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Abstract

In this article we consider a feedback control approach for a linear parabolic equa-
tion using a Model Predictive Control (MPC) framework. Each iteration of the MPC
algorithm considers an open loop problem. Here, we propose the use of time adaptive
strategies based on a-posteriori error estimations for the residual of an elliptic equation,
which is equivalent to the optimality system. The aim is to: (i) improve the accuracy
and efficiency of the method, (ii) compute the prediction horizon and (iii) determine an
adaptive temporal discretization which is related to the optimal solution. Numerical
tests are carried out and show the advantages of our approach.

1 Introduction

Optimization with PDE constraints is a fundamental topic due to its large requests in many
applications like e.g. engineering, medical science, economical and industrial issues etc. Many
techniques have been developed in the last decades using, mainly, two different approaches
such as open and closed loop to compute the optimal control. The first one is based on
the Pontryagin’s maximum principle and/or Lagrange techniques and provides a control as
function of time for unsteady problems. This has been successfully applied to many problem
settings for ordinary and partial differential equations and we refer to the monograph [18]
for a general overview.

The second approach is based on the dynamic programming principle and provides a
control in closed form as a function of the current state. Its aim is the possibility to realize a
control which depends on the position of the system and the ability to react to perturbations
due to e.g. external influences or errors in the measurements. Clearly, it has a major advan-
tage in applications. This idea goes back to Bellman in late ’50 through the solution of an
Hamilton-Jacobi-Bellman (HJB) equation. However, this equation does not admit analyti-
cal solutions in many cases and its numerical approximation is rather complicated since it
suffers from the curse of dimensionality. This approach requires the solution of a nonlinear
hyperbolic PDE with a high-dimensional spatial variable when dealing with large systems
such as e.g. PDEs. Although a complete list of works is out of the scopes of this work, we
refer the interested reader to [6] for the detailed mathematical analysis of the problem and
to [II] for the numerical approximation and the references therein. For large-scale problems
with a HJB approach we refer e.g. to [2], 20].

An alternative method to compute feedback control is given by the Model Predictive
Control (MPC) approach. It is based on repeated solutions of open loop optimal control
problems. The first part of the resulting open loop input signal is implemented and the
whole process is repeated successively. This approach is also known as mowving horizon
control or receding horizon control. We refer to the monographs [I3] 23] for more details on
this topic. The prediction horizon plays a crucial role in MPC algorithms. For instance,
the quasi infinite horizon nonlinear MPC (NMPC) allows an efficient formulation of NMPC
while guaranteeing stability and the performances of the closed loop as shown in [8,[19] under
appropriate assumptions. For the purpose of this paper, we will use a different approach
since we will not deal with terminal constraints.

In the present paper, we study the optimal control of a linear time varying parabolic
equation. In linear MPC, linear models are used to predict the system dynamics and consider
linear constraints on the states and inputs. Note that even if the system is linear, the closed
loop dynamics are nonlinear due to the presence of constraints. The novelty of the paper



lies in the inclusion of adaptive concepts for the prediction horizon, which are based on
a-posteriori error estimates for the optimal state solution. The idea of adaptivity in MPC
has been investigated in e.g. [I5] [21] where the authors took advantage of the structure of
the problem using Lyapunov functions and/or the turnpike property. The turnpike property
(see e.g. [24]) is often a key tool to prove asymptotic stability of the MPC method and to
find the minimal prediction horizon (see e.g. [7, 14, 17 22]).

Our method aims to present a general framework for linear quadratic control problems
where the prediction horizon and the time discretization is computed automatically using
an error estimator. Our approach works as follows: in a first step, we rewrite the optimality
conditions as a second order in time and fourth order in space elliptic equation for the state
variable. Introducing an auxiliary variable, we can split this equation into a coupled system
of two second order in space elliptic equations. The advantage of considering a reformulation
of the optimality conditions is, in particular, that we can apply classical concepts from
residual based a-posteriori error control. This allows to construct a suitable time grid for
the state which is related to the optimal state solution. The idea is based on [12], and now
transferred for a mixed formulation where the a-posteriori error estimate is obtained from
a semi-time discrete mixed form. The method assumes that the structure of the temporal
grid is not sensitive against changes in the spatial resolution and verified heuristically by
numerical examples (see [3, [4]). The use of an a-posteriori error estimator leads us to two
different approaches.

1. An adaptive horizon is carried out using the a-posteriori error estimates before starting
the MPC algorithm. We prescribe the number of time instances we want to deal with
and the algorithm determines where to collocate them. Then, choosing the number of
instances we get an adaptive prediction horizon.

2. An adaptive time grid in each subinterval of the MPC method. This way allows to
compute the solution in the most important time instances and to obtain a grid which
is not equidistant.

Those two methods are fully general and applicable without any particular requirements.
We have presented preliminary work towards time adaptivity in MPC together with model
reduction utilizing proper orthogonal decomposition (POD) in talks and posters in various
workshops and conferences, e.g. ICCOPT 2019, FGS 2019. While editing the final version
of our manuscript the work [16] appeared, where goal-oriented adaptation concepts are
proposed to adaptively solve the optimization problems appearing in every step of the MPC
algorithm. However, the a-posteriori concepts proposed there differ from our approach which
relies on residual based a-posteriori error analysis for the elliptic space-time reformulation
of the optimality systems appearing in every step of the MPC algorithm.

The outline of this paper is as follows. In Section [2] we present the optimal control
problem together with the optimality conditions. In Section [3] we describe the reformulation
to a second order in time and fourth order in space elliptic equation as well as a mixed
variational form. Further, we derive an a-posteriori error estimate for a semi-time discrete
form. In Section[d we recall the basic idea of the MPC method. In Section [5], we propose the
novel time adaptive schemes in MPC which are an offline and an online approach. Finally,
numerical tests are discussed in Section [f] and conclusions are made in Section [7

2 Preliminaries and optimal control setting

2.1 Preliminaries

Let Q Cc R™,n € {1,2,3} be an open and bounded domain with Lipschitz boundary 92 and
let T' > 0 be a given end time. The Lebesgue space of square integrable functions is denoted
by L?(2) with inner product (u,v)zz2(q) := [, uvdz and norm ||u|z2(q) = ([, [u(z)|?dz)'/?
for u,v € L*(Q). Further, let H*(Q) defined by

H*(Q) := {u € L*(Q) : u has weak derivatives D’u € L*(Q) for all |3| < k}
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with k£ € No and equipped with the norm ||ul| g ) = (32 5/<k ||D6u|\2LQ(Q)) and

HY(Q) :={u e H*(Q) : D’u =0 on 99 in the sense of traces (|3| < k —1)}.

We use the notation H~1(Q) for the dual space of H{(f2) and denote (-, VH-1(Q),HL(Q) @S
the duality pairing of H~1(Q) with H}(Q). By |- |1 (q) we denote the H'-seminorm given
by |ulpi) = [|Vul|L2(0) for u € Hg(2). We recall that the Poincaré constant is given by
the smallest number ¢, > 0 such that the Poincaré inequality

ullL2(0) < epl|Vull L2y, Yu € HY ()

is fulfilled. Thus, |.|f1 (o) is a norm on Hj(Q) equivalent to the norm ||| g1 (q). For a given
Banach space X, we denote by L2(0,T; X ) the space of square integrable functions from
(0,7) to X with norm |ulz20,7;x) := fo u(t)||%dt)'/?. We define W (0,T; Hi(Q)) :=
{v € L2(0,T; H}(Q)),v; € L*(0,T; H-1(2))}. Note that for a given function g in space-
time, we use the short hand notation g(¢) to indicate the time dependency and drop the
space argument.

2.2 Optimal control problem

In this section, we describe the distributed optimal control problem which we consider
throughout this work. The governing dynamics for the state y are given by a linear parabolic
partial differential equation of the form

y—vAy = f+4u in (0,7] x £,
y = 0 on [0,T] x 09, (1)
y(0) = wo in Q,

where v > 0 is a given constant, f is a given source term and yq is a given initial state. The
function u will in the following act as the control.

The weak form of reads as follows: for given f € L2(0,T;9Q), yo € L*(Q2) and u €
L2(0,T;Q), find a state y € W(0,T; H}(Q)) satisfying y(0) = yo such that

(), 0hms 0 i+ [ V0(t)- oda = [ (50 +u(®)vda @)

holds for all v € Hg(£2) and almost everywhere in (0,7]. For existence of a unique solution
to (2), we refer to e.g. [10, §7.1.2, Theorems 3 and 4].

We consider the minimization of the following cost functional

:AewwmwMu 3)

where ¢ has a tracking-type structure of the form

(y(t), u(®)) = y(t) — va(®) ey + S0

with given desired state yq € L?(0,T;Q) and given regularization parameter a > 0. Then,
the optimal control problem can be formulated as

i J(y, t. tisfies (2)) for v € L2(0,T;Q). 4
(y,u)GW(O,T;Ir%l(rfll))><L2(O,T;Q) (y,u) s y satisfies or U ( ) (4)

Under these settings the optimal control problem (4)) admits a unique solution u € L?(0,T; Q)
with associated state y € W (0,T; H} (£2)), see e.g. [18].



We indicate through the index of the weak solution y, ¢, 4, to its dependency on a
given control u, initial time ¢o and initial value yo. This allows to introduce a reduced cost
functional J defined by

T
T, to, o) = /t Wt (£, (D))t (5)

Thus, the optimal control problem can be formulated as

i J(u,t . 6
werB e T 10 90) ©)

with ¢ty = 0. Following the standard Lagrange technique, the optimality system associated
with the optimal control problem (@ is given by the following equations understood in a
weak sense: the state equation together with the adjoint equation

—pr—vAp = y—ya n[0,T)xQ,
p = 0 on [0,7] x 99, (7
p(T) = 0 in €,
and the optimality condition
au+p=0 in [0,7] x . (8)

For the next chapter, we will need the following higher regularity results for the weak
solution of (L)) and (7)), respectively.

Lemma 2.1 (Higher regularity [10]). (i) Let yo € H}(Q) and let f, u, ya € L?(0,T;Q).
Then, according to [10, §7.1.3. Theorem 5] the weak solution y of and the weak solution
p of (7)) fulfill y,p € L?(0,T; H*(Q)) N L>(0,T; H}(2)) N HY(0,T; L*(Q)).

(ii) Let yo € HL(Q) N H3(Q) and f,u,yq € L?(0,T; H*(Q)) N HY(0,T; L*(Q)). Further,
let the compatibility assumption (u + £)(0) + vAyy € HE(Q) hold true. Then according to
[10, §7.1.3. Theorem 6] the weak solution y of and the weak solution p of fulfill
y,p € L2(0,T; H*()) N H(0,T; H?(Q)) N H?(0,T; L*(Q)).

3 Reformulation of the optimality system and time adap-
tivity
3.1 Reformulation of the optimality system

Following along the lines of [12], we can reformulate the optimality system —@— as an
elliptic equation of fourth order in space and second order in time involving only the state
variable y. The adjoint state p as well as the control u are not present in this equation. In
particular, it is a two-point boundary value problem in space-time given by

—yu + V0% + Ly = Lyi—fi—vAf i (0,T)xQ,
y = 0 on [0,7T] x 09,
vAy = —f on [0,7] x 09, (9)
(- vAy) (T) = F(T) in 0
W) = in 0

We note that for v = 1 and f = 0 this setting coincides with the setting considered in
[12]. Under higher regularity assumptions on the data, the following theorem shows that
the optimal state y of -@— fulfills the elliptic equation @ a.e. in space-time.

Theorem 3.1. Let (y,u) € W(0,T; H}(Q)) x L*(0,T;9Q) with associated adjoint p €
W(0,T; Hi () denote the unique weak solution to —@—. Further, let the assump-
tions of Lemma [2.1)(ii) be fulfilled. Then, y satisfies (9) a.e. in space-time.



Proof. The proof follows along the lines of the proof of [I2, Theorem 2.7] and uses differen-
tiation and insertion of the equations ——. O

Let us homogenize @[) For this, let g be a function which fulfills the boundary conditions
as well as initial and end time conditions of @D and is sufficiently smooth. Let y satisfy @D
We define § := y — g and arrive at

—Ju+ 1A%+ 15 = g4 in(0,7)xQ,
g = 0 on [0,T] x 092,
vAg = 0 on [0,T] x 092, (10)
(G —vAY(T) = 0 inQ,
g(0) = 0 in Q,
where
- 1 2 A9 1
Yd ‘= ayd—ft—VAf-l-gtt—uAg—ag. (11)

Now, let us derive a weak formulation of . For this purpose we introduce the function
space
H0271(07T;Q) = {1} € H>'(0,T;9) : v(0) = 0 in 9}7

where
H*Y(0,T;9Q) := L*(0,T; H*(Q) N Hy(Q)) N HY(0, T; L*(Q)).

It is equipped with the norm

/2
(vl z2100,1:0) == (||U|\2L2(0,T;H2(Q)) + ||U||§11(0,T;L2(Q))) :
We introduce the following symmetric bilinear form

A:HY'(0,T;9) x HY'(0,T;Q) — R,
T 1
A(vy,v9) = / / ((’Ul)t(ﬂg)t + 2 Av Avs + am@) dxdt +/ vV (T)Vua(T)dx,
o Ja Q

and linear form .
L:H'N0,T;Q) - R, L(v) ::/ /diu dxdt
where ¢4 is defined in . 0
Definition 3.1. (Weak formulation) The weak formulation of equation s given by:
find g € Hg’l(O,T; Q) which satisfies
A(g,v) = L(v) Vv e Hy'(0,T;Q). (12)

Existence of a solution to and its relation to a solution to @ is shown in the following
theorem.

Theorem 3.2. Let y denote a solution to (9) and let g be a function which fulfills the
boundary, initial and end time conditions in and is sufficiently smooth. Then, § =y —g
is a solution to . On the other hand, if § is a solution to and the assumptions of
Lemma (zz) are fulfilled, then y = § + g satisfies (@ a.e. in space-time.

Proof. Assume y is a solution to @D By Green’s formula and integration by parts it is
straight forward to prove that § = y — g satisfies . The other direction follows vice
versa. O

In order to show equivalence of the optimal control problem to the weak formulation
of @D it remains to prove uniqueness of a solution.

Theorem 3.3. The solution y to (12)) is unique.

Proof. The proof follows along the lines of the proof of [12, Theorem 2.6] and uses Lax-
Milgram Lemma (see e.g. [10, §6.2.1, Theorem 1]). O



3.2 Mixed formulation

In order to use piecewise linear, continuous finite elements for discretization and avoid
the construction of finite element subspaces in H?(£2), we introduce an auxiliary variable
W := —vAg. This allows to write (10 as a coupled system in § and w as

—Yre — VAW + ég = Ja in(0,T)x 8,
vVAj+w = 0 in (0,T) x Q,
g = 0 onl0,T]x 09, (13)
w = 0 onl0,T] x 09,
G —vAD(T) = 0 inQ
g(0) = 0 inQ.

We introduce the function spaces Y := {v € H'(0,T; H}(Q)) : v(0) = 0 in Q} and W :=
L2(0,T; H}(Q)) and the product space X := Y x W. Let us define the following bilinear
form

Ay X x X >R,

T
1
AM((g, ”Lb), (’Ul, 1)2)) = / / yt(vl)t + vVawVu, + aﬂvl — VVQVUQ + Wuodxdt
0 Q
+ / vVi(T)Vu (T)dx
Q

and linear form

T
L]\/[ X — R, LM(Ul,'UQ) = / / gdvldl‘dt.
0 Q

Definition 3.2. The weak formulation of the mized formulation is given by: find
(g, w) € X which satisfies

A]w((g,’lf)), (01,1}2)) = LM(’Ul,UQ) V(’Ul,vg) e X. (14)

By analogy with Theorem [3.2] and Theorem [3.3]it can be shown that the mixed varia-
tional form admits at most one solution and that the pair (g, w) with ¢ denoting the
unique solution to and @ := —vAg is a solution to the mixed variational form .
This means that the unique solution to defines the solution to the mixed variational

form .

Note that it is

r 1
Al () = [ [+ 207+ wPdedr s [ o y(D)Pda.
0 Q Q

For this reason, we define an energy norm associated with the bilinear form A, by

T 1 1/2
[ (y, w)]|] == (/ /y§+y2+w2dxdt> .
0 JQ o

3.3 A-posteriori error estimate for the semi-time discrete mixed
form

Let us now consider a semi-time discretization of with respect to y while the variable
w is kept continuous. We introduce a time grid 0 = tg < t; < --- < t,,, =T with m € N,
time step sizes At; = t; — t;—1 and time intervals I; = (t;_1,¢;] for i = 1,...,m. The time
discrete space V* is defined by

VE={veC®0,T;H (Q)) :v

I € PP(IZ)}v

where P, denotes the space of polynomials of degree up to p. We set YF:=VknY.



Definition 3.3. (Semi-time discrete mized form) The semi-time discrete mized variational
form reads as: find (§*,w*) € Y* x W such that

AM((gk,’LZ}k)7 (’Ul,’UQ)) = LM(Ul,’UQ) V(’Ul,vg) S Yk x W. (15)

With arguments similar to those used for we may show that problem admits a
unique solution.
Let us now derive a residual based error estimate for the semi-time discrete mixed form

(T5). We associate with (7*,@w*) the residuals R¥ € Y* and R € W* by

1
1)1 / / FJavr — (§7)¢(v1) — vVFVo, — —y ko drdt 7/ Vngk(T)Vvl(T)da: (16)

Q

and

T
RE(v) = / / vV Vo, — i vadadt. (17)
0 Ja

Next, we derive L2-representations of RY and R} by elementwise integration by parts

Ri(v) = i / / {gd + (§) e + vADF — ;yk} vy dadt
/ {=(@)e(T) + vAF*(T) } v (T)dz

and -
R (vg) = Z/ / {—vAGF — 0"} vodadt.
i=171i /Q
The residual R¥ fulfills the Galerkin orthogonality
RY(v)) =0 Vv €Y" (18)

and it further holds true
(v2) =0 VYuy € W. (19)
k

w*) € Y* x W it holds for all (vy,v5) € Y* x W:

AM((g_gk’w_wk)v(UhUQ)) = AM((ng)7(U17U2))_A ((gkawk)’(vl”l]?))
= La(vi,v2) — Ap (5%, @%), (v1,02))  =0.

Rk
Ry
Moreover, for (g,w) € Y x W and (3",

Further, the residual equation holds true for all (vy,v2) € Y x W:
Ap((§— 95,0 —a"), (v1,v2)) = Ri(vi) + R5(v2) = Ri(v), (20)

where the last step follows from . Now, we are in the position to derive a temporal resid-
ual based a-posteriori error estimate for the semi-time discrete mixed variational formulation

().

Theorem 3.4. Let (7, 111) € X denote the solution to and let (g%, wF) € Y x W
denote the solution to . Then, the following residual based a- posterwrz error estimate
holds true:

(g — aM)[]? < O, (21)
with a constant C' > 0 and

:iﬁéw

1 2
0% |G+ (7 ) +vAD* — ~*| dudt. (22)




Proof. We combine together with . Let for v; € Y be IFv; the approximation
to vy from Y*. Then, it is

AM((:&_gk7w—wk)7(U1’02)) Rk(Ul Bk/vl)

3 / / P (o — Ton)dedt + / rE alvn — Thoy) (T)d,
i=1 /1 JQ Q

where we use the notation 7§ ;.. := g4 + (§")t + vAD* — Zg* and rfend = —(§%)(T) +
vAj*(T). Note that the last summand vanishes at the interpolation point ¢ = 7. We can
estimate using Cauchy-Schwarz

|Ap (5 — 5, @ — @%), (01, 02))] < /Q (Z 1Y il 2oy o1 = Ix’ﬁmllwui)) dz.
i=1

Next, using standard interpolation properties (see e.g. [I, Theorem 1.7]), we arrive at

[An((§ = §*, @ — @), (v1,02))] < / (Z 75 inell 222y e Ati|le1(ii)> dz,
where I; denotes the set of intervals which share a vertex with I;. We recall that |.| g1 denotes

the H'-seminorm. Together with the Cauchy-Schwarz inequality for sums, we arrive at

|AM((g_gk7w_mk)v(vlaUQ)” 1/2 1/2
< 01/Q (Z ||T]f,int%2(1i)(Ati>2> (Z Ulﬁ{l(ﬁ-)) dx
T 2 7 (23)
< 62/ (Z ||7“'f,mt%2(zi)(Ati)2> v1] 1 0,1y de

/2
<c (/Q 3 kel (A1) dx> ([ 1toame)
i=1

where we use Holder’s inequality in the last step. We note that

1/2 1/2
([ 1018 y00) (/ [ o2 v1+v2dxdt> — Il w2l

In we choose vy := § — §* and vy := W — w* and denote e := (§ — §*,w — w*), which

leads to
m 1/2
[An(e.e)] < e2 (/Q > |T]1€,z'nt||2L2(Iz')(Ati)2dm> [lle]]-
i=1

By the definition of the energy norm ||| - |||, it follows Aps(e,e) > |||e|||* which yields the
a-posteriori error estimate

llell < © ( L lr’f,m||iw<mi>2dz> . O
i=1

Remark 3.1 (Adaptive cycle). In order to construct an adaptive time grid, we follow the
standard

solve — estimate — mark — refine

cycle. In practice, we solve using space-time finite elements. Then, the error in each
time interval is estimated using . The intervals with the largest errors are marked using
the Dorfler marking strategy [9]. For refinement, we perform a bisection of the marked
intervals. We iterate this loop until the time grid has a prescribed number of time instances.



Remark 3.2 (Heuristic assumption). Note that we derived an error estimate for a
time discrete formulation in y whereas w is kept continuous. In practice, we solve a fully
space-time discrete mized variational formulation, but still use the error estimate for the
semi-time discrete form to construct an adaptive time grid. For this, we assume that the
temporal discretization of y* is insensitive with respect to the spatial discretization. In fact,
numerical studies in [3, [{)] show that temporal and spatial discretization decouple for the
considered problem settings. In addition, we also assume that a temporal discretization of
wk does not strongly influence the error estimate. Of course, these heuristic assumptions
might not hold in general. For this reason, we will in future research derive a-posteriori
error estimates for a fully space-time discrete mized variational form.

With the help of , we are able to refine the time grid by means of the residual of the
system ([13)). This property will constitute a building block in the Model Predictive Control
(MPC) framework as discussed in the next Sections and [6]

3.4 State equation with depletion term

Let us now consider an optimal control problem of the form , where an additional deple-
tion term in the state equation appears as

ye—vAy—py = f+u in (0,7 xQ,
y = 0 on [0,T] x 09, (24)
y(0) = o in Q,

with g > 0. The reformulation of the associated optimality system into an elliptic equation
and an associated mixed formulation, respectively, follows along the lines of Sections[3.1]and
In particular, the mixed formulation reads as

—Ju —vAD+2vpAG+ (2 + )5 = §¢ in(0,T)xQ,
vVAj+w = 0 in (0,T) x Q,
g = 0 on[0,T] x99,
& = 0 onl0,T] x99, (25)
(G —vAy—py)(T) = 0  inQ,
g(0) = 0 in Q.

Let us define the bilinear form
A X x X = R,

o T . _ 1 _
Ay (o). Cone) = [ [ (o +v9V0r = 29590 + (242 ) i
0

—vV§Vug + wvedadt) + / vV§(T)Vur (T) — ug(T)v, (T)dz
Q

and linear form

T
L, X - R, LK (v1,v9) :/ / Jquidzdt
0o Jo

where §q := yg — fr —VAf — pf + g — v?A%9 — 20pAg — (£ + p?)g.
Definition 3.4. The weak formulation of the mized formulation s gwen by: find
(g, w) € X which satisfies
ANM((ﬂ,?D)a (v1,v2)) = Ll](4(7117'02) V(vy,v2) € X. (26)
The semi-discrete mixed variational formulation then reads as
AR (7, 0"), (v1,02)) = Lhy(v1,09)  V(v1,09) € Y X W. (27)

With similar arguments as in the previous sections, one can show existence of a unique
solution of the involved equations provided sufficient regularity of the data.
In analogy to Theorem we can derive a temporal residual based a-posteriori error

estimate for .



Theorem 3.5. Let (g, w) € X denote the solution to and let (§*,wF) € Y* x W denote
the solution to , Further, let p < V/cf), where ¢, denotes the Poincaré constant. Then,
the following residual based a-posteriori error estimate holds true:

(G —§*, @ —a")||]> < Cn?, (28)

with a constant C' > 0 and

fiALmW

Proof. The proof follows along the lines of the proof of Theorem Note that it holds

2
dedt.  (29)

~ ~ - ~ 1 _
Ya + (yk)tt + vAGF — QVuAyk — <a + Mz) i*

T 1
AL (g, w), (7, ) = / / 72 — 2uu| Vg2 + (a + ;ﬁ) 7 + widrdt+
0 Q
+AvWﬂﬂP—MﬂﬂFw~ (30)

Using Green’s formula, the definition of w and Young’s inequality, we can estimate the
second summand in (30) by

T T T
/ / —2up|ViPdedt = / / 2pAG § drdt = / / —2u10y dadt
0 Q 0 Q 0 Q

T T 1
z/ / —2ulw@| |g| dzdt 2/ / —451% 5% — —? dwdt.
0 Q 0 Q 40

1+ 2apu?

With the choice ¢ :=
Bau?

, it holds that —46p® + L + p* > 0 and —45 +1 > 0.

Using the Poincaré inequality, we can estimate the last term in by

[ VU = sl = (5 =) o

p

with Poincaré constant ¢,. If 4 < v/c2, then / vIVy(T)|? = ply(T)[?dz > 0. Thus, for
Q

w< y/cf) it holds that
AL ((5,), (5,@)) > (]|, )] [>-

With this, the a-posteriori error estimate follows in analogy to Theorem O

4 Model predictive control

In this section, we recall the MPC method to solve the optimal control problem . For
a comprehensive study we refer to e.g. [13 23]. The basic idea of the MPC approach is to
split the (large) time horizon [0,7] of the optimal control problem into a sequence of
smaller time intervals and solve corresponding open loop control problems which allows to
compute a state feedback law.

Let us first focus on a uniform time grid 0 = tg < t; < -+ < t, := T with fixed time
step size At = T'/m. In Section |5, we will propose a time adaptive method. Let us define a
time domain with small time horizon as [t;,t] for i = 0,...,m — 1, where 1 < N <m + 1
is a chosen positive natural number such that ¢t :=t; + (N — 1)At. We denote the length
of the prediction horizon by T, i.e. tN —t; = T = (N — 1)At. In this section and in the
sequel, N denotes the number of time instances in each subinterval and T the size of the
subinterval. Those values might not be constant as we will see in the next section.

The reduced cost functional over the domain [t;, Y] x Q which is considered in the i-th
iteration of the MPC algorithm for ¢ = 0,...,m — 1 reads as follows:

N
t;

N (u, 5, 1) ::/ Wty (B, u())dt, i =0, m — 1. (31)

ti
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Then, the open loop control problem in each level of the MPC method is

min ~ JN(u,t;,y), i=0,...,m—1. (32)
ueL?(t,tN;Q)

The MPC method works as follows. We start by solving the optimal control problem
in [to, ] x Q and we store the optimal control u’¥ on the first subinterval [to,to + At]
together with the associated optimal state trajectory. Then, we start a new finite horizon
optimal control problem on the shifted time horizon [t;,t)] with ¢; = tq + At where the
initial condition y; is given by the optimal trajectory yp,~ 4, ,](t) at t = to + At using the
optimal control u” (¢) for t € (to,to+ At]. We store the feedback map ¢~ which is defined as
</>N(y[uN,to,y0] (t)) := u™ (t). We iterate this process. Note that is an open loop problem
on a finite time horizon [t;,¢}¥] for i = 0,...,m — 1 which can be treated numerically by
classical techniques, as in e.g. [I8]. The Algorithm [I| summarizes the MPC technique for an
equidistant time stepping At and a fixed time horizon N.

Algorithm 1 Model predictive control (MPC)

Require: Number of degrees of freedom in time m, finite horizon N € N, initial condition
Yo, desired state yq4, source f, space domain 2, time domain [0, 7], constants v, u, a.
Set to =0.
for i =0,1,2,...,m—1do
Compute the optimal control over [t;,tN] with ¥ =t; + (N — 1)At, solving

(3

N . FN
u = ar min JV (u, b, y)- 33
I, (u,ti,yi) (33)

Define the MPC feedback value ¢V (i, 4, .1 (1)) := uN (£), t € (t;,t; + At].
Compute the associated state y~ = YN t,,y:] (t) Dy solving on (t;,t; + At].
Set yir1 =y (t; + At) and t; = t; + At.

end for

In general, it is well-known that the larger the prediction horizon, the better the feedback
law one can obtain, see e.g. [13]. However, one is interested in short prediction horizons to
minimize the computational cost of the method (or even horizon of minimal length) while
guaranteeing certain properties of the MPC scheme such as e.g. stability of the method. The
computation of this minimal horizon is related to a relaxed dynamic programmic principle
(see [13], Chapter 6]).

5 Time adaptivity in MPC

In this section, we propose time adaptive techniques within MPC. In Algorithm [I] we have to
choose a-priori the prediction horizon and the number of degrees of freedom in each temporal
subinterval. Here, we would like to reply to the following question:

How to choose a suitable time discretization for the prediction horizon in each level of the
MPC?

We aim at computing the temporal discretization to identify the important dynamical
structures according to the optimization goal. We will propose adaptive strategies which
avoid very small uniform temporal discretizations and realize an efficient implementation.
The proposed approaches will lead to adaptive time discretizations which are related to the
optimal state.

Therefore, we propose different approaches to combine the computation of an adaptive time
grid using the a-posteriori estimate provided in Section [3.3] within a MPC framework. The
idea of adaptivity leads to different combinations using the error estimate . Here, we
will deal with (i) an adaptive length of the horizon where the time discretization is com-
puted a-priori (offline approach) and with (ii) an adaptive grid in each subinterval for a fixed
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prediction horizon where the time discretization is computed on the fly (online approach).
For a different adaptive concept based on goal-oriented adaptivity, see the recent work [16].

(1) Offline approach: Compute an adaptive time grid a-priori before starting the
MPC We compute an adaptive time grid {¢; ;Z‘EN ~1 according to , which provides a
suitable time grid tailored for the optimal state. Note that the final time is t,,, = T', whereas
tm+nN—1 is the last time instance necessary to compute the feedback control at time ¢,,. Un-
der the heuristic assumptions of Remark we will use a very coarse spatial mesh to solve
adaptively in time for the whole time domain before we start the MPC procedure. The
advantage of using a coarse spatial resolution is that the construction of an adaptive time
grid is computationally very cheap. Moreover, the resulting adaptive time grid is related
to the optimal state of the original control problem which in general is our target in MPC.
This grid is then used as the time grid in a MPC framework as shown in Figure |1} where we
use a chosen number of time instances N in the subintervals [¢;, ;1 y_1] fori =0,...,m—1.
Note that this procedure allows prediction horizons with different lengths ;4 n_1 —t; = T;.
Note that in tracking MPC the desired state y4 frequently stems from an open loop optimal
control problem. This further justifies the offline approach, since the grid well represents y .
The approach is summarized below in Algorithm

shifted prediction horizon

tit1 tis N
L [ LLLL 1 Ll '] L [
| | | | | TrEna L LB | | | n_
to =0 b by by = 1T
I

prediction horizon

Figure 1: Scheme of the offline approach: For a given number of time instances N we
compute on a prescribed adaptive grid the MPC subproblem in the interval [t;, ;4 n—1].

Algorithm 2 Model predictive control (MPC) with offline adaptive grid
Require: Number of degrees of freedom in time m, finite horizon N € N, initial condition
Yo, desired state yg4, source f, space domain €, time domain [0,7T], constants v, p, a,
tmen—1 > T.
Compute an adaptive time grid {ti}?l'gN_l using with tg = 0,t,,, =T
for:=0,1,2,...,m—1do
Compute the optimal control over [t;,¢;+n—1] solving

N . *N
u' = ar min I (u, t5,Y5). 34
gu€L2(ti,ti+N71§Q) ( Y ) ( )

Define the MPC feedback value ¢V (i, 1, .1 () = u™ (), t € (£, tiya].
Compute the associated state y~ = YN ¢,y (t) Dy solving on (t;,tiy1].

Set yir1 =y~ (tir)-
end for

(2) Online approach: Compute an adaptive time grid for each time horizon in
the MPC iteration For a given prediction interval [t§,t%; ] at each MPC iteration i,
we make use of the a-posteriori error estimation for the state to compute an adaptive
time grid within the current time horizon. Note that tJ := 0 is the initial time. The scheme

is visualized in Figure [2]
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shifted prediction horizon

I

prediction horizon

Figure 2: Scheme of the online approach: The blue color refers to the grid at iteration 4
starting at time ¢} till ¢4, whereas the red color refers to the next MPC level i+ 1. We note
that the only guaranteed overlap of the time grids is for second time instance at iteration ¢
which corresponds to the first time instance at iteration 7 + 1.

For a given number of degrees of freedom N the algorithm distributes the time instances
according to the error estimation in subintervals of the same length t& |, —t) = T.
The resulting adaptive time grid in each iteration level i is related to the optimal state of
a corresponding open loop problem. Again, we assume that the heuristic assumptions of
Remark hold true which enables an efficient computation. The approach is summarized
below in Algorithm

Algorithm 3 Model predictive control (MPC) with online adaptive grid

Require: Number of time instances in each subinterval N, prediction horizon T, initial
condition yg, desired state yq, source f, space domain 2, time domain [0,7], constants
I/’ /"L’ .

Set t) = 0,y) = yo and i = 0.
while t}, < T do B
Compute an adaptive grid {t; }j.v:_ol in [‘B,tﬁvfl := t§ + T using (28).
Compute the optimal control over [t}, t%y_,] solving
N

u' = ar min IN (u, 5 i), 35
gu€L2(t6,t§V_1;Q) ( ’ 07?/0) ( )

Define the MPC feedback value ¢N(y[uN7t6,y6] () =uN(t), t € (th,t].
Compute the associated state y¥ = YigN 13,43 (1) Dy solving on (t§,t].
Set tit =1}, yitt == yN (i), i i+ 1

end while

Remark 5.1 (Warm start). In order to make computations even more efficient, the in-
formation of the previous MPC iteration can be used as a warm start for the next MPC
iteration. In particular, after a coarsening step of the previous adaptive time grid, this grid
can be used as an initial adaptive time grid for the next prediction horizon. Furthermore, to
improve the inner open-loop solver in each iteration one can use as initial control the one
computed at the previous step.

Remark 5.2 (Comparison of the two approaches). The two proposed approaches have dif-
ferent features. The offline approach computes the temporal grid before the MPC' procedure
begins. For this reason, the error estimate s used in an adaptive cycle for the original
optimal control problem. The online approach, however, computes an adaptive time grid at
each MPC iteration for, eventually, small temporal domains. This means that the error es-
timate is used in an adaptive cycle for each open loop MPC subproblem. Those approaches,
i general, lead to different grids. The offline method provides an adaptive subinterval; the
size changes according to the error estimator, whereas the online approach has a fized size
for the subinterval but it provides different time instances.
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6 Numerical example

In the following numerical tests, we compare the different adaptive time schemes within
MPC proposed in Section [l We will investigate numerically the influence of the time grid
on the approximation quality of the MPC methods. In particular, we compare Algorithms
Bl and Bl

In all numerical examples, the considered spatial domain is the open interval Q = (0, 1)
and the temporal domain is [0, 7] = [0, 1]. In order to solve the mixed form (25, we introduce
a partitioning of the space-time domain into regular orthotopes and use Q; space-time finite
elements for discretization, where QQ; is the space of polynomials of separate degree up to 1.
We solve the equation with a direct solver using a coarse spatial resolution of Az = 1/5.
For the solution of the MPC open loop subproblems, we use an implicit Euler scheme for
the temporal discretization and use P; finite elements for the spatial discretization. The
optimal control problem is solved with a direct solver. We take as fine spatial resolution an
equidistant discretization with Az = 1/100. All coding is done in MATLAB R2019a.

6.1 Test 1: Solution with a layer at ¢t = 0.5

In this numerical test, we consider the optimal control of (1). The setting for this test
example is taken from [I2], Example 5.2], with the following choices: v =1 in and o =1
in . The example is built such that the exact optimal solution (y,u) to @ is given by

y(t,x) = sin(rx)atan((t — 1/2)/e), wu(t,z) = —sin(7wx) sin(nt).

The initial condition is yo(z) = sin(wx)atan(—1/(2¢)). The functions f and yg are chosen
accordingly as

f(t,z) = sin(rz) (¢/(t> — t + > + 1/4) + w*atan((t — 1/2)/(e)) + sin(rt))
ya(t,z) = sin(rz) (atan((t — 1/2)/(e)) + 7 cos(wt) — 7> sin(rt)) .

For small values of € (we use ¢ = 1073), the state y develops a very steep gradient at ¢t = 0.5,
which can be seen in Figure

Y

Figure 3: Test 1: True optimal state solution

We now compare Algorithms [T} 2] and B] For an exemplary visualization, let us consider
the following choices in Algorithm[2} m = 45, N = 9. For the online approach in Algorithm 3]
we pick T = 0.2, N = 9 as comparison. The adaptive approaches are compared with the
equidistant MPC Algorithm [I| with N = 9,m = 45, i.e. T = 0.2. The numerical state
solutions of the controlled problem with the different MPC approaches are shown in Figure[d]
We can see that the standard MPC Algorithm [I] with equidistant time grid fails whereas
using either of the Algorithms [2] or [3] it is possible to capture the layer at t = 0.5 and the
solutions comply much better with the true state solution

Let us now provide more details about the grids we obtained with the methods proposed.
In the offline approach (Algorithm , the temporal grid is computed before starting the
MPC algorithm. The adaptive grids using a coarse and a fine spatial resolution for solving
are shown, respectively, in the middle and right panel of Figure As already discussed
in [4, 12] and recalled in Remark we observe numerically that the temporal and spatial
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Figure 4: Test 1: MPC state solution y using a uniform time discretization (left), offline
adaptive approach (middle) and online adaptive scheme (right)
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Figure 5: Test 1: Uniform space-time grid with fine spatial resolution (left), offline adaptive
grid with coarse (middle) and fine (right) spatial resolution

resolution decouple and we are able to compute cheaply the temporal grid by means of a
coarse spatial resolution for the solution of .

Examples of the corresponding equidistant and adaptive temporal intervals are compared
in the top and bottom panels of Figure[6] It is clear that the adaptive method refines where
the solution exhibits a steep gradient and, therefore, the solution of the problem will be
better approximated. Furthermore, from the top pictures in Figure [6] it is clear how the
length of the prediction horizon T} is different for each iteration of the MPC method.

The online adaptive grid with a coarse and a fine spatial resolution is shown in the middle
and right panel of Figure [7] Again, we observe that the time adaptivity is very insensitive
with respect to the spatial resolution.

The corresponding adaptive time horizons are shown in the top panels of Figure[§] As a
comparison, the uniform time horizons of the same lengths are shown in the bottom panels
of Figure [§l using the same number of degrees of freedom in each interval. It is clear that the
a-posteriori error estimate leads to a time grid associated with the open loop optimal
state which benefits the accuracy of the control problem.

Finally, we provide an error analysis for the computation of the approximate solutions
using Algorithms and [3] for different choices of degrees of freedom in time and prediction
horizons. For this, we compute the error between the analytical optimal state solution to

and its numerical approximation using the different MPC approaches measured in the
L?(0,T;Q)—norm.

We would like to mention that it is not easy to make a completely fair comparison due to
the differences in the strategies and the influence of the time grid (and prediction horizon)
on the MPC approach.

In Figure [0 we show the error for Algorithms[[]and 2] We fixed an equidistant time grid
in the first case and an adaptive one with the same number of degrees of freedom and we
compare the results for different choices of N. Depending on whether the layer at t = 0.5 is
a time discretization point or not, the approximation quality can differ strongly leading to
the illustrated zig-zag behavior. Since the exact location of the layer is usually not known
a-priorily, an equidistant time grid approach (Algorithm [1)) is easy to fail. Moreover, we
never reach the same level of accuracy of the adaptive grid unless we further increase the
number of degrees of freedom in time. On the other hand, on the right panel of Figure [] we
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Figure 6: Test 1: Adaptive time horizons according to the offline approach (top), uniform
time horizons according to the standard MPC approach (bottom), MPC iteration levels
i =5 (left), i = 30 (middle), i = 35 (right)

Figure 7: Test 1: Uniform space-time grid with fine spatial resolution (left), online adaptive
grid with coarse (middle) and fine (right) spatial resolution
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Figure 8: Test 1: Adaptive time horizons according to the online approach (top), uniform
time horizons according to the standard MPC approach (bottom), MPC iteration levels
i = 13 (left), i = 15 (middle), ¢ = 24 (right)
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see how the solution converges increasing the number of degrees of freedom. As expected
the larger the prediction horizon the better the approximation.
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Figure 9: Test 1: L?—error for the offline approach with equidistant (left) and adaptive
(right) time grid

In Figure[10| we compare the computational time (measured in seconds) for Algorithms
and 2] Note that the elapsed time for the offline adaptive MPC approach also includes the
computational time to generate the adaptive grid. As one can see the times are comparable.
Without any doubts we can conclude that the offline approach with an adaptive prediction
horizon leads to faster and more accurate results than using an equidistant grid.

—N=3

——N=6

0.8 0.8 N=9
0.6 0.6
0.4 0.4
02% 02
0 0

20 40 60 80 100 20 40 60 80 100
Total number dof in time Total number dof in time

Figure 10: Test 1: Computational time in seconds for an offline grid with equidistant (left)
and adaptive (right) time grid

To conclude our comments on the offline approach we show the results of the terms
1y = yall72(07.q) in the top panels and ||UH%2§O,T;Q) in the bottom panels of Figure
comparing the MPC state and control solution for different horizon lengths and degrees o
freedom. As a reference, we provide the values for the terms using the true state and control
solution to the original optimal control problem evaluated on the same meshes (“True”)
and the analytical value which is ||Ytrue — yd||%2(0’T;Q) = 26.8197 and ||utrue||%2(o,T;Q) =
0.25 (“Analytical”). Moreover, Figure [12[ compares the evolution of ||y(t) — yd||2L2(Q) and

[l (?) H%Z(Q) over time comparing the MPC state and control solution with the true solution
evaluated at the given time grid.

In Figure [13| we compare the L2-error for Algorithms [1] and [3l We fixed the prediction
horizon T and modified the choice of the instances in each sub interval using the equidistant
and adaptive method. As one can see, with this approach we need a small prediction
horizon and a large number of time instances to obtain an error of order 10~! with an
equidistant grid whereas the adaptive method provides a more flexible approach for a small
T ={0.1,0.2,0.3,0.4}. Again, we can see a zig-zag phenomena in the case of an equidistant
choice of the grid which further emphasizes the importance of an adaptive method.

In Figure we compare the computational time in seconds of Algorithm [3| using an
equidistant or adaptive time grid including the computational time needed to create the
adaptive time discretization within each MPC iteration.

Clearly, to obtain a more accurate solution it is computationally more expensive but we
also want to remark that the minimum error with the equidistant grid is 0.0872 computed in
25.87s whereas, with the adaptive approach, to get an error of 0.0216 we needed 16.06s. This
shows that our method is more accurate and also more efficient computationally without
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Figure 11: Test 1: Value of the tracking term |y — yd||2L2(O 7:0) (top) and control cost

||u||2L2(0 1.0y (bottom) comparing the MPC solution for different horizon lengths using the
equidistant (left) and offline adaptive approach (right) with the optimal solution

400

60
e N =9 e N =9
—o—True 50 W“"\ ——True
300
40
200 30
20
100 \
‘\ 10
nwi“""” "":H.'llhu-
0 0
0 0.25 05 075 1 0 0.25 05 075 1
t t
1.4 05
—o—N=9 ™ —e—N=9
1.2 —o—True —o—True
04 \
1
08 03
06 LU 02
0.4 Wt TN T
1 ™
02 o ™ 01
. o
! Y / \U \
0
0 0.25 05 075 1 0 0.25 05 075 1

t

Figure 12: Test 1: Value of the tracking term ||y(t) — yd(t)||%2(9) (top) and control cost

[lu(t) H%Z(Q) (bottom) comparing the MPC solution for m = 45, N = 9 using the equidistant
(left) and offline adaptive approach (right); the vertical lines indicate the utilized time grid
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Figure 13: Test 1: L?—error for an online approach with equidistant (left) and adaptive
(right) time grid
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any a-priori knowledge of the control problem.
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Figure 14: Test 1: Computational time in seconds for the online approach with equidistant
(left) and adaptive (right) time grid.

6.2 Test 2: State equation with depletion term

In this numerical test, we consider the optimal control of with g > 0. The regularization
parameter in the cost is chosen as o = 1 and the desired state is given by

ya(t, x) = 10sin(rz)exp(—((t — 0.5)/e)?) — x(x — 1) — 2v(t — 1) — pa(z — 1)(t — 1).
The initial condition for the state is
yo(x) = 10sin(mz)exp(—1/(4e?))

and the source term in the state equation is chosen in order to get as exact optimal solution
(y,u) for the original control problem:

y(x,t) = 10sin(rz)exp(—((t — 0.5)/e)?), u(z,t) = x(x — 1)(t — 1).

Let us note that the Poincaré constant c, and the first eigenvalue A; of the Laplace-Dirichlet
operator are related by A\; = 1/¢ (see e.g [5, Proposition 8.4.3]). For Q = (0,1), the first
eigenvalue \; of the Laplace-Dirichlet operator is given by A\; = 72 (see e.g. [5, Proposition
8.5.2]). Then, since Theorem is applicable if pu < u/ci, for this setting it requires
p < 0.1-72. In our numerical simulation we set v = 0.1, x = 3, = 10~2. Thus, we show
the unstable case for p = 3 which should not hold according to our theoretical findings.
Nevertheless, the numerical results under this configuration provide accurate results, very
similar to a stable case with x4 < va? as required in Theorem

The optimal solution is shown on the left panel of Figure [6.2] As one can see we have
a layer at t = 0.5. Then we show the results of Algorithm [2] choosing N = 5,m = 45 with
an equidistant grid (middle panel of Figure and an adaptive grid (right panel of Figure
. It is easy to see that the adaptive grid catches better the behavior of the optimal
solution.

154 10-
0 5
\::z'f’z%
15 0

Figure 15: Test 2: Optimal state solution (left), MPC solution using an equidistant time
grid (middle), MPC solution with an offline adaptive approach (right).

The grid for this setting is shown in Figure (right) and, as expected, our adaptive
approach refines consistently in a neighborhood of the layer.
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Figure 16: Test 2, u = 3: Equidistant (left) and offline adaptive grid (right) with m =
45, N =5

The quality of our results are also confirmed by the L?—error plots in Figure Under
the settings considered we can see that the error with an equidistant grid is of order, around,
0(10°) whereas with an adaptive grid we can reach O(107!). Clearly decreasing Az we can
improve the accuracy of our approximation.
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Figure 17: Test 2, u = 3: Value of the L?—error for the MPC solution trajectory with
different number of degrees of freedom in the whole time domain [0, 7] and increasing time
horizon lengths; using the offline approach

Finally, we show the error behavior of the online approach in Figure For page
limitation we do not show a complete analysis of the results with Algorithm [3| However,
considerations are very similar to the previous test.

10 20 30 40 50 60 10 20 30 40 50 60
Number dof in time horizon Number dof in time horizon

Figure 18: Test 2, u = 3: Value of the L?—error for the MPC solution trajectory with
different number of degrees of freedom within the prediction horizon and increasing time
horizon lengths; using the online approach

7 Conclusions and Outlook

In this work we have proposed two approaches to generate adaptive time discretization in the
MPC framework. Our approach is fully flexible and relies on a reformulation of the optimal
control problem into a second order in time and fourth order in space equation. Our approach
does not require further assumptions on the control problem. The use of a-posteriori error
estimates to generate the time grid in the MPC method is the important novelty of our
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work. Numerical tests have shown the efficiency of the method for both accuracy and
computational time. We also want to remark that our approach is particularly suitable
when a layer is shown in the solution. Other experiments with mild temporal variations did
not always show a clear difference between equidistant and adaptive grid. We can say that
the offline approach with an adaptive grid did provide slightly better results.

The a-posteriori error indicator delivers an appropriate adaptive time grid even providing
a coarse spatial resolution. In the future we plan to derive an a-posteriori error estimator for
a fully space-time discrete form and to use that indicator for a fully adaptive and automatic
MPC scheme, where the idea is to avoid an a-priori choice of the prediction horizon and/or
the number of degrees of freedom in each sub-iteration. Another goal is to extend these
results to nonlinear control problem and as soon as we increase the dimension of the problem
make use of efficient model reduction techniques, such as POD, to decrease the computational
time.
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