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Within the context of energy transition scenarios toward renewable resources,

superstructure optimization is implemented for the synthesis of sustainable and efficient

Power-to-Syngas processes. A large number of reactors (reverse water-gas-shift,

steam reforming, dry reforming, tri-reforming, methane partial oxidation reactor, and

water electrolyzer) and separators (PSA, TSA, cryogenics, membranes, and gas-liquid

scrubbing) are included within a single MILP framework, accounting for typical operating

conditions of each process-unit, under the specified simplifying assumptions. Power

is minimized in the context of sustainable feedstocks: water and biogas or carbon

dioxide from direct air-capture. The objective function adds the thermal to the electrical

contribution to the total power, the latter being weighted by a pseudo-price of null (i.e.,

sustainable, in-house electricity production), or unitary value (i.e., electricity purchased,

possibly generated from non-sustainable sources). Simultaneous operations of multiple

reactor technologies are allowed to identify possible synergies. With biogas and null

value of the pseudo-price, the results identify plant configurations mainly run via

electricity, which constitutes up to 97% of the total power for co-operating partial

oxidation of methane and water electrolysis. Alternatively, lower total demands are

attained at the expenses of thermal duty when electricity is penalized: the endothermic

reactors are operated. With carbon dioxide, the total power demand dramatically

increases due to the large consumptions of direct-air capture and water electrolysis.

The resulting topologies always favor membrane separation, adsorption, and cryogenics

over absorption technologies.

Keywords: sustainability, syngas, superstructure, biogas, CO2 utilization, Power-to-X, process synthesis

INTRODUCTION

It is generally agreed that immediate large-scale actions are required worldwide to cease further
CO2 emissions and to reduce its current concentration in the atmosphere (IPCC, 2013). To
achieve this goal, a shift from fossil fuels toward renewable energy carriers is necessary. Products,
intermediates, and raw materials that contribute to high CO2 emissions must be identified
alongside suitable technologies for the conversion of CO2 and biological feedstocks into useful
chemicals and fuel. This can be achieved by Power-to-X technologies, which are capable
of transforming renewable electricity and sustainable feedstock into useful components such
as syngas.
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Synthesis gas (syngas), a mixture of H2 and CO in
variable proportions, is an important intermediate and precursor
necessary for the production of a wide range of products. Its
worldwide production requires approximately 2% of the global
primary energy demand (El-Nagar andGhanem, 2019). However,
since most of the syngas production is based on fossil fuels, it
entails large, positive CO2 emissions. Therefore, the sustainable
production of syngas offers high potential for the reduction of
CO2 emissions. Furthermore, its intermediate location within the
overall production chain, from feedstocks to chemicals or fuels,
allows for existing downstream processes to be run without any
substantial modifications and, simultaneously, to benefit from a
sustainable feed stream. Due to the fact that syngas can be readily
converted into liquid fuels, i.e., via Fischer-Tropsch synthesis
(Gruber et al., 2019), it plays a crucial role in decarbonizing the
transportation system.

In recent years, Power-to-Syngas related processes have
been an object of interest in the scientific community on
different scales. Detailed catalytic studies were performed on
the reaction steps. Abdullah et al. (2017) and Arora and Prasad
(2016) proposed an extensive review of the role of Ni-based
catalysts in dry-reforming of methane, effective in terms of
the efficient, direct utilization of biogas, although negatively
affected by its endothermic nature. Rh-based catalysts were
studied in the context of oxygen-enhanced dry-reforming (oxy-
dry reforming): oxygen debottlenecks the dry reforming process
by reducing coking effects (Moral et al., 2018). Singha et al.
(2016) characterized nanocrystalline Ni-ZrO2 catalysts for tri-
reforming, particularly suited to accept flue gases without the
need for previous separation. In the context of partial oxidation,
a study by Pantaleo et al. (2016) proposes the use of CeO2-
supported nickel catalysts: the catalyst activity and stability
are revealed to be deeply affected by the crystallite size and
interaction between nickel oxide and ceria. Furthermore, high
conversion and selectivity were obtained. The analysis of a
synergistic combination of partial oxidation and dry reforming of
methane was explored by Kang et al. (2018): a non-stoichiometric
dry reforming feed-stream (excess methane over carbon dioxide)
is fed to a fixed bed reactor previously oxidized by air. The
subsequent oxidation of methane accompanies the endothermic
dry reforming, with a resulting decrease in energy demand.
Chemical looping was also dealt with by Wenzel et al. (2018) in
the context of the reverse water-gas shift reaction. The author
simulated and compared fixed-bed and fluidized-bed reactors
filled with iron oxide and ceria oxygen-storage material (OSM)
with a novel reaction kinetic. The study concluded that fixed-
bed outperforms fluidized-bed with respect to OSM and carbon
monoxide concentration in the outlets.

Methodological advancements were achieved in terms of
process networks by Schack et al. (2016), who combined several
renewable-to-chemical processes within the same optimization
framework by means of large linear models. In this context,
process pathways were identified via linear programming and
with respect to the cost of resources. More recently, Liesche
et al. (2019) and Schack et al. (2020) proposed an optimization
technique based on the linearization of the states for process
and unit optimization (FluxMax). The benefits of implementing

TABLE 1 | Syngas downstream applications, molar ratios, temperature, and

pressure requirements.

Downstream application Molar ratio H2/CO (T [K], p [bar])

Phosgene 0 (323,3)

Monsanto process 0.1 (473,60)

Hydroformylation 1.1 (428,170)

Iron ore 1.4 (973,1)

Fischer-Tropsch 1.95 (30,473)

Methanol production 2.15 (140,473)

Data adapted from Wenzel et al. (2017).

linear programming techniques combines the guarantee for
global optimality with the advancement achieved by the
underlying algorithms, capable of exploring large scenarios with
little computational effort, thus making them suitable for large-
scale analyses.

In the present contribution, a superstructure optimization
approach is used to identify which reaction and separation
steps should be chosen to produce syngas with a minimum
overall energy demand. Special emphasis is put on differentiating
between energy inputs in the form of heat and electricity. Biogas
from anaerobic digestion, water, and CO2 from direct air-capture
are considered as renewable raw materials. Essentially, biogas is
a carbon-neutral resource, and it does therefore not contribute
significantly to the increase in atmospheric CO2 levels (Paolini
et al., 2018). As chemical reaction steps, water electrolysis,
methane steam reforming, dry reforming, partial oxidation,
tri-reforming, and reverse water-gas shift are considered and
possible synergies allowed. For the subsequent separation of
the mixtures, both state-of-the-art as well as new and emerging
technologies are considered. The aim is to highlight most
promising flowsheets for current and future implementation, for
the downstream applications reported in Table 1. The overall
idea is sketched in Figure 1. An analysis of costs is omitted
in this contribution for two reasons: (1) reliable cost estimates
are not readily available for all unit operations, especially for
emerging technologies, and (2) the analysis should not be biased
toward existing, commercially available technologies but should
reflect a wide range of opportunities to identify possible future
research needs.

METHODS

System Description
Syngas is produced by chemical conversion steps followed by
separation and conditioning of the molar H2/CO ratio. Figure 2
represents a simplified flowsheet of the system described in
this section. Purified biogas (BG) from anaerobic digestion and
CO2 from direct air-capture are the candidate carbon sources.
Several reactors generate raw syngas from the feedstocks. Biogas
purification steps are not included in the analysis. Nevertheless,
a 2-to-3 CO2/CH4 biogas mixture can be fed directly to dry-
reforming (DR) or tri-reforming (TRI), or separated into its
components CO2 and CH4, reactants for reverse water-gas-shift
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FIGURE 1 | General representation of the syngas production framework.

(RWGS), methane steam-reforming (SR), and methane partial
oxidation (POX). CO2 from direct air capture can be fed to the
RWGS reaction. With the exception of DR, the other chemical
reactors require H2O, O2, or H2. Consequently, a make-up
stream of H2O is also allowed, which either feeds SR and TRI or is
split into pure H2 and O2 via an electrolyzer (EL). The raw syngas
is composed of unreacted components and side products. Recycle
and outlet streams are therefore introduced. Excess O2 can be
utilized for power generation by oxy-combustion of excess CH4,
or released into the atmosphere. Unreacted CO2 is also released
into the atmosphere. However, such emissions are biogenic due
to the selected carbon sources for the process. Excess H2 is
pressurized and stored at 300 bar (Di Profio et al., 2009). EL can
provide greenH2 directly into the outlet syngas stream, bypassing
the battery of reactors.

The product separation can be accomplished by a number of
state-of-the-art or emerging technologies. For a single separation
task, e.g., separation of component A from an initial mixture
ABC, the superstructure comprises one or more separation
methods. As an example, the task of separating H2 from
CO2, CO and CH4 can be accomplished by three competing
methods: layered bed pressure-swing adsorption, polymeric
membrane and palladium membranes. This contribution is
intended to provide a conservative energy analysis of the
system. Electricity is therefore not recovered by expansion
and cooling utility consumption not accounted for. The
power required for pumping cooling water is assumed to
be negligible compared to the major energy contributions in
the system.

General Modeling Assumptions for
Reactors and Separators
The underlying modeling assumptions for reactors are the
following:

- Reactor temperature, pressure, and feed composition are
assigned prior to optimization;

- RWGS, SR, DR, and POX are modeled as Gibbs reactors, and
a stoichiometric feed is assigned. Their outlet composition is
calculated prior to optimization;

- Side reactions occurring in SR, DR, and POX are considered;
- Due to the intrinsic system complexity, representative

temperature, pressure, and inlet and outlet composition for
TRI are retrieved from literature (Song and Pan, 2004);

- Water conversion at EL is 100%;
- Each reactor is associated with a single set of temperature,

pressure, feed, and outlet composition.

All reactors specifications are reported in Table 2.
For separators, the following most general assumptions are

applied:

- Sharp-split separators;
- The generic separator is decomposed into operation and

regeneration steps;
- Typical temperature and pressure levels are assigned prior to

optimization;
- Unit-specific calculations are embedded if required;
- The components in gas phase obey the ideal gas law;
- Compression and expansion steps are adiabatic;

Scope of the contribution is to underline dominant process paths
in a topological perspective. For this reason, the optimization of
the operating conditions of each process element is not part of
this study.

Modeling of Reactors
The complete set of parameters implemented at a reactor-level is
reported in Table 2. The current section discusses the rationale
behind its identification.

Mass Balances
When a non-adiabatic system is at thermodynamic equilibrium,
it is sufficient to define themolar composition by the following set
of algebraic equations for each given independent stoichiometric
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FIGURE 2 | Simplified process flowsheet. EL, electrolyzer; RWGS, reverse water-gas-shift reactor; SR, methane steam reforming; POX, methane partial oxidation;

DR, dry reforming of methane; TRI, tri-reforming of methane; TPSA,TSA,VPSA, temperature/pressure/vacuum swing adsorption; TEG, ethylene glycol absorption;

MEA, mono-ethanol amine.

TABLE 2 | Parameters for the description of reactors.

Reactor Components Inlet Composition % Outlet Molar composition % Molar ratio Outlet/inlet flowrate

RWGS H2,CO2,H2O,CO [50 50 0 0] [27.4 27.4 22.6 22.6] 0

SR H2,CO2,H2O,CO,CH4 [0 0 50 0 50] [56.2 2.6 11.7 15.3 14.2] 1.55

POX H2,CO2,H2O,CO,CH4,O2 [0 0 0 0 66.7 33.3] [58.6 1.32 4.3 30.1 5.6 0] 1.80

DR H2,CO2,H2O,CO,CH4 [0 50 0 0 50] [28.5 10.8 5.4 39.2 16.1] 1.51

TRI H2,CO2,H2O,CO,CH4,O2 [0 32.3 32.3 0 32.3 3.2] [45.3 9.4 14.7 30.6 0.04 0] 1.61

EL H2,H2O,O2 [0 100 0] [66.7 0 33.3] 1.5

Reactor T [K] p [bar] q̃ [kJ/mol] w̃ [kJ/mol] θ j %

RWGS 1000 5 35·θRWGS 0 θRWGS = 22.6

SR 1173 30 227·θSR−33·θWGS 0 θSR = 27.8; θWGS = 4.0

POX 1328 (in: 773) 30 adiabatic 0 –

DR 1000 5 260·θDR+35·θRWGS 0 θDR = 25.6; θRWGS = 8.1

TRI 1123 1 58·nin 0 –

EL 333 1 0 327 –

θ represents the ratio between extent of reaction and feed flowrate. Specific heat demands (q̃) and electrical energy demands (w̃) per mole flowrate of feed are included.

relation j:

fj
(

T, p, λ
)

= 0, ∀j ∈ J, (1)

where f is a function of the system temperature, pressure, and
the extent of reaction λ. Hence, for the RWGS reactor, J =

{j | j = {RWGS}}; for SR J = {j | j = {SR,WGS}}, and
for DR J = {j | j = {DR, RWGS}}, where WGS denotes
the water gas shift reaction. The outlet composition can thus
be determined. Given that (T, p) are fixed and that the feed to
the reactor is stoichiometric, the ratio between outlet and inlet
flowrates remains constant for any given inlet flowrate. As a
result, the outlet molar flowrate is linearly proportional to the
feed flowrate, and the compositions are fixed for all streams.

POX is run within an adiabatic reactor with irreversible
reactions of partial and total oxidation:

2CH4 + O2 −→ 2CO+ 4H2 (2)

CH4 + 2O2 −→ 2H2O+ CO2. (3)

As a consequence, Equation set (1) is not sufficient to characterize
the equilibrium. For this process-step, T is the temperature
after adiabatic reaction, which is calculated from the following
energy balance

H◦
in(Tin)−H◦(T) = 0, (4)

which expresses the conservation of energy in terms of total
enthalpy change. Furthermore, atomic balances for the elements
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saturate the degrees of freedom, leading to the set of equations

fj (n) = 0,∀j ∈ J := {DR, SR}, (5)

H◦(Tin,n)−H◦(T) = 0, (6)

ni,in − ni = 0,∀i ∈ I := {C,O,H}, (7)

which is solved for T and n (vector of molar outlet flowrates).
Here, C, O, and H belong to set I and denote the chemical
elements carbon, oxygen, and hydrogen, respectively. As for
RWGS, SR, andDR, feed composition, temperature, and pressure
are fixed, and the outlet composition and reactor temperature can
be calculated.

The ratio between outlet and inlet mole flowrate is
calculated accounting for the conversion of methane and the
outlet composition.

Energy Balances
The process system includes endothermic reactors (RWGS,
SR, DR, and TRI) and an adiabatic reactor (POX). In all
the cases, preconditioning of the feed streams to the reactors
is performed by compression and pre-heating, thus enabling
the internal energy of reactants to reach the requirements for
chemical conversion.

Each endothermic reactor requires a thermal power input,
expressed by a linear combination such as

∑

j∈J

λj1H◦
j (T) = nin

∑

j∈J

θj1H◦
j (T), (8)

where θj is the constant ratio between the extent of reaction
j and nin the feed flowrate. POX is adiabatic and requires no
modeling of excess heat. For TRI, the summation appearing
in the right-hand side of Equation (8) is determined from the
standard reaction enthalpy of the main reactions—dry, steam
reforming, and partial oxidation of methane—and from their
extent of reaction, estimated from Song and Pan (2004).

The electrolyzer requires power in the form of electrical input.
As reported in Bensmann et al. (2013), the Gibbs free energy
of reaction provides a reasonable estimation for the reversible
power requirement, which is divided by an efficiency factor
of 72% to obtain the real demand. As for the reactors, EL
requires feed preconditioning to reach the operative temperature
at atmospheric pressure.

Modeling of Separators
An extensive literature survey was conducted to identify unit-
specific calculations. The energy requirements are therefore
characterized for each specific case, resulting in linear gray-
box models. The superstructure embeds the following families
of separation methods: adsorption (temperature- and pressure-
swing), absorption (glycol, amine, and methanol), membrane
separation (polymeric and palladium), and cryogenic operations
(chilled methanol and cryogenic distillation). Table 3 introduces
the set of separators allowed within the control volume and their
parameters selection. T
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Mass Balances
The sharp-split assumption allows for a linear mathematical
description only if the composition at the beginning of the
separation train is fixed. For this reason, the modeling choice of
fixing temperature and pressure at the Gibbs reactors introduced
in section (2.2) is justified. This approach has been adopted in
literature (Biegler et al., 1997) for the screening of distillation
sequences, while the current contribution extends the method
to a wider choice of separators. The underlying mathematical
formulation reads

nA = n(A,B,C)
xA

xA + xB + xC
= n(A,B,C)ξA/(B,C), (9)

where a generic componentA is ideally separated out of amixture
(A,B, and C), and the split factor ξ is given by the ratio of the
mole fractions x at the outlet stream of the reactor. The splits
modeled in the framework are listed in Table 4 together with
the corresponding feasible separation methods and literature
references. It is here stressed that not all the separation techniques
are at high readiness level. A few separators are considered
feasible for specific separation tasks if characteristic properties,
such as kinetic diameter, relative permeability, dew points, etc.,
suggest so. Nevertheless, most of the separators are state-of-the-
art technologies in industry or in laboratory-scale applications.

Energy Balances
The generic separator is divided into an operation and
regeneration step. A membrane separates the permeate from the
retentate stream, a gas-liquid absorption process is followed by
stripping, and an adsorption step via VPSA/TSA is periodically
switched into regeneration mode by vacuum generation or
heating, respectively. Each method is therefore associated with
two distinct (T, p) values for operation (T, p)ops and regeneration
(T, p)reg , respectively: the feed stream, as well as the outlet
from the operation-step, are at (T, p)ops. In order to model
the adjustment of the internal energy between consecutive
separators, heating or cooling, compression or expansion are
considered. For thermal-power calculations, the heat capacity
C̃p is calculated as a weighted average for pure components,
accounting for the actual mixture composition and the initial and
final temperature.

As formerly stated in section (2.1), power recovery by
expansion and cooling are not considered as long as they
occur above the atmospheric conditions (T = 298K, p =

1 bar). Nevertheless, the expansion of gas may require inter-
heating steps. Similarly, compression may require cooling.
The temperature attained after isentropic transformation is
calculated as

T2,id = T1

(

p2

p1

)
R
C̃p

, (10)

where R is the universal gas constant. The real temperature
is calculated assuming an efficiency factor of T = 80%.
In agreement with the conservative framework, the power
requirement for compression is over-estimated by a single,
isentropic step as well as the temperature out of compression and

TABLE 4 | Numbered list of splits allowed in the superstructure and available

separation methods.

(ID) Splits ID available

methods

References

(1) (H2,CH4)/(CO2,CO,H2O) IV [4,5]

(2) (H2)/(CO2,CO,H2O,CH4) VII [11,30]

(3) (H2O)/(CO2,H2,CO,CH4) VI [21,23,30,33]

(4) (H2O)/(CO2,CO,CH4) VI,VIII,II [20,21,23,33,38]

(5) (CH4)/(CO2,CO,H2O) II [4,5,31]

(6) (H2)/(CO2,CO,CH4) V,VI,VII [2,4,5,8,10,11,12,34]

(7) (CO)/(CO2,H2,CH4) V [4,5]

(8) (CO2,H2O)/(H2,CO) III,X [12,16,32]

(9) (H2O)/(CO2,H2,CO) VI,VIII,II [20,21,23,30,33,38]

(10) (H2)/(CO2,CO,H2O) I,VII [3,11,12,31,34,38]

(11) (CO)/(CO2,H2O) V [3,5]

(12) (H2O)/(CO2,CO) VI,VIII,II [20,21,23,30,33,38]

(13) (CO2)/(H2,CO) V,IX,X [6,12,14,15,16,17,18,27,28]

(14) (H2)/(CO2,CO) VI,V,VII [3,7,8,9,13,20,34,37]

(15) (CO)/(CO2,H2) V [3,5]

(16) (CO2)/(CO,CH4) V [19]

(17) (CO2)/(H2,CH4) V [9,19]

(18) (H2)/(CO2,CH4) V,VII,VI [4,8,10,11,12,34,35,36]

(19) (CO)/(CO2,CH4) V [3,5]

(20) (CO)/(CH4) V [4,5]

(21) (H2)/(CH4) VI,XII,V [8,10,14,24,28]

(22) (CO2)/(CH4) VI,V,X,XI [12,15,16,19,25,26]

(23) (CO2)/(H2O) II,VIII,VI, [20,21,22,23]

(24) (CO2)/(CO) V [1,3,4,5,14,19]

(25) (CO2)/(H2) V,X,IX,VI,VII [3,8,10,11,12,13,14,15,16,17,18,34]

(26) (CO)/(H2) V,VI,VII [1,2,3,4,5,6,7,8,10,11,12]

References are included: [1] Battrum and Thomas (1991); [2] Jang et al. (2011); [3] Ritter
and Ebner (2007); [4] Dutta and Patil (1995); [5] Gao et al. (2018, 2016); [6] DiMartino et al.
(1988); [7] Kim et al. (2013); [8] MEDALTM Air Liquide - hydrogen purification; [9] Uebbing
et al. (2019); [10] Poudel et al. (2019); [11] Li et al. (2000); [12] Häussinger et al. (2011);
[13] Sircar and Golden (2000); [14] Wang et al. (2008); [15] MEDALTM Air Liquide - biogas
purification; [16] Ziaii et al. (2009); [17] Burr and Lyddon (2008); [18] Hochgesand (1970);
[19] Grande et al. (2017); [20] Wang and LeVan (2009); [21] Sijbesma et al. (2008); [22]
Han et al. (2015); [23] Scholes et al. (2012); [24] Yang et al. (1997); [25] Maqsood et al.
(2014); [26] SGC (2012); [27] Reimert et al. (2015); [28] Mulgundmath and Tezel (2010);
[29] Merel et al. (2008); [30] Metz et al. (2005); [31] Delgado et al. (2014); [32] Wurzbacher
et al. (2012); [33] Merkel et al. (2001); [34] Agarwal et al. (2010); [35] Mondal et al. (2012);
[36] Park et al. (2000); [37] Lin et al. (2012); [38] Netusil and Ditl (2011).

expansion. As an example, whenever a process stream delivers
gas to higher (T, p) values, the pressurization can be deployed
to partly satisfy the need for thermal power input. For an
adiabatic compression step, the specific molar electrical work is
estimated as

w̃ =
γ

(γ − 1)
RT1











(

p2

p1

)

γ − 1

γ
− 1











1

η
, (11)

γ =
C̃p

C̃v
(12)
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where η = 0.8 is the efficiency, and γ is the ratio of specific
heats at constant pressure and constant volume (see Grande
and Rodrigues, 2007). Equation (11) defines a coefficient which
multiplies the gas flowrate, i.e., the mathematical description is
linear. The same formula is adopted to model vacuum operations
as in Grande and Rodrigues (2007), e.g., vacuum normalization
in VPSA or membrane separators. For the latter, the pressure
in the retentate is assumed to be 20 times higher than in the
permeate side, set at p = 0.1 bar is assumed (Huang et al.,
2014). In order to describe the energy demand of each separator,
additional and method-specific calculations are included.

Cryogenic separator
The non-ideal coefficient of performance (COP) describes the
ratio between the thermal power absorbed by the refrigerant and
the real electrical power required at the compressor in a cryogenic
loop. The definition of COP reads

COPreal = COPidη =
Q

Wid
η =

TR
ev

TR
cond

− TR
ev

η, (13)

where Wid is the ideal electrical power requirement. In an
ideal case, it corresponds to a reverse Carnot cycle between the
cryogenic evaporation temperature of the refrigerant, TR

ev and
the temperature at which the refrigerant releases its internal
energy by condensation, TR

cond
. The ideal COP is corrected by

a thermodynamic efficiency factor η of 60% (Smith, 2005). Q is
the thermal power acquired by the refrigerant during cryogenic
evaporation and is lost by the cooling process fluid in order
to reach the required cryogenic temperature. A proportionality
coefficient for the estimation of the power requirement in
cryogenic operations is derived by rearranging Equation (13):

w̃ =
1

COPidη
Q =

1

η

TR
cond

− TR
ev

TR
ev

C̃p
(

Tamb − Tcryo

)

. (14)

In Equation (14), a distinction is made between the cryogenic
temperatures Tcryo and TR

ev, the former being 15K higher than
the latter, thus ensuring the heat transfer.

Temperature-swing adsorption: TSA
TSA operations consist of cyclic switch between operation
and regeneration at high temperature of the adsorbent bed.
Consequently, the relevant contributions for regenerations are
the heat of desorption for the entrained componentsQdes and the
heat input to raise the bed temperature Qbed:

QTSA = Qbed + Qdes =
(

q̃des + q̃bed
)

nfeed (15)

q̃bed =
(

Treg − Top

)

∑

k⊂K

(

1

θi
Ĉpbed,lMWixi

)

, (16)

q̃des =
∑

k⊂K

(

q̃∗des,ixi

)

. (17)

For Equations (16) and (17), sets k and K are introduced:

k ⊂ K,

k = {i, l | i = {components adsorbed by adsorbent-type l},

l = {adsorbent-type l}}. (18)

In Equation (16), θ−1
i MWi is the molar mass of adsorbent

required to adsorb component i, which is multiplied by the
specific heat per unit of mass of adsorbent Ĉp. Furthermore,MWi

is the molecular weight. In Equation (17), q̃∗
des,i is the molar heat

of desorption for component i.
Layered beds are also considered, which necessitates the

subscript l and the summation operator in Equations (16)
and (17).

Absorption in glycol, amines, or chilled methanol
The gas-liquid absorption processes require high-temperature
regeneration. It is often the case that the absorption operation is
performed in pressurized vessels. Unit-specific calculations must
account for the change of the internal energy of the fluid sent to
regeneration. The specific thermal power input reads

q̃rec = θrecC̃pentrainer
(

Treg − Top

)

, (19)

where θrec is the ratio between the flowrate of entrainer
required per unit of entrained key component (circulation
rate). The description of amine and glycol absorption resort to
Equation (19). The absorption of CO2 in methanol occurs at
cryogenic conditions, whereas the regeneration is operated at
ambient temperature. As a consequence, this specific separator
is described by the relations already introduced for cryogenic
systems in section (2.4.2).

Modeling of Interconnections
This section discusses the conceptual structures that enable to
build the final set of problem constraints in a linear form.

Mixture
For a given mixture φ, there are two sets of mass balances:

ξ
φ
i ni −

∑

j

nji = 0 ∀i ∈ I, (20)

nj −
∑

i

nji = 0 ∀j ∈ J. (21)

Sets I and J in Equations (20) and (21) incorporate the feed
streams to the separators that generate and accept φ, respectively.
Furthermore, ni and nj are the feed flowrates to the separators,
while nji represents the flowrate of the connecting stream from

separator i to j; ξφi is the split factor associated with separator i
and its outlet mixture φ. Coefficients of molar thermal energy and
work (see section Modeling of Separators) are multiplied by the
corresponding flowrates nji. The linear description of the change
in (T, p) between consecutive separators is formulated as

Qji − q̃jinji = 0, (22)

Wji − w̃jinji = 0, (23)
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FIGURE 3 | Substance-node balances associated to component i fed to the

plant. Stream ni,ext is split into N streams nmakeupi,j , each contributing to the

reactor feed nfeedi,j together with other streams nrecyclei,j,k from the plant.

where Q and W denote the thermal and electrical
power, respectively.

Set 8 is introduced. It groups Equations (20, 21, 22, 23),
related to the specified mixture φ.

Separation Train
Each stream j, belonging to set 81 (see nomenclature in section
Mixture), is associated with two streams i belonging to 82

and 83, respectively. Therefore, two equations describing the
connectivity between equations sets 81 and 82, and 81 and 83,
can be formulated:

nj,81 − ni,82 = 0, (24)

nj,81 − ni,83 = 0, (25)

indicating that stream j in set 81 coincides with i in 82 and
83, respectively. Such concatenation constraints make sure that
the mass balances downstream of each conversion technology
are fulfilled.

Substance Nodes
Each component is associated with 1 + N nodes, where N is the
number of reactors it is fed to, belonging to set J (reference to
Figure 3). The first node balance reads

ni,ext −
∑

j∈J

n
makeup
i,j = 0, (26)

indicating that component i, provided from an external source,
can be delivered to any jth reactor ∈ J, “make-up” stream. For
each reactor feed in set J, a constraint is imposed with respect
to i:

n
makeup
i,j +

∑

k∈K

n
recycle

i,j,k − n
feed
i,j = 0, (27)

where K is the set of process units which produce a stream of pure
i. Equation (27) binds the component flowrate of i in the reactor
feed to the make-up stream for the same reactor as well as to all
the relevant recycles within the plant.

Outlet and Syngas Nodes
As previously discussed in section (2.1), excess H2 and CH4 can
leave the plant after pressurization, as excess CO2 and H2O can
be released into the environment, whereas O2 can be used in oxy-
combustion for heat generation. For each component leaving the
plant, a node balance is introduced:

∑

j∈J

ni,j − ni,out = 0, (28)

where J is the set of process-units which produce or separate
component i, leaving the battery limit. Similarly, the following
syngas node balances are required:

∑

j∈J

nCO,j − nCO,syngas = 0, (29)

∑

k∈K

nH2 ,k − nH2 ,syngas = 0, (30)

nH2 ,syngas − ψnCO,syngas = 0, (31)

Equation (31) sets the syngas ratio to the desired value for
downstream applications.

Logical Constraints
Logical constraints are imposed such that at most one separation
method per task is active. Binary variables support such
logical conditions:

∑

i∈I

yi − 1 = 0, (32)

ni −Myi ≤ 0, ∀i ∈ I. (33)

When the binary operator yi in Equations (32) and (33) is
zero, the feed flowrate ni to separator i belonging to the set I
of methods accomplishing the given task is also zero. On the
contrary, if yi = 1 the separator is active. M is a constant
whose value is big enough but possibly of the same order of
magnitude. The selected value for implementation is four times
the specified syngas productivity. If the value of M exceeds the
value of the underlying flowrate for several orders of magnitude,
numerical issues might be encountered, and the condition of
mutual exclusivity among separators is violated.

Each reactor has an associated separation sequence. Even
though RWGS, SR, POX, DR, and TRI could share the same
separators, five distinct separation-trains are implemented, which
allows for linearity to be preserved. In case the selected route
for separation strongly depends on the outlet composition
from the reactor, redundancies may occur if more reactors
are simultaneously operated. For instance, membrane and
adsorption technologies may entrain the same key component
out of a given mixture in the downstream of two distinct
reactors. The optimal separation sequence can therefore be
homogenized by introducing complexity-reduction constraints.
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For each separator shared among N different separation-trains,
an inequality is implemented:

1

N

∑

i∈I

yi − yCC ≤ 0. (34)

The new binary variable yCC appears in the final inequality which
sets the maximum number of units allowed within the plant
Nmax as

∑

j∈J

yCCj +
∑

k∈K

yk − Nmax ≤ 0. (35)

Inequality (35) combines the binary variables associated to the
possibly redundant units, set J, with the binaries of unique
units, set K, i.e., reactors and non-redundant separators. For
Nmax = +∞, unitary binaries can be paired with zero-flow
units. In case the maximum number of units allowed is less
than the number generated by MILP in the unconstrained case,
Nmax ≤ Nunconstrained the plant is forced toward higher power
requirements. Each binary variable therefore assumes unitary
value only if the corresponding unit operation is active and Nmax

coincides with the actual number of operating units.

Objective Function
The general formulation of the objective function reads

min
n,y

(Q+ ωW) , (36)

where a pseudo-price ω ∈ [0, 1] is introduced. The process is
optimized with respect to the molar flowrates, in vector n, and of
binary variables, in vector y. The objective penalizes the electrical
power demand, W, added to the thermal power demand Q. The
values of ω, spanning within its boundaries, generates a Pareto
front with respect to the power consumption. For decreasing
values of ω, less relevance is given to the electricity demand.
This reflects a transition toward plant layouts favoring the use
of sustainable, carbon-neutral sources of electricity.

In this contribution, topological results and total power
consumption are explored at the boundaries of the pseudo-price
domain, namely ω = 1, objective (A):

min
n,y

(Q+W) , (37)

and ω = 0, objective (B):

min
n,y

Q. (38)

Objectives and constraints are linear, and decision variables
are either continuous or integer. The resulting MILP problems
are solved in MATLAB R© 2018b using the function intlinprog.
The algorithm solves and tightens LP relaxations before
implementing heuristics and branch-and-bound strategies.

TABLE 5 | Topological results for unconstrained plant complexity.

(A) minn,y (Q+W)

Downstream Reactors ID separation

methods

n◦ units redundancies

Phosgene RWGS,DR V,VI 10 4

Monsanto RWGS,DR V,VI 10 4

Hydroformylation SR,DR,TRI,EL I,V,VI 12 4

Iron ore SR,DR,TRI,EL V,VI,VII 12 4

Fischer Tropsch SR,DR,TRI,EL V,VI 9 1

Methanol SR,DR,TRI,EL I,V,VI 11 4

(B) minn,y Q

Downstream Reactors ID separation

methods

n◦ units redundancies

Phosgene POX,EL V,VI,XII 7 1

Monsanto POX,EL V,VI,XII 7 1

Hydroformylation POX,EL V,VI,XII 7 1

Iron ore POX,EL V,VI,XII 7 1

Fischer Tropsch POX,EL V,VI,XII 7 1

Methanol POX,EL V,VI,XII 7 1

The number of redundant units is derived according to the criteria presented in
section (3.1).

RESULTS AND DISCUSSION

The aim of this section is to introduce and discuss the
optimization results resulting from the enforcement of objective
(A) and (B).

Firstly, biogas is considered as feedstock for unconstrained
plant complexity. Thereafter, redundancies are removed by
application of Equation (35). Total, thermal, and electrical power
demands are reported for the resulting plant topologies and
compared with the respective requirements after heat integration
(pinch analysis, minimum 1T = 15K). Subsequently, the
feed is limited to CO2 from DAC. The power contributions are
expressed per molar flow of syngas.

Feedstock: Biogas
Plant topologies obtained for objective (A) and (B) and
unconstrained plant complexity are reported in Tables 5A,B.
The number of units account for possible redundancies. As
an example, for objective (A) and phosgene synthesis, the
optimizer identifies an interaction between RWGS and DR and
a plant comprising 10 units. The quinary outlet gas from DR
shares 4 components with the outlet from RWGS, including the
components of the biogas feed stream: CO2 and CH4. At most,
therefore, three separators can be shared betweenDR and RWGS,
one of which splits the biogas stream into pure CO2 and CH4. As
a matter of fact, four separators and two reactors are sufficient
to perform the production, and four units are redundant.
Interactions among reactors are not deemed redundant.

Results show that for unconstrained complexity, redundancies
always occur. These results are therefore not representative of
implementable solutions in terms of downstream operations.
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TABLE 6 | Plant topology and power consumption, divided into thermal percent (T%), electrical percent (E%), and total power (tot.) and compared with total power

required after heat integration via pinch (HI).

(A) minn,y (Q+W)

Downstream Reactors (separators) T % E % tot.; (with HI) [kJ/molsyngas]

Phosgene DR(3VI,6VI,19V,22VI) 70.1 29.9 232; (188)

Monsanto DR(3VI,6VI,19V,22VI) 61.6 38.4 262; (219)

Hydroformylation DR,SR(1IV,11V,21V,23VI ) 77.1 22.9 147; (96)

Iron Ore EL;DR,SR,TRI(3VI,6VI,19V,22VI ) 75.7 24.3 125; (110)

Fischer Tropsch EL;SR,TRI(3VI,7V,18V,22VI ) 63.5 36.5 128; (112)

Methanol EL;SR,TRI(3VI,7V,18V,22VI ) 57.0 43.0 139; (116)

(B) minn,y Q

Downstream Reactors (separators) T % E % tot.; (with HI) [kJ/molsyngas]

Phosgene EL;POX(3VI,6VII,19V,22VI ) 2.8 97.2 638; (620)

Monsanto EL;POX(3VI,6VII,19V,22VI ) 2.7 97.3 662; (644)

Hydroformylation EL;POX(3VI,6VII,19V,22VI ) 2.7 97.3 323; (314)

Iron Ore EL;POX(3VI,7V,18VI,22VI ) 7.1 92.9 247; (229)

Fischer Tropsch EL;POX(2VII,4VI,19V,22VI ) 3.1 96.9 200; (194)

Methanol EL;POX(2VII,4VI,19V,22VI ) 2.7 97.3 206; (200)

Biogas as feedstock.

Nevertheless, relevant general features of the resulting
configurations can be observed:

- POX is never part of the solution with objective (A) but is
always selected with (B);

- DR results from all syngas applications with objective (A);
- The pair TRI-EL is selected for high syngas ratios with (A)

while RWGS is for low syngas ratios;
- None of the separation trains allows for absorption-

based methods;
- Cryogenics is selected by enforcement of objective (B) and for

any downstream application, i.e., separation of CH4 from H2

(method VII).

Redundancies are thus removed in the setting Nmax = n◦Units −
n◦
Redundancies

in Equation (35). In case redundancies are still
present after reduction, e.g., if a lower number of reactors is
selected, Nmax is updated and the procedure reiterated. The
Tables 6A,B include the plant configurations thus obtained.
Reactor-wise, they reflect the same pattern discussed for the
case of unconstrained complexity in Table 5: EL and POX come
with objective (B), whereas POX does not activate with (A).
In (A), DR is the only reactor active for low syngas ratios,
whereas combinations of TRI, EL, and SR are better suited for
higher ratios. Separator-wise, the predominance of adsorption
and membranes over absorption methods is confirmed, whereas
cryogenics with objective (B) is not due to the restriction
imposed on the number of units: if biogas has to be split,
the binary mixture to be separated in the biogas train is
necessarily (CH4/CO2), split 22 in Table 4 and is thus shared
with the downstream of POX. The only cryogenic method
available for this task is distillation, conducted at pressure higher
than POX reactor—Table 3. The thermal power input to adjust

the temperature of CH4 to the reactor level is therefore far
higher than the input required from the selected separator, the
polymeric membrane, which can decrease this thermal duty
by adiabatic temperature increase after vacuum normalization
and pressurization (adiabatic temperature increase). Palladium
membrane for the separation of H2 is the result if the electrical
power is not penalized.

In objective (A), the predominant power contribution is
thermal, whereas most of the power required with objective (B)
is electrical. Partial contributions to the total power without heat
integration are represented in Figures 4, 5. The sum of reactor
and preconditioning gives the total reactor power input, the
former being associated with the chemical reaction in the reactor
only, while the latter accounts for the pressure and temperature
adjustment to bring the reactants to feed conditions. Adjustment
denotes the power input to meet the

(

T, p
)

level at which syngas
is required for its further downstream applications; storage is
associated with the power for pressurization of surplus H2, while
separation comprises the remaining contributions.

With both objectives (A) and (B), the reactors dominate the
total power demand and exhibit a decreasing trend with H2/CO.
The high power requirement for storage with objective (B) is
determined by the large H2 surplus, accompanying the large O2

demand at the POX reactor to sustain the CO production (see
Table 2 for POX stoichiometry).

Within the context of objective (A), the pinch analysis
determines a substantial recovery of heat within the separation
train and complete recovery in the context of (B). Nevertheless,
all the reactors in (A) are heat sinks at high temperatures.
Consequently, they cannot benefit from heat integration. As
highlighted by the energy contributions in Figure 4, the
power requirement at the reactors dominates over the other
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FIGURE 4 | Contributions to the total power requirements for minn,y
(

Q+W
)

,

biogas as feedstock.

FIGURE 5 | Contributions to the total power requirements for minn,y Q, biogas
as feedstock.

contributions, which justifies the modest reduction in total
power demand reported in Table 6. Moreover, if heat integration
is beneficial in terms of utility minimization, it neglects the
effect of poor overall heat transfer coefficients typical of gas-
gas economizers. Excluding the phase transition required for
water to adjust to SR and TRI reactor conditions and a liquid
make-up stream for EL, the process system encompasses gas
streams only. The overall heat transfer coefficients are normally
greatly improved in presence of phase-changing fluids, typically
condensing steam, which can justify the more conservative
approach of sequential optimization and heat integration.

Biogas is totally or partially separated into its components
and utilized as a reactant. Nevertheless, surplus bio-CH4 could

FIGURE 6 | Comparison among total power demands after heat integration

(HI) for the two objectives, minn,y
(

Q+W
)

and minn,y Q, for biogas as

feedstock, with and without surplus bio-CH4 utilization. The electrical power is

generated by gas-fired power plant of 60% efficiency, Qpowerplant = W/0.6.

be used to generate carbon-neutral hot and electrical utilities by
combustion. Figure 6 depicts the net total power demand, or
demand for possibly fossil-based power, in terms of hot utility
after heat integration and with objectives (A) and (B). It is
assumed that

I Electricity is generated by a gas-fired power plant (worst-case
scenario) with an efficiency of 60%: QE = W/0.6;

II The hot utility at the syngas and power plant is provided
directly by the combustion of CH4 (low heating value LHV =

785 kJ/mol);
III The heat generated by combustion of surplus bio-CH4 can

be directly transferred to the process or the power plant, thus
neglecting the generation of steam and the irreversibilities.

Assumption III necessarily outlines the most optimistic scenario,
which is to be benchmarked against the demand which does
not account for bio-CH4 utilization: the actual power demand
is expected to fall between these boundaries. As indicated by
Figure 6, plant configurations resulting with objective (A) can
greatly benefit from the utilization of surplus bio-CH4, especially
for low syngas ratios. On the contrary, with objective (B), bio-
CH4 is entirely converted, as CH4 is the only feedstock for POX.

Feedstock: CO2 From DAC
Direct air capture (DAC) provides pure CO2 to the plant
and substitutes biogas as a source of carbon for the system.
In this system, low temperature (LT) solid sorbent performs
DAC with a thermal and electrical power input of 277 and
39 kJ/molCO2, respectively. The values are adapted from Fasihi
et al. (2019). Table 7 shows that the combination of EL and
RWGS, the only technology available for the feedstock, is
followed by combinations of membranes (polymeric and Pd)
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TABLE 7 | Plant topology and power consumption, divided into thermal percent (T%), electrical percent (E%), and total power (tot.).

(A) minn,y (Q+W)

Downstream Reactors (separators) T % E % tot. [kJ/molsyngas] DAC [kJ/molsyngas]

Phosgene EL;RWGS(9VI,13V,26VII) 46.5 53.5 841 316

Monsanto EL;RWGS(9VI,13V,26VII) 45.9 54.1 845 313

Hydroformylation EL;RWGS(9VI,13V,26VII) 31.8 68.2 585 151

Iron Ore EL;RWGS(9VI,14VI,24V ) 32.6 67.4 557 132

Fischer Tropsch EL;RWGS(9VI,13V ) 26.2 73.8 510 107

Methanol EL;RWGS(9VI,13V ) 24.5 75.5 510 101

(B) minn,y Q

Downstream Reactors (separators) T % E % tot. [kJ/molsyngas] DAC [kJ/molsyngas]

Phosgene EL;RWGS(9VI,15V,25VII) 45.9 54.1 851 316

Monsanto EL;RWGS(9VI,15V,25VII) 44.0 56.0 878 313

Hydroformylation EL;RWGS(9VI,13V,26VII) 31.8 68.2 585 151

Iron Ore EL;RWGS(9VI,13V,26VI) 31.2 68.8 572 132

Fischer Tropsch EL;RWGS(9VI,13V,26V ) 25.5 74.5 522 107

Methanol EL;RWGS(9VI,15V,25V ) 23.9 76.1 523 101

Consumptions for direct air capture (DAC) are reported. CO2 as feedstock.

and VPSA operations. The contributions to the total power,
similar between objectives (A) and (B), are shifted toward
electricity and proportional to the syngas ratio. Compared with
the corresponding values in Table 6, the power demands are
conspicuously higher due to the presence of DAC, the latter
spanning between 19 and 37% of the required total input.

CONCLUSIONS

Candidate process topologies for Power-to-Syngas applications
are embedded within a superstructure. Mixed-integer, linear
constraints are set for alternative feedstock scenarios: biogas
and CO2 from DAC (LT-solid sorbent). A general objective-
function formulation combines thermal and electrical power
input linearly. The electrical power contribution is weighted by
a pseudo price ω ∈ [0, 1]. For ω → 1, electricity is penalized,
e.g., purchased from fossil-based power plant facilities, whereas
ω→ 0 assumes carbon-free in-house electricity production. The
resulting MILP problems are solved for extreme-value scenarios:
objective (A) for ω = 1 and objective (B) for ω = 0.
Results show that the higher total power demand with (B)
with respect to (A) is compensated by the predominance of
electricity demand, up to 97%, possibly increasing after heat
integration. Furthermore, topological configurations with (B)
include two reactors for any syngas application, EL and POX,
whereas interaction among EL, SR, TRI, and DR result in (A).
Forcing the plant complexity toward a single reactor would
therefore increase the total energy values. Surplus bio-CH4 can
relieve the demand for external fossil-based fuel, especially for
downstream applications requiring low syngas ratios.

Membranes and adsorption-based separators prevail over
absorption and scrubbing methods. Cryogenics possibly result
with (B). For CO2 as feedstock, the combination of EL, RWGS,
and DAC enhances the total power requirements even though the
electricity demand prevails over thermal inputs.

Assuming that proper storage strategies to face the
intermittent nature of renewable resources are available,
such as batteries for electricity and biogas buffer tanks,
process configuration favoring electricity over thermal
inputs are preferable for applications requiring high
syngas ratios, suggesting the implementation of POX
in conjunction with EL. On the contrary, for low
ratios, surplus bio-CH4 can be utilized to mitigate the
thermal power requirements for DR, resulting with (A).
Nevertheless, in case the effect of coking in DR were
mitigated by introduction of oxygen (oxy-DR), the energy
demand is expected to increase substantially due to the
introduction of EL.

The possibility of a severe drop in biogas availability over the
long-term suggests the implementation of reverse water-gas-shift
to allow for operations based on CO2 as feedstock.
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