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We present a detailed methodology for extracting the full set of Newman-Penrose Weyl scalars
from numerically generated spacetimes without requiring a tetrad that is completely orthonormal
or perfectly aligned to the principal null directions. We also describe an extrapolation technique
for computing the Weyl scalars’ contribution at asymptotic null infinity in post-processing. These
methods have continued to be used to produce ¥4 and h waveforms for the Simulating eXtreme
Spacetimes Waveform Catalog and now have been expanded to produce the entire set of Weyl scalars.
These new waveform quantities are critical for the future of gravitational wave astronomy in order
to understand the finite-amplitude gauge differences that can occur in numerical waveforms. We
also present a new analysis of the accuracy of waveforms produced by the Spectral Einstein Code.
While ultimately we expect Cauchy Characteristic Extraction to yield more accurate waveforms,
the extraction techniques described here are far easier to implement and have already proven to
be a viable way to produce production-level waveforms that can meet the demands of current
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gravitational-wave detectors.

I. INTRODUCTION

As the field of gravitational-wave astronomy is prepar-
ing for the next generation of detectors, it is becom-
ing increasingly important for numerical waveform mod-
els to achieve the high degree of accuracy that will be
needed [1]. Part of this improvement must come from a
systematic understanding of gauge effects inherent in the
waveforms. Gauge effects in a waveform, if erroneously
interpreted as physical effects, can have a direct and ad-
verse impact on parameter estimation from a detected
gravitational wave [2-5]. Both phenomenological and
surrogate waveform models depend heavily on numeri-
cal relativity (NR) for their construction [6, 7]. Thus we
need a thorough understanding of waveform extraction
and gauge effects in numerically generated spacetimes.

Even “gauge-invariant” waveforms are only invariant
in a very limited technical sense of perturbation the-
ory; such waveforms still generally have an infinite-
dimensional set of gauge freedoms described by the
Bondi-Metzner-Sachs (BMS) group—which includes the
usual Poincaré group along with the more general “su-
pertranslations” [8-10]. These gauge freedoms are not re-
stricted to infinitesimal transformations and can result in
appreciable finite-amplitude gauge differences especially
in numerical relativity. The BMS group induces a frac-
tional change in the waveforms directly proportional to
the size of the gauge change. And because gauge condi-
tions used in NR simulations are complicated and widely
varied, we can expect to find significant effects in wave-
forms due to gauge choices. In addition to the standard
time offset and rotation gauges, important effects due
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to boost and translation have already been found in nu-
merical waveforms [2—4, 11]. To move beyond this basic
analysis—and to understand supertranslations—we need
more information than is currently produced by most NR
codes.

Often, only the gravitational wave strain h and the
Weyl scalar ¥, are extracted from NR simulations for the
purpose of constructing waveforms. While these are the
quantities most directly relevant for gravitational-wave
detectors, they by no means provide complete informa-
tion regarding the curvature or radiation of the space-
time. Since W4 and h are particular components of ten-
sors, we need complete knowledge of all the components
to apply transformations [12]. Any attempt at under-
standing these gauge freedoms and comparing different
waveforms in a meaningful way requires understanding
how waveforms behave under transformation, therefore
requiring more information than A and ¥, alone.

Accessing the information about spacetime curvature
in an NR simulation requires extracting the information
stored in the Weyl tensor. The usual prescription is to
compute five complex scalar fields from the inner product
of the Weyl tensor with the orthonormal basis vectors of
a complex null tetrad [13-16]. The null tetrad can be
chosen so that the five resulting Weyl scalars are related
to quantities like the gravitational radiation or the mass
and spin of the binary system [17].

The values of these Weyl scalars depend on the choice
of the tetrad, and so it is critical to pick a well-suited
tetrad. If one is interested in comparing the Weyl scalars
across different simulations, the tetrad needs to be con-
sistently chosen so that gauge effects may be understood
and isolated. The choice of a consistent and suitable
tetrad for NR continues to be explored [18, 19]. De-
spite the ongoing challenges, a technique for comput-
ing the Weyl scalars has been successfully implemented
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and used for analysis where detailed comparison between
waveforms was not necessary [20].

Even with a consistent and well-suited tetrad choice,
a coordinate system must be used to relate the tetrads
at different points. Additionally, tetrads are defined
with respect to the coordinates in NR. The issue here
is that coordinates are subject to even more freedoms
than the tetrads themselves. If the orthonormality con-
straint of the tetrad can be relaxed, as will be discussed
in Sec. I C, then this further complicates the goal of un-
derstanding the tetrad choice—and thus the waveform
quantities—across different spacetimes.

There are two separate arenas for analyzing the curva-
ture and radiation quantities; each has its own motiva-
tion and its own challenges. It is important to make this
distinction and employ a technique for extracting curva-
ture quantities that will be best-suited for the particular
analysis of interest. In the first case, the goal is to an-
alyze curvature quantities at finite distances to provide
information about the Petrov classification of the space-
time, test properties of perturbed Kerr black holes, probe
regimes of strong gravity, etc. [14, 20-24]. In the second
case, the goal is to analyze curvature quantities extrap-
olated or evolved to asymptotic null infinity to compute
gravitational waveforms [25-30].

Our extraction methodology is suited for the second
case, the study of asymptotic radiation and curvature.
The primary challenge in this arena is that waveforms
computed at any finite distance in a simulation domain
are not entirely free of unwanted near-field effects or other
sources of gauge pollution [5], e.g., from the choice of sim-
ulation coordinates. It is therefore necessary to extrap-
olate or evolve the extracted waveform out to asymp-
totic null infinity, using either perturbative extraction
or Cauchy Characteristic Extraction (CCE). At the cur-
rent time, a CCE code reliable enough for supplying
production-level waveforms has been developed [29, 31].
However, uncertainties in choosing the initial data for the
characteristic evolution have currently prevented its use
as the primary extraction method. We use a perturbative
extraction technique with an extrapolation procedure in
post-processing to get the final asymptotic waveforms.
By using such an extrapolation procedure, we are able to
gain further computational improvements by relaxing the
requirement of working with a completely orthonormal
tetrad aligned to the principal null directions. While one
should be able to arrive at the same asymptotic waveform
with either perturbative extraction or CCE, the pertur-
bative extraction methodology described here is simpler
to implement and can serve as a point of comparison for
a CCE scheme.

Although our extraction methodology does not require
a completely orthonormal tetrad aligned with the princi-
pal null directions and thus cannot be used straightfor-
wardly to explore curvature quantities within the simula-
tion domain itself, we are able to get all of the necessary
curvature quantities at asymptotic null infinity and in
such a frame as to allow for the complete fixing of gauge

freedom in the waveforms [32, 33].

Our extraction methodology is based on the idea of
using the characteristic fields of the Weyl tensor evolu-
tion equations, which has already been successfully im-
plemented in the Spectral Einstein Code (SpEC) [34].
This technique has proven remarkably robust and accu-
rate by serving as the primary means of wave extrac-
tion for the Simulating eXtreme Spacetimes (SXS) Wave-
form Catalog, the largest catalog of numerical waveforms
available [35]. Previously, only ¥4 and h have been ex-
tracted. For the first time, we expand this method to in-
clude the full set of Weyl scalars and produce production-
level waveforms. Using these new quantities, we use the
Bianchi identities to present a new analysis testing SpEC
waveforms against exact general relativity, providing a
hard upper bound for the accuracy of the waveforms.

II. EXTRACTION METHODOLOGY

A. Overview

In order to express the ten independent components
of the Weyl tensor as the five complex Weyl scalars, we
need to first define a complex null tetrad from a linear
combination of coordinate basis vectors. Consider a 4-
dimensional spacetime! described by the metric g5 with
spherical coordinate basis vectors (t*,r%, 6%, ¢*). We can
construct linear combinations of these basis vectors to
define a complex null tetrad (¢*,n% m® m®) with two
real null vectors, £* and n%, a complex vector m®, and
its complex conjugate m®, such that —¢,n* = m,m* =1
and all other inner products vanish. The vectors ¢ and
n® are aligned with outgoing and ingoing null geodesics.

For any choice of complex null tetrad, we can define the
Weyl scalars as the inner products of the Weyl tensor and
the null tetrad vectors,

b d

Uy = Cupegn®m’nm?,

(1a)
U3 = Cupeal®n’men?, (1b)
Uy = Cupeal“mPmn, (1c)
Uy = Capeal “n’1°m?, (1d)
Vo = Copeql®mblem?. (1e)

The Weyl scalars are thus intimately connected to the
tetrad choice. It is critically important for a consistent
tetrad choice to be established for two reasons. First, so
that the Weyl scalars will most readily reveal properties
of the spacetime. Second, to enable a meaningful com-
parison of the Weyl scalars across timesteps of a single
simulation or across different simulations altogether.

1 We make use of the conventions described in Appendix C of [25].
Note that unlike in [25], the letters (a,b,c, d, e) are reserved for
four-dimensional spacetime indices and the letters (4, j, k, 1, p, q)
are reserved for three-dimensional spatial indices.



Several approaches for constructing a tetrad in NR in-
volve solving for the principal null directions of the space-
time or performing a procedure to orthonormalize a coor-
dinate tetrad and then effectively solving for the Lorentz
transformation to achieve a desired frame [15, 19, 36].
However, for the purpose of measuring the Weyl scalars
at asymptotic null infinity #, we are only interested in
the leading-order contributions. Accordingly, we don’t
need such an involved procedure and can take advantage
of a perturbative extraction technique in which any errors
become negligible at # .

This technique is simpler to formulate, easier to im-
plement, and results in asymptotic waveforms that are of
primary interest for gravitational wave astronomy. These
waveforms are still subject to the infinite-dimensional
gauge freedom at £, described by the Bondi-Metzner-
Sachs (BMS) group. However, in principle a method
exists for partially fixing the BMS gauge freedoms of
the waveforms obtained from our perturbative extraction
technique [32, 33].

In addition to the Weyl scalars, we extract the gravita-
tional wave strain h from the simulations via the Regge-
Wheeler-Zerilli (RWZ) extraction procedure [37-39].

B. Weyl Characteristic Fields

The goal of this section is to write the Weyl scalars in
terms of the various characteristic fields of the Weyl ten-
sor evolution equation instead of in terms of the full four-
dimensional Weyl tensor itself [16, 40-42]. Numerical
relativists typically employ a 3+1 decomposition of the
spacetime, foliating the spacetime by spatial hypersur-
faces X [43, 44]. Following this procedure, we would want
to express the Weyl tensor in terms of quantities that can
be computed on each spatial hypersurface. More specif-
ically, by doing this we wish to minimize the amount
of numerical noise introduced when computing the full
spacetime Weyl tensor, which normally requires second
derivatives of the spacetime metric.

For a timelike unit vector field s* orthogonal to 3, we
can define the induced metric Y46 = gab + SaSp- We also
introduce the lapse function N and shift vector N¢,

N = —t%s,, (2a)
Na = ’yabtb, (Qb)

to relate how the coordinates on ¥ evolve from one hyper-
surface to the next. By solving the generalized harmonic
formulation of the Einstein equations, we compute not
only 7. but also its first derivatives dgpe = OuVpe alge-
braically from the evolved variables [45]. Thus, we can
compute the spatial components of the extrinsic curva-
ture as

K;; = dOij — dekij - 2’7k(iaj)Nk) : (3)

_ﬁ(

Following Eq. (2.20) in [45], we can also compute the
spatial components of the spatial Ricci tensor R;; from

dijr and 0;d;i;. All the terms involved in computing Kj;
and R;; can either be taken directly from the evolved
variables or require an additional spatial derivative. By
using a pseudo-spectral code, spatial derivatives of quan-
tities on ¥ can be computed by spectral differentiation
instead of having to use a finite-difference method. How-
ever, we cannot compute the full Weyl tensor using quan-
tities available on ¥, so we must proceed to project the
curvature information of the Weyl tensor onto X.

Having already chosen a timelike unit vector field s
orthogonal to X, the Weyl tensor can be split into an
electric and magnetic part,

Eij = Cuepas®s"%in";, (4a)

Bij = _O;cbdsasb'}/cirydjv (4b)
where C7, ., = %Cabe feef q 15 the right dual of the Weyl
tensor. These tensors are symmetric, traceless, and or-
thogonal to s®. The electric Weyl tensor E;; is the tidal
tensor on the spatial hypersurface, and the magnetic
Weyl tensor B;; encodes the differential frame-dragging
on the spatial hypersurface [21-23]. What makes this ap-

proach particularly attractive in NR is that F;; and B;;
can be computed directly from K;; and R;; [16, 41],

Ei; = Ri; + KkkKij — KikKkj, (53)
Byj = DpKyep'™, (5b)

where ¢, is the Levi-Civita tensor on X, D; is the spatial
covariant derivative on 3, and non-vacuum terms have
been omitted.

Comparing E;; and B;; in Egs. (4) with how the
Maxwell electric and magnetic fields are defined on a spa-
tial hypersurface, it is clear that the Weyl tensor is taking
the place of the Faraday tensor [46-48]. We can con-
tinue with this mathematical analogy to develop a pair
of coupled evolution equations for E;; and B;; that bear
a strong resemblance to the Maxwell equations [46]. For
details, see Appendix A. The six real-valued characteris-
tic fields of these coupled evolution equations are given
by

1
Uf; = (En £ "y Bip) <qkiqu + 2qkl%‘j) ,  (6a)
‘/i:t = (Ekl + Ekpqrqup) quki7 (Gb)
&= EijTiTj, (6C)
B= Bijri’rj, (6d)

where 7? is the radial unit vector on ¥ and q;j is the
spatial 2-sphere metric orthogonal to r?. The UZ% ten-
sors, being spatial, symmetric, and transverse-traceless,
have two independent components that describe the two
gravitational wave degrees of freedom. The fields £ and
B are the tendicity and vorticity of the spatial hypersur-
face [21-23].

All that remains is to specify the tangent vectors ¢
and ¢® on the 2-sphere orthogonal to r* and then con-



struct the complex null vector m?,

a_ 1 (pal 4
m_\/§r<9+sin0 )’ (™)

where r is the coordinate radius. This allows us to write
the Weyl scalars as inner products of the characteristic
fields with m® and m?®,

Uy = Usm'm?, (8a)
1 ,
Uy = —V.tm', 8b
3 \/5 i m ( )
1
Wy = 3 (E+1B), (8¢)
1 .
Uy, =——=V"m', 8d
1 \/i i M ( )
Uy = Ui;mimj. (8e)

C. Tetrad Transformations in the Asymptotic
Limit

In addition to any computational improvement that
results from computing the Weyl scalars from the real
characteristic fields of the Weyl tensor evolution system,
a further improvement can be made by relaxing two re-
quirements of our tetrad. First, a completely orthonor-
mal tetrad is not necessary, and second, the ¢* and n®
vectors need not be aligned to the outgoing and ingoing
null geodesics. Even a Schwarzschild spacetime with the
center of mass shifted from the coordinate center will re-
sult in our £* and n® being misaligned. Handling ¢/* and
n® misaligned with outgoing and ingoing geodesics will
be discussed in Sec. IITA.

The reason the tetrad is not orthonormal for general
spacetimes is that we define 8% and ¢® in Cartesian co-
ordinates for a sphere in flat spacetime. Using the flat
spacetime 6% and ¢® has the advantage that m® can be
computed once at the start of the simulation and then
cached. We demonstrate that these limitations can be
safely mitigated for specific applications of the extrac-
tion procedure.

Ultimately, we are interested in the asymptotic Weyl
scalars. Our “relaxed” tetrad can be thought of as a
transformation of an aligned, orthonormal tetrad. Since
it is the leading-order behavior of the Weyl scalars that
contributes to the asymptotic data, we ask which tetrad
transformations leave the leading-order behavior invari-
ant in an asymptotically flat spacetime.

Consider a physical spacetime (M, gqp) conformally re-
lated to a spacetime (91, gqp) such that

Jab = Q2gaba (9)

where €2 > 0 is a smooth function. The manifold 9t has
a boundary .#T = S? x R that terminates all future-
directed null geodesics, with = 0 and d2 # 0 at £ .

The expected asymptotic behavior of the Weyl scalars is
given by the peeling theorem,

U, =0(Q), (10a)
Ty = 0(0?), (10b)
Ty = O(03), (10c)
U, =00, (10d)
Ty = O(2°). (10e)

A general tetrad transformation will introduce new
terms to the Weyl scalars. However, any new terms that
are higher order in {2 than the leading Weyl scalar term
will not contribute at .# . To find which tetrad trans-
formations are allowed, we can relate the tetrad basis
vectors (£%,n% m®,m®) on M to the tetrad basis vectors
(1%, n% m% m*) on M,

= Q% (11a)
n® =n?, (11b)
m® = Qm?, (11c)
m® = Qme. (11d)

If the tetrad on M is transformed such that the new terms
are sub-leading in 2, then taking the limit  — 0 will
lead to the same asymptotic tetrad. If the asymptotic
tetrad is invariant, then the asymptotic Weyl scalars will
be invariant to such a transformation. In this case, we
can expect that the Weyl scalars computed at finite radii
in a simulation domain with a non-orthonormal tetrad
should converge to the asymptotic Weyl quantities with
increasing radius.

It is important to note that unlike the Weyl scalars and
the strain h, the Newman-Penrose shear o actually de-
pends on subleading terms of the tetrad vectors. There-
fore, the asymptotic value of ¢ is still not invariant un-
der these transformations. For a full discussion, see Ap-
pendix C. We do not extract ¢ from simulations so this
does not present an issue to our current considerations.

Constructing the Weyl scalars using Egs. (8) is math-
ematically equivalent to contracting the following tetrad
with the full spacetime Weyl tensor as in Egs. (1),

(o= \% (5% 4 7). (12a)
n = % (s — ), (12b)
m® = ﬁ (9“ + Siflesb“) : (12¢)
e = V;ﬂ <9“ - Sii 9¢>a) . (12d)

Our choice of s* and r* ensures that [*l, = n®n, = 0 and
l*n, = —1 within machine precision, even at finite radii.
Furthermore, since #* and ¢® are defined on spheres or-
thogonal to 7%, we can ensure (“m, = n*m, = 0 as well.
Even with respect to the full spacetime metric, we find



1"mg = n*m, = 0 within machine precision asymptoti-
cally. At this point we choose 0% and ¢* as defined on
a sphere in flat spacetime, which implies that we cannot
guarantee m*m, = 0 or m®*m, = 0 at finite radii. If
we still expect our choice of m® to be complex null and
normalized at .# T, then from Egs. (11) we would hope
to find the following asymptotic behavior,

mm, = O(Q),
mim, =1+ O(Q).

(13a)
(13b)

We do in fact find this behavior even in binary black hole
spacetimes using SpEC, for which the error in Eq. (13)
at 7 is typically O(10~8). Since this is below our de-
sired tolerance, we proceed without needing any further
manipulation of m®.

III. IMPLEMENTATION
A. Extrapolation

The next problem to consider is that the accuracy of
the extracted waveform is directly related to how far
away from the center of the simulation domain the ex-
traction is performed. The typical simulation domain
extends to a coordinate radius r ~ 103 M at most, and
even at this radius the near-field, gauge, and tetrad ef-
fects contribute up to about 1% of the waveform’s am-
plitude. If we can choose a suitable conformal scaling
function 2 = Q(r) that accurately models the falloff of
the finite-radius data, then we can set up a procedure
to extrapolate the data along null rays to 2 = 0. This
would then be the asymptotic data.

There are two challenges to setting up this extrapola-
tion procedure. The first is that for a choice of simulation
coordinates (t,,y, z), the coordinate time ¢ and coordi-
nate radius r = /22 + y2 + 22 may not parametrize a
null ray simply as u = t —r, which means our tetrad may
be misaligned even asymptotically. This would require
a more clever choice of u = u(t,r). The second chal-
lenge is defining an appropriate conformal scaling func-
tion 2 = Q(r). If these two issues are addressed, then we
can loosely lay out our extrapolation procedure as:

1. Extract each Weyl scalar W, (¢,7,0,¢), for n €
{0,1,2,3,4}, at multiple radii each timestep.

2. For each value of u, separately fit the real and imag-
inary parts of ¥, extracted at various radii to a
polynomial in 2.

3. Take the value of the polynomial with 2 = 0 to find
asymptotic data at the particular u, and repeat for
all u.

This procedure will now be described in greater detail.
We note that each Weyl scalar ¥,, can be expressed as
an expansion in powers of the conformal scaling function

Q with the leading term set by the peeling theorem,
U, =" (U) + 0, Q+ V2% + 0(Q%) . (14)

The leading coefficient W0 (u, 6, ¢) is the asymptotic Weyl
scalar on ., so we wish to isolate U9 from the extracted
finite radius data W,. Since we are primarily interested
in the radial dependence we can decompose the Weyl
scalars in terms of the spin-weighted spherical harmonics
(SWSHs),

\I]n(tv T, 97 d)) = Z Z \:[11(1671%) (tv 7“) SY—em(aa ¢)’ (15)
L=|s| Im|<e

for spin weight s = 2 — n. By working with the mode

weights \Ilgf’m), we can ignore the angular dependence.

We can compute the mode weights in the decomposition
by exploiting the orthogonality of the SWSHs,

vl = /S (Ufmimd) Y r*sin6df do,  (16a)
1

‘ 1) 1Y i
\I/g m) _ ﬁ y (V;+m ) 1Yo, r2 sin 6 do do, (lﬁb)
m 1 ; % i
\Ifg’ ) _ 3 /S2 (€ +iB) Yy, % sin 0 df do, (16¢)
m 1 —m? % i
W = L) o smodnas, (160
gl _ /S 2 (U;m'm?) 5 Vi v sin 6 d0 do, (16e)

where we have used Egs. (8) to write the Weyl scalars
in terms of the characteristic fields. The mode weights
are computed on a set of concentric spheres of constant
coordinate radius r at each time step. To compute the
mode weights up to £pax, it suffices to have (26,5 + 1)2
points on each extraction sphere evenly spaced in 6 and
¢. Since the complex null tetrad vector m® is defined for
a sphere in flat space, it does not change throughout the
simulation. Therefore, we can precompute most of the
integrand at each (6, ¢) point, only needing to update
the characteristic fields each time step.

With the angular dependence factored out of the Weyl
scalars, we proceed to find a good definition of u(¢,r) and
Q(r). The naive choice u =t — r does not leave us with
a good parametrization of the null rays asymptotically.
This is to be expected, since the simulation coordinates
were not chosen for this intent. An attempt at improv-
ing this might be to use the radial tortoise coordinate r,
to define the parametrization © = ¢t — r,. However, this
shows only a marginal improvement and still does not
leave us with a good enough parametrization for effec-
tive extrapolation. Figure 1 illustrates how a choice of
u(t,r) that fails to accurately parametrize null rays will
adversely affect the extrapolation.

A better choice for a retarded time u that parametrizes
outgoing null rays in the asymptotic limit involves a ra-
dial tortoise coordinate R, constructed from the areal



FIG. 1. An example of how a poor choice of retarded time
u(t, r) fails to capture the falloff behavior of gravitational ra-
diation along an approximate outgoing null ray. The plot
on the left illustrates a small section of three ¥4 waveforms
extracted at different radii, one green curve per extraction
radius. The blue dots represent points that lie along a true
null ray. If the choice of u(t,r) accurately parametrizes the
null rays then the curves should be aligned, i.e. the blue dots
should all be vertically aligned having the same value of wu;.
Because of a poor choice of u(t,7), in this example u =t —r
using simulation coordinates, the curves are all misaligned
and the orange diamonds denote the values of ¥4 along the
approximate null ray. The right plot illustrates how the val-
ues of W4 as a function of radius along an approximate null
ray (orange diamonds) deviate from the values along the true
null ray (blue dots). Extrapolating polynomials are shown
in the right plot as thick dashed lines for both data. Notice
that extrapolating W4 (u;) along r — oo leads to an incorrect
asymptotic value if a bad wu(¢,r) is chosen.

radius as well as a choice of “corrected time” teor [49],

w = teors — Re, (172)
R = R+ 2Mupylog [ —2— —1 (17b)
T Apa 08 2M apwm ,
T
N
teorr :/ #dTZ (170)
[V V 1- 2MADM/R

where Mapy is the ADM energy of the initial data at the
start of the simulation, (N) is the average value of the
lapse over the extraction sphere, and R is the areal radius
defined by computing the surface area of the extraction
sphere,

R= [;%mdfﬁ]m. (18)

For the conformal scaling function, it suffices to use the
inverse areal radius,

Q=R (19)

We also scale out the waveform data’s leading falloff
in R so that the data to be fitted is as constant in R as
possible. Additionally, we scale the data by an appropri-
ate factor of the mass of the system M so that we can

work with the dimensionless quantity R5~"M" 3 \Ilgf ),

For our work, we choose the system mass M to be the
sum of the Christodoulou masses of the black holes mea-
sured at the earliest time after initial transients, i.e. junk
radiation, have decayed from the simulation.

The goal is to find a least-squares polynomial fit in R
to data from a discrete set of extraction radii {R,} =

{Rumin; - - - s Rmax}- Thus for each mode (¢,m) and time
u;, there are two sets of data,
(E) = {2 Ru i, Ry f, (200)
00} = {R 3w, my) L, (20m)

to which we perform the following polynomial fit solving
for coefficients £ and ¢,

{2} ~ 5(0) + S(I)R_l 4 g(p)R—p,
{1} ~¢O 4 (DR ... 4 ¢PRP

(21a)
(21b)

truncated at some finite order p. Comparing the right-
hand sides of Egs. (21) and Eq. (14), we can see that if
the unwanted effects in the data are all captured by the
sub-leading terms of the polynomial, then the leading-
order terms £ and ¢(©) are the asymptotic data. Thus
we have,

Mn—3 \Ijg(&m) (uz) _ 5(0) + Z'C(O). (22)

For the sake of reducing cumbersome notation, we will
refer to the dimensionless asymptotic Weyl scalars by

Pl = prms gl m), (23)

This fitting procedure is repeated for each wu; to get the
full asymptotic waveform of the (¢,m) mode, ¥5"™ (u).
The extrapolation should be repeatedly performed with
. . . . (em)
increasing extrapolation order p until ¢y, " (u) converges
to a desired tolerance.

In summary, this extrapolation procedure accom-
plishes

lim RO"M" 30 (u, R) = ™ (u),  (24)
R—o00
and is readily available in the open-source python module
scri [2, 50-52]. This extrapolation procedure is also used
in the same way to find the asymptotic gravitational wave
strain RO from the finite-radius extracted strain h,
lim RM ™Y hE™) (4, R) = RO™) (w).  (25)

R— o0

B. Junk Radiation

Binary black hole simulations suffer from a spurious
but strong burst of gravitational radiation that is emit-
ted at the start of the evolution [53-55]. This “junk”
radiation propagates outward through the domain and
should pass through the outer boundary without affect-
ing the rest of the simulation.



We found that the extracted waveforms for Wy, Wy,
and Uy all showed effects of the junk radiation reflecting
off the outer boundary and propagating back into the
domain. In addition, there was also significant evidence
that the junk radiation was self-interacting after being
initially emitted and scattering off the non-flat geome-
try back into the domain before even reaching the outer
boundary. The radial falloff of the junk radiation is sub-
leading for W,,>3 but not for ¥, <5. If the junk radiation
is not sub-leading, then the extrapolation procedure will
amplify its effects rather than removing them.

Three schemes were implemented to reduce the magni-
tude of the junk radiation, mitigate the effect of backscat-
tered junk in the waveform data, and prevent the reflec-
tion of junk off the outer boundary. All of these pro-
cedures had a negligible effect on the run time of the
simulation.

In order to reduce the junk overall, a different choice
of initial data gauge was made, which was found to lower
the magnitude of the junk by roughly 80%. The de-
fault gauge choice for initial data in SpEC is the Super-
posed Kerr-Schild (SKS) gauge, which allows one to cre-
ate initial data with near-extremal parameters [56]. In-
stead, the Superposed Harmonic Kerr (SHK) gauge was
used [55]. This gauge has the benefit of lower junk radi-
ation at the cost of being unable to create initial data for
BBH runs with high spin. A maximum effective dimen-
sionless spin of around 0.7 can be reached, but anything
higher would require the SKS gauge.

In order to reduce the backscattered junk, we first no-
tice that the junk radiation is not sub-leading in radial
falloff for ¥,,<o. Thus to limit the contribution of junk to
the data, we must place the innermost extraction radius
closer to the coordinate center. We set up 24 extraction
radii, evenly spaced in inverse radius, from 2Xy to about
21X, where Xg = 1/wy is the initial reduced gravitational
wavelength as determined by the orbital frequency of the
binary from the initial data. Since ¥; and ¥ have such
sharp falloff with radius, the amplitudes of waveforms
quickly fall below the noise floor € determined by the sim-
ulation resolution. If the extraction radii with insignifi-
cant waveform data are included in the set of data to be
extrapolated, Eq. (20), then the extrapolation will not
converge. To improve the extrapolation then, we exclude
these insignificant radii from the extrapolation. For Uy
and ¥, we determine the cut-off radius R, at each value
of retarded time for which we will exclude data from an
extraction radius if it is larger than R.. The value of R,
is defined to be the radius at which the dominant mode
of ¥y (or Up) is equal to . For the numerical results in
Sec. IVB1 we used ¢ = 107Y.

Preventing the junk from reflecting off the outer do-
main boundary would properly require improving the
boundary conditions, which is a nontrivial task. Rather
than take this approach, we decided to prevent reflec-
tion by effectively “deleting” the outgoing burst when
it reached the outer boundary. More specifically, the
outer part of the domain where extraction takes place is

constructed from concentric spherical shells. We extend
the domain with an additional spherical shell that has
no extraction radii and within which the entire burst of
junk radiation will be contained when it reaches the outer
boundary. Once the junk is inside this extra shell we can
stop the simulation, delete the extra shell, and continue
the simulation with the now smaller domain. As a rough
heuristic, the burst of junk radiation is typically < 450 M
wide, so we extend the outer boundary of the domain by
adding an extra 250 M-wide spherical shell. When the
peak of the junk radiation reaches the outer boundary,
the first half of the junk pulse will have already been
reflected so that the entire burst of junk radiation can
be contained within the extra shell. We ensure that the
coordinates inside the domain do not shift when the ex-
tra shell is deleted so that this procedure has no adverse
effect on the waveforms being extracted.

IV. NUMERICAL RESULTS

All numerical work, apart from extrapolation in post-
processing, was done using SpEC. The extrapolation was
done with scri [50].

A. Shifted Kerr

We begin by testing this extraction-extrapolation pro-
cedure with an analytic case in order to verify conver-
gence of the extrapolation procedure to the correct re-
sult.

For a Kerr spacetime in Kerr-Schild coordinates, the
tetrad in Egs. (12) based on spheres of constant coordi-
nate radius will be neither orthonormal nor aligned with
the principal null directions. The outgoing null tetrad
vector points radially outward from the coordinate cen-
ter and does not take into account any shift due to the
angular momentum of the spacetime. As expected, these
effects are most pronounced at small radii » < 100 M.
Furthermore, if the center of mass of the black hole is
offset by a distance §z along the z-axis from the coor-
dinate center, then this further misaligns the outgoing
tetrad null vector.

For a Kerr metric in Kerr-Schild coordinates with a
center of mass shifted by dz, the only non-zero asymp-
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FIG. 2. The relative error in the asymptotic Weyl scalars
computed from a Kerr spacetime in Kerr-Schild coordinates
with the center of mass shifted by dz = 1 M.
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where a is the Kerr spin parameter, and M = 1. Usually,
the Weyl scalars of a Kerr spacetime are considered with
respect to a Kinnersley tetrad, in which the only non-
zero Weyl scalar is Wy; for our tetrad, there is a non-zero
mode for each of the Weyl scalars even when dz = 0.
Since Kerr is a non-radiating spacetime, notice that the
leading orders for Uy and W3 are R~ and R~*. This
demands that the power of R in Eq. (24) be adjusted
accordingly for extrapolating ¥, and W3 in this case.

Using SpEC, we computed a Kerr spacetime with the
center of mass shifted by dz = 1 M. The Weyl scalar
mode weights up to fpma.x = 8 were determined at 10
extraction radii equally spaced in inverse radius from
Ruyin = 10M to Runax = 500 M. Since the spacetime
is time-independent, we need not worry about the added
complication of choosing a parametrization of null rays
u(t,r) for this analysis.

For a range of extrapolation orders, we computed a
measure of the relative error in each computed asymp-
totic Weyl scalar,

Agere = ’1/1%0 o)

-1 ~t.m 2
¢z1¢svm>ws& I e
Lm

Relative Error, Akerr
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FIG. 3. The relative error in the asymptotic Weyl scalar
mode weights for a Kerr spacetime with the center of mass
shifted by 6z = 1 M. The average radial grid density is given
by the number of radial spectral collocation points divided
by the distance between the outer domain boundary and the
excision boundary.

where ;Zn denotes the computed asymptotic Weyl scalar,
1, denotes the analytic asymptotic Weyl scalar, and
(£y, mg) is the only non-zero analytic mode. The results
for 3 < p <9 are plotted in Fig. 2.

As the extrapolation order increases, the errors de-
crease exponentially until they converge. Since we are
using 10 extraction radii, we can have a fitting polyno-
mial of p < 10. However, using a value of p ~ ppax
will result in overfitting. This is especially the case for
complicated dynamic spacetimes, as will be discussed in
Sec. IVB 1. Even with a simple spacetime like Kerr, the
error begins to slowly increase because of overfitting for
p > 6 with w4 and wo.

The extrapolation convergence with numerical resolu-
tion in the simulation grid was also investigated. Since
SpEC employs a pseudo-spectral method, we define the
average radial grid density as the number of radial spec-
tral collocation points divided by the coordinate distance
between the outer and inner domain boundaries. The re-
gion inside the apparent horizon is excised so the excision
surface is the inner boundary of the domain.

Figure 3 shows the relative error in the asymptotic
Weyl scalars for p = 9 as a function of average radial grid
density. We see that the error decreases exponentially as
the resolution is increased until the errors converge.

B. Binary Black Hole Coalescence

For a complicated dynamical spacetime, like that of a
binary black hole coalescence, we do not have the luxury
of comparing the computed asymptotic Weyl scalars to
known analytic values. Instead, we analyze the conver-



gence behavior of the extrapolation procedure in general.
We can also analyze the amount by which the computed
asymptotic Weyl scalars violate the Bianchi identities,
which gives us a self-consistency test against exact gen-
eral relativity.

1. Eaxtrapolation Convergence

A 20-orbit equal-mass precessing binary black hole in-
spiral, coalescence, and ringdown were simulated with
dimensionless spins,

xa = ( 0.4684, 0.1803, —0.3287),
Xz = (—0.1924, 0.0285, —0.2284),

and 24 extraction radii equally spaced in inverse radius
between Rpyin = 73 M and Ry = 770 M.

To provide a measure of the convergence of the extrap-
olation procedure, we compute the time-averaged relative
difference between a waveform f, found with extrapola-
tion order p and a waveform f,_; found with extrapola-
tion order p — 1,

App1 = (28)

UH — Uo

L)~ fa )]
/uo Fow] 0

where ug is the time of the simulation after the junk
radiation has passed and ugy is the time at which the
common horizon forms.

We expect A, ,—1 to decrease as p increases as in the
case for the Kerr spacetime, cf. Fig 2. However, with
a dynamic spacetime we have the added complication
of choosing an appropriate value for the retarded time
u that accurately parametrizes outgoing null rays. Any
choice of u that poorly parametrizes the null rays will
result in errors in the extrapolation procedure. For the
most part, our ansatz for u(t,r), Egs. (17), shows a signif-
icant improvement over simply using v = t —r. However,
there is still room for future work in improving the choice
of u. The net effect is that A, ,_1 will decrease until the
extrapolating polynomial begins to fit to artifacts from
the choice of v and numerical noise. Higher extrapola-
tion orders will have a build up of error and so it will be
important to decide on an optimal value for p.

Figure 4 shows the relative difference of successive ex-
trapolation orders for each Weyl scalar. The quantities
h, ¥4, and ¥3 show convergence in the extrapolation of
the dominant mode up to p = 7, after which overfitting
errors start to build up. It appears that the (0,0) mode
of ¥y does not benefit much from the extrapolation pro-
cedure and is relatively constant with p. This permits
an extrapolation order to be chosen that improves the
subleading (2,2) mode.

As expected, U1 and ¥, are not able to converge to
the same tolerance as the other Weyl scalars with slower
radial falloff. Pleasantly enough, ¥; shows some im-
provement with extrapolation and converges to about
O(1073). Before the implementation of the techniques
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FIG. 4. Extrapolation convergence of the extracted Weyl
scalars for a precessing binary black hole inspiral and merger.
The relative difference measure A, ,_1, Eq. (28), is plotted
for the dominant mode of each Weyl scalar. Note that all
p = 1 waveforms are taken to be the finite-radius waveforms
from the outermost extraction radius. This is done to provide
a comparison with unextrapolated data.

mentioned in Sec. III B, extrapolation of ¥, and ¥, was
severely unstable even at p = 2.

As mentioned in the introduction, the most immediate
future work resulting from acquiring asymptotic wave-
forms is to develop a procedure for completely fixing the
BMS gauge freedom of numerical waveforms. For this
purpose, it is specifically the Weyl scalars (U4, U3, Us)
that are of primary importance [2, 5, 33]. Here we see
that for some extrapolation order, we are able to get all
three waveforms respecting the leading falloff to a relative
error of O(1075).

Instead of time-averaging the relative difference in a
waveform from two successive extrapolation orders, we
can plot the relative difference as a function of u to see
where in the waveform convergence is improving or di-
verging. In Fig. 5, we have chosen to study the con-
vergence behavior of the 1/)5;22) waveform since it shows
both good convergence behavior for p < 7 and a buildup
of overfitting errors for p > 7.

By plotting the full waveform we can see that there is
a difference in convergence behavior for the early inspiral
and late inspiral. The late inspiral converges to a toler-
ance that is almost two orders of magnitude lower than
the earliest part of the inspiral. This effect is seen with
all of the Weyl scalars. Thus for late inspiral alone, we
can expect even better convergence behavior than shown
in Fig. 4. This is to be expected. Near-field effects fall off
as A/r decreases. Since A decreases when the binary is
closer to merger, so also do the near-field effects even at a
fixed radius. Therefore, the waveform at times closer to
merger will be less contaminated by near-field effects, so
it is easier for the extrapolation procedure to separate the
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FIG. 5. Relative difference of 1/);(,,2’2) computed from successive
extrapolation orders for a precessing binary black hole inspi-
ral, merger, and ringdown. The extrapolation order p = 2
waveform is compared with the unextrapolated waveform of
the outermost extraction radius. The formation of the com-
mon horizon occurs at time ug. The time-averaged value of

each curve is the value of a point for the 1/)§2’2) curve in Fig. 4.

asymptotic waveform from these near-field effects. Fur-
ther discussions about the extrapolation procedure can
be found in [25, 49].

2. Bondi Gauge Analysis

The Bianchi identities provide a convenient tool to
provide a self-consistency test on asymptotic NR wave-
forms. In an asymptotic spacetime, Bondi gauge is any
choice of coordinates in which the metric and its deriva-
tives approach Minkowski spacetime asymptotically. Our
extrapolation procedure assumes an asymptotically flat
spacetime, which should result in Bondi-gauge waveforms
on .#T. By taking the Bianchi identities written in the
Newman-Penrose formalism and applying the assump-
tions for Bondi gauge, we are left with a set of constraint
equations that must be satisfied for any consistent set of
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Bondi gauge waveforms,

WY = —ho, (29a)
1 .

U) = —on’, (29b)
V2

: 1

v = —Ewg, (29¢)

. 1 1-

Y = —Ewg - zho\llﬁ, (29d)

. 1 1-

WY = _%zwg + §h0\lf‘§, (29)

. 1 3_

Y = _56\1’9 + Zho\pg. (29f)

where an overdot signifies a derivative with respect to u.
We are using the 0 operator as defined for a spin-weighted
function f of spin weight s,

(sin9)® [ 0 i 0 s
— — 0 , (30
/2 \20 " sm60g [(sin) ™" 7], (30)
which acts on the spin-weighted spherical harmonics? as
the ladder-operator,

of = -

1
0sYom = \/(é— s) (04 s5+1) s41Yem,

5 (31a)

5sifgm\/;(f+s)(ﬁs+l) s—1Yom. (31b)
The factors that appear in Egs. (29) may seem to disagree
with the existing literature. See Appendix B for a discus-
sion on these differences. The derivation of Eqgs. (29b-
29f) assumes that tetrads have been chosen such that
h® = 5Y; the Bianchi identities themselves do not depend
directly on h. Following the considerations in Sec. IIC
and Appendix C, the use of h in these equations leaves
a possible subleading term of ¢ unaccounted for. This
would mean that these constraint equations with h are
only approximate constraints. Nonetheless, comparisons
with CCE waveforms suggest that this subleading term
in o is negligible for our current precision, and even these
approximate constraints are satisfied to a tolerance that
allows for practical application.

Using the information from Fig. 4 and plots like Fig. 5
for each asymptotic quantity, we chose the following val-
ues of p for each waveform to test the Bondi gauge con-
straints:

e p =7 for ¢4 and 3
e p =5 for 15 and h°
e p=3 for ¢y

2 The _2Y2,, SWSHs as SpEC defines them are given in
Egs. (C.25-C.27) in [25].



e p =2 for ¢

Using these waveforms, we can find the relative magni-
tude of the violations of Egs. (29). The deviation from
equality is scaled with respect to the magnitude of the
left-hand side of the equation. For each mode, we take
the time average of the violation, setting the initial time
to when the initial junk radiation has passed and setting
the final time to ugy + 80 M. The results are plotted in
Fig. 6. The time derivatives were performed by fitting
a cubic spline to the waveform and then evaluating the
derivative of the spline. Since the sampling of the data is
not uniform in time—with a higher density of points near
merger—we performed a minimization of the violations
while varying the density of the time sampling used in
each time derivative.

For the modes that predominantly contribute to the
waveform—the (£, £¢) and (¢,+(¢ — 1)) modes—we see
violations from Bondi gauge between O(107°) and
0O(1072). The h° and 4 waveforms are of the great-
est interest for gravitational wave astronomy. Although
we cannot make any direct statements on how well
any individual waveform satisfies the Bondi constraints,
we can parse out some more information by consider-
ing Egs. (29a—29c). All three equations only involve
(h,1b4,73), and Eq. (29¢) is the only constraint equa-
tion that does not include h°. Although Eq. (29b) and
Eq. (29c) are effectively the same relation, just differ-
ing by an overall time derivative, the latter demonstrates
smaller violations by roughly half an order of magnitude.
This may imply that a large part of the violation is due
to A%, which would not be unreasonable given that an en-
tirely different extraction procedure is used for the strain.
It has also been observed in several SXS waveforms that
the hY waveform seems to contain more noise than the
1y waveform. A further analysis of the RWZ extraction
procedure for the strain may shed more light on this.

V. CONCLUSION

All gravitational waveforms have an inherent infinite-
dimensional set of gauge freedoms. When working with
asymptotic waveforms at .# T, we can understand trans-
formations between waveforms in different asymptotic
coordinates via the BMS group. Before attempting to
build any phenomenological or surrogate models from NR
waveforms, we must both ensure that the waveforms are
free from all near-field effects and also be able to sys-
tematically fix the BMS gauge freedom. This is crucial
if we want to separate artifacts of gauge from the actual
physical information in the waveform.

A method for fixing the BMS gauge freedom has been
proposed by Moreschi [32, 33], which requires reliable ex-
traction of the asymptotic quantities of h, ¥y, V3, and
W,. The extraction procedure implemented in this paper,
using the real characteristic fields of the Weyl tensor evo-
lution equations, is efficient and readily implementable
given the standard 3+1 variables from any NR code. We
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have demonstrated a successful implementation in the
Spectral Einstein Code.

The extraction procedure achieves its efficiency at the
cost of using a tetrad choice that is not guaranteed to
be orthonormal nor aligned with the principal null direc-
tions of the spacetime. However, we have demonstrated
that non-orthonormal and misaligned tetrads can still be
used in getting the asymptotic Weyl scalars as long as the
spurious effects of the tetrad choice fall off with radius
at orders sub-leading to those specified by the peeling
theorem. This paper has explored an extrapolation pro-
cedure by which we can determine the asymptotic wave-
form data from the finite-radius extracted data. Using a
coordinate-shifted Kerr metric, we have shown that the
extraction and extrapolation procedure is able to recover
the correct asymptotic values. For a precessing, unequal
mass ratio, binary black hole coalescence we have shown
that we can find convergence in the extrapolation pro-
cedure for h, Wy, W3, and ¥y, while extrapolation still
leads to improvement for ¥; and ¥,y. We discussed sev-
eral methods to reduce the effect of junk radiation in
waveforms resulting from binary black hole initial data.

There are several limiting factors to the extrapolation
procedure. As ansatzes, we have taken the choice of con-
formal scaling function Eq. (19), the expansion of the
Weyl scalars as a polynomial Eq. (14), and the approxi-
mate parametrization of null rays Eq. (17). An improve-
ment in any one of these may improve the extrapola-
tion convergence. Despite these limitations, we are able
to obtain numerical waveforms for the full set of Weyl
scalars that agree with those of an asymptotic Bondi-
gauge spacetime up to a relative error of O(1072) for
the first few dominant modes. For the waveforms specif-
ically required for the BMS gauge-fixing procedure, we
are able to obtain waveforms that agree with asymptotic
Bondi-gauge waveforms up to a relative error of O(1073).
Further analysis can be performed once other extraction
procedures, such as CCE, produce asymptotic waveforms
to compare against.

By expanding upon the robust and well established
wave extraction method of SpEC, we have presented the
first production-level waveforms for the entire set of Weyl
scalars that are immediately ready for use as tools for
gravitational wave astronomy. Having the full set of
Weyl scalars allows us to use the Bianchi identities to
test our extracted waveforms against exact general rel-
ativity and provide hard upper bounds on their accu-
racy. This analysis is straightforward to perform and can
test each waveform mode individually, as we have demon-
strated in Fig. 6. A small public catalog of simulations
with the full set of Weyl scalar waveforms will soon be
made available. The Weyl characteristic field extraction-
extrapolation procedure that we have presented has now
set the stage for a reliable method that will finally pro-
vide the gravitational wave astronomy community with
completely gauge-fixed waveforms.



12

Rel. Bianchi Violation

10~°

(2,I 0) (3,I 0) (4, 0)

(£,m)

FIG. 6. The relative magnitude of the violation of the Bianchi identity constraints, Egs. (29), by numerical Bondi-gauge
asymptotic waveforms of a binary black hole coalescence. For each value of ¢, the modes are plotted from (¢,—¢) to (¢,¢) in
order of increasing m. Each letter in the legend refers to the equation in Egs. (29) that is being plotted. Specifically, the values
plotted here are the left-hand sides of the equations minus the right-hand sides, all scaled by magnitude of the left-hand sides.
A full discussion of this data is found in Sec. IV B2 after Egs. (31). The modes for each value of £ have been connected for

ease of visualization.
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Appendix A: Complex Weyl Characteristic Fields

Requiring the Faraday tensor to be divergenceless and
satisfy the Bianchi identity results in two constraint equa-
tions and two evolution equations for the Maxwell elec-
tric and magnetic fields. In a similar way, requiring the
Weyl tensor to be divergenceless® and satisfy the Bianchi

3 The divergence of the Weyl tensor is properly sourced by the
stress-energy tensor,

1
V*Caped = v[d (7Tc]b + ngc]b> )
where here T, is the stress-energy tensor, and thus only vanishes

in vacuum, cf. Eq. (A1b). This is analogous to the divergence of
the Faraday tensor vanishing in the absence of sources.

identities,
v[U,C’b(:]cle =0,
VeCapbed = 0,

results in two constraint equations and two evolution
equations for F;; and B;;. Since we are interested in
the propagation of radiation, we will focus on the evo-
lution equations. Just as in the Maxwell case, we have
two coupled evolution equations for F;; and B;;, which
we can combine into a single equation,

Qij — N*0LQij — iNkale(iﬁj)kl = 5, (A2)

where Q;; = E;; +1iB;;, and Sq is all of the source terms.
These source terms are purely algebraic in E;; and B;;.
We can further decompose the quantity );; with respect
to the geometry of the simulation domain. In the region
we would be extracting ();;, the domain is constructed
of concentric spherical shells, that is, a radial foliation of
the spatial hypersurfaces. If we have a 2-sphere metric ¢;;
and an outgoing spatial radial vector r*, then the spatial
and symmetric tensor @;; can be decomposed irreducibly
into a scalar function C, a vector C;, and a transverse-
traceless tensor C;j,

(Ala)
(A1b)

1
Qi =C (ri'rj - 2%‘) +2riCjy + Cij, (A3a)
C= (EZJ + ZB”) TiTj, (A3b)
Ci = (Ejx +iBj) 174", (A3c)
. 1
cﬁ::(EM-+zBM)(q%q2-+2q“qﬁ>. (A3d)



Thus we can express the Weyl scalars in terms of the
complex characteristic fields,

U, = Cijmim‘j, (A4a)
1 .
Uy = —C;m’, Adb
3= plim (Adb)
1
\:[12 = ic, (A4C)
1 )
U, = ——Cm, A4d
1= gl (Add)
\IJO = Cijmimj. (A4e)

It is simpler numerically to store and work with real num-
bers. Using the following identities [41],

(Aba)
(A5Db)

imi = 77’jmk€ijk,
m; = ijkéijk,

we can rewrite the three complex fields as the six real
characteristic fields in Egs. 6.

Appendix B: Tetrad Conventions

The goal of this section is to express the relations be-
tween asymptotic quantities in Bondi gauge in a way that
is completely agnostic of sign convention and scale fac-
tors. As such, all the assumptions and results in this sec-
tion are only valid with a Minkowski metric. We start by
defining a sign variable s¢ to account for different choices
of the metric signature,

{1 for metric signature (—, +, 4, +)
S0 = . (B1)
—1 for metric signature (4, —, —, —)

For the sake of simplicity, all variables introduced in this
section that are named s, will be used to generalize a
sign convention and can only take the value +1. In this
section, gqp and 74, are the (—,+,+,+) signature met-
rics and explicit factors of sy will be used to account for
metric signature.

In the literature, it is common to define a complex null
tetrad by first constructing [, to be a null vector tangent
to outgoing null hypersurfaces parametrized by constant
retarded time u,

lo o (du)g. (B2)

The ingoing null tetrad vector n® is then defined by en-

forcing the normalization [,n* = —sg. There remains
the freedom to introduce a scaling by A that still satisfies
the normalization, (M,)(A71n%) = —sg. We can absorb

this freedom, which includes a sign ambiguity, into the
definition of I, by defining it as

A
la = = J5(dt = dr)a. (B3)

13

While A\ parametrizes the boost freedom of the tetrad,
there is still a spin freedom on the choice of m®, for which
we can see that m® — e*©m? does not affect the normal-
ization m®*m, = sg. Therefore, we absorb this freedom,
parametrized by 0 < © < 2, into the definition of m?,
£i©
My = 7 (dO +ido), (B4)

This orientation is chosen so that for © = 0, on the z axis
we would find that (df), points along the positive z axis.
Throughout this section we are defining 0 as appropriate
to each author’s definition of m?.

The Christoffel symbols of the second kind contain no
factors of sg so they are agnostic to metric signature,

1
ab = §ng (Ov9da + Oagar — Oagab) » (B5)

Using the above definition for the Christoffel symbol,
there is a choice of sign convention on the definition of
Riemann tensor, which we parametrize by s3,

83R"pca = 0L'g, — 0al'gy + Tel'gy — Tgel'e, (B6)

Note that a factor of sg appears for the lowered-index
Riemann tensor,

Rabcd = 8350 (acFadb - ad]-—‘acb + Facerflb - Faderib) .
(B7)
We then need to define the sign variables s; and ss to
take in account the choice of sign in the definitions of the
Weyl scalars and the Newman-Penrose shear o,

n°m?, (B8a)
(B8b)

\114 =51 Cabcdnamb

o = som®m®V,lp,

where here the terms on the right hand sides are in each
author’s own convention. The Bondi gauge Bianchi iden-
tities can now be written as

. )\ei(—) 0
T) = — 7 oy, (B9a)
N Ae'® w0 + 1 Mo 0wo (B9b)
9= — \/, 3 —=S80S2A0 ¥y,
2 V2
. Aet® 2
U = =005 + ——sos2A0” 09, (B9c)
V2 V2
. Aet© 3
B = 300 + ——505,A0°0Y. (B9d)

V2 V2
A list of the conventions for various papers is given in
Table 1.

We can also define a parameter  to account for differ-
ent scaling factors of the gravitational-wave strain,

1 .
h = C_l 3 (h@g - h¢¢) — Zha¢ , (BlO)

where hqp = $0(gab — Map)- From this we can write the

relation between U9 and h° as

) = — (s153¢A "2 29) hO, (B11)



SpEC MB NP ADLK BR C

S0 1 -1 -1 1 1 -1

s1 1 1 -1 1 -1 -1

S2 1 1 1 -1 N/A 1

S3 1 1 1 1 1 1

A 1 V2  —v2 —V2 1 —v2

(C] 0 0 s 0 0 0

¢ 1 2  N/A 1 1 N/A
reference [25] [2, 5] [57] [58] [30] [59]
TABLE I. Sign conventions and scaling factors for various

papers. For convenience, a shorthand name for each conven-
tion is given in the first row. N/A signifies that the particular
convention is not specified in that paper.

In order to convert a quantity in the SpEC convention
to a different convention, the appropriate factors can be
determined by

\II%[XJ — 505153 (A€i®)2_n ‘I’?L[SPEC],

hO X] SOC—le—Qi@hO [SpEC})

(B12a)
(B12b)

where all of the parameters are from the column of con-
vention [X] in the table. Although we can easily relate
h? and WY between different conventions, the situation is
far more complicated for o°. These complexities will be
discussed in Appendix C.

Appendix C: Subleading tetrad hazards

In Sec. ITC, we discussed that in the asymptotic limit
the Weyl scalars and the strain h are invariant under
tetrad transformations that leave the leading order tetrad
behavior unchanged. However, this does not hold for all
the Newman-Penrose scalars. Most importantly it does
not hold for the shear o. Although we are not extract-
ing ¢ from simulations, the analysis of numerical wave-
forms using the BMS group still requires understanding
how o relates to the Weyl scalars and h. Furthermore, a
formidable difficulty arises when attempting to establish
a connection with the literature. Waveform quantities
cannot be generally converted between the different for-
malisms because the subleading tetrad behavior is often
not specified sufficiently. This appendix will explore the
effects of subleading tetrad behavior on the asymptotic
quantities that are of primary interest to the study of
gravitational radiation.

The waveform quantities that fall off as 1/r2 or faster
are vulnerable to dependence on the definitions of the
tetrads off .#T. The reason for these corrections is
simple, but calculating them is laborious and establish-
ing complete agreement of the competing conventions is
deeply vexing, especially because the subleading behavior
in 1/r of tetrads is not nearly so universally prescribed
as the leading behavior described in Appendix B.
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The discussion of this appendix is closely related to the
concept of tetrad rotations, which is covered at length in
previous publications [60, 61]. The challenge that we face
here, however, distinguishes itself because the distinct
calculations, especially those performed during Cauchy
evolution, often do not guarantee that the tetrad basis
is orthonormal or null in the bulk of the spacetime, only
at its boundary. Therefore, the alteration between con-
ventions is somewhat more free even than generic O(1/r)
tetrad rotations.

To motivate this discussion, first consider the havoc
generated by the simple alteration of the angular tetrads
at subleading order in 1/r (holding for this illustrative
sketch I’ =1 and n’ = n),

1
m'® =m* + - (Am® + Bm®). (C1)

In particular, the Newman-Penrose spin coefficient o =
mmPV ol ~ O(r=2) is altered as

o' =0+ % (2Bp 4 2A40) + %2 (A%c +2A4Bp + B%7),

(C2)
where p = mamﬂvazﬁ, and p = p by assumption. How-
ever, because p ~ O(1/r), we find that the definition
of ¢ that we had hoped to standardize now depends on
the subleading values of the tetrad m®. Fortunately, in
this restricted case, none of the leading contributions to
the Weyl scalars are altered, but it is not hard to con-
struct alterations to [ and n at subleading order in 1/r
that would cause disruption all down the chain of Weyl
scalars according to the peeling theorem.

In Appendix Sec. C 1, we derive the alteration between
the SpEC tetrad and the tetrad used in SXS CCE [62]. In
Appendix Sec. C2 we expand the correction between the
SXS CCE tetrad and a generic asymptotic null tetrad,
which is an easier comparison to perform because we can
take advantage of the properties of null tetrad rotations.
In each case, we propagate the tetrad alteration to de-
termine the final modifications to the asymptotic values
of the waveform quantities h, o, Wy, U3, Uy, ¥y, and V.

In each of these sections, we denote the tetrads of the
various conventions with text subscripts or superscripts
(e.g. lsprc for the SpEC tetrad convention). To de-
termine the subleading dependence of the tetrads in the
different conventions, it is often necessary to expand the
tetrads in powers of inverse r, which we denote with the
order of inverse r in parentheses (e.g. léo()jE). Implicitly,
this is written as the r coordinate in the SpEC conven-
tion, but because we only work in a limited expansion
in powers of inverse r, all of the statements would be
unchanged if working in the Bondi-Sachs 7. To avoid
confusion, we do not use the superscript 0 as in the body
of the text to denote the leading contribution to a wave-
form quantity asymptotically. Instead, we use the ex-
plicit power of r explicitly, writing for instance ¥} as

v,



1. Subleading tetrads in CCE

In this section, we use the tetrads for a CCE formalism
described in [62],

MGoE = \fr (\/K+1 “ 1+K JQ>

(C3a)
nkep = V2e 28 (6“u —5 (14 rW) ",
1- 1
" L7 (C30)

CCE_E

where the Bondi-Sachs scalars J, K, 3,V,U and coordi-
nates are as defined in [62], which each represent com-
ponents of the metric in Bondi-Sachs coordinates. We
assume that the tetrads constructed in Eq. (12) for the
SpEC Cauchy simulation are in agreement with the CCE
tetrad, Egs. (C3), asymptotically. We expand the re-
lation in powers of inverse r, denoting (dropping the
“CCE” for brevity, understanding that the order sub-
scripts in this appendix section will apply exclusively to
the tetrad derived in the CCE formalism),

1 _

Mécp = Mg, + *m/(ﬁ) +0(r™?), (Cda)
Wop = U+ 15)4-cxr*2y (C4b)
1 _

Néer = Mgy T ;”71) +0(r=2). (C4c)

Importantly, when attempting to compare the tetrads
in the disparate coordinate systems, we need to be aware
of the alterations associated with the conversion between
the Bondi-Sachs coordinate system and the Cauchy coor-
dinates. For simplicity of the current presentation, we ex-
pand the Bondi-Sachs coordinates in terms of the Cauchy
radial coordinate,

1
u=u+ ;1‘1(1) +0(r™?), (Cha)
F:r+ﬂm+%ﬂn+0&4L (C5b)
i =t 1ima L o2, (C5e)
T

Unfortunately, the differences between these coordinate
systems depend on the myriad choices in constructing a
CCE evolution associated with a particular Cauchy evo-
lution, including extraction surface and data on the ini-
tial hypersurface. The quantities ¢V, #(1), and ()4 can
be determined numerically for a particular Cauchy and
CCE evolution, but practical implementations of that
calculation is beyond the scope of the current discussion.

A contribution r(® to Eq. (C5b), should it be non-
vanishing, has even more dire consequences on attempts
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to establish asymptotic correspondence. This coordinate
alteration impacts the leading tetrads,

m‘{o) = Msppc + lumngcauf(O), (C6a)
néLO) = nngC + lﬂnngcauf’(O) (C6b)

Fortunately, such impact is easy to notice, as it will man-
. L L By
ifest as a nonvanishing inner product ng,pcguns,pc OF

&, peduMéppc at . We will assume from here on in
this appendix that any such pathology has been avoided
in the Cauchy code and that we may safely set #(©) = 0.
Therefore, the leading tetrads at .# T are assumed to
be in agreement between the Cauchy code and CCE:
ll{o) lSpEC’ m?o) = ”ngc-

Given the agreement between asymptotic tetrads, we
can use the subleading metric contracted with the lead-
ing tetrads (from either formalism) to infer the metric
components that act as inputs to the tetrad definitions
in Egs. (C3). In particular,

oK w
= MgpEC> ™0)

J(l) = gggnv (C7a‘)
U(2 = gnn)w (C7b)
1
84 = Sgl, (CTe)
1
W& = -2 (C7d)

When all effects are taken into account, the subleading
tetrad expressions for the CCE formalism are

mfyy = —JVmfy (C8a)

ity = V20,0 (nfy + 1fg)) + V20,71,

L oA, 0 ©),
— 9,21 (mA (0)—|—m (0))

V2
_ (OO 7 AN ]
224 ) w l(o)

+

2 2
B §CIP ) — U@ (0)7 (C8b)
_ (1) (1)
= (1)l?0) (0) + n(l) (0) + 5 m(o)7 (C8c)
lé‘l) =0. (C8d)

To summarize, the subleading contributions to the m
tetrad vector amounts simply to a O(r~1) rotation in the
m, m plane, the n tetrad vector has contributions along
all of the original tetrad directions, and the subleading
[ tetrad vector vanishes. We emphasize that the tetrad
corrections between the CCE and SpEC tetrads are not
simply a tetrad rotation, so we must consider carefully
the effects on the waveform quantities.

Given the above CCE tetrad, Egs. (C3), with explicit
O(r~1') parts, Egs. (C8), the conversion between the
waveform quantities derived from the SpEC tetrad and



CCE tetrad are as follows,

h(l)CCE — h(l)SpEC, (Cga)

o(2)CCE _ (2)SpEC

_ g (pmSpEc 4 ﬁ<1>spEc) . (C9b)
\11511)CCE _ \IIA(LI)SpE07 (C9c)
\I/:()’2)CCE _ \IJ:()’Q)SpEC7 (C9d)
lIlés)CCE _ WéiS)SpEC’ (C9e)
\1154)CCE _ \Ijg4)SpE07 (C9f)
\IjéS)CCE _ qjé5)SpEC. (C9g)

The main take-away from this calculation is that the lead-
ing strain and all of the Weyl scalars agree between the
two formalisms. The shear, however, is a bit of a sticking
point. In particular, if the p mimics typical Kerr behav-
ior asymptotically and o5PPC is asymptotically equal to
the leading part of the strain, the o““F will differ from
oSPEC by an overall sign change.

2. Tetrad rotations between CCE and other
formulations

Many of the methods of choosing a Newman-Penrose
construction at £+ do not completely specify the tetrad
behavior at subleading order. In this section, we will
make some fairly general assumptions about the con-
struction of the subleading tetrad contribution, and de-
rive the corrections between possible choices in those con-
structions.

First, let us consider the case of unrestricted null tetrad
rotations. The condition that the tetrads remain or-
thonormal and null constrains the set of degrees of free-
dom,

1 G
T = =G(1), p
mG_mCCE+T(_ml Wele

E mgzl)GléCE
+ mmegCE) +0O(r~2), (C10a)

1 a
B 1), w
Mg =Mcce T o — " Moo

E msLl)GléCE
+ mg,ll)Gm’éCE> +0O(r~?), (C10b)

1 a
Bk 1), p — ()G, 1
NG =Noce T2\~ Toce T Mn Mock

— mg(l)méCE> +0O(r™%), (C10c)

o%

1/ cu _ma
=ltcp + - (”l loce =My Meok

- mf’(l)m’éCE> +0(r72). (C10d)
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Generic rotations of the form Eq. (C10) give rise to
numerous corrections to the waveform quantities,

H(DG — (HCCE, (Cl1a)
PG _ g (VCCE, (C11b)
\IléZ)G _ \I}gz)CCE B \I,il)CCEml(l)G’ (Cl1c)
pPC _
\I/éB)CCE _ 4\I/g2)CCEml(1)G 4 Z\I/il)CCE (mz(l)G>2,
(C11d)
P0G _
PICCE _ 5gBICCE, (NG | §@ICCR, (G, (1)G
B @511)CCE (n,%l(l)c;)2 ml(1)c n 3\11:()’2)0013 (ml(l)G>2
_ g{hecE (ml(l)G)S’ (Cl1e)
pOC —

\I/és)CCE B 4\1154)00Eml(1)c n 5\1153) (ml(1)0>2

n \IJS)CCE (ml(l)G)Q (mgl)c)Q

— 4gPeer (ml(”c’)2 + (m§1)G)4 . (cuif)
26 _

o(2)CCE _ 25(1)ml(1)G . Hu)mg)c . 7(1)m§1)G

0T,V — %O,V (C11g)

In Egs. (C11), we use the standard Newman-Penrose spin
coefficient notation 8 = 1/2(n*m?Vgl, —m*mPVam,),
K= me“ZBVQZa, and 7 = fmanﬁvﬁla. This causes sig-
nificant difficulty in comparing the results from different
formalisms. However, there is a clear pattern associated
with which parts of the tetrad rotation are important for
the waveform comparisons.

In particular, if we merely impose that the null tetrad
of the formulation we are comparing with the CCE results
shares an [ tetrad vector, we find that the comparison
expressions, Eqs. (C11), simplifies greatly (denoting as
LPG an ‘l-preserving generic’ formalism that preserves
the CCE [ vector — i.e. &g = l'pa)s

R(DLPG _ p(1)CCE (C12a)
o(ILPG _ 5(CCE _ (1), LPG(1) (C12b)
g(DEPG _ g (DCCE, (C12c)
q,éZ)LPG _ ‘1’;(»,2)CCE» (C12d)
qléB)LPG _ q,g‘%)CCE’ (C12e)
\Ijgzl)LPG _ \p(14)CCE, (C12f)
\Ijgs)LPG _ \I,(()S)CCE. (C12g)



We emphasize that in the case where the [ tetrad vec-
tor is preserved between formalisms, all of the waveform
quantities can be directly compared except for the shear
o. In particular, the relationship between the shear and
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the strain can differ between formalisms with different
subleading tetrads, even if the tetrads evaluated at &+
are identical.
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