cover is connected.

Definition 3. We say that an inclusion B ⊂ Y of a surface into a topological 4-manifold
has a cone singularity of type the knot K ⊂ S3 if there exists distinguished b0 ∈ B such
that:

• The inclusion B\{b0} ↪→ Y is locally flat.

• b0 has a neighborhood V in Y for which there is a homeomorphism of triples:

(V, V ∩B, b0) ∼= (cS3, cK, ∗)
where c denotes the cone operation and ∗ the cone point.

We are interested in irregular dihedral covers f : X → Y over 4-manifolds. We will
assume that the branching set B has a cone singularity whose type is a knot K. Let
ρ : π1(Y − B) � Dp be the surjective homomorphism associated to the branched cover.
By identifying (V, V ∩B, b0) with (cS3, cK, ∗), we can consider the composition:

π1(S3\K)
i∗−→ π1(Y −B)

ρ−→ Dp.

When this composition is a surjection, we say that the cover f induces a p-coloring on the
knot K or, equivalently, that the singularity at b0 is normal. Again, this is equivalent to
the associated irregular dihedral cover M → S3 branched along K being connected.
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Remark. We state a few basic properties of irregular dihedral branched covers. Suppose
B ⊂ Y is the inclusion of a connected surface with a cone singularity of type K into a
4-manifold Y . Suppose also that f : X → Y is an irregular dihedral branched cover with
branching set B, such that f induces a p-coloring on the knot K in the above sense. Let
M → S3 denote the induced irregular dihedral cover branched along K. It follows that:

• f−1(S3 −K) is connected and f−1(S3) = M .

• The restriction f | : f−1(B\{b0}) → B\{b0} is an unbranched covering map with
1
2(p+ 1) sheets.

• For any b ∈ B\{b0}, f−1(b) contains 1
2(p− 1) points of branching index 2 and one

point of branching index 1.

These properties can be verified via the local parametrization description for branched
covers and with the aid of [24, Proposition 11.2].

In our generalization of Kjuchukova’s signature formula, we allow the branched covering
space to be a topological pseudomanifold, as defined for example in [1, Definition 4.1.1].
We begin by proving:

Lemma 8. Let B ⊂ Y be the inclusion of a surface with a cone singularity of type K
into a topological 4-manifold. Assume that f : X → Y is an irregular dihedral branched
cover with branching set B and that f induces a p-coloring on the knot K. Then X has
the structure of a pseudomanifold.

Proof. Denote by b0 the singularity of the embedding of B in Y , and let f | : M → S3

be the induced (connected, by Remark 3) irregular dihedral cover with branching set K.
Then f−1(b0) consists of a single point b′0 that has conic neighborhood cM in X. In other
words:

X ⊃ {b′0}
is a pseudomanifold stratification, where the link of b′0 in X is M . �

If the manifold Y in Lemma 8 is oriented, then X inherits a pseudomanifold orientation. In
our case this is merely a manifold orientation on the complement of the singular set X−{b′0}
as for example defined in [16, Definition 8.1.5]1 in the topological setting. If Y happens to
be PL, an orientation can also be interpreted as a coherent orientation of all 4-simplices
in a triangulation of Y (see [2, I.2.3]). If Y is in addition closed, then so is X and we can
discuss the intersection homology signature σIH(X) of X (again see [16, Definition 9.3.9],
which applies in the topological setting). We are now in a position to prove Theorem 2,
our generalization of Kjuchukova’s signature formula in this context.

1Definition and theorem numbering from reference [16] is based on the July 24, 2019 preprint.
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Remark. As noted earlier, since X has an isolated singularity, the intersection homology
signature σIH(X) is equal to the Novikov signature of the manifold with boundary ob-
tained by removing from X a small open neighborhood of the singularity. Accordingly, our
arguments can be recast in this language.

Proof of Theorem 2. By Lemma 8 and the comments following, X is a closed topological
pseudomanifold, and inherits an orientation from the orientation on Y . Therefore, we can
discuss the intersection homology signature of X.

Let b0 ∈ B be the singular point on B and let V be a neighborhood of b0 in Y as in
Definition 3. Denote by V ◦ the interior of V . By the proof of Lemma 8, we can shrink V
if necessary to ensure that M = f−1(S3) has a collar neighborhood in X, in which case X
can be decomposed into the union of oriented pseudomanifolds with boundary:

X = f−1(V ) ∪ f−1(Y \V ◦),

where f−1(V ) is the cone on the topological manifold M . The Novikov intersection homol-
ogy signature [16, Definition 9.3.11] of the cone on a three-dimensional topological manifold
is always zero. Indeed, it is the signature of a pairing on a subspace of IH n̄

2 (cM ;Q), where
n̄ denotes the upper-middle perversity. But IH n̄

2 (cM ;Q) vanishes by the cone formula [16,
Theorem 4.2.1].

Combining the above with Novikov additivity [16, Theorem 9.3.22], we obtain the equali-
ties:

σIH(X) = σIH
(
f−1(Y \V ◦)

)
= σ

(
f−1(Y \V ◦)

)
,

where the IH subscript at the end is dropped because f−1(Y \V ◦) is a manifold with
boundary.

The signature of f−1(Y \V ◦) was computed in [21, Proof of Theorem 1.4]. That is,

σ
(
f−1(Y \V ◦)

)
= pσ(Y )− p− 1

4
e(B)− Ξp(K),(5)

under the additional assumptions that f−1(S3) ∼= S3 and that all spaces and maps be PL.
We will outline Kjuchukova’s proof of the above in order to highlight the points where these
assumptions play a role and to explain that they can be dropped using our Theorem 1.

The only role of the assumption that f−1(S3) ∼= S3 is to obtain a total space X that is a
PL manifold. Since we allow the total space X to be a pseudomanifold by working with
σIH(X), there is no reason for us to retain this hypothesis.

The idea of the proof of [21, Theorem 1.4] is to geometrically resolve the singularity on the
branching set of the given branched cover f : X → Y , so that Viro’s signature formula for
smooth covers applies. In the process, one also keeps track of the effect that the resolution
of singularity has on the signatures involved.
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To this end, the first step is to construct a new manifold Z (in the notation of [21], Z is
W (α, β)∪Q) that also has f−1(S3) as its boundary, with the property that the boundary
union T := f−1(Y \V ◦) ∪ Z is also a p-fold branched cover of Y .

The branching set B′ of the new cover T → Y differs from B in a neighborhood of the
singular point and is no longer an embedded surface. Instead, B′ is a two-dimensional PL
subcomplex which contains a curve of non-manifold points. The next step is to simultane-
ously modify Y and T via a doubling construction that removes the non-manifold points
on B′. The result is yet another branched cover between PL manifolds, this time with a
locally flat embedded surface for its branching set.

It is then possible to relate in a straightforward manner the signature of this final branched
cover to the signature of f−1(Y \V ◦). Viro’s formula is used to find the signature of the
branched cover thus constructed. Furthermore, the effect which the singularity resolution
procedure has on the signature of the covering manifold is expressed in terms of the knot K
in Equation (1.3) of [21, Theorem 1.4]. This accounts for the term −Ξp(K) in Equation 5.
Note that applying Viro’s formula is the step in which the PL assumption is necessary
(using the fact that PL implies smooth in four dimensions). We can now remove the PL
assumption thanks to Theorem 1. This leads us to:

σ
(
f−1(Y \V ◦)

)
= pσ(Y )− p− 1

4
e(B)− Ξp(K).

Because σIH(X) = σ
(
f−1(Y \V ◦)

)
, the theorem follows. �

4. A homotopy ribbon obstruction

This section is dedicated to the proof of Theorem 3. Recall that a slice knot K ⊂ S3 is
said to be topologically (resp. smoothly) homotopy ribbon if there exists a locally flat (resp.
smooth) slice disk D ⊂ B4 for K such that the homomorphism induced by inclusion,

i∗ : π1(S3\K)→ π1(B4 −D),

is surjective. We call D a homotopy ribbon disk for K. Theorem 3 shows that the knot
invariant Ξp(K) can be used to obtain an obstruction to the existence of such a disk for a
p-colorable slice knot K. Our proof makes use of the following preliminary results.

Lemma 9. Let K ⊂ S3 be a p-colorable slice knot, where p > 1 is an odd square-free
integer. Given any topologically slice disk D for K, some p-coloring of K extends over
D. Equivalently, there is a p-fold irregular dihedral cover of B4 with branching set D that
induces a p-coloring of K.

Suppose W → B4 is one such irregular dihedral cover of B4 branched along D. Consider
the induced p-coloring on K and let M → S3 denote the associated irregular dihedral cover
branched along K. If D is homotopy ribbon, then rk H1(W ) ≤ rk H1(M).
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Proof. The first paragraph is a classical result, essentially a consequence of the Fox-Milnor
condition on the Alexander polynomials of slice knots [13]. We briefly sketch the argument.
Recall that a p-fold irregular dihedral cover of S3 branched along K exists if and only if the
two-fold branched cover Σ2 ofK admits a p-fold cyclic unbranched cover, as explained in [8].
Additionally, a p-fold unbranched cover of Σ2 exists if and only if H1(Σ2;Z) surjects onto
Z/pZ. Indeed, every surjection π1(S3−K) � Dp = Z2nZp factors through Z2nH1(Σ2;Z)
where Z2 acts on H1(Σ2;Z) by translation (which happens also to be inversion), so that
a surjection H1(Σ2;Z) � Zp induces a surjection π1(S3 − K) � Dp (see [3, Proposition
14.3 and Remark before Theorem 8.21]). For p square-free, this is equivalent to saying
that p divides |H1(Σ2;Z)|. The analogous statements hold regarding the existence of a
dihedral cover of B4 branched along D. We now use [9, Lemma 3] to conclude that, for p
square-free, Σ2 admits a p-fold cyclic unbranched cover if and only if the double cover of
B4 branched along D does. Put differently, some p-coloring of K extends over D, and the
induced dihedral branched cover of D satisfies the conclusion of the lemma.

The proof of [21, Lemma 3.3] can be applied to conclude the second paragraph, since, if D
is homotopy ribbon, it follows that i∗ : π1(M) � π1(W ). �

Definition 4. We say that a p-coloring of a knot K is s-extendible if it extends over some
slice disk D ⊂ B4 for K. We say the coloring is hr-extendible if it extends over some
homotopy ribbon disk D ⊂ B4 for K.

Remark 10. Let p > 1 be odd and square-free. To determine whether a p-coloring of a
knot K is s-extendible, one may investigate the associated surjection ρ : H1(Σ2) � Zp. A
slice disk D ⊂ B4 induces a metabolizer HD < H1(Σ2) with respect to the linking form by
[9, Theorem 2]. A necessary condition for the coloring to extend over D is that ρ vanishes
on HD. If D is homotopy ribbon, then this condition is also sufficient.

Lemma 11. Assume p > 1 is odd and square-free. Suppose K ⊂ S3 is a slice knot which
admits a p-coloring. Then there exists a p-fold irregular dihedral branched cover X → S4

whose branching set is an embedded S2 with a normal cone singularity of type K.

If K is homotopy ribbon, then f : X → S4 can be chosen such that, if M → S3 denotes
the induced irregular dihedral cover branched along K, we have rk IH n̄

1 (X) ≤ rk H1(M).
Here, n̄ denotes the upper-middle perversity function.

Proof. Since K is slice, by Lemma 9 there exists an irregular dihedral cover f : W → B4

branched along a slice disk D for K. Its restriction to the boundary ∂W = M is an
irregular dihedral cover f | : M → S3 branched along K. As in [21, Proposition 3.4], the
map:

W ∪M cM → B4 ∪S3 cS3

will serve as the desired irregular dihedral branched cover X → S4 with branching set
S2 = D ∪∂D c(∂D). The singularity on this sphere is the cone point and it is normal by
construction.
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To prove the second paragraph of the Lemma, observe that the inclusion M ↪→ cM
induces an isomorphism H1(M) ∼= IH n̄

1 (M) by the cone formula [16, Theorem 4.2.1].
Since M is moreover connected, the Mayer-Vietoris sequence for intersection homology
[16, Theorem 4.4.19] shows that there is a short exact sequence H1(M) ↪→ H1(W ) ⊕
IH n̄

1 (cM) � IH n̄
1 (X). Therefore, rk IH n̄

1 (X) = rk H1(W ). Now apply the last statement
of Lemma 9. �

Next, we use Lemma 11 to calculate the intersection homology Euler characteristic and
signature of the cover X.

Lemma 12. Assume p > 1 is odd and square-free. Suppose K ⊂ S3 is a knot which admits
p-colorings. Let f : X → S4 be as in Lemma 11, and let M → S3 be the induced irregular
dihedral cover of S3 branched along K. Then the (upper-middle perversity n̄) intersection
homology Euler characteristic of X is:

Iχ(X) = 1− rk H1(M) +
p+ 1

2
and its intersection homology signature is:

σIH(X) = −Ξp(K)

where Ξp(K) is the invariant associated to the induced p-coloring on K.

Proof. The signature calculation is a straightforward application of Theorem 1, since
σ(S4) = 0 and e(S2) = 0 as well.

Adopting the notation used in the Proof of Lemma 11, the branched cover f : X → S4 can
be rewritten as:

f : W ∪M cM → B4 ∪S3 cS3.

Therefore, we have the following equality involving intersection homology Euler character-
stics:

Iχ(X) = Iχ(W ) + Iχ (cM)− Iχ(M).

We now calculate the component Euler characteristics. Since M is a manifold, its inter-
section homology Euler characteristic is equal to its usual Euler characteristic. But M is
moreover closed and odd-dimensional. Therefore,

Iχ(M) = χ(M) = 0.

By the cone formula [16, Theorem 4.2.1], the intersection homology of cM is given by:

IH n̄
i (cM) =

{
Hi(M) if i ≤ 1
0 otherwise.

Hence,
Iχ(cM) = 1− rk H1(M).
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Lastly let’s consider the manifold W , which is a p-fold irregular dihedral cover of B4

branched along slice disk D. Because W is a manifold, we have again Iχ(W ) = χ(W ).

Let A ⊂ W denote the upstairs branching set of the map W → B4 so that χ(W ) =
χ(A) + χ(W\A), where we have additivity because (A, ∂A) ⊂ (W,∂W ) is an inclusion of

even-dimensional manifolds. Since the map A→ D is an unbranched cover with p+1
2 sheets

by Remark 3 and W\A→ B4\D is a p-sheeted unbranched cover, we find:

Iχ(W ) =
p+ 1

2
χ(D) + p

[
χ(B4)− χ(D)

]
=
p+ 1

2
.

Putting everything together, we conclude that, as claimed,:

Iχ(X) = 1− rk H1(M) +
p+ 1

2
.

�

Proof of Theorem 3. On the one hand, using universal coefficients, and Poincaré duality
[16, Theorem 8.2.4] for oriented, closed pseudomanifolds (and that the singular point of X
has even codimension) we have:

Iχ(X) = 2− 2 · rk IH n̄
1 (X) + rk IH n̄

2 (X)

where n̄ denotes the upper-middle perversity function. This in turn by Lemma 11 is greater
than or equal to 2− 2 · rk H1(M) + rk IH n̄

2 (X). On the other hand, by Lemma 12:

Iχ(X) = 1− rk H1(M) +
p+ 1

2
.

Comparing the two:

1− rk H1(M) +
p+ 1

2
≥ 2− 2 · rk H1(M) + rk IH n̄

2 (X)

=⇒ rk H1(X) +
p− 1

2
≥ rk IH n̄

2 (X)

But the absolute value of the signature |σIH(X)| of the intersection homology pairing on
IH n̄

2 (X;Q) is bounded above by rk IH n̄
2 (X). Lastly we invoke Lemma 12 to see Ξp(K) =

σIH(X). �

Corollary 13. Let K be a slice knot with determinant ∆K(−1) 6= ±1 and let p > 1 be
a square-free integer dividing ∆K(−1). Assume that for each s-extendible p-coloring of K
and associated p-fold irregular dihedral cover M the inequality

(6) |Ξp(K)| > rkH1(M) +
p− 1

2
holds. Then K is not homotopy ribbon.
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Remark. One can apply the above corollary without necessarily determining which p-
colorings of K extend over slice disks. Let Σ2 denote the two-fold cover branched along K.
By Remark 10, every s-extendible p-coloring has the property that the induced surjection
ρ̄ : H1(Σ2) � Zp vanishes on some metabolizer HD. Therefore, if the inequality (6) holds
for the (potentially larger) set of p-colorings that vanish on some metabolizer HD, then K
is not homotopy ribbon.

Proof. First, since K is a knot, |∆K(−1)| is odd [10, Theorem 6.7.1], so p must be odd
as well. Secondly, when p is square-free, the knot K admits a p-coloring if and only if p
divides the determinant of K. This follows from the discussion of existence of dihedral
branched covers given in the proof of Lemma 9, together with the fact that |∆K(−1)| is
the order of the first homology of the double branched cover of K [12, p. 149]. Hence, for
any value of p and coloring that extends over a slice disk, the associated value of |Ξp(K)|
can be discussed. Now apply Theorem 3. �

The above obstruction simplifies whenever the term rk H1(M) vanishes. Knots with this
property are discussed below.

4.1. Rationally admissible singularities. The invariant Ξp(K), as given in Equation (3),
is well-defined, provided that K arises as the only singularity on the otherwise locally flat
branching set of a p-fold dihedral cover over some four-manifold; this is a straightforward
generalization of [21, Proposition 2.7] applying Theorem 2. Put differently, Ξp(K) is an
invariant of a knot K together with a fixed p-coloring whenever this coloring extends over
some locally flat surface F embedded in some four-manifold X with ∂X = S3 and ∂F = K.
Note also that the dihedral cover f : W → X induced by such a coloring can be extended
in the obvious way to a singular dihedral branched cover Z = W ∪ c(∂W ) → X ∪ D4.
The total space Z is a manifold if and only if f−1(∂X) ∼= S3. More generally, f−1(∂X)
being a rational homology sphere is equivalent to the vanishing of rk H1(M), which in turn
simplifies the ribbon obstruction given in Theorem 3.

Definition 5. Let X be a four-manifold with ∂X ∼= S3 and let F ⊂ X be a properly
embedded locally flat surface with connected boundary K. If the pair (X,F ) admits a
p-fold irregular dihedral branched cover W → X with ∂W connected, we say that K is
p-admissible over X. If moreover M := ∂W is a rational homology sphere, K is said to be
rationally p-admissible over X. When M ∼= S3, we call K strongly p-admissible over X.

For any hr-extendible coloring of a knot K, when the associated dihedral cover of K is
a rational homology sphere, Proposition 3 gives |Ξ3(K)| ≤ 1. Moreover, under these
assumptions, Ξ3(K) is odd [7, Theorem 5], so the above inequality in fact implies Ξ3(K) =
±1. Computing Ξp is especially approachable for p = 3 thanks to [4] and [5]. More
generally, by reasoning as in the proof of Lemma 14, we can calculate an upper bound
on rk H1(M) from the bridge number of K, which allows us to simplify (although also
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potentially weaken) the inequality (4). It is also possible to compute rk H1(M) using Fox’s
method [12] for writing down a presentation for π1(M) from a colored diagram of K.

Lemma 14. Let K be a p-colorable n-bridge knot and f : M → S3 a p-fold irregular
dihedral cover branched along K. Then, the Heegaard genus of M , and, consequently,
rk H1(M), is at most 1

2(p− 1)(n− 2).

Proof. The argument follows the exact outlines of the proof of the well-known fact that
the p-fold irregular dihedral cover of a two-bridge knot is the sphere. Let K be a knot
in n-bridge position and S ⊂ S3 a bridge sphere for K. Write S3 = B3

1 ∪S B3
2 . We

know that K ∩ S consists of 2n points and K ∩ B3
i is a trivial n-tangle for each i = 1, 2,

implying that f−1(B3
i ) is a handlebody of genus equal to the genus of f−1(S). Since f is an

irregular dihedral cover, each branch point of f has p+1
2 pre-images. Therefore, we compute

χ(f−1(S)) = p(2−2n)+2np+1
2 = 2p−pn+n, concluding that g(f−1(S)) = 1

2(p−1)(n−2).
This gives the desired bound on the Heegaard genus of M and, therefore, on the rank of
its first homology. �

Corollary 15. Let K be a slice knot whose determinant satisfies ∆K(−1) 6= ±1. If p > 1
is a square-free integer dividing ∆K(−1), then |Ξp(K)| ≤ 1

2(p − 1)(n − 1) for any value
Ξp(K) defined using an hr-extendible p-coloring of K; also see Remark 10.

Proof. For any p as above, K admits p-colorings as in Corollary 13. Given a p-coloring of
K, Lemma 14 implies that the rank of the first homology of the induced p-fold irregular
dihedral branched cover M of S3 satisfies rk H1(M ;Z) ≤ 1

2(p−1)(n−2). If in addition this

coloring is hr-extendible, then Theorem 3 gives |Ξp(K)| ≤ 1
2(p−1)(n−1) for the associated

invariant Ξp(K). �

If K is a pretzel knot, then [18, Theorem 1] implies any 3-fold irregular dihedral cover of
S3 branched along K is either a rational homology sphere or a connect sum of a rational
homology sphere with some number of copies of S2×S1. The number of S2×S1 summands,
and hence the rank of the first homology of the irregular dihedral cover, can be determined
via [18]’s cancelling procedure that reduces a pretzel knot K to a split sum of links, where
each component link is trivially colored and is a connect sum of torus links. In particular,
by applying this cancelling procedure, one can identify rationally and strongly 3-admissible
pretzel knots among all knots that admit a branching surface as in Definition 5. A necessary
and sufficient condition for the existence of such a surface in B4 is given in [22].

Finally, we note that the results of this section can be generalized to potentially distinguish
the four-genus from the homotopy ribbon four-genus for non-slice knots as well. Given a p-
colorable knot K, the argument used to prove Theorem 3 can be applied to deduce a lower
bound for the minimal genus of a homotopy ribbon surface F ⊂ B4 with ∂F = K and such
that a p-coloring of K extends over F . For the special case of strongly p-admissible knots,
this was done in [7]. The lower bound obtained therein is seen to equal the homotopy
ribbon genus, without regard to coloring, for a family of knots {Km}∞m=0 such that the



16 CHRISTIAN GESKE, ALEXANDRA KJUCHUKOVA, JULIUS L. SHANESON

homotopy ribbon genus of Km equals m. This genus is found by an explicit construction
matching the lower bound. By Lemma 9, when m is positive, the Ξ invariant alone is
enough to detect that the knots Km are not ribbon.
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