Supplementary Information

Figure S1 | Cadnano design and oligonucleotide sequences of the various origami L structures.

Top positions T0-T6 are coloured in gold, while bottom positions B0, B3, B6 are coloured in dark orange. Lateral positions L0-L13 and R0-R13 are coloured in green and blue, respectively. Edge positions E2-5, E7, E9, E12-15, E17, E19 and F2-5, F7, F9, F12-15, F17, F19 are coloured in purple. Core staples are coloured in black; M13 p7249 scaffold is coloured in grey. List of functionalized staples can be found in Table S1.

$Figure \ S2 \ | \ Depiction \ of \ the \ self-assembly \ patterns \ of \ origami \ L \ and \ LS \ upon \ increasing \ MgCl_2.$

(A) Origami L does not possess the ability to polymerize, as it lacks blunt ends or lateral overhangs for establishing intermolecular interactions. (B) Origami LS displays 14 lateral self-complementary single-stranded overhangs on both sides, and is therefore able to polymerizes into sheet-like oligomers at high MgCl₂ concentrations.

Figure S3 | Self-assembly properties of origami L and origami LS at high MgCl₂.

Atomic force microscopy (AFM) images on PLL-mica of origami L lacking blunt ends (**A**) and origami LS displaying 14 lateral self-complementary single-stranded overhangs on both sides (**B**) after incubation with a high MgCl₂ buffer (70 mM MgCl₂ + 187.5 mM NaCl). As here depicted, whereas origami L (**A**) stays in a monomeric form, origami LS (**B**) polymerizes into sheet-like oligomers.

Figure S4 | **Binding and polymerization of DNA origami L3E on top of supported lipid bilayers.** Zoomed-out images depicting the interaction of 0.1 and 0.5 nM Alexa488-labelled DNA origami L3E displaying 3 TEG-chol anchors (for membrane binding) and blunt ends (for end-to-end self-assembly) with DOPC SLBs (doped with 0.01% DiD). (A-B) At low MgCl₂ (5 mM MgCl₂ + 300 mM NaCl), a mostly homogenous distribution of origami L3E was observed on top of the lipid bilayers. **(C-D)** At high MgCl₂ (70 mM MgCl₂ + 187.5 mM NaCl) origami filaments were observed on top of the lipid bilayer. While at 0.1 nM, origami L3E formed individual short filaments (**C**), at 0.5 nM origami L3E self-assembled into a mesh of longer and bundled filaments (**D**).

Figure S5 | Fluorescence recovery after photobleaching (FRAP) of membrane-bound origami L3E on DOPC supported lipid bilayers (SLBs).

FRAP data (from Movies S1 and S3), fitted results and calculated diffusion coefficients/mobile fractions of 0.5 nM origami L3E on a DOPC SLB, in the presence of (**A**) low $MgCl_2$ (5 mM $MgCl_2$ + 300 mM NaCl) and (**B**) high $MgCl_2$ (70 mM $MgCl_2$ + 187.5 mM NaCl).

Figure S6 | Interaction of origami L3E with giant unilamellar vesicles at low MgCl₂.

Membrane attachment of different bulk concentrations (0.1-1 nM) of Alexa488/TEG-chol-modified origami L3E displaying blunt ends to DOPC GUVs (doped with 0.05% Atto655-DOPE) in the presence of low MgCl₂ buffer (5 mM MgCl₂ + 300 mM NaCl). Images correspond to equatorial plane slices of GUVs.

Figure S7 | Triggering self-assembly of membrane-bound origami L3, L3S and L3E.

As depicted for the pole of selected GUVs, at low MgCl₂ (**A-C**), origami L3, L3S and L3E are homogenously distributed on top of DOPC GUVs, corroborating their predominant monomeric state under these conditions. Upon increasing the amount of MgCl₂, membrane-bound origami L3 (lacking blunt ends and lateral overhangs) remains homogeneously distributed (**D**); origami L3S (displayed lateral overhangs) can engage into lateral self-assembly, giving rise to large platforms (**E**); and finally origami L3E (displaying blunt ends) can polymerize end-to-end, giving rise to a mesh of filaments (**F**).

Figure S8 | Membrane deformations by origami L3, L3S and L3E at high MgCl₂.

Equatorial plane images of GUVs incubated with 0.5 nM (**A-E**) and 1 nM (**F-J**) origami L3/L3S/L3E at least 90 min prior addition of additional MgCl₂. For origami L3 lacking the ability to polymerize (**A**, **F**) no significant membrane deformations were reported. Similar results were observed for vesicles incubated with origami L3S, able to form lateral origami platform (**B**, **G**). On the contrary, for vesicles with membrane-bound origami L3E, extensive remodelling as rough (**C**, **H**) and spike-like **tubular** (**D**, **E**, **I**, **J**) deformations were observed, after MgCl₂-triggered end-to-end self-assembly of L3E into linear origami aggregates/filaments.

Table S1 | List of functional staples used for various origami L structures.

Oligo	Sequence	Description	Partner staple
TD_00	AAATTCGCCCGGAACAAAGAAAAAAAAAAAAACACCCAAAACCC	staples with extension for Alexa488 dye	5'-Alexa488-
TD_01	ATTCCCATCTATACAAATTCTAAAAAACACCCAAACCC	used in all origami	GGGTTTGGTGTTTTTT
TD_02	ATTTATTTCCAATAATAAGA AAAAAACACCAAACCC		
TD_03	AAGTGCCGTGGAAAGCGCAGTAAAAAACACCAAAACCC		
TD_04	CAAGATTTGTTAAAGGCCGCTAAAAAACACCCAAACCC		
TD_05	TTACTTCAAAAAACCAAAATAAAAAAAAAACACCAAAACCC		
TD_06	AGACAGGAAATGTGTAGGTAAAAAAAAAAACACCAAAACCC		
B18_00	ATTATCATCATAAACAGTATGGCTATGGGTGGTCTGGTT	staples with extension for TEG-Chol(18)	5'-Chol-TEG-
B18_03	GTAAGCGTCATGATTAGCACGCTATGGGTGGTCTGGTT	used in origami L3, L3E and L3S	AACCAGACCACCCATAGC
B18_06	AAGGCCGGAGACATGTACCTCGCTATGGGTGGTCTGGTT		
E_02 E_02	TTAGAATCAGAGCGGG	staples for tip-to-tip blunt end interactions	
F_02 E_02		usea in origami LE ana LSE	
E_03			
F_03 F_04	CCTGAGAAGTGTTTTTATA		
E_04	GGGAAACCTGTCGTGC		
E 05	ATCAGTGAGGCCACCGAGT		
E_05	TGCCCGCTTTCCAGTC		
E 07	TTAGTAATAACATCACTTG		
_ F_07	TAAAGCCTGGGGTGCC		
E_09	TACCGCCAGCCATTGC		
F_09	TGAAATTGTTATCCGCTCA		
E_12	GTAATAAAAGGGACATTCT		
F_12	TAAAACGACGGCCAGT		
E_13	GGCCAACAGAGATAGAACC		
F_13	CCCAGTCACGACGTTG		
E_14	CAGACAATATTTTTGAATG		
F_14	TGTGCTGCAAGGCGAT		
E_15	GCTATTAGTCTTTAATGCG		
F_15	GCTGGCGAAAGGGGGA		
E_17	GAAGATAAAACAGAGG		
F_17	AGGCTGCGCAACTGTTGGG		
E_19 F 19			
15.00	ΤΑΤΑΤΑΤΤΤΑΛΑΤΤΤΑΛΑΑΤΑGΑΤΑΑΤΑCAT	staples for lateral oligomerization	
LS_00	TATATATTTAAGCAAAAAGCGCGCAGAGGGCG	used in origami LS and LSS	
LS 02	TATATATTTCTACCGTGTATCTTCTGACCT		
	TATATATTTACGGTATTAATAATCGGCTGT		
LS_04	TATATATTTAAGAATTAAAATAACATAAAA		
LS_05	TATATATTTCCCGATTGATTACCAGCGCCA		
LS_06	TATATATTTCCGCCAGCATCAGAGCCGCCA		
LS_07	TATATATTTCGGCCACCCATAGGTGTATCA		
LS_08	TATATATTTCCTGATACCTCAGCTTGCTTT		
LS_09	TATATATTTATGCGCAGACCGCGACCTGCT		
LS_10	TATATATTTAAAATGCAGTCATCAGTTGAG		
LS_11	TATATATTTCATTAGAGAGAACCAGACCGG		
LS_12	TATATATTTTGACTTTTGAATCGGTTGTAC		
LS_13	TATATATTTCTTGTTAAAACGTTAATATTT		
RS_00			
RS_01			
RS_02 RS_03			
RS_03	TATATATTTAGAGCCTAATTTATAACGGAG		
RS_04	TATATATTTATGTTAGCAAAAGCGTCATT		
RS 06	TATATATTATTAGCGTTTGCATAAACAAT		
RS_07	TATATATTTGAAAGTATTAAGAGTAAATTC		
RS_08	TATATATTTAGCGGAGTGAGATAAACGGAA		
 RS_09	TATATATTTAGAGGCAAAAGAAGTAGTAAA		
RS_10	TATATATTTTACCTTATGCGCCCTCAAAA		
RS_11	TATATATTTATCAGGTCTTTACGCAAATCT		
RS_12	TATATATTTGAAAAGGTGGCAAGATCTAGA		
RS_13	TATATATTTGAATCGATGAACAGTTTGAGC		

Table S2 | Fraction of deformed vesicles, upon increasing MgCl₂, as a function of total L3E concentration.

[L3E]	% Deformed vesicles	Independent	Total number
(nM)	(± st. dev.)	repeats	vesicles (N _{total})
0.1	$10.9\pm10.1\%$	4	174
0.25	$37.1\pm20.9\%$	5	316
0.5	$65.6\pm12.1\%$	5	401
1	$70.2\pm9.6\%$	4	350

Movie Captions

Movie S1 | FRAP of 0.5 nM origami L3E (Alexa488-labelled, green) on top of DOPC SLB (doped with Atto655-DOPE, magenta), in the presence of a low MgCl₂ buffer (5 mM MgCl₂ + 300 mM NaCl). Corresponding data represented in Figure 3SA. Scalebar is 5 μ m.

Movie S2 | Time-series of MgCl₂-triggered polymerization of 0.5 nM origami L3E (Alexa488-labelled, green) on top of DOPC SLB. Addition of MgCl₂ happened at timepoint 5:00. Scalebar is 10 μm.

Movie S3 | FRAP of 0.5 nM origami L3E (Alexa488-labelled, green) on top of DOPC SLB (doped with DiD, magenta), in the presence of a high MgCl₂ buffer (70 mM MgCl₂ + 187.5 mM NaCl). Corresponding data represented in Figure 3SB. Scalebar is 5 μ m.

Movies S4 & S5 | Diffusion of 0.1nM origami L3E (Alexa488-labelled, green) on the pole of GUVs (doped with Atto655-DOPE, magenta), after MgCl₂-mediated polymerization into membrane-bound end-to-end self-assembled filaments.

Movie S6 | Diffusion of 0.1nM origami L3S (Alexa488-labelled, green) on the pole of GUV (doped with Atto655-DOPE, magenta), after MgCl₂-mediated polymerization into membrane-bound laterally self-assembled platforms.

Movie S7 | Characteristic wrinkled membrane deformations on DOPC GUV (doped with Atto655-DOPE, magenta) induced by membrane-bound origami L3E (Alexa488-labelled, green) at 1 nM bulk concentration, after MgCl₂-mediated polymerization into filaments. Scalebar is 5 μ m.

Movie S8 | Characteristic spike-like tubular deformations on DOPC GUV (doped with Atto655-DOPE, magenta) induced by membrane-bound origami L3E (Alexa488-labelled, green) at 1 nM bulk concentration, after MgCl₂-mediated polymerization into filaments. Scalebar is $5 \mu m$.