Supplementary Information

28fer

Figure S1 | Cadnano design and oligonucleotide sequences of the various origami L structures.
Top positions T0-T6 are coloured in gold, while bottom positions B0, B3, B6 are coloured in dark orange. Lateral positions L0-L13 and R0-R13 are coloured in green and blue, respectively. Edge positions E2-5, E7, E9, E12-15, E17, E19 and F2-5, F7, F9, F12-15, F17, F19 are coloured in purple. Core staples are coloured in black; M13 p7249 scaffold is coloured in grey. List of functionalized staples can be found in Table S1.

A

Origami L

Low MgCl_{2}
High MgCl_{2}

Figure $S 2 \mid$ Depiction of the self-assembly patterns of origami L and $L S$ upon increasing $\mathbf{M g C l}_{2}$.
(A) Origami L does not possess the ability to polymerize, as it lacks blunt ends or lateral overhangs for establishing intermolecular interactions. (B) Origami LS displays 14 lateral self-complementary singlestranded overhangs on both sides, and is therefore able to polymerizes into sheet-like oligomers at high MgCl_{2} concentrations.
A
B

OrigamiL

Origami LS

Figure $\mathbf{S 3}$ | Self-assembly properties of origami L and origami $\mathbf{L S}$ at high $\mathbf{M g C l}_{\mathbf{2}}$.
Atomic force microscopy (AFM) images on PLL-mica of origami L lacking blunt ends (A) and origami LS displaying 14 lateral self-complementary single-stranded overhangs on both sides (B) after incubation with a high MgCl_{2} buffer ($70 \mathrm{mM} \mathrm{MgCl} 2+187.5 \mathrm{mM} \mathrm{NaCl}$). As here depicted, whereas origami $L(\mathbf{A})$ stays in a monomeric form, origami $L S(\mathbf{B})$ polymerizes into sheet-like oligomers.

Figure S4 | Binding and polymerization of DNA origami L3E on top of supported lipid bilayers. Zoomed-out images depicting the interaction of 0.1 and 0.5 nM Alexa 488 -labelled DNA origami L3E displaying 3 TEG-chol anchors (for membrane binding) and blunt ends (for end-to-end self-assembly) with DOPC SLBs (doped with 0.01% DiD). (A-B) At low $\mathrm{MgCl}_{2}(5 \mathrm{mM} \mathrm{MgCl} 2+300 \mathrm{mM} \mathrm{NaCl})$, a mostly homogenous distribution of origami L3E was observed on top of the lipid bilayers. (C-D) At high $\mathrm{MgCl}_{2}(70 \mathrm{mM} \mathrm{MgCl} 2+187.5 \mathrm{mM} \mathrm{NaCl})$ origami filaments were observed on top of the lipid bilayer. While at 0.1 nM , origami L3E formed individual short filaments (C), at 0.5 nM origami L3E self-assembled into a mesh of longer and bundled filaments (D).
A

	Origami L3E (Alexa 488)	DOPC SLB (At655-DOPE)
Diffusion $\left(\mu \mathrm{m}^{2} / \mathrm{s}\right)$	0.194 ± 0.050	0.608 ± 0.096
Mobile fraction	1.109 ± 0.041	1.109 ± 0.050

B
High
MgCl_{2}

- Origami
- Lipid

	Origami L3E (Alexa 488)	DOPC SLB (At655-DOPE)
Diffusion $\left(\mu \mathrm{m}^{2} / \mathrm{s}\right)$	n / a	0.490 ± 0.128
Mobile fraction	0.116 ± 0.017	0.881 ± 0.052

Figure S5 \| Fluorescence recovery after photobleaching (FRAP) of membrane-bound origami

L3E on DOPC supported lipid bilayers (SLBs).

FRAP data (from Movies S1 and S3), fitted results and calculated diffusion coefficients/mobile fractions of 0.5 nM origami L3E on a DOPC SLB, in the presence of (\mathbf{A}) low $\mathrm{MgCl}_{2}(5 \mathrm{mM} \mathrm{MgCl} 2+$ $300 \mathrm{mM} \mathrm{NaCl})$ and (B) high $\mathrm{MgCl}_{2}(70 \mathrm{mM} \mathrm{MgCl} 2+187.5 \mathrm{mM} \mathrm{NaCl})$.

Figure S6 | Interaction of origami $\mathbf{L 3 E}$ with giant unilamellar vesicles at low $\mathbf{M g C l}_{\mathbf{2}}$.
Membrane attachment of different bulk concentrations (0.1-1 nM) of Alexa488/TEG-chol-modified origami L3E displaying blunt ends to DOPC GUVs (doped with 0.05% Atto655-DOPE) in the presence of low MgCl_{2} buffer ($5 \mathrm{mM} \mathrm{MgCl} 2+300 \mathrm{mM} \mathrm{NaCl}$). Images correspond to equatorial plane slices of GUVs.

Figure S7 | Triggering self-assembly of membrane-bound origami L3, L3S and L3E.
As depicted for the pole of selected GUVs, at low $\mathrm{MgCl}_{2}(\mathbf{A} \mathbf{- C})$, origami L3, L3S and L3E are homogenously distributed on top of DOPC GUVs, corroborating their predominant monomeric state under these conditions. Upon increasing the amount of MgCl_{2}, membrane-bound origami L 3 (lacking blunt ends and lateral overhangs) remains homogeneously distributed (D); origami L3S (displayed lateral overhangs) can engage into lateral self-assembly, giving rise to large platforms (E); and finally origami L3E (displaying blunt ends) can polymerize end-to-end, giving rise to a mesh of filaments (F).

Figure S8 \mid Membrane deformations by origami L3, L3S and L3E at high $\mathbf{M g C l}_{2}$.
Equatorial plane images of GUVs incubated with $0.5 \mathrm{nM}(\mathbf{A}-\mathbf{E})$ and $1 \mathrm{nM}(\mathbf{F}-\mathbf{J})$ origami L3/L3S/L3E at least 90 min prior addition of additional MgCl_{2}. For origami L 3 lacking the ability to polymerize (\mathbf{A}, F) no significant membrane deformations were reported. Similar results were observed for vesicles incubated with origami L3S, able to form lateral origami platform (B, G). On the contrary, for vesicles with membrane-bound origami L3E, extensive remodelling as rough (C,H) and spike-like tubular (D, $\mathbf{E}, \mathbf{I}, \mathbf{J})$ deformations were observed, after MgCl_{2}-triggered end-to-end self-assembly of L3E into linear origami aggregates/filaments.

Table S1 | List of functional staples used for various origami L structures.

Oligo	Sequence	Description	Partner staple
TD_00	AAATTCGCCCGGAACAAAGAAAAAAAACACCAAACCC	staples with extension for Alexa488 dye	5'-Alexa488-
TD_01	ATTCCCATCTATACAAATTCTAAAAAACACCAAACCC	used in all origami	GGGTtTGGTGTtTtTt
TD_02	ATTTATTTCCAATAATAAGAAAAAAACACCAAACCC		
TD_03	AAGTGCCGTGGAAAGCGCAGTAAAAAACACCAAACCC		
TD_04	CAAGATTTGTTAAAGGCCGCTAAAAAACACCAAACCC		
TD_05	TTACTTCAAAAAACCAAAATAAAAAAACACCAAACCC		
TD_06	AGACAGGAAATGTGTAGGTAAAAAAAACACCAAACCC		
B18_00	ATTATCATCATAAACAGTATGGCTATGGGTGGTCTGGTT	staples with extension for TEG-Chol(18)	5'-Chol-TEG-
B18_03	GTAAGCGTCATGATTAGCACGCTATGGGTGGTCTGGTT	used in origami L3, L3E and L3S	AACCAGACCACCCATAGC
B18_06	AAGGCCGGAGACATGTACCTCGCTATGGGTGGTCTGGTT		
E_02	TTAGAATCAGAGCGGG	staples for tip-to-tip blunt end interactions	
F_02	GCGGTTTGCGTATTG	used in origami LE and L3E	
E_03	AGCTAAACAGGAGGCC		
F_03	AACGCGCGGGGAGAG		
E_04	CCTGAGAAGTGTTTTTATA		
F_04	GGGAAACCTGTCGTGC		
E_05	ATCAGTGAGGCCACCGAGT		
F_05	TGCCCGCTTTCCAGTC		
E_07	TTAGTAATAACATCACTTG		
F_07	TAAAGCCTGGGGTGCC		
E_09	TACCGCCAGCCATTGC		
F_09	TGAAATTGTTATCCGCTCA		
E_12	GTAATAAAAGGGACATTCT		
F_12	TAAAACGACGGCCAGT		
E_13	GGCCAACAGAGATAGAACC		
F_13	CCCAGTCACGACGTTG		
E_14	CAGACAATATTTTTGAATG		
F_14	TGTGCTGCAAGGCGAT		
E_15	GCTATTAGTCTTTAATGCG		
F_15	GCTGGCGAAAGGGGGA		
E_17	GAAGATAAAACAGAGG		
F_17	AGGCTGCGCAACTGTTGGG		
E_19	CTGAGAGCCAGCAGCA		
F_19	ACTCCAGCCAGCTT		
LS_00	TATATATTTAATTTACAATAGATAATACAT	staples for lateral oligomerization	
LS_01	TATATATTTAAGCAAAAGCGCGCAGAGGCG	used in origami LS and L3S	
LS_02	TATATATTTCTACCGTGTATCTTCTGACCT		
LS_03	TATATATTTACGGTATTAATAATCGGCTGT		
LS_04	TATATATTTAAGAATTAAAATAACATAAAA		
LS_05	TATATATTTCCCGATTGATTACCAGCGCCA		
LS_06	Tatatatteccaccagcatcagagccacca		
LS_07	TATATATTTCGGCCACCCATAGGTGTATCA		
LS_08	TATATATTTCCTGATACCTCAGCTTGCTTT		
LS_09	TATATATTTATGCGCAGACCGCGACCTGCT		
LS_10	TATATATTTAAAATGCAGTCATCAGTTGAG		
LS_11	TATATATTTCATTAGAGAGAACCAGACCGG		
LS_12	TATATATTTTGACTTTTGAATCGGTTGTAC		
LS_13	TATATATTTCTTGTTAAAACGTTAATATTT		
RS_00	TATATATTTAAACCCTCAATCTTAGAACAA		
RS_01	TATATATTTTTGCGTAGATTTAGAAGAGTT		
RS_02	TATATATTTTTTAACCTCCGGAGAATATCA		
RS_03	TATATATTTATAAACAACATGCCCAGCTCC		
RS_04	Tatatatteagagcctantttataicgaag		
RS_05	TATATATTTTATGTTAGCAAAAGCGTCATT		
RS_06	TATATATTTATTAGCGTTTGCATAAACAAT		
RS_07	TATATATTTGAAAGTATTAAGAGTAAATTC		
RS_08	TATATATTTAGCGGAGTGAGATAAACGGAA		
RS_09	TATATATTTAGAGGCAAAAGAAGTAGTAAA		
RS_10	TATATATTTTTACCTTATGCGCCCTCAAAA		
RS_11	TATATATTTATCAGGTCTTTACGCAAATCT		
RS_12	TATATATTTGAAAAGGTGGCAAGATCTAGA		
RS_13	TATATATTTGAATCGATGAACAGTTTGAGC		

Table S2 | Fraction of deformed vesicles, upon increasing $\mathbf{M g C l}_{\mathbf{2}}$, as a function of total $\mathbf{L 3 E}$ concentration.

$[\mathrm{L} 3 \mathrm{E}]$	\% Deformed vesicles	Independent	Total number
$(\mathbf{n M})$	$(\pm$ st. dev. $)$	repeats	vesicles $\left(N_{\text {total }}\right)$
0.1	$10.9 \pm 10.1 \%$	4	174
0.25	$37.1 \pm 20.9 \%$	5	316
0.5	$65.6 \pm 12.1 \%$	5	401
1	$70.2 \pm 9.6 \%$	4	350

Movie Captions

Movie S1 |FRAP of 0.5 nM origami L3E (Alexa488-labelled, green) on top of DOPC SLB (doped with Atto655-DOPE, magenta), in the presence of a low MgCl_{2} buffer ($5 \mathrm{mM} \mathrm{MgCl} 2+300 \mathrm{mM} \mathrm{NaCl}$). Corresponding data represented in Figure 3SA. Scalebar is $5 \mu \mathrm{~m}$.

Movie S2 |Time-series of MgCl_{2}-triggered polymerization of 0.5 nM origami L3E (Alexa488-labelled, green) on top of DOPC SLB. Addition of MgCl_{2} happened at timepoint 5:00. Scalebar is $10 \mu \mathrm{~m}$.

Movie S3|FRAP of 0.5 nM origami L3E (Alexa488-labelled, green) on top of DOPC SLB (doped with DiD, magenta), in the presence of a high MgCl_{2} buffer ($70 \mathrm{mM} \mathrm{MgCl}{ }_{2}+187.5 \mathrm{mM} \mathrm{NaCl}$). Corresponding data represented in Figure 3SB. Scalebar is $5 \mu \mathrm{~m}$.

Movies S4 \& S5 | Diffusion of 0.1 nM origami L3E (Alexa488-labelled, green) on the pole of GUVs (doped with Atto655-DOPE, magenta), after MgCl_{2}-mediated polymerization into membrane-bound end-to-end self-assembled filaments.

Movie S6 | Diffusion of 0.1nM origami L3S (Alexa488-labelled, green) on the pole of GUV (doped with Atto655-DOPE, magenta), after MgCl_{2}-mediated polymerization into membrane-bound laterally self-assembled platforms.

Movie S7 | Characteristic wrinkled membrane deformations on DOPC GUV (doped with Atto655DOPE, magenta) induced by membrane-bound origami L3E (Alexa488-labelled, green) at 1 nM bulk concentration, after MgCl_{2}-mediated polymerization into filaments. Scalebar is $5 \mu \mathrm{~m}$.

Movie S8 | Characteristic spike-like tubular deformations on DOPC GUV (doped with Atto655-DOPE, magenta) induced by membrane-bound origami L3E (Alexa488-labelled, green) at 1 nM bulk concentration, after MgCl_{2}-mediated polymerization into filaments. Scalebar is $5 \mu \mathrm{~m}$.

