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From First-Order Self-Force to Arbitrary Mass Ratios
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Exploiting simple yet remarkable properties of relativistic gravitational scattering, we use first-order
self-force (linear-in-mass-ratio) results to obtain arbitrary-mass-ratio results for the complete third-
subleading post-Newtonian (4.5PN) corrections to the spin-orbit sector of spinning-binary conservative
dynamics, for generic (bound or unbound) orbits and spin orientations. We thereby improve important
ingredients of models of gravitational waves from spinning binaries, and we demonstrate the improvement
in accuracy by comparing against aligned-spin numerical simulations of binary black holes.
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Introduction.—The success of gravitational-wave (GW)
astronomy in the next decade relies on significantly
improved theoretical predictions of GW signals from coa-
lescing binaries of spinning compact objects such as black
holes (BHs). A network of GW detectors [1,2] has now
observed dozens of signals from binary BHs, measuring
distributions of the BHs’ masses and spins and extrinsic
properties, enabling diverse applications in astro- and fun-
damental physics [3–6]: e.g., discerning binary BH forma-
tion channels [4], measurement of the Hubble constant [6],
and tests of general relativity (GR) [5]. The search for and
parameter estimation of GW signals require accurate pre-
dictions, from the inspiral (treated by analytic approxima-
tions) to the last orbits and merger of the binary (treated by
numerical relativity, NR). The current accuracy of theoretical
predictions, from combined analytic and numericalmethods,
will likely become insufficient when current detectors reach
design sensitivity around 2022 [7]. More accurate predic-
tions for gravitational waves are thus key to enable the
physics applications mentioned above.
The primary relevant analytic approximation is the

post-Newtonian (PN, weak field and slow motion) approxi-
mation. The conservative orbital dynamics is known for
nonspinning binaries to the fourth-subleading PN order
[8–12] (with partial results at the fifth [13–17] and sixth
[18–20]), but only to second-subleading order (or next-to-
next-to-leading order, N2LO) in the spin-orbit sector
[21–23]. The gravitational spin-orbit couplings, linear in

the component bodies’ spins, are analogous to those in
atomic physics. Recently, the three-loop Feynman integrals
at N3LO in the spin-orbit case were calculated [24], leaving
however plenty of tensorial lower-loop integrals as a
comparably large computational task. Innovations that
complement these massive algebraic manipulations are thus
of great potential value.
In this Letter, we follow a line of reasoning which leads to

a complete result for the sought-after N3LO-PN spin-orbit
dynamics (at 4.5PN order for rapidly spinning binaries),
requiring relatively little computational effort by building on
a diverse array of previous results.We extend to the spinning
case a novel approach based on special properties of the
gauge-invariant scattering-angle function [17,25,26], which
encodes the complete binary dynamics (both bound and
unbound). The weak-field approximation of the scattering
angle is strongly constrained by results in the small-mass-
ratio approximation (we define the small-mass-ratio limit
as q ¼ ðm1=m2Þ ≪ 1, where m1;2 are the masses of the
compact objects), as treated in the gravitational self-force
paradigm [27]. The scattering-angle constraints imply that
known first-order (linear-in-mass-ratio) self-force results
with spin [28–30] uniquely fix the full N3LO-PN spin-orbit
dynamics for arbitrary mass ratios. This result completes the
4.5PN conservative dynamics of (rapidly) spinning binaries,
together with the NLO cubic-in-spin couplings [31] (see
also [32]).
As applications, we compute quantities which can be

employed to improve waveform models for GW
astronomy: the circular-orbit aligned-spin binding energy
and the effective gyro-gravitomagnetic ratios. The former is
a crucial ingredient in the construction of faithful models
(together with the GW energy flux), for which we quantify
the accuracy gain due to the present results by comparing to
NR simulations. The latter parametrize spin effects in the
SEOBNR waveform codes [33–36] used in LIGO-Virgo
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searches and inference analyses [3] and in the upcoming
TEOBResumS waveform models [37,38]. The gyro-gravito-
magnetic ratios are analogous to the famous “g factor”
describing the anomalous magnetic dipole moment of the
electron, where contributions at the fifth subleading order
were obtained [39] and lead to spectacular agreement with
experiment [40]. Regarding the gravitational analog, exper-
imental constraints on the gyro-gravitomagnetic ratios are
so far seemingly out of reach. In fact, only two GW events
were observed to contain nonvanishing spin effects with
90% confidence [3] (see also Refs. [41,42]). However, this
will change, e.g., when systems with precessing spins are
observed in the future, since the precession of the orbital
plane leads to a characteristic modulation of the emitted
GWs. This may allow improved tests of GR and inference
of spins. Measuring BH spins and their orientations is also
important for discriminating binary formation channels [4].
We begin by extending the link between weak-field

scattering and the self-force approximation [17,25,26] to
the spin-orbit sector. Using existing self-force results,
we are then able to uniquely determine the N3LO-PN
spin-orbit dynamics, as encoded in the gauge-invariant
scattering angle. We continue by calculating the gyro-
gravitomagnetic ratios and circular-orbit aligned-spin bind-
ing energy. We compare to NR simulations to quantify the
accuracy improvement and present our conclusions. G
denotes Newton’s constant, and c the speed of light.
The mass dependence of the scattering angle.—The

local-in-time conservative dynamics of a two-massive-
body system (without spin or higher multipoles) is fully
encoded in the system’s gauge-invariant scattering-angle
function χðm1; m2; v; bÞ [43,44]. This gives the angle χ by
which both bodies are deflected in the center-of-mass
frame, as a function of the masses ma (a ¼ 1, 2), the
asymptotic relative velocity v, and the impact parameter b.
Based on the structure of iterative solutions in the weak-
field (post-Minkowskian) approximation, it has been
argued in Section II of Ref. [25] that this function exhibits
the following simple dependence on the masses (at fixed
v and b), through the total mass M ¼ m1 þm2 and the
symmetric mass ratio ν ¼ m1m2=M2,

χ
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¼ GM
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; ð1aÞ

where Γ ¼ E=Mc2, with E2 ¼ ðm2
1 þm2

2 þ 2m1m2γÞc4
being the squared total energy, and γ ¼ ð1 − v2=c2Þ−1=2
the asymptotic relative Lorentz factor. The remarkable
fact to be noted here is that the OðGM=bÞ1;2 terms are

independent of ν, while the OðGM=bÞ3;4 terms depend
linearly on ν.
As will be argued in detail in future work, this result

generalizes straightforwardly to the case of spinning bodies
in the aligned-spin configuration, i.e., spins pointing in the
direction of the orbital angular momentum (as shown in
Fig. 1). The aligned-spin dynamics is fully described by the
aligned-spin scattering-angle function χðma; Sa; v; bÞ [26].
Here, Sa ¼ macaa are the signed spin magnitudes, positive
if aligned as in Fig. 1, negative if antialigned. At the spin-
orbit (linear-in-spin) level, the form of Eq. (1) holds, with
the X functions acquiring additional (linear) dependence
on the spins only through the dimensionless ratios aa=b ¼
Sa=macb, as follows [45]:

Xνm
Gn → Xνm

GnðvÞ þ aþ
b
Xνm
GnaþðvÞ þ δ

a−
b
Xνm
Gna−

ðvÞ; ð1bÞ

where a� ¼ a2 � a1 and δ ¼ ðm2 −m1Þ=M, with the
special constraints Xν0

G1a−
¼ 0 ¼ Xν1

G3a−
; cf. Eq. (4.32) of

Ref. [26], where this is seen to hold through N2LO in the
PN expansion. It is crucial to note that the impact parameter
b in Eq. (1), is the (“covariant”) one orthogonally sepa-
rating the asymptotic worldlines defined by the Tulczyjew-
Dixon condition [46,47] for each spinning body [26,48].
Now, the fourth order in GM=b encodes the complete

spin-orbit dynamics at N3LO in the PN expansion, and
according to Eq. (1) only terms up to linear order in the
mass ratio ν appear on the right-hand side (noting δ → �1
as ν → 0)—that is, first-order self-force (linear-in-ν) results
can be employed to fix the functions Xνm

Gn���ðvÞ for n ≤ 4.
Scattering angle, Hamiltonian, and binding energy.—

We now connect the scattering angle to an ansatz for a
local-in-time binary Hamiltonian including spin-orbit inter-
actions. If nonlocal-in-time (tail) effects are present, this
step requires extra care [17], but this is not the case at the
N3LO-PN spin-orbit level. Crucially, the Hamiltonian
describes the dynamics for both unbound (scattering)
and bound orbits. The latter are not only most relevant
for GW astronomy, but are also where the vast majority of
self-force results are available. Hence, a gauge-dependent
Hamiltonian allows us to connect the scattering angle (1)
with known self-force results.

FIG. 1. Illustration of aligned-spin scattering BHs.
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Let us parametrize our binary Hamiltonian Hðr; p;
S1; S2Þ in the effective-one-body (EOB) [49] form,

H ¼ Mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μc2
− 1

�s
; ð2Þ

where Heffðr; p; S1; S2Þ is the effective Hamiltonian and
μ ¼ Mν is the reduced mass, with canonical Poisson
brackets fri; pig ¼ δij, fSia; Sjag ¼ ϵijkSka, and all others
vanishing. At the spin-orbit level, to linear order in the
spins, parity invariance implies that H can depend on the
spins only through the scalars L · Sa, where L ¼ r × p is
the canonical orbital angular momentum. Thus, a generic
Hamiltonian ansatz is of the form

Heff ¼ Hns
eff þ

1

c2r3
L · ðgSSþ gS�S�Þ; ð3Þ

where Hns
effðr; pÞ is the nonspinning Hamiltonian. We use

the conventional spin combinations S ¼ S1 þ S2, S� ¼
ðm2=m1ÞS1 þ ðm1=m2ÞS2, while gSðr; pÞ and gS� ðr; pÞ
are the effective gyro-gravitomagnetic ratios. In specializ-
ing to the case of aligned spins, in which Sa ¼ SaL̂ are
(anti)parallel to L ¼ LL̂ (L ¼ jLj), the motion is confined
to the plane orthogonal to the angular momenta, and Eq. (3)
simplifies to

Heff ¼ Hns
eff þ

1

c2r3
LðgSSþ gS�S�Þ; ðalignedÞ; ð4Þ

where, crucially, gS and gS� are unmodified by this
specialization (as they are independent of the spins). The
aligned-spin Hamiltonian is therefore sufficient to recon-
struct the generic-spin Hamiltonian, up to the spin-orbit
level. We can adopt polar coordinates ðr;φÞ in the orbital
plane, with canonically conjugate momenta ðpr; LÞ, and
the Hamiltonian is independent of φ due to rotation
invariance. Then Hns

eff , gS, and gS� are each functions of
ðr; pr; LÞ. We take Hns

eff to be given to 4PN order by
Eqs. (5.1) and (8.1) in Ref. [50]. Considering the freedom
under canonical transformations, it can be shown that
there exists a gauge in which gS and gS� are independent
of L [51–53]; we adopt this choice and parametrize our
spin-orbit Hamiltonian with the undetermined gyro-
gravitomagnetic ratios gSðr; prÞ and gS� ðr; prÞ. Each term
in a PN-expanded ansatz for gS and gS� carries a certain
power in c, from which the PN order can be read off; we
include terms up to c−6 here. (c−2 corresponds to one PN
order and c → ∞ to the Newtonian limit.)
To ascribe physical significance to the spin-orbit

Hamiltonian, we point to the striking similarity with the
electromagnetic spin-orbit interactions in atomic physics,
which makes gS and gS� analogous to the “g factor” of the
electron (except that gS and gS� depend on dynamical
variables). This is no accident, since the gravitomagnetic
field generated, e.g., by a rotating mass, can be interpreted

to exert a Lorentz-like force. The relativistically preferred
geometrical interpretation is that gravitomagnetic fields are
dragging inertial or free-falling reference frames, as impres-
sively demonstrated by the Gravity Probe B satellite
experiment [54].
We constrain the ansatz for the Hamiltonian by requiring

that it reproduces (i) the mass dependence of the scattering
angle (1), (ii) the ν → 0 limit of the scattering angle, for a
spinning test particle in a Kerr background, as obtained,
e.g., by integrating Eq. (65) of Ref. [55], and (iii) certain
gauge-invariant self-force observables, namely, the
Detweiler-Barack-Sago redshift [28,29,56–61] and the
spin-precession frequency [30,61–67] for bound eccentric
aligned-spin orbits, to linear order in the mass ratio. The
scattering angle χ is obtained from the Hamiltonian (2) via
Eq. (4.10) of Ref. [26], with the translation from the total
energy E ¼ H and canonical orbital angular momentum L
to the asymptotic relative velocity v and “covariant” impact
parameter b accomplished by Eqs. (4.13) and (4.17) of
Ref. [26]. The redshifts za and spin-precession frequencies
Ωa (a ¼ 1, 2) are given by

za ¼
� ∂H
∂ma

�
; Ωa ¼

�∂H
∂Sa

�
; ð5Þ

where h� � �i denotes an average over one period of the radial
motion, following from a first law of binary mechanics for
eccentric aligned-spin orbits [68–71]. The procedure for
expressing these quantities, in the small-mass-ratio limit, in
terms of variables used in self-force calculations is detailed
in Ref. [72]. In this process, to reach the N3LO-PN
accuracy in the spin-orbit sector, it is necessary to include
the nonspinning 4PN part of the Hamiltonian, including the
nonlocal tail part [8], given as an expansion in the orbital
eccentricity as in Ref. [50]. After lengthy calculation,
working consistently in the small-mass ratio and PN
approximations, we obtain, from our Hamiltonian ansatz,
expressions for the redshift z1 and precession frequency Ω1

of the smaller body, which can be directly compared with
the self-force results in Eq. (4.1) of Ref. [29], Eq. (23) of
Ref. [28] and Eq. (20) of Ref. [72] for the redshift, and
Eq. (3.33) of Ref. [30] for the precession frequency. The
resultant constraints uniquely fix gSðr; prÞ and gS�ðr; prÞ at
N3LO, via an overdetermined system of equations.
From the Hamiltonian, we can finally calculate the

aligned-spin circular-orbit binding energy Eb ¼ H −Mc2

as a function of the circular-orbit frequency ω ¼ dφ=dt ¼
∂H=∂L. This is a gauge-invariant relation that can be
compared to NR. We decompose Eb into nonspinning
and spin-orbit (SO) parts, and further into PN orders, as in

ESO
b ¼ ESO

b;LO þ ESO
b;NLO þ ESO

b;N2LO þ ESO
b;N3LOþ; � � � : ð6Þ

We can decompose the gS, gS� , and χSO results from the
previous discussion in the sameway. TheN3LOpieces of all
these quantities are the main results of this Letter:

PHYSICAL REVIEW LETTERS 125, 011103 (2020)

011103-3



χN
3

SOLO
Γ

¼ v
cb

ðaþδa−Þ
	�

1

4

�
177ν

0

�
v6

c6

��
GM
v2b

�
3

þ π

�
3

4

�−91þ 13ν

−21þ ν

�
v2

c2
−
1

8

�
1365 − 777ν

315 − 45ν

�
v4

c4

−
1

32

0
B@ 1365 −



23717
3

− 733π2

8

�
ν

315 −


257
3
þ 251π2

8

�
ν

1
CA v6

c6

3
75�GM

v2b

�
4
�
; ð7Þ

c6gN
3

S LO ¼ ν

1152
ð−80399þ 1446π2 þ 13 644ν − 63ν2Þ ðGMÞ3

r3
þ 3ν

64
ð−1761þ 2076νþ 23ν2Þp

2
r

μ2
ðGMÞ2
r2

þ ν

128
ð781þ 3324ν − 771ν2Þp

4
r

μ4
GM
r

þ 7ν

128
ð1 − 36ν − 95ν2Þp

6
r

μ6
; ð8Þ

c6gN
3

S� LO ¼ −
1

384
½1215þ 2ð7627 − 246π2Þν − 4266ν2 þ 36ν3� ðGMÞ3

r3
−

3

64
ð15þ 558ν − 1574ν2 − 36ν3Þp

2
r

μ2
ðGMÞ2
r2

þ 1

128
ð−1105 − 106νþ 702ν2 − 972ν3Þp

4
r

μ4
GM
r

−
7

128
ð45þ 50νþ 66ν2 þ 60ν3Þp

6
r

μ6
; ð9Þ

ESO
b;N3LO

¼ −
νc3

GM
v11ω
c11

�
S

�
45 −

19 679þ 174π2

144
νþ 1979

36
ν2 þ 265

3888
ν3
�
þ S�

8

�
135

2
− 565νþ 1109

3
ν2 þ 50

81
ν3
��

; ð10Þ

where vω ¼ ðGMωÞ1=3 ¼ x1=2c. One needs to add our
Eq. (7) to Eq. (4.32b) in Ref. [26] to obtain the complete
spin-orbit scattering-angle contribution through N3LO-PN
and through OðGM=bÞ4. The lower-order corrections to
ESO
b can be found in Eq. (5.4) of Ref. [22], and the lower-

order gyro-gravitomagnetic ratios in Eqs. (55) and (56) of
Ref. [52] (see also Ref. [51,53]). Through the results for gS
and gS� presented above, one can straightforwardly improve
the SEOBNR waveform models [33–36] used in contempo-
rary gravitational-wave data analysis [3]. Likewise, one can
use them to improve the upcoming TEOBResumS waveform
models [37,38]. The other main waveform model used
by LIGO-Virgo data analysis [3] is the IMRPhenom family
[73–79], which can also be improved using our results,
though less directly.
Comparison to NR.—We now quantify the improvement

in accuracy from the new N3LO spin-orbit correction. The
circular-orbit aligned-spin binding energy is a particularly
good diagnostic for this, since it encapsulates the
conservative dynamics of analytical models, and can be
obtained from accurate NR simulations [80,81]. Of par-
ticular interest for us is the possibility to (approximately)
isolate the linear-in-spin (spin-orbit) contribution by com-
bining the binding energy for two configurations with spins
parallel and antiparallel to the direction of the angular
momentum as follows [82,83]

ESO
b ðν; â; âÞ ¼ 1

2
½Ebðν; â; âÞ − Ebðν;−â;−âÞ�; ð11Þ

with dimensionless spin â ¼ âa ≡ cSa=ðGm2
aÞ. The result,

based on recent NR simulations [83,84], is shown in Fig. 2.
The figure also shows the spin-orbit binding energy

extracted numerically from the EOB Hamiltonian (2),
combining two binding energies for different spin direc-
tions in the same way as in the NR case. The N3LO spin-
orbit result shows a clear advantage over the N2LO one,
that improvement is more pronounced for equal masses
than for slightly unequal masses. [The N3LO PN binding
energy (10) is very similar to the EOB one for the shown
mass ratios.] This indicates that an inclusion of the N3LO
into existing waveform models may lead to improvements
even in the strong-field regime, otherwise only accessible
by computationally expensive NR simulations. Recall that
gravitational waves are observed from low frequencies
(where approximation methods are applicable) to high
frequencies (where PN theory is expected to break down).
Conclusions.—Currently operating (second-generation)

gravitational-wave detectors require accuracy improve-
ments for GW predictions by the time they reach design
sensitivity around 2022, which become even more stringent
for future upgrades and the upcoming third generation of
detectors [7]. The detector upgrades [85] in the coming
years and a concurrent growing network of observatories
[86,87] also imply an increased number of detections [88],
making it overall more likely to observe binaries oriented
“edge on” instead of “face on,” which allows for measuring
precession and extracting spin values with higher accuracy.
The accurate modeling of GW modulations caused by
precession, and also the phase accuracy in the aligned-spin
case and the contingent improvement in the estimation of
spin parameters, motivate us to push predictions for
gravitational spin effects to higher orders.
For this purpose, we extended to spin-orbit couplings a link

between theweak-field and small-mass-ratio approximations,
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via the scattering-angle function, as proposed in the non-
spinning case in Ref. [17,25] (see also Ref. [26]). We
employed existing self-force results [28–30] to uniquely
determine a N3LO PN spin-orbit binary Hamiltonian. We
calculated the effective gyro-gravitomagnetic ratios as they
would enter the SEOBNR [33–36] and TEOBResumS [37,38]
waveform models, and we obtained the gauge-invariant
scattering angle and circular-orbit binding energy for aligned
spins. Since the spin-orbit interaction is universal, our results
are applicable to generic spinning binaries, e.g., binaries
containing neutron stars.
In Fig. 2 we compared the EOB-resummed binding

energy against NR results. The EOB resummation shows a
nice convergent behavior towards NR (for aligned spins)
even in the strong field regime, which is usually not
expected for asymptotic series expansions like the PN
one. More importantly, the new contribution obtained in
this Letter roughly halves the gap to NR in the high-
frequency regime compared to earlier N2LO results for
q ¼ 1. This indicates that improved (resummed) analytical
predictions based on our result can be trusted to higher
frequencies, which may alleviate the need for longer and
computationally very expensive NR waveforms. Hence, it
is of particular value and urgency to improve the accuracy
of the PN-approximate analytic part of GW models.
A clear avenue for future work is to consider higher orders

in spin (and higher multipoles). In particular, in a forth-
coming publication, we fix the S1S2 couplings at N3LO
(5PN order) for aligned spins using known self-force results.

It seems reasonable to expect that complete quadratic-in-spin
contributions at N3LO, for BHs, for aligned and perhaps
even generic spins, should be within reach of first-order self-
force computations. These would require both further self-
force observables and new conceptual developments, in
particular, generalizations of first-law relations to include
higher orders in spin and higher multipoles, and to the case
of generic spin orientations (the precessing case). Future
first-order self-force results for unbound orbits may also
enable obtaining spin effects to fourth order in the weak-field
(post-Minkowskian) approximation—for generic masses
and velocities—for BH scattering events (only the second
order is currently known [89]). While this scenario is
unlikely to be of astrophysical relevance, it is still very
interesting to consider from a conceptual point of view: after
all, scattering encounters are the most elementary form of
interaction.

We are grateful to Maarten van de Meent for helpful
discussions and to Alessandra Buonanno for comments on
an earlier version of this manuscript. We also thank Sergei
Ossokine and Tim Dietrich for providing NR data for the
binding energy and for related useful suggestions.
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Energy and periastron advance of compact binaries on
circular orbits at the fourth post-Newtonian order, Phys.
Rev. D 95, 044026 (2017).

FIG. 2. Comparison of the gauge-invariant relation between the
circular-orbit aligned-spin spin-orbit binding energy Eb and vω.
The figure shows results obtained numerically from the (PN-
resummed) EOB Hamiltonian (2) and NR results from
Refs. [83,84]. The linear-in-spin contribution is isolated using
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