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Abstract Organisms differ in the types and numbers of tRNA genes that they carry. While the

evolutionary mechanisms behind tRNA gene set evolution have been investigated theoretically and

computationally, direct observations of tRNA gene set evolution remain rare. Here, we report the

evolution of a tRNA gene set in laboratory populations of the bacterium Pseudomonas fluorescens

SBW25. The growth defect caused by deleting the single-copy tRNA gene, serCGA, is rapidly

compensated by large-scale (45–290 kb) duplications in the chromosome. Each duplication

encompasses a second, compensatory tRNA gene (serTGA) and is associated with a rise in tRNA-

Ser(UGA) in the mature tRNA pool. We postulate that tRNA-Ser(CGA) elimination increases the

translational demand for tRNA-Ser(UGA), a pressure relieved by increasing serTGA copy number.

This work demonstrates that tRNA gene sets can evolve through duplication of existing tRNA

genes, a phenomenon that may contribute to the presence of multiple, identical tRNA gene copies

within genomes.

Introduction
Even though tRNAs perform the same canonical function in all organisms – decoding 61 sense

codons into 20 amino acids – tRNA gene sets vary considerably across the tree of life (Fujishima and

Kanai, 2014; Marck and Grosjean, 2002). Two aspects in which they vary are the types of tRNAs

encoded and the number of gene copies encoding each type. Bacterial tRNA complements typically

contain 28–46 types of tRNA, encoded by 28–120 genes (Chan and Lowe, 2016). Elucidating the

factors contributing to, and the molecular mechanisms behind, the evolution of these variations has

been of long-standing interest in biology. There is general agreement that bacterial tRNA gene sets

are, in conjunction with the rest of the translational machinery, shaped by selection for rapid and

accurate protein synthesis (‘translational efficiency’; reviewed in Gingold and Pilpel, 2011). Efficient

translation is an important determinant of bacterial growth rate, with more efficient protein produc-

tion enabling faster growth and division (Kurland, 1996; Kurland and Ehrenberg, 1987). tRNAs

mainly contribute to translational efficiency during elongation, the stage of translation where codons

are sequentially matched to aminoacylated (charged) tRNAs (reviewed in Gingold and Pilpel, 2011;

Rodnina, 2018). Codon-tRNA matching occurs by a trial and error process; tRNAs – in the form of

ternary complexes (Bensch et al., 1991) – are stochastically sampled from the available pool. The

speed with which a matching tRNA is selected depends on the absolute and relative concentration

of tRNAs that match the codon; codons matched by more abundant tRNAs are expected, on aver-

age, to be translated more quickly than those matched by rarer tRNAs (reviewed in Plotkin and

Kudla, 2011). Given that the formation of codon-tRNA matches by stochastic sampling is the rate-

limiting step of elongation (Varenne et al., 1984), any factors affecting the matching process are

likely to influence the evolution of bacterial tRNA gene sets. Examples include variations in codon-

tRNA matching patterns and codon bias. Both of these are discussed in more detail below.
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Codon-tRNA matching patterns are complex; some tRNAs match, and hence translate, more than

one synonymous codon (Crick, 1966; Ikemura, 1981). This expanded translational capacity is the

result of relaxed base pairing between the first base of the tRNA anticodon (tRNA position 34) and

third base of the codon (codon position 3). In this binding position, a number of non-standard, ‘wob-

ble’ pairings are permitted (reviewed in Agris et al., 2018). Most wobble pairings involve post-tran-

scriptionally, enzymatically modified bases in the anticodon stem-and-loop region of tRNAs

(Boccaletto et al., 2018; Machnicka et al., 2016). These post-transcriptional modifications affect

the binding capacity and/or accuracy of a large fraction of bacterial tRNAs (Björk and Hagervall,

2014; Manickam et al., 2016). Hence, the set of post-transcriptional modification pathways active

within a bacterial species affects the codon–tRNA matching pattern and, in turn, is expected to influ-

ence tRNA gene set composition. Indeed, various post-transcriptional modification pathways have

been shown to co-vary with tRNA repertoires (Diwan and Agashe, 2018; Grosjean et al., 2010;

Novoa et al., 2012).

Codon bias refers to the preferential use of some synonymous codons over others. A number of

hypotheses exist regarding the evolutionary origins and consequences of preferred codons

(reviewed in Novoa and Ribas de Pouplana, 2012; Plotkin and Kudla, 2011), one of which is the

optimization of codon–tRNA matching during elongation (Berg and Kurland, 1997; Bulmer, 1991;

Bulmer, 1987; Higgs and Ran, 2008; Rocha, 2004). There are several lines of support for this

hypothesis. Firstly, different codons have been demonstrated to be translated at different rates in

yeast, with more frequent codons generally being translated more quickly (Gardin et al., 2014). Sec-

ondly, codon and tRNA abundances have been observed to co-vary across many bacterial genomes

(reviewed in Ikemura, 1985), particularly under conditions where rapid translation is required (e.g.,

during rapid growth [Dong et al., 1996; Emilsson and Kurland, 1990], in highly expressed genes

[Ikemura, 1981], or among bacteria with faster growth rates [Sharp et al., 2010]). Thirdly, a number

of studies have demonstrated an increase in protein expression when codon–tRNA co-variation is

strengthened, either by optimizing synonymous codon use (Sørensen et al., 1989; Zhou et al.,

2004) or by the addition of exogenous tRNAs (Gu et al., 2004; Misra and Reeves, 1985).

As outlined above, two factors expected to affect tRNA gene set evolution are the presence of

tRNA post-transcriptional modification pathways and codon bias; post-transcriptional modifications

heavily influence codon–tRNA matching patterns (affecting the tRNA types that are encoded), while

codon bias dictates the translational demand for individual tRNA types (influencing tRNA abundan-

ces and hence tRNA gene copy number). Overall, theoretical and computational studies are consis-

tent with the optimization of translational efficiency by the streamlining of tRNA gene sets; bacterial

growth rate correlates with fewer tRNA types encoded by more gene copies (Ran and Higgs, 2010;

Rocha, 2004).

In addition to factors influencing the evolution of tRNA gene sets, the mechanisms behind their

evolution are an area of interest. Hypothetically, tRNA gene sets can evolve by several different

mechanisms. Surplus tRNA genes may be lost (by deletion), while tRNA genes may be acquired

from external sources (by horizontal gene transfer), or from within the genome (by duplication

events). Additionally, the identity of existing tRNA genes may be altered by the acquisition of antico-

don mutations (anticodon switching). Thus far, most evidence for the above routes of tRNA gene set

evolution is indirect: phylogenetic analyses provide evidence of the flexibility of bacterial tRNA gene

sets by loss, gain (both by horizontal gene transfer and duplication), and anticodon switch events

(Diwan and Agashe, 2018; McDonald et al., 2015; Tremblay-Savard et al., 2015; Wald and Mar-

galit, 2014; Withers et al., 2006). An anticodon switch event has also been directly observed in lab-

oratory yeast; Saccharomyces cerevisiae populations in which the gene encoding tRNA-Arg(CCU)

had been removed were repeatedly rescued by a C!T mutation in one of eleven gene copies

encoding tRNA-Arg(UCU) (Yona et al., 2013). While the aforementioned study demonstrates the

power of experimental evolution to provide insight into the evolution of tRNA gene sets, there

remains a shortage of empirical studies directly investigating the evolution of bacterial tRNA gene

sets and translation.

To address this, we (i) engineer a suboptimal bacterial tRNA gene set, (ii) compensate the defect

using experimental evolution, and (iii) determine the genetic and molecular bases of compensation.

More specifically, we delete the single-copy tRNA gene, serCGA, from the bacterium Pseudomonas

fluorescens SBW25. We compensate the resulting growth defect during a 13-day serial transfer evo-

lution experiment and show that the genetic basis of compensation is large-scale (45–290 kb),
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tandem duplications encompassing a second tRNA gene (serTGA). Using a bacterial adaptation of

YAMAT-seq (a method of mature tRNA pool deep-sequencing originally developed for use in human

cell lines [Shigematsu et al., 2017]), we demonstrate that each duplication event is accompanied by

an increase in tRNA-Ser(UGA) in the mature tRNA pool. Finally, we develop a model that combines

our experimental results with the predicted effects of codon–tRNA matching patterns and codon

bias, to provide a molecular explanation of how the observed tRNA pool changes may affect transla-

tion and growth.

Results

The P. fluorescens SBW25 tRNA gene set
Isolated from the leaf of a sugar beet plant, P. fluorescens SBW25 is a non-pathogenic bacterium

that is frequently used as a model system in evolutionary biology. The SBW25 genome (Silby et al.,

2009) is predicted by GtRNAdb 2.0 (Chan and Lowe, 2016) to contain 67 tRNA genes (Figure 1A;

Supplementary file 1). The RNA product of one of these genes (cysGCA-2) is predicted to form a

secondary structure that deviates significantly from the cloverleaf structure typical of canonical

tRNAs (Chan and Lowe, 2019). Hence, the SBW25 tRNA gene set consists of 66 canonical tRNA

genes. These encode 39 different tRNA types, 14 of which are encoded by multiple (between two

and five) gene copies. Of these 14 types, 12 are encoded by gene copies that are identical in

sequence; only tRNA-Asn(GUU) and tRNA-fMet(CAU) are encoded by multiple gene copies with dif-

ferent sequences.

Figure 1. The tRNA gene set and serine translation system in P. fluorescens SBW25. (A) Genomic location of the 66 canonical (grey arrows) and one

non-canonical (cysGCA-2; black arrow) tRNA genes. Four tRNA genes encode seryl-tRNAs (red arrows). One of these, serCGA, is predicted to encode a

non-essential tRNA type. Six other tRNA genes encoding the remaining five non-essential tRNA types (green arrows). Replication origin and terminus

are indicated. (B) The predicted translational relationship between seryl-tRNAs and serine codons. The six theoretically possible seryl-tRNA anticodons

are listed on the left (red = present in SBW25, grey = absent, * = theoretically capable of translating codon UCG), and six cognate codons are listed in

column 2. Connections signify a theoretical match (solid black lines = Watson Crick pairing; black dotted lines = wobble pairing through post-

transcriptional modification; grey dotted line = G:U wobble pairing). Columns 3 and 4 list codon use as a percentage of serine and all codons,

respectively (Chan and Lowe, 2016). Anticodons and codons are 5’!3’.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Predicted structure and function of tRNA types tRNA-Ser(CGA) and tRNA-Ser(UGA) in P. fluorescens SBW25.
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The 39 different tRNA types identified in SBW25 must together be capable of translating all 61

sense codons. To investigate SBW25 codon–tRNA matching patterns, a combination of current wob-

ble rules (reviewed in Agris et al., 2018) and tRNA post-transcriptional modification prediction tools

(Boccaletto et al., 2018; Machnicka et al., 2016; Panwar and Raghava, 2014) was applied. Evi-

dence for the translation of multiple synonymous codons was found for 28 of 39 tRNA types

(Supplementary file 1). The proposed SBW25 codon–tRNA matching patterns indicate that the 39

tRNA types consist of a core set of 33 essential types (thatwhich together are theoretically capable

of translating all 61 codons) and six non-essential types (whose cognate codons are also predicted

to be translated by an essential tRNA type; Figure 1A; Supplementary file 1). The six non-essential

types are candidates for suboptimal tRNA gene set construction; their apparent functional redun-

dancy suggests that they can be eliminated, while their retention indicates that elimination may be

detrimental.

With the aim of constructing a suboptimal tRNA gene set, we focussed our attention on serCGA,

a single-copy gene encoding the non-essential tRNA type, tRNA-Ser(CGA) (Figure 1A). According

to the predicted codon–tRNA matching pattern, the cognate codon of tRNA-Ser(CGA), UCG, can

also be translated by the essential tRNA type, tRNA-Ser(UGA) (Figure 1B; Supplementary file 1). In

several Gram-negative bacteria, tRNA-Ser(UGA) is post-transcriptionally modified at U34 to 5-

methoxycarbonylmethoxyuridine (mcmo5U34; Boccaletto et al., 2018), resulting in the expansion of

translational capacity from codon UCA to include UCG and UCU (Takai et al., 1999a; Takai, 1996;

see Figure 1—figure supplement 1C). The mcmo5U34 modification is performed by the CmoA/B/M

enzymatic pathway (Björk and Hagervall, 2014; Sakai et al., 2016). Homologues of these enzymes

are present in SBW25; protein BLAST searches of Escherichia coli MG1655 CmoA, CmoB, and

CmoM against the SBW25 proteome give significant hits to Pflu1067, Pflu1066, and Pflu0633,

respectively (BLASTp e-values <1e-50; Altschul et al., 1990).

CmoA/B/M-mediated expansion of tRNA-Ser(UGA) translational capacity to include codon UCG

is expected to rescue a serCGA deletion mutant. Such a rescue event would require all UCG (and

UCA) codons to be translated by tRNA-Ser(UGA). Given that UCG is a relatively high use codon in

SBW25 – accounting for 22.5% of serine and 1.31% of all codons (Figure 1B) – serCGA deletion is

expected to considerably increase translational demand for tRNA-Ser(UGA). Hence, while a serCGA

deletion mutant may survive, significant translation and growth defects are anticipated.

Deletion of serCGA limits rapid growth
To test the prediction that serCGA deletion results in a viable strain with a growth defect, the entire

90 bp, single-copy serCGA gene was removed from P. fluorescens SBW25 by two-step allelic

exchange (see Supplementary file 2 for construction details). This process changed the tRNA gene

set from 66 tRNA genes of 39 types to 65 tRNA genes of 38 types. The engineering process was

performed two independent times, yielding biological replicate strains DserCGA-1 and DserCGA-2.

A third round of allelic exchange gave rise to an engineering control strain, SBW25-eWT. Successful

deletion of serCGA demonstrates that it is not essential for survival; at least one other tRNA can

translate codon UCG. serCGA deletion results in an immediately obvious growth defect on King’s

medium B (KB), a rich medium that supports rapid growth and hence rapid translation (King et al.,

1954). Deletion of serCGA results in visibly smaller colonies on KB agar (Figure 2A). Compared with

SBW25, DserCGA-1 shows a reduction maximum growth rate in liquid KB (two-sample t-test

p=1.18�10�6, Figure 2B and C) and elongated cells during growth in liquid KB (Figure 2—figure

supplement 1A). Further, both independent serCGA deletion mutants lose when grown in direct,

1:1 competition with the neutrally marked SBW25-lacZ in liquid KB (one sample t-tests p<0.0001;

Figure 2D). The observed growth defect is much less pronounced in minimal media, which supports

slower growth and translation; SBW25 and DserCGA-1 colonies are similar sizes on M9 agar

(Figure 2E), and no negative effects on growth or cell morphology were detected in liquid M9

(Figure 2F and G; Figure 2—figure supplement 1B). However, direct 1:1 competitions between

DserCGA and SBW25-lacZ indicate a slight negative effect of serCGA deletion in liquid M9 (one

sample t-tests p=0.06882 and 0.00908; Figure 2H).

The results in this section demonstrate that serCGA deletion leads to a growth defect that is

more pronounced in KB than M9. The generation of a viable, but suboptimal, tRNA gene set upon

serCGA deletion from SBW25 is consistent with the predictions of the previous section: that serCGA

is not essential for translation, but it contributes to translational speed. It should, however, be noted
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Figure 2. Deletion of serCGA leads to a growth defect in a rich medium. (A) 45 hr colonies on KB agar. (B) Growth (absorbance at 600 nm) in KB.

Lines = mean of six (DserCGA-1) or seven (SBW25 and SBW25-eWT) replicates; error bars = one standard error. (C) Maximum growth rate (change in

mOD min�1) in KB, calculated with a sliding window of nine points between hours 2 and 12. (D) Relative fitness values from direct 1:1 competitions

between competitor 1 (DserCGA-1 or DserCGA-2) and the neutrally marked wild-type strain, SBW25-lacZ (six replicates per competition), in KB. Relative

fitness of 1 = no difference, <1 = SBW25-lacZ wins, >1 = competitor one wins. (E) 45 hr colonies on M9 agar, at same magnification and time as in

panel A. (F) Growth in M9. Lines = mean of seven replicates, error bars = one standard error. (G) Maximum growth rate (change in mOD min�1) in M9,

calculated with a sliding window of nine points between hours 2 and 12. (H) Relative fitness values from direct 1:1 competitions between competitor 1

Figure 2 continued on next page
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that serCGA deletion may increase intracellular serine levels, which could lead to toxic effects on

growth. Indeed, significant increases in intracellular serine have been shown to affect the growth

and division of E. coli cells growing in rich, serine-containing media (Kriner and Subramaniam,

2020; Zhang et al., 2010; Zhang and Newman, 2008).

The growth defect is repeatedly and rapidly compensated during
experimental evolution
In order to investigate whether and how the growth defect exhibited by the serCGA deletion mutant

can be compensated for genetically, a serial transfer evolution experiment was performed. This

experiment consisted of eight independent lineages: W1–W4 were control lines, each founded by a

wild type strain (W1 and W2 by SBW25, W3 and W4 by SBW25-eWT), while M1–M4 were founded

by the serCGA deletion mutant (M1 and M2 by DserCGA-1, M3 and M4 by DserCGA-2). Each line-

age was started from a single colony and maintained in liquid KB for 15 days, with daily transfer of

1% to fresh medium. Samples of each population were frozen daily.

After 13 days (~90 generations), all four mutant lineages (M1, M2, M3, and M4) showed visibly

improved growth. Plating of day 13 populations on KB agar revealed that many colonies from line-

ages M1–M4 were larger than those of the founding serCGA deletion mutant (Figure 3A). Notably,

lineage M2 showed two phenotypically distinct types of large colonies: a phenotypically standard

type and an opaque type. The opaque type closely resembles the previously reported switcher phe-

notype, in which on–off switching of colanic acid–based capsules generates opaque-translucent col-

ony bistability (Beaumont et al., 2009; Gallie et al., 2019; Gallie et al., 2015; Remigi et al., 2019).

No obvious change was observed in the size of colonies derived from day 13 of the four wild-type

lineages (Figure 3A).

Five colonies were isolated from the day 13 mutant lineages for further analysis. These included

one standard-looking, large colony from each mutant lineage (these isolates are hereafter referred

to as M1-L, M2-L, M3-L, and M4-L) and a second large, opaque colony from lineage M2 (hereafter

M2-Lop). Two representative colonies were isolated from day 13 of different wild-type lineages

(hereafter W1-L and W3-L). Growth analyses in liquid KB showed improved growth profiles in all five

isolates from the mutant lineages (Figure 3B–D). In line with the observed improvement, each of the

five mutant lineage isolates outcompeted the serCGA deletion mutant in direct, 1:1 competition

(one sample t-tests p<0.01; Figure 3E). Indeed, no fitness difference was detected in 1:1 competi-

tions between two mutant lineage isolates and neutrally marked SBW25-lacZ, providing evidence for

high levels of compensation in these genotypes (M1-L and M4-L; one sample t-tests p>0.05;

Figure 3E). The other three mutant lineage isolates were outcompeted by SBW25-lacZ, indicating

partial compensation (M2-L, M2-Lop, and M3-L; one sample t-tests p<0.01; Figure 3E). No changes

were observed in the growth or fitness of W1-L, the control isolate from day 13 of wild-type lineage

1 (Figure 3A–E).

The results in this section demonstrate that the growth defect caused by the deletion of serCGA

was repeatedly and rapidly compensated, to varying degrees, in isolates from each of the four

mutant lineages on day 13 of the evolution experiment.

Genetic basis of compensation is large duplications spanning serTGA
To determine the genetic basis of DserCGA compensation, Illumina whole genome sequencing was

performed on the seven day 13 isolates from the previous section: two control isolates from two

Figure 2 continued

(DserCGA-1 or DserCGA-2) and SBW25-lacZ (six replicates per competition), in M9. Parametric two-tailed two-sample t-tests (panel C, G) and

parametric two-tailed one sample t-tests (panel D, H) ***p<0.001, **p<0.01, *p<0.05, ns = not significant (p>0.05).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. This file contains the growth data used in Figure 2 panels B, C, F, and G.

Source data 2. This file contains the fitness data used to draw Figure 2 panels D and H, and Figure 3 panel E.

Figure supplement 1. The effect of serCGA deletion on cell morphology during growth in liquid KB and M9.
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Figure 3. Loss of serCGA is repeatedly and rapidly compensated by experimental evolution. (A) Colony morphology of founder (solid outlines) and

evolved (dotted outlines) isolates on KB agar (30 hr, 28˚C). Lineage M2 yielded two large colony morphotypes: standard (left) and opaque (‘op’, right).

Image border colours match line colours in panel B. (B) 12 hr growth curves in liquid KB for founder (day 0, solid lines) and evolved (day 13, dotted

lines) isolates. Lines = mean of six replicates; error bars = 1 standard error. (C, D) Box plots showing the maximum growth rate (change in mOD min�1)

and lag time (hours) of founding and evolved strains from the evolution experiment, grown in liquid KB (n = 6; maximum growth rates and lag times

calculated using a sliding window of nine points between 2 and 12 hr). Statistically significant differences were determined using parametric t-tests

(solid black lines), non-parametric t-tests (solid grey lines), or Mann–Whitney–Wilcoxon rank sum tests (dotted grey line). (E) Box plots of the relative

fitness of competitor 1 (x-axis) and competitor 2 (horizontal bars at top). Direct, 1:1 competitions were performed in liquid KB for 24 hr (28 ˚C, shaking).

Six replicate competitions were performed for each set of strains. Relative fitness >1 means competitor one wins and <1 means competitor two wins.

Figure 3 continued on next page
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wild type lineages (W1-L and W3-L) and five isolates from four mutant lineages (M1-L, M2-L, M2-

Lop, M3-L, and M4-L). In each of the five mutant lineage isolates a large, direct, tandem duplication

was identified at around 4.16 Mb in the SBW25 chromosome (Figure 4A–B, Figure 4—figure sup-

plement 1, Supplementary file 3). No evidence of any such duplications was found in either of the

wild type control isolates. In addition to the large duplications, one synonymous point mutation was

identified in one mutant lineage: in the carbohydrate metabolism gene edd of M2-L, codon 17 is

changed from CGC to CGA (both encoding arginine; Supplementary file 3). This mutation was not

identified in any other isolate, including the second isolate from the M2 lineage (M2-Lop), and is not

considered likely to contribute to the compensatory phenotype of M2-L.

A combination of computational analyses, PCR, and Sanger sequencing was used to determine

the precise region of duplication in four of five isolates. The duplications range in size from 45 kb (in

M1-L) to 290 kb (in M4-L), and occur between 4.05 Mb and 4.34 Mb of the chromosome (Table 1).

The precise location of the duplication in the fifth isolate (M3-L) could not be determined due to

highly repetitive flanking DNA.

Next, we sought to identify the region(s) within the duplications responsible for the observed

gain in fitness. Closer examination revealed a ~45 kb segment that is duplicated in all five strains

(4,119,923–4,164,966). This segment is predicted to contain 45 genes, including 44 protein-coding

genes (none of which is obviously linked to translation, or serine transport/metabolism), and one

tRNA gene: serTGA (Figure 4A, Supplementary file 4). Close manual inspection revealed no evi-

dence of any point mutations in any copy of the serTGA gene or promoter sequence, in any of the

evolved isolates (Supplementary file 5), meaning that each duplication strain contains a second,

wild-type copy of serTGA. In addition, isolate M4-L carries additional copies of four other tRNA

genes (argTCT, hisGTG, leuTAA, and hisGTG; Supplementary file 4). Notably, this experiment has

revealed three different tRNA gene sets that each provides a similar level of fitness in KB (see

Figure 3E): SBW25 encodes 66 canonical tRNA genes of 39 tRNA types, four of five compensated

isolates carry 66 tRNA genes of 38 types, and the fifth compensated isolate (M4-L) carries 70 tRNA

genes of 38 types.

Given that the duplicated serTGA gene encodes tRNA-Ser(UGA), the tRNA type that can theoret-

ically perform the function of tRNA-Ser(CGA) (see Figure 1—figure supplement 1C), it is a logical

candidate for the underlying cause of compensation. However, there are also 44 protein-coding

genes in the shared duplication segment, any of which could contribute to the compensatory effect.

We therefore tested whether a plasmid-based increase in serTGA expression can compensate for

serCGA loss. To this end, the serCGA and serTGA genes were individually amplified from SBW25,

and each ligated into the expression vector pSXn (giving pSXn-CGA and pSXn-TGA;

Supplementary file 2). This placed the expression of the tRNA gene under the control of an isopro-

pyl-ß-D-1-thiogalactopyranoside (IPTG)-inducible tac promoter (de Boer et al., 1983; Owen and

Ackerley, 2011).

Each plasmid construct was inserted into SBW25, DserCGA-1, and DserCGA-2, and the growth of

the resulting strains was analysed in the absence of the inducer (to achieve lower-level, leaky expres-

sion of the tRNA gene). Expression of either serCGA or serTGA was shown to improve the growth

of the serCGA deletion mutants in rich medium; addition of pSXn-CGA or pSXn-TGA increases the

maximum growth rate of DserCGA, while addition of empty pSXn does not (Figure 4C and D; two-

sample t-tests). Contrastingly, expression of neither tRNA improved growth of SBW25 (Figure 4C),

with serCGA expression actually leading to a decrease in SBW25 maximum growth rate (Figure 4D;

one-sided two-sample t-test p=0.000158). While it should be noted that tRNA-Ser(UGA) levels

resulting from pSXn-based expression are likely to exceed those resulting from an additional

Figure 3 continued

The first two competitions are also presented in Figure 2G. Statistically significant deviations of relative fitness from one were determined using

parametric two-tailed one-sample t-tests. ***p<0.001, **p<0.01, *p<0.05, ns = not significant (p>0.05).

The online version of this article includes the following source data for figure 3:

Source data 1. This file contains the growth data used in Figure 3 panels B, C, and D.
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chromosomal copy of serTGA, the result that pSXn-based serTGA expression specifically improves

the growth rate of DserCGA demonstrates that serTGA can provide a degree of compensation for

serCGA loss. Other genes in the shared 45 kb fragment may nevertheless contribute to compensa-

tion, through unidentified mechanisms.

Thus far, our results provide strong evidence that the growth defect caused by serCGA deletion

is repeatedly and rapidly compensated by one of several large-scale duplications encompassing

serTGA.

Large-scale duplications arise quickly and are heterogeneous
The duplication-carrying strains were isolated from all mutant lineages on day 13, demonstrating

that the large-scale duplications occur repeatedly and rapidly. To more closely investigate the rapid-

ity with which the duplications arose, a PCR was performed to identify the first time point at which

the emergent M1-L duplication junction, M1junct1 (see Supplementary file 2), could be amplified

from lineage M1 (see Figure 4B). The lineage M1 population samples frozen daily during the evolu-

tion experiment were revived and used as templates for the PCR. The M1-L duplication junction was

first visible by PCR on day 3 and grew stronger as the experiment progressed (Figure 4E). Similar

PCRs for the remaining duplication strains detected the presence of the relevant duplication junc-

tions on day 2 (M2-Lop), day 4 (M3-L), and day 5 (M2-L and M4-L) (Figure 4—figure supplement 2).

A notable feature of the duplication fragments is that they are heterogeneous. That is, each of

the five compensated isolates carries a unique duplication fragment with distinct endpoints (Table 1).

Further, there is evidence of within-lineage heterogeneity; two distinct duplication fragments were

identified in isolates from a single lineage (M2-L and M2-Lop; Table 1). To investigate within-lineage

heterogeneity more closely, additional large colonies were isolated from day 13 of each mutant line-

age and tested by PCR for the presence of the duplication junction(s) previously identified in the

lineage. The results provide evidence for genotypic heterogeneity in compensated isolates from

three of the four mutant lineages (M2, M3, and M4; Figure 4—figure supplement 2). Three

differently sized PCR products were detected among the four isolates from lineage M2, demonstrat-

ing the presence of at least three distinct duplication fragments in the day 13 population. A mixture

of compensated genotypes was also detected in lineages M3 and M4, with duplication junctions

M3junct1 and M4junct1 amplifying in only three (of four) and two (of four) isolates, respectively. No

PCR products were detected for the remaining isolates in these lineages, indicating that these three

isolates either carry a duplication junction that was not tested for or compensate by a different

mechanism.

The results in this section demonstrate that (i) strains carrying duplication fragments arise early

within the mutant lineages of the evolution experiment (within 2–5 days or ~7–35 generations) and

(ii) a degree of heterogeneity exists in duplication fragments, both between and within mutant line-

ages. These observations suggest that a mixture of duplication strains – and, by extension, tRNA

gene sets – arise and compete within each mutant lineage.

Duplication events increase the proportion of tRNA-Ser(UGA) in the
mature tRNA pool
Next, we sought to quantify the effect of serCGA deletion and subsequent serTGA duplication on

the mature tRNA pool of SBW25. To this end, YAMAT-seq – an established method of deep-

sequencing mature tRNA pools in human cells (Shigematsu et al., 2017) and plants (Warren et al.,

2020) – was adapted for use in P. fluorescens SBW25. The YAMAT-seq procedure quantifies

charged and uncharged mature tRNAs; it does not measure pre-tRNAs, or tRNA fragments. Briefly,

the YAMAT-seq procedure involves (i) isolation of total RNA from exponentially growing cells, (ii)

removal of amino acids from the charged fraction of mature tRNAs, rendering all (or, most) mature

tRNAs uncharged, (iii) ligation of Y-shaped, DNA/RNA hybrid adapters to the conserved, exposed

ends of the mature, uncharged tRNAs, (iv) reverse transcription and amplification of adapter-tRNA

complexes, (v) gel purification of the PCR products, (vi) high throughput sequencing, and (vii)

computational and statistical analyses.

YAMAT-seq was performed on three replicates of nine strains: wild type (SBW25), the two inde-

pendent serCGA deletion mutants (DserCGA-1, DserCGA-2), and six isolates from day 13 of the evo-

lution experiment (W1-L, M1-L, M2-L, M2-Lop, M3-L, and M4-L). High throughput sequencing of the
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Figure 4. Direct, tandem duplications spanning serTGA compensate for serCGA loss. (A) Five isolates from the mutant Lines have unique, large,

tandem duplications between 4.05 and 4.34 Mb of the SBW25 chromosome (green arcs; moving outwards: M1-L, M2-L, M2-Lop, M3-L, and M4-L). The

duplications contain a shared 45 kb region with serTGA (dotted black line; see also Figure 4—figure supplement 1). (B) Cartoon depiction of the

duplication event in M1-L, resulting in two copies of a 45 kb fragment (green) and an emergent junction (thick black line). The junction can be PCR-

amplified using primers to either side (black arrows). IG = intergenic, black dotted line = serTGA. (C) 12 hr growth curves in LB+Gm (20 mg ml�1) for

Figure 4 continued on next page
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reverse-transcribed tRNA pools resulted in an average of 1,177,340 raw reads per sample. More

than 99.99% of the raw reads fell within the range of lengths expected for tRNA-containing reads

(80–150 bp), indicating good adapter-binding specificity. The >80 bp reads for each sample were

aligned to a set of 42 reference tRNA sequences, consisting of all unique tRNA gene sequences pre-

dicted in the SBW25 chromosome (including cysGCA-2; Supplementary file 6; Chan and Lowe,

2016). At the conclusion of the alignment process, an average of 1,050,749 reads per sample were

aligned to the reference sequences (~89% read retention; Supplementary file 7). Within each sam-

ple, the reference sequences with the highest and lowest (above zero) read counts consistently var-

ied by a factor of ~10,000. For example, in sample 1, 109,963 reads aligned to Gly-GCC and 13 to

Ile2-CAU (Supplementary file 7).

All samples showed reads aligned to 40 or 41 (of 42) reference sequences. The reference sequen-

ces without reads were Ser-CGA (in DserCGA and derivatives, as expected) and Cys-GCA-2 (in all 27

samples). Together with the prediction of a non-standard secondary structure for cysGCA-2

(Chan and Lowe, 2019; Chan and Lowe, 2016), our inability to detect the Cys-GCA-2 sequence in

any sample strongly indicates that Cys-GCA-2 does not contribute to translation. Overall, the

YAMAT-seq results support the tRNA gene set predicted for SBW25: all 39 predicted types of

mature tRNAs were detectable, including the 33 essential and the six non-essential tRNA types (see

Figure 1A, Supplementary file 1).

While the YAMAT-seq results provide a useful overview of the relative abundances of tRNAs in a

mature tRNA pool, within-strain comparisons of different tRNA types should be interpreted cau-

tiously. As outlined by Shigematsu et al., 2017, variations in tRNA structural components and post-

transcriptional modifications can adversely affect the relative efficiency of the reverse transcription

reaction for some tRNA types, reducing their apparent proportions. In our results, three tRNA types

consistently align a very low proportion of reads (<0.0001): Phe-GAA, Glu-UUC, and Ile2-CAU. A

much higher proportion of reads was expected in particular for Phe-GAA and Glu-UUC, both of

Figure 4 continued

DserCGA-1 (red) and SBW25 (blue) expressing serCGA or serTGA from the pSXn plasmid. Lines = mean of six replicates, error bars = 1 standard error.

(D) Maximum growth speed (change in mOD min�1; calculated with a sliding window of points between 0 and 23 hr) of SBW25, DserCGA-1, DserCGA-2

carrying empty pSXn, pSXn-serCGA (+CGA) and pSXn-serTGA (+TGA). Parametric two-tailed, two-sample t-tests ***p<0.001, **p<0.01, *p<0.05,

ns = not significant (p>0.05). (E) The duplication junction in lineage M1 was first definitively amplified from lineage M1 population on day 3 (black

arrow). Gel photograph colours were inverted using Preview to better detect faint PCR products. See Figure 4—figure supplement 2 for the history of

other junctions.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. This file contains the growth data used in Figure 4 panels C and D.

Figure supplement 1. Coverage plots from whole genome sequencing data provide evidence of large-scale, tandem duplication events in evolutionary

lineages M1–M4.

Figure supplement 2. Large tandem duplications are detected between days 2 and 5 of the evolution experiment.

Table 1. Duplication junctions in five isolates from the mutant lineages reveal duplication fragments of 45–290 kb.

Base positions refer to the SBW25 wild type genome sequence (Silby et al., 2009). For a list and details of the genes contained within

each duplication segment, see Supplementary file 4.

Strain name
Dup. size
(bp) Junction name

Junction side 1 Junction side 2

Base Region Base Region

M1-L 45,043 M1junct 4,164,966 murB 4,119,923 Intergenic repeat

M2-L 191,833 M2junct1 4,310,940–4,311,029 Intergenic repeat 4,119,235–4,119,352 Intergenic repeat

M2-Lop 182,877 M2junct2 4,224,306 nuoL 4,042,455 pflu3649

M3-L ~192,000 M3junct1 ~4,310,800 Intergenic repeat ~4,119,100 Intergenic repeat

M4-L 290,335 M4junct1 4,339,314 Intergenic 4,048,979 pflu3655
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which are the sole tRNA types responsible for decoding all synonymous codons for their respective

amino acids (accounting for 3.66% and 5.43% of genome wide codons, respectively; Chan and

Lowe, 2016). Given their low read numbers, and non-central role in our experiment, these three

tRNA types were removed from downstream statistical analyses.

The strength of the YAMAT-seq procedure lies in comparing changes in mature tRNA levels

across genotypes. Any issues with efficiencies are expected to remain relatively constant across the

strains in this experiment, allowing changes in relative tRNA type abundances to be detected. To

this end, DESeq2 (Love et al., 2014) was used to compare normalized expression levels of 36

mature tRNA types – all SBW25 tRNA types except for Phe-GAA, Glu-UUC, and Ile2-CAU – in pairs

of strains. Firstly, the effect of deleting serCGA was investigated by comparing tRNA sequences

from each of the two independent serCGA deletion strains with those in SBW25 (Figure 5A). The

absence of tRNA-Ser(CGA) from both deletion mutants demonstrates that (i) tRNA-Ser(CGA) is

encoded solely by the deleted serCGA gene, and (ii) under the conditions tested, tRNA-Ser(CGA) is

indeed a non-essential tRNA type in SBW25 (i.e., can be eliminated without causing death). The

serCGA deletion mutants also showed consistently lower levels of tRNA-Thr(CGU) (DESeq2 adjusted

p<0.001), a result that may reflect a close metabolic relationship between threonine and serine

(Sawers, 1998). No significant differences were detected between the two deletion mutants

(DESeq2 adjusted p>0.1).

Next, the effect of evolution on the serCGA deletion mutant was investigated by pairwise com-

parisons between each day 13 isolate and its corresponding ancestor (Figure 5B). Importantly, no

differences in tRNA pools were detected in the wild type control lineage (W1-L versus SBW25;

DESeq2 adjusted p>0.1). Contrastingly, a single consistent, statistically significant difference was

observed across the five mutant lineage isolates: the level of tRNA-Ser(UGA) was 2.06- to 2.60-fold

higher than in the DserCGA ancestor (DESeq2 adjusted p<0.0001). A number of other tRNA types

co-vary with the rise in tRNA-Ser(UGA) (Figure 5B). While none of these differences is statistically

significant in all strains, they are consistently in the same direction (i.e., increase or decrease). Thus,

while the main effect of serCGA deletion and serTGA duplication is the loss of tRNA-Ser(CGA) and

elevation of tRNA-Ser(UGA) respectively, other more subtle effects are likely to exist. Finally, pair-

wise comparisons between the duplication strains reveal some tRNA pool differences between the

different duplication strains (Figure 5—figure supplement 1). Interestingly, no differences were

detected between strain M4-L and any of the other duplication strains (DESeq2 adjusted p>0.3),

indicating that the four additional tRNA genes duplicated in M4-L do not contribute to the mature

tRNA pool. It is possible that the duplication junction in M4-L – which lies 112 bp upstream of the

duplicated argTCT-hisGTG-leuTAG-hisGTG tRNA genes – truncates a promoter, leading to little or

no expression of the duplicated copies. This result highlights that tRNA gene copy number does not

always correlate with mature tRNA level.

The YAMAT-seq data shows the major effects of our engineering and evolution on the mature

tRNA pool of SBW25 (Figure 5C). In the wild type strain, the proportion of tRNA-Ser(CGA) is around

2.5-fold higher than that of tRNA-Ser(UGA) (0.015 and 0.0059, respectively). The dominant effect of

serCGA deletion is elimination of tRNA-Ser(CGA), with the proportions of the other tRNA types,

including tRNA-Ser(UGA), remaining relatively stable. The subsequent large-scale duplications span-

ning serTGA generate an approximately twofold increase in the relative abundance of tRNA-Ser

(UGA).

A model for how elevation of tRNA-Ser(UGA) increases translational
efficiency
Thus far, our results show that the growth defect caused by tRNA-Ser(CGA) elimination can be com-

pensated by large-scale duplication events that serve to increase the proportion tRNA-Ser(UGA) in

the mature tRNA pool. In this final section, we develop a model to provide a molecular explanation

of how elevating tRNA-Ser(UGA) levels may compensate for tRNA-Ser(CGA) loss.

As described in the introduction, tRNA pool composition is an important determinant of transla-

tional speed. During elongation, the codon occupying the ribosomal A site is matched to a corre-

sponding tRNA by stochastically sampling from the available pool of ternary complexes. Ternary

complexes consist of a tRNA, an elongation factor (EF-Tu), and GTP (Bensch et al., 1991). Given

that EF-Tu is a highly abundant protein that binds all correctly charged tRNA types with approxi-

mately equal affinity (Louie et al., 1984; Schrader et al., 2011), and uncharged tRNAs with several
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Figure 5. Heatmaps showing differences in mature tRNA levels between strains. The log2-fold.change(strain1/strain2) difference in expression for 36

mature tRNA types (with 38 different primary sequences) was determined for pairs of strains using DESeq2. (A) Mature tRNA expression levels in the

serCGA deletion mutants compared with SBW25, demonstrating a consistently lower levels of tRNA-Ser(CGA) and tRNA-Thr(CGU) upon deletion of

serCGA. tRNAs in red show a consistent difference in all comparisons except DserCGA-1 versus DserCGA-2 (row 3), the control comparison for which

no significant differences in mature tRNA levels were detected. (B) tRNA-Ser(UGA) is higher in the mature tRNA pool in each of the five serTGA

duplication isolates compared with the deletion mutant (with no significant differences detected in the wild type control Line, row 6). Some tRNA types

were removed from the DESeq2 analysis (filled grey boxes): Glu-UUC, Ile2-CAU, Phe-GAA, and – in some comparisons – Ser-CGA, consistently gave

low read numbers. Box borders represent statistical significance: thin grey = adjusted p>0.01, thick grey = 0.01 > adjusted p>0.001, black = adjusted

p<0.001. tRNAs in red show a consistent difference in all comparisons except for the control (row 6). (C) Cartoon depicting the major effects of serCGA

deletion (loss of tRNA-Ser(CGA)) and subsequent serTGA duplication (twofold increase of tRNA-Ser(UGA)) on the relative proportions of seryl-tRNAs in

the mature tRNA pool.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. This file contains the DESeq2 values from the tRNA expression analysis used in Figure 5 panels A and B, and Figure 5—figure supple-

ment 1.

Figure supplement 1. Comparison of expression levels of tRNA types in five strains isolated from mutant lineages on day 13.
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fold lower affinity (Nissen et al., 1996; Shulman et al., 1974), the relative levels of each ternary

complex are expected to reflect mature, charged tRNA proportions. Overall, the average time taken

to match any given codon is dependent on the availability of the corresponding charged tRNA type

(s); codons matched by a higher proportion of tRNAs will, on average, be translated more quickly

than those matched by rarer tRNAs (Varenne et al., 1984). To illustrate, consider the serine codons

and seryl-tRNAs from our experiments; codon UCA is translated by tRNA-Ser(UGA), while codon

UCG can theoretically be translated by tRNA-Ser(CGA) or tRNA-Ser(UGA) (see Figure 1B). When

both tRNA types are present, UCG is matched by a higher proportion of tRNAs than UCA and hence

is expected to be translated more quickly, on average.

The above logic can be extended to provide relative numerical estimates of codon translation

times, where codon-tRNA matching patterns and tRNA proportions are known. The average time

required to translate any particular codon (t codon) can be approximated by the inverse proportion of

matching, charged tRNAs in the pool (Equation 1; where ptRNA is the proportion of matching

tRNAs).

t codon ¼
1

ptRNA
(1)

Accordingly, the average time taken to translate UCA can be estimated by the inverse proportion

of tRNA-Ser(UGA) in the tRNA pool (Equation 2a), while UCG translation time can be estimated as

the inverse proportion of tRNA-Ser(UGA) plus tRNA-Ser(CGA) (Equation 2b). For simplicity, these

equations assume that tRNA-Ser(CGA) and tRNA-Ser(UGA) translate UCG with equal efficiency (see

Discussion).

t UCA ¼
1

pUGA
(2a)

t UCG ¼
1

pCGA þ pUGAð Þ
(2b)

If the proportions of mature tRNA-Ser(CGA) and tRNA-Ser(UGA) measured during YAMAT-seq

are substituted into Equations 2a and 2b, relative measures of UCA and UCG translation times can

be obtained in various genetic backgrounds (Table 2; see Supplementary file 7). According to

these calculations, serCGA deletion increases the time taken to translate UCG by a factor of four

Table 2. Numerical estimates of relative translation times using the mature tRNA pool measurements obtained during YAMAT-seq.

Strain

YAMAT-seq proportion t UCA t UCG t mRNA

t mRNA relative to tRNA gene set 1tRNA-Ser(UGA)a tRNA-Ser(CGA)b

tRNA gene set 1: wild type (one serCGA, one serTGA)

SBW25 0.0059 0.015 169 47.8 385 0.970

W1-L 0.0056 0.014 179 51.0 408 1.03

Mean 174 49.4 397 1

tRNA gene set 2: serCGA deletion (0 serCGA, one serTGA)

DserCGA-1 0.0050 0 200 200 1100 2.77

DserCGA-2 0.0047 0 213 213 1170 2.95

Mean 207 207 1135 2.86

tRNA gene set 3: serCGA deletion and serTGA duplication (0 serCGA, two serTGA)

M1-L 0.013 0 76.9 76.9 423 1.07

M2-Lop 0.012 0 83.3 83.3 458 1.15

M2-L 0.012 0 83.3 83.3 458 1.15

M3-L 0.011 0 90.9 90.9 500 1.26

M4-L 0.010 0 100 100 550 1.39

Mean 86.9 86.9 478 1.20

Ayan et al. eLife 2020;9:e57947. DOI: https://doi.org/10.7554/eLife.57947 14 of 29

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.57947


(mean UCG translation times of 49.4 and 207 in wild type and serCGA deletion tRNA gene sets,

respectively). Subsequent serTGA duplication elevates the proportion of tRNA-Ser(UGA), partially

restoring UCG translation time (mean UCG translation times of 207, 86.9, and 49.4 in the serCGA

deletion strains, wild types, and serTGA duplication strains, respectively).

The cumulative impact of changing UCG translation speeds on translation and, ultimately, growth

logically depends on how frequently the UCG codon is used. In SBW25, UCG is a relatively high use

codon, occurring approximately 4.5 times more frequently than UCA (see Figure 1B; Chan and

Lowe, 2016). To account for UCG codon bias, we estimated the average time required by each

strain to translate an mRNA that reflects the relative UCG/UCA codon usage of SBW25. Using the

same principle as in Equation 1, Equation 2a and b, the average time taken to translate the mRNA

(t mRNA) is calculated as the sum of the time taken to translate one UCA codon plus the time taken to

translate 4.5 UCG codons (Equation 3).

t mRNA ¼ 1
1

pUGA

� �

þ 4:5
1

pCGA þ pUGAð Þ

� �

(3)

The estimated average time required for the three tRNA gene complements to translate the

mRNA can be calculated using the tRNA proportions measured during YAMAT-seq (Table 2). Using

this method, on average a serCGA deletion mutant is expected to require approximately three times

longer to translate the mRNA than the wild type (mean translation times of 1135 and 397, respec-

tively). serTGA duplication is estimated to restore average translation time to near-wild type levels

(mean translation times of 478 and 397, respectively).

Proportions of tRNA-Ser(UGA)a and tRNA-Ser(CGA)b, as measured by YAMAT-seq for each strain

(see Supplementary file 7), were substituted into Equation 2a to estimate UCA translation time

(t UCA), Equation 2b to estimate UCG translation time t UCG, and Equation 3 to estimate translation

time of an artificial mRNA representing the relative codon use of UCA and UCG in SBW25 (t mRNA).

Each calculation is performed for the nine strains listed, which can be separated into three tRNA

gene sets. Mean tRNA proportions and translation times are provided below the last strain in each

tRNA gene set. tRNA proportions are given to two significant figures (s.f.) and calculated translation

times to three s.f.

It should be noted that a limitation of the above model is that it assumes that all mature tRNAs

are charged, while the YAMAT-seq proportions include both charged and uncharged mature tRNAs.

The degree to which mature E. coli tRNAs are charged has been shown to vary with tRNA type and

growth medium (Avcilar-Kucukgoze et al., 2016; Dittmar et al., 2005), with seryl-tRNAs demon-

strating particularly low charging levels during exponential growth in rich medium (Avcilar-

Kucukgoze et al., 2016). However, despite these differences, both previous studies report consis-

tency of within-family tRNA charging levels. For example, during exponential growth in LB, all four

E. coli seryl-tRNAs show a charging rate of ~10% (Avcilar-Kucukgoze et al., 2016). If similar, consis-

tently low charging levels exist for SBW25 seryl-tRNAs during YAMAT-seq, our general conclusions

are expected to hold given that the model uses only seryl-tRNA proportions to estimate elongation

times.

Overall, the predictions of the model are consistent with our experimental results: the growth

defect caused by serCGA deletion is compensated to near-wild type levels by the large-scale dupli-

cations encompassing serTGA (see Figure 3). Together, our results are consistent with the hypothe-

sis that tRNA-Ser(CGA) elimination exerts increased translational demand on tRNA-Ser(UGA), and

that this pressure is at least partially relieved by elevating tRNA-Ser(UGA) through increased serTGA

copy number.

Discussion
The evolutionary and molecular mechanisms by which different tRNA gene sets emerge have been

of consistent, long-standing interest (periodically reviewed in Gingold and Pilpel, 2011; Ike-

mura, 1985; Rak et al., 2018). A multitude of theoretical studies have focused on various aspects of

tRNA gene set evolution, highlighting roles for post-transcriptional modifications and codon bias

(Bulmer, 1987; Higgs and Ran, 2008; Ikemura, 1981; Novoa et al., 2012; Ran and Higgs, 2010;

Rocha, 2004; Sharp et al., 2010). Phylogenetic analyses have provided evidence of bacterial tRNA

gene set evolution by four main routes: (i) tRNA gene loss through deletion events, (ii) tRNA gene
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acquisition through horizontal gene transfer, (iii) tRNA gene acquisition by within-genome duplica-

tion events, and (iv) tRNA gene changes as a result of anticodon switching (Diwan and Agashe,

2018; Marck and Grosjean, 2002; McDonald et al., 2015; Tremblay-Savard et al., 2015;

Wald and Margalit, 2014; Withers et al., 2006). In this work, we provide direct, empirical evidence

for one of these routes: tRNA gene acquisition by within-genome duplication events. Loss of the sin-

gle-copy tRNA gene serCGA was compensated by large-scale, tandem duplications that increase

the copy number of tRNA gene serTGA, leading to elevation of tRNA-Ser(UGA) in the mature tRNA

pool.

Retention of serCGA in P. fluorescens SBW25 wild type
The observation that increasing the proportion of mature tRNA-Ser(UGA) can compensate for tRNA-

Ser(CGA) loss can be explained on the molecular level: we hypothesize that elimination of tRNA-Ser

(CGA) places translational strain on tRNA-Ser(UGA) at UCG codons, and that this pressure can be at

least partially relieved by elevating tRNA-Ser(UGA) levels. While this hypothesis is consistent with

our experimental results, it raises the question of why P. fluorescens SBW25 might retain a copy of

serCGA in the natural, plant environment; given that selection for translational efficiency favours

fewer tRNA types encoded by more tRNA gene copies (Ran and Higgs, 2010; Rocha, 2004), one

might expect serCGA elimination in favour of multiple serTGA gene copies. However, serCGA is fre-

quently retained in bacterial genomes; a study of 319 bacteria from different genera indicates a

serCGA retention rate of ~70%, with retention correlating with higher UCG usage (Wald and Marga-

lit, 2014). What is the advantage of retaining tRNA-Ser(CGA) over simply encoding higher levels of

tRNA-Ser(UGA)?

One possible explanation for serCGA retention is that, while both tRNA-Ser(CGA) and tRNA-Ser

(UGA) can translate UCG codons, tRNA-Ser(CGA) may do so with greater efficiency (i.e., more

quickly and/or more accurately). Indeed, changing the anticodon of E. coli tRNA-Ser(UGA) from

UGA to CGA has been shown to increase the efficiency of UCG translational in vitro (Takai et al.,

1999b). Further, any difference in translational efficiencies may depend on environmental conditions;

temperature, acidity, and ion concentration all alter the stability of RNA base pairings (Nikolova and

Al-Hashimi, 2010; Serra et al., 2002). Overall more efficient translation of UCG by tRNA-Ser(CGA)

in some environments could conceivably offset the cost of serCGA retention, particularly in bacteria

with high UCG usage.

The possibility that restoration of serCGA may further increase the fitness of the serTGA duplica-

tion strains could be investigated by continuing the evolution experiment past day 13. This is

because, in addition to increasing fitness, the duplication of serTGA has provided a possible route

by which serCGA could be regained, and thus the original P. fluorescens SBW25 tRNA gene set

restored. Specifically, one of the two copies of serTGA could acquire a T!C transition at tRNA posi-

tion 34, changing the gene from serTGA to serCGA (i.e., an anticodon switch event). In order for

such a mutation to spread through the population, it must encode a functional tRNA. This requires

the new, hypothetical tRNA-Ser(CGA) to be recognized by seryl-tRNA ligase (SerRS), the enzyme

that adds serine to all types of serine-carrying tRNAs in the cell (for a review of tRNA ligase function,

see Ibba and Soll, 2000). Recognition of seryl-tRNAs by SerRS depends not on the tRNA sequence

or the anticodon, but rather on the characteristic three-dimensional shape of seryl-tRNAs

(Lenhard et al., 1999). Therefore, even though serTGA and the original serCGA encode tRNAs with

very different sequences (see Figure 1—figure supplement 1A), it is plausible that the new, hypo-

thetical serCGA could form a functional tRNA (see Figure 1—figure supplement 1B). Indeed, a

UGA!CGA anticodon switch alters the translational capacity of E. coli tRNA-Ser(UGA) from codon

UCA to UCG in vitro (Takai et al., 1999a; Takai et al., 1999b). Notably, none of the five genome

sequenced, mutant lineage, day 13 isolates shows evidence of anticodon switch events in either

copy of serTGA (see Supplementary file 5); whether anticodon switching occurs across a longer

evolutionary time scale remains to be seen.

Origin of large-scale duplications and new tRNA gene copies
Large-scale, tandem duplication events similar to those seen in this work are a well-documented

adaptive solution to various phenotypic challenges in phage, bacteria, and yeast (reviewed in

Anderson and Roth, 1977; Elliott et al., 2013; Reams and Roth, 2015). Extensive work has shown

Ayan et al. eLife 2020;9:e57947. DOI: https://doi.org/10.7554/eLife.57947 16 of 29

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.57947


that large-scale tandem duplications occur at extremely high rates in bacteria; for example, in an

unselected overnight culture, around 10% of Salmonella cells reportedly carry a duplication of some

sort, with 0.005–3% carrying a duplication of a particular locus (Anderson and Roth, 1981;

Anderson and Roth, 1977; Reams et al., 2010). These rates are orders of magnitude higher than

those typically reported for single nucleotide polymorphisms (Westra et al., 2017) and are consis-

tent with the early detection of duplication fragments in our evolution experiment: strains carrying

large-scale duplications were isolated from every mutant lineage by day 13 (~90 generations), and

the duplication fragments they contained were first detected in the relevant population between

days 2 and 5 (Figure 4E; Figure 4—figure supplement 2).

Large-scale duplications arise through unusual exchange of DNA between two separate parts of

the bacterial chromosome, with the separating distance determining the size of the duplication

(reviewed in Anderson and Roth, 1977; Elliott et al., 2013; Reams and Roth, 2015). A variety of

mechanisms have been reported to underpin duplication formation, including (i) RecA-mediated,

unequal recombination, (ii) RecA independent unequal recombination, and (iii) errant topoisomerase

or gyrase activity (Reams et al., 2014; Reams and Roth, 2015; Shyamala et al., 1990). The first of

these, RecA-mediated unequal recombination, occurs between direct repeats some distance apart

(e.g., rRNA operons and rhs genes), with longer repeats generally leading to higher rates of recom-

bination (Anderson and Roth, 1981). Two of the five mutant lineage isolates in this work (M2-L, M3-

L) have endpoints in ~1.5 kb direct, imperfect repeats at 4.12 Mb and 4.31 Mb of the SBW25 chro-

mosome, suggesting that the ~192 kb duplication fragment they contain arose by RecA-mediated,

unequal recombination between these regions. The duplication fragments in the other three mutant

lineage isolates (M1-L, M2-Lop, and M4-L) show no obvious signs of homology between their end-

points (Table 1), indicating an alternative mechanistic origin. Overall, the diversity in duplication

fragment endpoints – location and degree of homology – in this study are indicative of a range of

mechanistic origins.

While duplication formation does not necessarily require sequence homology, duplications that

occur at the highest rates typically result from unequal recombination between long (>200 bp)

repeats (Anderson and Roth, 1981). The P. fluorescens SBW25 genome contains many of these

types of repeats dispersed around the chromosome, including five nearly identical rRNA operons

and three highly similar rhs genes (Silby et al., 2009). In addition, there are hundreds of smaller

repeats throughout the genome, including REPINs and tRNA genes (Bertels and Rainey, 2011;

Silby et al., 2009). Errant recombination between any of these repeated sequences could plausibly

generate large-scale duplications, meaning that almost any region of the SBW25 chromosome – and

therefore many tRNA genes – could conceivably be duplicated via homologous recombination. It

has previously been noted that the region surrounding the SBW25 replication terminus appears to

be more susceptible to evolutionary change than the rest of the chromosome (Silby et al., 2009).

This variable region extends approximately 1.4 Mb on either side of the terminus, engulfing 28

tRNA genes (including serTGA; see Figure 1B and Supplementary file 4). It seems probable that,

while the copy number of many tRNA genes could feasibly be elevated by large-scale duplications,

the tRNA genes surrounding the SBW25 replication terminus may be more prone to evolutionary

change by duplication.

Given that dispersed repeats and large-scale duplications are a widespread feature of bacterial

genomes (reviewed in Brazda et al., 2020; Reams and Roth, 2015), similar within-genome duplica-

tion may be capable of generating changes in tRNA gene copy number in many bacteria. Presum-

ably, different duplication fragments – and therefore tRNA genes – arise at varying rates (depending

on the presence and length of direct repeats in the surrounding area) and have varying degrees of

evolutionary success (depending on fragment size and the dosage effects of genes in the fragment).

Evolutionary fate of the large-scale duplications and new tRNA gene
copies
Large-scale duplications in bacterial genomes are typically unstable (reviewed in Reams et al., 2010;

Reams and Roth, 2015). That is, in addition to occurring at high rates, they are also lost – without a

trace – at high rates. Duplications are lost in ~1% of cells per generation in Salmonella cultures, in

the absence of selection (Anderson and Roth, 1981). Due to their combined ease of gain and loss,

it has been suggested that duplications serve as fleeting evolutionary solutions to transient pheno-

typic challenges (Sonti and Roth, 1989); they occur at high frequency without adversely affecting
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the long-term structure and integrity of the genome. The reported instability of large-scale duplica-

tions raises questions about the long-term fate of the duplications seen during this experiment. That

is, if the serial transfer experiment was continued past day 13, what would happen to the duplication

strains and the tRNA genes that they contain?

Extension of the evolution experiment could have several outcomes. One is that duplication frag-

ments encompassing serTGA may continue to arise and be lost, with duplication strains eventually

reaching a stable level within the population (Reams et al., 2010). In this scenario, while individual

large-scale duplications would continually rise and fall, they would remain the dominant evolutionary

solution in the population. A second possibility is that progressively smaller (and inherently more sta-

ble) duplication fragments may arise, perhaps eventually resulting in a duplication fragment com-

prised only of serTGA and its promoter. Such smaller duplication fragments may arise either from a

serCGA deletion mutant (by rarer duplication events between more proximate DNA sequences) or

from a duplication strain (by remodelling of the existing duplication fragment). Once a smaller, more

stable fragment is dominant in the population, one copy of serTGA could conceivably change to

serCGA through an anticodon switch event (see earlier discussion). A third possible outcome of con-

tinuing the evolution experiment is that, over time, a more stable mutation may arise, independently

of the duplication fragments. Possible examples include (i) point mutation(s) in the promoter of

serTGA, leading to increased serTGA expression without requiring additional gene copies, (ii) muta-

tion(s) that extend the translational capacity of seryl-tRNAs to translate (or, to better translate) UCG

codons, and (iii) synonymous point mutation(s) in highly expressed UCG codon(s), lowering the trans-

lational demand for tRNA-Ser(UGA). Should any of these more stable mutations arise, they would be

expected to displace large-scale duplications – and in some cases, the additional serTGA copy – as

the dominant evolutionary strategy in the population.

Concluding remarks
The elimination of one tRNA type from P. fluorescens SBW25 was readily counteracted by large-

scale duplication events that increased the gene copy number of a second, compensatory tRNA

type. Together, our results provide a direct observation of the evolution of a bacterial tRNA gene

set by gene duplication, and lend empirical support for the optimization of translation by codon–

tRNA matching.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene
(P. fluorescens SBW25)

serCGA N/A PFLUt39 Encodes tRNA-Ser(CGA)

Gene
(P. fluorescens SBW25)

serTGA N/A PFLUt51 Encodes tRNA-Ser(UGA)

Strain, strain
background
(P. fluorescens SBW25)

Pseudomonas
fluorescens

SBW25

Rainey and Bailey, 1996;
Silby et al., 2009

Wild type

Genetic reagent
(P. fluorescens SBW25)

SBW25-lacZ Zhang and Rainey, 2007 Neutrally marked SBW25 for
competition experiments

Genetic reagent
(P. fluorescens SBW25)

DserCGA-1 This work Bases 1624957–1625092,
encompassing serCGA, removed.
Biological replicate of DserCGA-2

Genetic reagent
(P. fluorescens SBW25)

DserCGA-2 This work Bases 1624957–1625092,
encompassing serCGA, removed.
Biological replicate of DserCGA-1

Genetic reagent
(P. fluorescens SBW25)

SBW25-eWT This work Wild type SBW25 that has been
through the engineering process

Continued on next page

Ayan et al. eLife 2020;9:e57947. DOI: https://doi.org/10.7554/eLife.57947 18 of 29

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.57947


Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(P. fluorescens SBW25)

W1-L This work Evolution isolate from day 13
of lineage W1 (founded by SBW25)

Genetic reagent
(P. fluorescens SBW25)

W3-L This work Evolution isolate from day 13
of lineage W3 (founded by SBW25-eWT)

Genetic reagent
(P. fluorescens SBW25)

M1-L This work Evolution isolate from day 13
of lineage M1 (founded by DserCGA-1)

Genetic reagent
(P. fluorescens SBW25)

M2-L This work Evolution isolate from day 13
of lineage M2 (founded by DserCGA-1)

Genetic reagent
(P. fluorescens SBW25)

M2-Lop This work Second evolution isolate from day 13
of lineage M2 (founded by DserCGA-1)

Genetic reagent
(P. fluorescens SBW25)

M3-L This work Evolution isolate from day 13
of lineage M3 (founded by DserCGA-2)

Genetic reagent
(P. fluorescens SBW25)

M4-L This work Evolution isolate from day 13
of lineage M4 (founded by DserCGA-2)

Recombinant
DNA reagent

pSXn (plasmid) Owen and Ackerley, 2011;
Frederic Bertels

pSX with one copy of a 38 bp
direct repeat removed

Recombinant
DNA reagent

pSXn-CGA (plasmid) This work pSXn carrying serCGA

Recombinant
DNA reagent

pSXn-TGA (plasmid) This work pSXn carrying serTGA

Commercial
assay or kit

DNeasy Blood and Tissue Kit Qiagencat. no. 69506

Commercial
assay or kit

NextSeq 550 Output
v2.5 kit

Illuminacat.
no. 20024904

Commercial
assay or kit

TRIzol Max Bacterial
RNA isolation kit

Life
Technologiescat.
no. 16096040

Commercial
assay or kit

DNA 7500 kit Agilent Technologies

Software, algorithm GtRNAdb 2.0 Chan and Lowe, 2016 https://www.gtrnadb.ucsc.edu

Software, algorithm tRNAscan-SE 2.0 Chan and Lowe, 2019 https://www.lowelab.
ucsc.edu/tRNAscan-SE/

Software, algorithm BLASTp Altschul et al., 1990 https://blast.ncbi.nlm.nih.
gov/Blast.cgi?PAGE=Proteins

Software, algorithm Gen5 BioTek https://www.biotek.com/

Software, algorithm Geneious v11.1.4 Geneious https://www.geneious.com/home/

Software, algorithm breseq v0.33.2 Deatherage et al., 2014a;
Deatherage and Barrick, 2014b

https://barricklab.org/twiki/
bin/view/Lab/ToolsBacterial
GenomeResequencing

Software, algorithm R v3.6.0 R Foundation for
Statistical Computing, 2013

https://www.r-project.org/

Other SuperScript III
reverse transcriptase

ThermoFisher Scientific
cat.no.18080093

Other T4 RNA ligase 2 New England BioLabs
cat.no. M0239L

Also known as T4 Rnl2

Other Phusion ThermoFisher Scientific
cat.no.M0531S

Other 5% Mini-
PROTEANTBE Gels

Bio-Rad Laboratories
cat.no.4565015

Strains, growth conditions, and oligonucleotides
Full lists of strains, plasmids, and oligonucleotides used are provided in Supplementary file 2. The

serCGA deletion was constructed twice, independently; DserCGA-1 and DserCGA-2 are biological
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replicates. Unless otherwise stated, P. fluorescens SBW25 cultures were grown in King’s Medium B

(KB; King et al., 1954) for ~16 hr at 28˚C with shaking. E. coli strains were grown in Lysogeny broth

(LB) for 16–18 hr at 37˚C with shaking.

Growth curves
Strains were streaked from glycerol stocks on KB, M9, or LB+Gm (20 mg ml�1) plates. After 48 hr

incubation, six or seven colonies per strain (numbers of replicates based on previous work:

Gallie et al., 2015; Lindsey et al., 2013) were grown in 200 ml of liquid KB, M9, or LB+Gm (20 mg

ml�1) in a 96-well plate. Two microlitres of each culture were transferred to a fresh 198 ml of medium

in a new 96-well plate, sealed with a plastic lid or a breathable rayon film (VWR), and grown at 28˚C

in a BioTek Epoch two plate reader. Absorbance at 600 nm (OD600) of each well was measured at 5

min intervals, with 5 s of 3 mm orbital shaking before each read. Medium control wells were used to

standardize other wells. The mean absorbance and standard error of the replicates at every time

point were used to draw the growth curves in Figures 2, 3, and 4. Maximum growth rate and lag

time were calculated using a sliding window of nine data points during the exponential growth win-

dow of the curve (Gen5 software from BioTek; see also source data files 1, 3, and 4).

Fitness assays
For each competition, six replicates were performed in three separate blocks. All competitions

within a block were performed in parallel. The number of replicates is based on previous work

(Beaumont et al., 2009; Gallie et al., 2019). Single colonies of each competitor were grown inde-

pendently in shaken KB. Competition tubes were inoculated with ~5 � 106 cells of each competitor

and incubated at 28˚C (shaking, 24 hr). Competitor frequencies were determined by plating on KB

agar or LB+X-gal (60 mg ml�1) agar at 0 and 72 hr. Competing genotypes were readily distinguished

by their distinctive morphologies (on KB agar) or colour (neutrally marked SBW25-lacZ forms blue

colonies on LB+X-gal; Zhang and Rainey, 2007). Relative fitness was expressed as the ratio of Mal-

thusian parameters (Lenski, 1991) in Figures 2 and 3. Deviation of relative fitness from one was

determined by two-tailed, parametric one-sample t-tests (see also source data file 2).

Evolution experiment
SBW25 (wild type), SBW25-eWT (engineering control), and the two independent tRNA-Ser(CGA)

deletion mutants (DserCGA-1 and DserCGA-2) were streaked from glycerol stocks onto KB agar and

grown at 28˚C for 48 hr. Two colonies from every strain were picked. Each of the eight chosen colo-

nies became the founder of one evolutionary lineage. This resulted in four independent wild type lin-

eages (W1–W4) and four mutant lineages (M1–M4).A medium control lineage was also included. The

numbers of parallel lineages were chosen based on the available laboratory resources. Each colony

was inoculated into 4 ml KB in a 13 ml plastic tube and incubated overnight at 28˚C (shaking). Each

grown culture (day 0) was vortexed for 1 min, and 100 ml was used to inoculate 10 ml KB in a 50 ml

Falcon tube (28˚C, shaking, 24 hr). Every 24 hr thereafter, 1% of each culture was transferred to a

fresh 10 ml KB in a 50 ml Falcon tube, and a sample of the population frozen at �80˚C. The experi-

ment was continued until day 15. Populations were periodically dilution plated on KB agar to check

for changes in colony size.

Genome sequencing
Seven isolates were purified and stored from day 13 of the evolution experiment (W1-L, W3-L, M1-L,

M2-L, M2-Lop, M3-L, M4-L). Genomic DNA was isolated from 0.5 ml overnight culture of each using

a Qiagen DNeasy Blood and Tissue Kit. DNA quality was checked by agarose gel electrophoresis.

Whole genome sequencing was performed by the sequencing facility at the Max Planck Institute for

Evolutionary Biology (Ploen, Germany). Paired-end, 150 bp reads were generated with an Illumina

NextSeq 550 Output v2.5 kit. Raw reads are available at NCBI sequence read archive (SRA accession

number: PRJNA558233; International Nucleotide Sequence Database Collaboration et al., 2011).

A minimum of 4.5 million raw reads per strain were aligned to the SBW25 genome sequence (NCBI

genome reference sequence NC_012660.1; Silby et al., 2009) using breseq (Deatherage and Bar-

rick, 2014b) and Geneious (v11.1.4). A minimum mean coverage of 94.7 reads per base pair was

obtained. A full list of mutation predictions is provided in Supplementary file 3.
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Identification of duplication junctions
The duplication junctions in M1-L, M2-L, M2-Lop, M3-L, and M4-L were identified using a combina-

tion of analysis of whole genome sequencing data and laboratory-based techniques. The raw reads

obtained from whole genome sequencing of each isolate were aligned to the SBW25 genome

sequence (Silby et al., 2009) using breseq (Barrick et al., 2014; Deatherage et al., 2014a;

Deatherage and Barrick, 2014b) and Geneious (v11.1.4). Coverage analyses were performed in

Geneious, and coverage plots generated in R (v3.6.0) (Figure 4—figure supplement 1). Manual

inspection of the Geneious alignment in coverage shift regions led to predicted junctions in all iso-

lates except M3-L. Each predicted junction was checked by alignment to (i) raw reads and (ii) previ-

ously unused sequences (using Geneious). Junction sequences were confirmed by PCR and Sanger

sequencing (for primer details, see Supplementary file 2).

Historical junction PCRs
Glycerol stock scrapings of the frozen daily populations, or large colony isolates, from each mutant

lineage were grown in liquid KB. Washed cells were used as PCR templates, alongside positive and

negative controls (see Supplementary file 2 for primer details). The PCR products were run on a 1%

agarose gel against a 1 kb DNA ladder at 100 volts for 90 min. Gels were stained with SYBR Safe

and photographed under UV illumination. In order to better detect faint PCR products in the earlier

days of the evolution experiment, the colours in each photograph were inverted using Preview

(v11.0) (Figure 4E and Figure 4—figure supplement 2).

Expression of tRNA genes from the pSXn plasmid
Wild type copies of the serCGA and serTGA genes were individually ligated into the expression vec-

tor, pSXn, to give pSXn-CGA and pSXn-TGA. The pSXn vector contains an IPTG-inducible tac pro-

moter (de Boer et al., 1983; Owen and Ackerley, 2011). Together with the empty vector, the two

constructs were separately placed into the SBW25, DserCGA-1, and DserCGA-2 backgrounds. This

was achieved by transformation of the vector constructs into chemically competent cells

(Gallie et al., 2015). The growth profiles of the nine resulting genotypes were obtained in liquid LB

+Gm (20 mg ml�1), in six replicates of six (see Growth Curves methods, Figure 4C and D, and source

data file 4). No IPTG was added at any stage, in order to achieve lower-level, leaky expression of the

tRNA gene from the uninduced tac promoter.

YAMAT-seq procedure
YAMAT-seq (Shigematsu et al., 2017) is adapted in this work for use in P. fluorescens SBW25. Three

independent replicates (based on replicate numbers reported in Shigematsu et al., 2017) of nine

strains (i.e., 27 samples) were grown to mid-exponential phase in 250 ml flasks containing 20 ml KB.

Total RNA was isolated from 1.5 ml aliquots (TRIzol Max Bacterial RNA isolation kit). For each sam-

ple, 10 mg of total RNA was subjected to tRNA deacylation treatment – incubation in 20 mM Tris-

HCl (pH 9.0) for 40 min at 37˚C. Each deacylated RNA sample was desalted and concentrated by

ethanol precipitation. Y-shaped, DNA/RNA hybrid adapters (Eurofins; Shigematsu et al., 2017)

were ligated to the conserved, exposed 5’-NCCA-3’ and 3’-inorganic phosphate-5’ ends of

uncharged tRNAs using T4 RNA ligase 2. Ligation products were reverse transcribed into cDNA

using SuperScript III reverse transcriptase and amplified by 11 rounds of PCR with Phusion. One of

the 27 sample-specific indices listed in Supplementary file 7 was added to each of the 27 reactions.

The quality and quantity of each PCR product were checked using an Agilent DNA 7500 kit on a Bio-

analyzer, and samples combined in equimolar amounts into one tube. The mixture was run on a 5%

native polyacrylaminde gel, and the bands between 180 and 250 bp excised. DNA was extracted in

deionized water overnight, and agarose removed by centrifugation through filter paper. The final

product was sequenced at the Max Planck Institute for Evolutionary Biology (Ploen, Germany). Sin-

gle-end, 150 bp reads were generated with an Illumina NextSeq 550 Output v2.5 kit. YAMAT-seq

data is available at NCBI Gene Expression Omnibus (GEO accession number GSE144791)

(Edgar et al., 2002).
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Analysis of YAMAT-seq data
Raw YAMAT-seq reads were sorted into 27 samples by extracting exact matches to each unique, 6

bp long Illumina index. Exact barcode matches were used in order to minimize the misallocation of

reads as a result of barcode errors introduced during the sequencing process. The resulting 27 raw

read files, each containing a minimum of 637,037 reads, were analysed using Geneious (version

11.1.4). Reads of the expected length (80–151 bp) were extracted (resulting in 99.99% read reten-

tion). The extracted reads were assembled to a set of 42 reference tRNA sequences from SBW25

(Supplementary file 6). During assembly, up to 10% mismatches, gaps of < 3 bp, and up to five

ambiguities were allowed per read. Reads that aligned equally well to more than one reference

sequence were discarded in order to minimize misallocation of reads to similar reference sequences.

Finally, the unused reads for each sample were de novo aligned, and the resulting contigs checked

to ensure that none contained substantial numbers of tRNA reads (particularly seryl-tRNAs). The

above sorting and assembly parameters were initially based on those reported by

Shigematsu et al., 2017 and were subsequently refined for the SBW25 data. Following assembly,

the within-sample proportion of reads aligned to each tRNA type was calculated, and mean mature

tRNA proportions were calculated for each strain across the three replicates (Supplementary file 7).

DESeq2 (Love et al., 2014) was used in R (version 3.6.0) to detect tRNA expression differences

between pairs of strains (see source data file 5). DESeq2 corrects for multiple testing with the Benja-

mini–Hochberg procedure (Anders and Huber, 2010). Three tRNA types (Glu-UUC, Ile2-CAU, and

Phe-GAA) were removed from the analyses due to very low read numbers (<0.01% of the total reads

per strain).

Statistical tests
Parametric two-tailed two-sample t-tests were performed to detect differences in maximum growth

rate (Vmax) and lag time in growth curves (Figures 2C, G, 3C, D, and 4D, source data files 1, 3, and

4) in cases where all assumptions were satisfied. Where equal variance or normality assumptions

were violated, non-parametric Welch two-sample t-tests and Mann–Whitney–Wilcoxon rank sum

tests were used, respectively (see Figure 3C and D, source data file 3). Parametric one-tailed one-

sample t-tests were used to detect deviations of relative fitness values from one in competition

assays (see Figures 2D, H and 3E, source data file 2). DESeq2 adjusted (for multiple comparisons)

p-values were used to detect differences in tRNA expression during YAMAT-seq (Figure 5A and B,

Figure 5—figure supplement 1, Figure 5—source data 1). Analyses were performed in R (v3.6.0).

Significance levels: ns = not significant (p>0.05), *0.05 < p < 0.001, **0.01 < p < 0.001, ***p<0.001.
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2019). As such, these putative mutations are not expected to be relevant for the fitness effects

described in this manuscript.

. Supplementary file 4. List of genes in each duplication fragment. The spreadsheet lists the SBW25

gene annotations from NCBI (6176 genes; left of the spreadsheet), followed by the details of which

genes are duplicated in M1-L, M2-L, M2-Lop, M3-L, and M4-L. Note that for comparison purposes,

the duplication details for each strain are provided on the same line numbers as the SBW25 list
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(scroll down until the first duplicated genes is visible in each duplication isolate). The core set of 45

genes that is duplicated in each of the five isolates is highlighted in pink.

. Supplementary file 5. Whole genome sequencing base calls reveal no evidence of mutations in

either copy of serTGA (or its promoter) in any of the five duplication-carrying strains. This file con-

tains details of the raw read numbers of proportions of the dominant base called at SBW25 chromo-

some positions 4,163,616–4,163,861 in strains W1-L, W3-L (each carrying one serTGA copy), M1-L,

M2-L, M2-Lop, M3-L, and M4-L (each carrying two serTGA copies). This 245 bp segment encom-

passes the serTGA gene and ~155 bp of the upstream region, which is expected to contain the

serTGA promoter. Any point mutation in either serTGA copy in the duplication strains (M1-L, M2-L,

M2-Lop, M3-L, and M4-L) is expected to be reflected by a drop in the proportion of the dominant

base (to around 0.5). For example, if in M1-L one serTGA copy had gained a C!T point mutation in

tRNA position 34 (i.e., an anticodon switch event; see Discussion), one would expect approximately

half the 214 reads covering base 4,163,669 to contain a T, and the other half to carry a C. Therefore,

the dominant base proportion would be expected to drop to ~0.5. No evidence was found of any

mutations in any copy of serTGA or its promoter; all 245 bp were covered by a minimum of 127

reads in each duplication strain, with at least 94% of reads at each position carrying the dominant

base.

. Supplementary file 6. Reference list of 42 unique tRNA sequences in P. fluorescens SBW25

GtRNAdb 2.0 predicts 67 tRNA genes in P. fluorescens SBW25 (Chan and Lowe, 2016). These

include 42 unique primary tRNA sequences, each of which is listed in this file. These 42 sequences

are used as references to align the YAMAT-seq data in this work (see Supplementary file 7). Note

that the list of 42 sequences includes one likely pseudo tRNA (11_Cys-GCA-2–1). This sequence is

not predicted to form a tRNA with conserved cloverleaf secondary structure (Chan and Lowe,

2019). Further, no YAMAT-seq sequences were aligned to this reference sequence in any sample.

We conclude that Cys-GCA-2–1 does not form part of the functional mature tRNA pool in SBW25. In

addition, the serCGA sequence (30_Ser-CGA-1–1) is expected to be absent from 21 of 27 samples

(samples 2–8, 11–17, and 20–26); this tRNA is encoded by serCGA (the gene that was deleted by

genetic engineering in this work and remains absent in all derived strains). As expected, almost no

reads were obtained for this reference sequence in these 21 samples. The very low numbers of Ser-

CGA reads obtained in some of these samples (e.g., two reads in sample 20, the third replicate of

DserCGA-1) are likely to be barcode misallocations from one of the six SBW25 or W1-L samples.

. Supplementary file 7. YAMAT-seq data showing elimination of tRNA-Ser(CGA) followed by elevat-

ing of tRNA-Ser(UGA) expression in each of the five duplication isolates. The first tab contains index

details and a summary of the raw YAMAT-seq reads (GEO accession number GSE144791;

Edgar et al., 2002) for each of the 27 samples (three replicates of nine strains): a minimum of

636,995 reads of the expected size (80–151 bp) was obtained per sample. In each case, between

86.4% and 93.0% of these aligned to the list of 42x reference SBW25 tRNA sequences (provided in

Supplementary file 6). The subsequent nine tabs contain the YAMAT-seq data for each of the nine

strains tested (SBW25, DserCGA-1, DserCGA-2, W1-L, M1-L, M2-L, M2-Lop, M3-L, and M4-L). Each

tab contains (i) the numbers of reads for 42 reference tRNAs, for three replicates (left), (ii) numbers

of reference reads for 39 tRNA types in SBW25 (e.g., tRNA-Asn-GTT is the sum of reference sequen-

ces 7_Asn-GTT-1–1 and 8_Asn-GTT-2–1; middle), (iii) the proportion of each tRNA type in the

mature tRNA pool for each of the three samples (right), and (iv) a scatter plot of the YAMAT-seq

proportions versus the proportion of the tRNA gene set encoding the tRNA type. Blue = tRNA-Ser

(CGA), green = tRNA-Ser(UGA). The final tab contains information regarding the unused reads for

each sample.

. Transparent reporting form

Data availability

Illumina whole genome sequencing data has been uploaded to NCBI SRA (accession PRJNA558233).

YAMAT-seq data has been uploaded to NCBI GEO (accession GSE144791). Source data files have

been provided for Figures 2B, 2C, 2D, 2F, 2G, 2H, 3B, 3C, 3D, 3E, 4C, 4D, 5A, 5B and Figure 5—fig-

ure supplement 1.
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Gallie J 2019 Experimental evolution of a
bacterial strain with a sub-optimal
tRNA gene set (single-copy tRNA
gene serCGA deleted)

https://www.ncbi.nlm.
nih.gov/bioproject/
PRJNA558233/

NCBI BioProject,
PRJNA558233

Gallie J, Ayan GkeB,
Park HJ

2019 YAMAT-seq of mature tRNA pools
in the bacterium Pseudomonas
fluorescens SBW25 and derivatives

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE144791

NCBI Gene
Expression Omnibus,
GSE144791
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Lenhard B, Orellana O, Ibba M, Weygand-Durasević I. 1999. tRNA recognition and evolution of determinants in
seryl-tRNA synthesis. Nucleic Acids Research 27:721–729. DOI: https://doi.org/10.1093/nar/27.3.721, PMID:
9889265

Lenski RE. 1991. Quantifying fitness and gene stability in microorganisms. Biotechnology 15:173–192.
DOI: https://doi.org/10.1016/b978-0-409-90199-3.50015-2, PMID: 2009380

Ayan et al. eLife 2020;9:e57947. DOI: https://doi.org/10.7554/eLife.57947 26 of 29

Research article Evolutionary Biology

https://doi.org/10.1007/978-1-4939-0554-6_12
https://doi.org/10.1007/978-1-4939-0554-6_12
http://www.ncbi.nlm.nih.gov/pubmed/24838886
https://doi.org/10.1038/sj.embor.7400341
http://www.ncbi.nlm.nih.gov/pubmed/15678157
http://www.ncbi.nlm.nih.gov/pubmed/15678157
https://doi.org/10.1093/molbev/msy110
https://doi.org/10.1093/molbev/msy110
http://www.ncbi.nlm.nih.gov/pubmed/29846694
https://doi.org/10.1006/jmbi.1996.0428
https://doi.org/10.1006/jmbi.1996.0428
http://www.ncbi.nlm.nih.gov/pubmed/8709146
https://doi.org/10.1093/nar/30.1.207
http://www.ncbi.nlm.nih.gov/pubmed/11752295
http://www.ncbi.nlm.nih.gov/pubmed/11752295
https://doi.org/10.2217/fmb.13.53
http://www.ncbi.nlm.nih.gov/pubmed/23841635
https://doi.org/10.1002/j.1460-2075.1990.tb07885.x
http://www.ncbi.nlm.nih.gov/pubmed/2265611
https://doi.org/10.3389/fgene.2014.00142
http://www.ncbi.nlm.nih.gov/pubmed/24904642
https://doi.org/10.1371/journal.pbio.1002109
https://doi.org/10.1371/journal.pbio.1002109
http://www.ncbi.nlm.nih.gov/pubmed/25763575
https://doi.org/10.1093/molbev/msz040
http://www.ncbi.nlm.nih.gov/pubmed/30835268
https://doi.org/10.7554/eLife.03735
https://doi.org/10.1038/msb.2011.14
http://www.ncbi.nlm.nih.gov/pubmed/21487400
https://doi.org/10.1016/j.febslet.2009.11.052
https://doi.org/10.1016/j.febslet.2009.11.052
http://www.ncbi.nlm.nih.gov/pubmed/19931533
https://doi.org/10.1093/nar/gkh748
http://www.ncbi.nlm.nih.gov/pubmed/15319446
https://doi.org/10.1093/molbev/msn173
https://doi.org/10.1093/molbev/msn173
http://www.ncbi.nlm.nih.gov/pubmed/18687657
https://doi.org/10.1146/annurev.biochem.69.1.617
https://doi.org/10.1146/annurev.biochem.69.1.617
http://www.ncbi.nlm.nih.gov/pubmed/10966471
https://doi.org/10.1016/0022-2836(81)90003-6
https://doi.org/10.1016/0022-2836(81)90003-6
http://www.ncbi.nlm.nih.gov/pubmed/6175758
https://doi.org/10.1093/oxfordjournals.molbev.a040335
http://www.ncbi.nlm.nih.gov/pubmed/3916708
https://doi.org/10.1093/nar/gkq1019
http://www.ncbi.nlm.nih.gov/pubmed/21062823
https://doi.org/10.5555/uri:pii:002221435490222X
https://doi.org/10.5555/uri:pii:002221435490222X
http://www.ncbi.nlm.nih.gov/pubmed/13184240
https://doi.org/10.1002/mbo3.960
http://www.ncbi.nlm.nih.gov/pubmed/31680488
https://doi.org/10.1146/annurev.bb.16.060187.001451
http://www.ncbi.nlm.nih.gov/pubmed/3593505
http://www.ncbi.nlm.nih.gov/pubmed/3593505
https://doi.org/10.1093/nar/27.3.721
http://www.ncbi.nlm.nih.gov/pubmed/9889265
https://doi.org/10.1016/b978-0-409-90199-3.50015-2
http://www.ncbi.nlm.nih.gov/pubmed/2009380
https://doi.org/10.7554/eLife.57947


Lindsey HA, Gallie J, Taylor S, Kerr B. 2013. Evolutionary rescue from extinction is contingent on a lower rate of
environmental change. Nature 494:463–467. DOI: https://doi.org/10.1038/nature11879, PMID: 23395960

Louie A, Ribeiro NS, Reid BR, Jurnak F. 1984. Relative affinities of all Escherichia coli aminoacyl-tRNAs for
elongation factor Tu-GTP. The Journal of Biological Chemistry 259:5010–5016. PMID: 6370998

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biology 15:550. DOI: https://doi.org/10.1186/s13059-014-0550-8, PMID: 25516281
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Warren JM, Salinas-Giegé T, Hummel G, Coots NL, Svendsen JM, Brown KC, Drouard L, Sloan DB. 2020.
Combining tRNA sequencing methods to characterize plant tRNA expression and post-transcriptional
modification. RNA Biology 15:1792089. DOI: https://doi.org/10.1080/15476286.2020.1792089

Westra ER, Sünderhauf D, Landsberger M, Buckling A. 2017. Mechanisms and consequences of diversity-
generating immune strategies. Nature Reviews Immunology 17:719–728. DOI: https://doi.org/10.1038/nri.
2017.78, PMID: 28787398

Withers M, Wernisch L, dos Reis M. 2006. Archaeology and evolution of transfer RNA genes in the Escherichia
coli genome. RNA 12:933–942. DOI: https://doi.org/10.1261/rna.2272306, PMID: 16618964

Yona AH, Bloom-Ackermann Z, Frumkin I, Hanson-Smith V, Charpak-Amikam Y, Feng Q, Boeke JD, Dahan O,
Pilpel Y. 2013. tRNA genes rapidly change in evolution to meet novel translational demands. eLife 2:e01339.
DOI: https://doi.org/10.7554/eLife.01339

Zhang X, El-Hajj ZW, Newman E. 2010. Deficiency in L-serine deaminase interferes with one-carbon metabolism
and cell wall synthesis in Escherichia coli K-12. Journal of Bacteriology 192:5515–5525. DOI: https://doi.org/10.
1128/JB.00748-10, PMID: 20729359

Zhang X, Newman E. 2008. Deficiency in L-serine deaminase results in abnormal growth and cell division of
Escherichia coli K-12. Molecular Microbiology 69:870–881. DOI: https://doi.org/10.1111/j.1365-2958.2008.
06315.x, PMID: 18532981

Ayan et al. eLife 2020;9:e57947. DOI: https://doi.org/10.7554/eLife.57947 28 of 29

Research article Evolutionary Biology

https://doi.org/10.1093/nar/gkv1470
https://doi.org/10.1093/nar/gkv1470
http://www.ncbi.nlm.nih.gov/pubmed/26681692
https://doi.org/10.1007/s002030050670
http://www.ncbi.nlm.nih.gov/pubmed/9871012
https://doi.org/10.1073/pnas.1102128108
http://www.ncbi.nlm.nih.gov/pubmed/21402928
https://doi.org/10.1017/S1355838202024226
http://www.ncbi.nlm.nih.gov/pubmed/12003491
https://doi.org/10.1098/rstb.2009.0305
https://doi.org/10.1093/nar/gkx005
https://doi.org/10.1093/nar/gkx005
https://doi.org/10.1016/0022-2836(74)90237-X
https://doi.org/10.1002/j.1460-2075.1990.tb08192.x
https://doi.org/10.1002/j.1460-2075.1990.tb08192.x
http://www.ncbi.nlm.nih.gov/pubmed/2178927
https://doi.org/10.1186/gb-2009-10-5-r51
http://www.ncbi.nlm.nih.gov/pubmed/19432983
http://www.ncbi.nlm.nih.gov/pubmed/19432983
http://www.ncbi.nlm.nih.gov/pubmed/2680755
https://doi.org/10.1016/0022-2836(89)90260-X
http://www.ncbi.nlm.nih.gov/pubmed/2474074
https://doi.org/10.1093/nar/24.15.2894
https://doi.org/10.1016/S0014-5793(99)00255-0
http://www.ncbi.nlm.nih.gov/pubmed/10218569
https://doi.org/10.1006/bbrc.1999.0538
http://www.ncbi.nlm.nih.gov/pubmed/10208840
https://doi.org/10.1093/molbev/msv029
https://doi.org/10.1093/molbev/msv029
http://www.ncbi.nlm.nih.gov/pubmed/25660374
https://doi.org/10.1016/0022-2836(84)90027-5
http://www.ncbi.nlm.nih.gov/pubmed/6084718
https://doi.org/10.1093/nar/gku245
http://www.ncbi.nlm.nih.gov/pubmed/24782525
https://doi.org/10.1080/15476286.2020.1792089
https://doi.org/10.1038/nri.2017.78
https://doi.org/10.1038/nri.2017.78
http://www.ncbi.nlm.nih.gov/pubmed/28787398
https://doi.org/10.1261/rna.2272306
http://www.ncbi.nlm.nih.gov/pubmed/16618964
https://doi.org/10.7554/eLife.01339
https://doi.org/10.1128/JB.00748-10
https://doi.org/10.1128/JB.00748-10
http://www.ncbi.nlm.nih.gov/pubmed/20729359
https://doi.org/10.1111/j.1365-2958.2008.06315.x
https://doi.org/10.1111/j.1365-2958.2008.06315.x
http://www.ncbi.nlm.nih.gov/pubmed/18532981
https://doi.org/10.7554/eLife.57947


Zhang XX, Rainey PB. 2007. Construction and validation of a neutrally-marked strain of Pseudomonas
fluorescens SBW25. Journal of Microbiological Methods 71:78–81. DOI: https://doi.org/10.1016/j.mimet.2007.
07.001, PMID: 17669526

Zhou Z, Schnake P, Xiao L, Lal AA. 2004. Enhanced expression of a recombinant malaria candidate vaccine in
Escherichia coli by Codon optimization. Protein Expression and Purification 34:87–94. DOI: https://doi.org/10.
1016/j.pep.2003.11.006, PMID: 14766303

Ayan et al. eLife 2020;9:e57947. DOI: https://doi.org/10.7554/eLife.57947 29 of 29

Research article Evolutionary Biology

https://doi.org/10.1016/j.mimet.2007.07.001
https://doi.org/10.1016/j.mimet.2007.07.001
http://www.ncbi.nlm.nih.gov/pubmed/17669526
https://doi.org/10.1016/j.pep.2003.11.006
https://doi.org/10.1016/j.pep.2003.11.006
http://www.ncbi.nlm.nih.gov/pubmed/14766303
https://doi.org/10.7554/eLife.57947

