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Abstract

For many decades, rhizosphere bacteria have been studied for their potential to promote crop growth and control certain 
pathogens. Compared to the studies conducted, there are relatively few examples of microbial inoculants based on rhizosphere 
bacteria that have had commercial success, mainly due to the strong competition present in the rhizosphere. In the last twenty 
years, studies on endophytes have multiplied, also and above all as a possible alternative to rhizobacteria, for the development of 
microbial inoculants capable of replacing some agrochemicals and reducing the environmental impact of agronomic management 
of crops. This minireview summarizes the most important characteristics and qualities of endophytic bacteria and describes the 
path that can be followed to identify and deepen the knowledge of candidates suitable for the development of microbial inocu-
lants. The nature of endophytes requires careful isolation methods; the growth promotion potential can be identified by evaluating 

some traits-related phenotypes and metabolic capacities; relations with the host plant and capacity of colonization, the influence 

of the external environment and sensitivity to agronomic practices are pivotal factors in establishing the endophytic population 
in the different parts of the plant. All of this must be taken into consideration in selecting the most promising endophytes for field 

trials.
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Introduction to plant bacterial endophytes 

Rising global population increases demand for food and 
drives the need for improved crop productivity over the next 30 
years. This requires an increase in the current ability of agriculture 
to produce sufficient food to meet demand of providing food 

security and feeding the expanding population using efficient and 

sustainable crops management practices. The yield improvements 
need to be achieved without significant costs increases and still 

maintaining acceptable yields. Thus, crop enhanced productivity is 
needed without significant increases in land, water, or fertilizer use 

as these are all becoming limited and pose additional threats to the 
environment. In this regard, the soil microbial diversity and plant-
microbe associations is considered one of the most researched areas 
to exploit and develop sustainable agriculture production systems. 

In the last ten years many studies have been published regarding 
the endophytic bacterial populations living associated with crops 
such as soybean, maize, sugarcane, wheat and many others. The 
aim of these studies was to identify the bacteria associated to crops 
which were not pathogenic and could have been beneficial, such 

as the Plant Growth Promoting Bacteria (PGPB) and which were 
living inside the plant tissues, such as the endophytes, with the 
purpose of assessing the mechanisms of plant-bacteria interaction 
and the potential beneficial effects of these bacteria on growth and 

health of hosting crops. Among the microorganisms living in close 
associations with plants, the Plant Growth Promoting Bacterial 
Endophytes (PGPBEs) could be more successful in plant growth 
promotion through the combined action of mechanisms enhancing 
the plants growth and protecting them from diseases and abiotic 
stresses [1-4]. Besides the genotypic characterization, the main 
and most important metabolic activities within the plant were 
also investigated, with the purpose of assessing the mechanisms 
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of plant-bacteria interaction and the potential beneficial effects 

of these bacteria on growth and health of hosting crops. In this 
respect the definition of endophytes becomes relevant. The most 

commonly accepted definition for endophytic bacteria, as well as 

fungi, is “Bacteria that are detected from inside surface-disinfected 
plants or extracted from inside plants and have no visibly harmful 
effects on the plants” [5]. The purpose of this minireview is to 
highlight the potential of these endophytes as plant growth 
promoting bacteria to be used to improve crop production in a 
sustainable agronomic management system.

Isolation and biodiversity of bacterial endophytes

Although the list of isolated endophytes from crop plants is 
considerable, the most studied and most predominant endophytes 
belong to the three major phyla (Actinobacteria, Proteobacteria and 
Firmicutes) and the most commonly found genera are Azoarcus 
[6], Acetobacter (renamed as Gluconobacter) [7], Bacillus 
[8], Enterobacter [9], Burkholderia [10], Herbaspirillum [11], 
Pseudomonas and Serratia [9], Stenotrophomonas, Micrococcus, 
Pantoea, Microbacterium and Streptomyces [12]. Species of 
these genera are ubiquitous in soil/rhizosphere and this is not a 
coincidence since soil and rhizosphere represent the main sources 
of endophytic colonizers [5,13-18]. All of these genera, described 
as bacterial endophytes, are also common inhabitants of the 
rhizosphere. Therefore, it has been suggested that the endophyte 
microbiome may be a subpopulation of the rhizosphere inhabiting 
bacteria [17,19,20].

PGPBEs have extended colonization on the host plant organs 
and tissues which reflects the ability of bacteria to selectively adapt 

to these specific ecological niches and consequently, inti- mate 

associations between bacteria and host plants can be formed [21]. 
The plant colonization by endophytes may occur mainly through 
the roots if the bacteria can hydrolyse the epidermal, hypodermal, 
endodermal and other cortical cells barriers [22]. Once inside, 
the colonization can be either local in specific plant tissues 

such as cortex, or systemic or transported across or through the 
conductor apoplastic elements [23]. Plant colonization by bacterial 
endophytes is preferably intercellular [24], with only a few reports 

of intracellular colonization, such as in the case of banana [25] or 
Arabidopsis [26]. It is also suggested that the endophytic bacteria 
are evolutionarily intermediate between saprophytic and pathogenic 
bacteria, speculating on the possibility that endophytic bacteria are 
more evolved than pathogenic, being able to take nutrients from 
the host without killing it [5]. According to Azevedo, et al. [27], 
the difference between endophytes, epiphytes and pathogens is 
purely didactic since there is a gradient between them that makes 
complex to discriminate each category. Endophytic bacteria may, 
depending on the conditions and the genotype of the host, become 
a pathogen; and may, depending on the phase of the lifecycle, live 
in harmony with the host [28].

Based on the original definition of bacterial endophytes 

given by Hallmann, et al. [5] and broadly accepted, the importance 
of methods and criteria of endophytes isolation results clear. As the 
character of endophytic bacteria is attributed to bacteria isolated 
exclusively from plant tissues superficially sterilized, surface 

disinfection processes have to be well defined to retain the concept 

and limit the endophytic habitat. Errors may arise as result of either 
incomplete disinfection of the surface or adsorption of bacteria 
through plant cell structure or penetration of sterilant within the 
tissues of the plant cells, resulting in loss of endophytism [5]. 

There are two main methods for identification and 

characterization of endophytic bacterial populations, depending 
on the possibility of culturing the bacteria. Culture dependent 
methods for identification of culturable endophytes involve the 

isolation and growth of the bacteria from surface-sterilized root, 
stem and leaves sections [29-33]. This step is usually followed 
by the phenotypic characterization of these bacteria focused 
mainly on properties and metabolic activities such as the secretion 
of hydrolytic enzymes, production of indole acetic acid and 
siderophores for iron uptake, phosphate solubilization, biofilm 

formation and exopolysaccharides production, nitrogen fixation, 

antimicrobial activity, different types of motility as well as other 
characteristics related to competitiveness, plant growth promotion, 
antagonism and capacity of plant colonization (Figure 1). 
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Figure 1: Flow chart summarizing method for isolation and characterization of bacterial endophytes, development of bacterial inoculants and 
benefits to agricultural crops. Sampling and sterilization of tissues (A), maceration and growth of bacteria on solid media (B), and isolation of pure 

cultures (C). Characterization of isolates in relation to Plant Growth Promoting (PGP) traits (D) such as phosphates solubilization (1), production of 
exopolysaccharides (2), siderophores (3) and indolacetic acid (4), and antimicrobial activity (5). Characterization of the endophytic bacterial population 
(E) by amplification and sequence analysis of the 16SrRNA gene (6), composition of bacterial population in different agronomic managements (7) and 

localization of bacteria in different tissues (8). Field trials (9) to establish colonization and growth promotion capabilities (10). Release to industry (G), 
followed by development of proper formulations and different crop-specific bioproducts.
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On the other hand, some endophytes are obligate because 
they are unable to proliferate outside of plants and require the plant 
for survival, thus are often nonculturable [34]. Obligate endophytes 
can be studies by means of culture-independent techniques [35] 
based on molecular tools as Polymerase Chain Reaction (PCR) for 
amplification of variable regions of DNA, often from the 16S rRNA 

gene. This step is followed by downstream methods to analyze the 
endophyte community composition, which may include cloning 
or other community fingerprinting techniques. Considering the 

implications in identifying and measuring endophyte diversity 
and community structure, the complementarity of both culture-
dependent and independent methodologies has received a broad 
consensus [31-33]. 

The Next Generation Sequencing (NGS) technology and 
bioinformatic tools allow the characterization of many endophyte 
communities from a broad variety of plant species, including their 
structure and dynamics based on information regarding endophyte 
genomes, proteomes, and transcriptomes. The complete genomes 
of Gluconacetobacter diazotrophicus [9], Bacillus subtilis [8], 
Burkholderia sp. [36], Kosakonia oryzae [37], Enterobacter 

sp. [9], Burkholderia phytofirmans [10], Azospirillum sp. [38], 
Pseudomonas stutzeri [39], Herbaspirillum seropedicae [11], 
Azoarcus sp [6], among others, have been sequenced and analysed. 
Bioinformatic analysis of genomes provides additional information 
on the role of these bacteria and their effects inside the plant, 
and represents an important tool for further studies such as the 
regulation of gene expression also in relation to the mechanisms 
of plant-microbes interaction [40,41]. In addition, the comparisons 
between the endophytic bacterial genomes and the genomes of 
rhizospheric plant growth-promoting bacteria could shed light on 
potential genetic factors specifically responsible of the endophytic 

lifestyle, therefore contributing to a better understanding of the 
functioning of complex interactions between bacterial endophytes 
and plants [20].

Mechanisms of plant growth promotion 

Plant growth promotion by bacterial endophytes is usually 
the result of direct or indirect mechanisms. Direct promotion occurs 
either by increased acquisition of essential nutrients which involve 
nitrogen, phosphorus and iron or by modulation of hormone levels 
synthesizing auxin, cytokinin or gibberellins. In addition, some 
endophytes can lower levels of the phytohormone ethylene by 
synthesizing an enzyme, 1-Aminocyclopropane-1-Carboxylate 
(ACC) deaminase that cleaves the compound ACC, the immediate 
pre-cursor of ethylene in all higher plants. Indirect mechanisms of 
growth promotion occur by production of substances that inhibit 
bacterial or fungal pathogens and by indirect effects such as 
antagonism against pathogens and competition for iron [20,42-46]. 
For example, siderophores such as pyochelin from Pseudomonas 
sp., chelate iron and can indirectly contribute to suppression 

and control of disease by competing with phytopathogens for 
trace metals [47]. Endophytes also contribute to the control of 
phytopathogens primarily for their ability to induce plant defense 
reactions through a mechanism called Induced Systemic Resistance 
(ISR), that leads to a higher tolerance of pathogens [48]. Systemic 
resistance develops when plants successfully activate their defense 
mechanism in response to primary infection by a pathogen, 
notably when the latter induces a hypersensitive reaction through 
which it becomes limited in a local necrotic lesion of brown, 
desiccated tissue. Bacterial strains of the genera Pseudomonas 
and Bacillus can be considered the most common groups inducing 
ISR [49], although induction of resistance is not exclusive to these 
groups and to this mechanism. For example, the shoot endophyte 
Methylobacterium sp. strain IMBG290 induced resistance against 
the pathogen Pectobacterium atrosepticum in potato, in an 
inoculum-density-dependent manner. The observed resistance was 
accompanied by changes in the structure of the innate endophytic 
community. Endophytic community changes were shown to 
correlate with disease resistance, indicating that the endophytic 
community as a whole, or just fractions, can play a role in disease 
suppression [50]. Bacterial factors responsible for ISR induction 
were identified to include flagella, antibiotics, N-acylhomoserine 

lactones, salicylic acid, jasmonic acid, siderophores, volatiles (e.g., 
acetoin), and lipopolysaccharides [51].

The potential of bacterial endophytes to Promote Plant 
Growth (PGP) by means of abiotic stress tolerance and disease 
protection is associated with their ability to produce different 
compounds such as secondary metabolites that are involved 
in mechanisms of signaling, defense and genetic regulation of 
the establishment of symbiosis. It has been observed that plant 
inoculation with endophytic bacteria leads to accumulation of 
“protective” compounds, such as proline, carbohydrates and 
antioxidants, in addition to antibiotics and fungal cell-wall lytic 
enzymes, which can inhibit growth of plant pathogens. Plants 
acclimate to environmental stresses by altering their physiology to 
be able to overcome stress factors such as dehydration, mechanical 
injury, nutrient deficiency, high solar radiation, or biotic/abiotic 

factors. Proline accumulation stimulating effect by endophytic 
strains of the actinobacteria Arthrobacter sp. and the Firmicutes 
Bacillus spp. were reported in pepper (Capsicum annuum) plants in 

vitro where their synthesis was related to osmotic stress responses. 
In addition, plants inoculated with bacterial endophytes could 
tolerate abiotic stresses by increasing enzymatic activity. B. cereus 
CSR-B-1, B. marisflavi CSR-G-4, B. pumilus CSR-B-2, B. saffensis 
CSR-G-5, B. subtilis CSR-G-1 and B. thuringiensis CSRB- 3, 
induced increment of superoxide dismutase, phenylalanine lyase, 
catalase, and peroxidase enzymes activity in gladiolus plants 
under high sodium concentration conditions [19]. Tolerance to 
low temperatures and growth promotion by bacterial endophytes 
activity has also been reported by Verma, et al. [52] that found 
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psychrotolerant Bacillus and Bacillus derived genera as wheat (Triticum aestivum) endophytes, among others. Phosphate and iron are 
major essential nutrients, but soluble phosphate and iron concentrations in soil for plant intake are usually very low; their acquisition can 
be facilitated by plant-associated bacteria [20].

The benefits of plant growth promotion mechanisms by bacterial endophytes colonization was investigated for the main crops by 

several authors [6,7,10-13,23,31-34,36-39,53-85]. Table 1 illustrates examples of PGPBEs in plants and crops such as Banana, Canola, 
Citrus, Coffee, Common Bean, Grapevine, Maize, Potato, Rice, Soybean, Sugar beet, Sugar cane, Tomato and Wheat.

Table 1: Some crop-associated bacterial endophytes and their plant-growth promoting traits.

Host plant Endophyte species Plant growth- promoting traits Reference 

Potato

Bacillus spp. ACC deaminase activity, phosphate 
solubilization, siderophore production. [53]

Streptomyces spp. PGP and biological control [12]

Pseudomonas putida and Serratia plymuthica

Production of the antibiotic 2,4-diacetyl-
phloroglucinol (Pseudomonas) and 

antagonism (Serratia)
[13]

Burkholderia phytofirmans PsJN ACC deaminase activity and production of 
indole acetic acid (IAA) [10]

Rice

Streptomyces sp. strain A20 
Production of three antibiotics: 

streptothricins D, E and F; production of 
siderophores and IAA, and P solubilization.

[54]

Bacillus sp. multiple PGP and antagonistic activity [56]

Azoarcus sp. BH72 N-fixation [6]

Azospirillum sp. Production of IAA and ACC deaminase [118, 38] 

Pseudomonas stutzeri N-fixation [39]

Burkholderia sp., Antifungal activity [36]  

Herbaspirillum seropedicae N-fixation [11]

Kosakonia oryzae
Siderophore production, auxin biosynthesis 

and N-fixation
[37]

Azospirillum sp. Promotion of rice growth  

Rhizobium spp. Growth promotion [119]

Herbaspirillum, Pseudomonas, 

IAA, N-fixing, P solubilization, ACC 

deaminase, etc

[23]

Pantoea, Methylobacterium, [55] 

Kosakonia, Burkholderia,  

Rhodococcus, Ralstonia,  

Brevibacillus, Bacillus  

Soybean

B. subtilis and B. thuringiensis; 
Production of siderophores, IAA synthesis 

and ACC-deaminase [57]

Pseudomonas, Ralstonia, Enterobacter, Pantoea and Acinetobacter
Antifungal activity; phytases; N-fixation; 

phosphate solubilization; [58]  

Bacillus spp. Cellulase, pectinase and motility [59] 

Agrobacterium, Enterobacter, Kosakonia, Pantoea, Pseudomonas, 

Ralstonia, Serratia, Rhizobium, Stenotrophomonas, etc

Production of IAA and exopolysacchardies, 
P solubilization, etc. [31, 33] 

Enterobacter sp., Bacillus sp., Variovorax sp., Serratia sp., 

Burkholderia sp., Pantoea sp., Kosakonia sp.
Antimicrobial activity [32]
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Wheat

Bacillus subtilis Antifungal activity against Puccinia [60]

Bacillus cereus  Biofilm formation, colonization and 

biocontrol [61]

Bacillus thuringiensis Biocontrol [62]

Azospirillum sp. Phytormone synthesis: IAA, GA, ABA; 
phosphate solubilization [38]

Arthrobacter sp.
Siderophore-production and Zn 

solubilization [63]

Burkholderia cepacia Plant growth promotion [64]

Sugar Beet Bacillus pumilus, Chryseobacterium indologene, Acinetobacter 

johnsonii 

increased concentration of carbohydrates 
and growth photosynthetic efficiency 

[65]

Sugar Cane

Gluconacetobacter diazotrophicus 

N-fixation, plant growth promotion, 

secretion of organic acids, synthesis of auxin 
and bacteriocins

[7]

Azospirillum amazonense, Burkholderia tropica, Herbaspirillum 

seropedicae, H. rubrisubalbicans, Gluconoacetobacter 

diazotrophicus 

acceleration of budding; increase in biomass; 
N-fixation; production of siderophores and 

IAA; phosphate solubilization 
[66, 67]

Tomato

Bacillus subtilis 
Control of Alternaria solani and 

Phytophthora infestans
[68] 

Burkholderia phytofirmans PsJN IAA synthesis, ACC deaminase [10]

Sphingomonas sp. Prodution of gibberellins and IAA [69]

Common 
Bean

Microbacterium testaceum
Inhibition of bacterial pathogens and quorum 

sensing [70] 

Rhizobium endophyticum Solubilization of phytate [71]

Bacillus, Delftia, Methylobacterium, Microbacterium, 

Paenibacillus, Staphylococcus and Stenotrophomonas
To be determined [72]

Citrus Bacillus sp. IAA production and P solubilization [73]

Maize

Bacillus spp.
Production of lipopeptides active against 

Fusarium moniliforme
[74]

Azospirillum brasilense Plant growth promotion [75]

Enterobacter sp.
Improved photochemical efficiency and 

flowering anticipation; N-fixation
[76]

Paenibacillus polymyxa N-fixation and growth promotion [77]

Pseudomonas spp., Enterobacter asburiae, Sinorhizobium meliloti PGP traits and antifungal activity [78]

Canola
Bacillus subtilis Antibacterial and antifungal activity [79]

Burkholderia phytofirmans ACC deaminase activity and production of 
IAA [10]

Coffee
Escherichia fergusonii, Acinetobacter calcoaceticus, Salmonella 

enterica, Brevibacillus choshinensis, Pectobacterium carotovorum, 

Bacillus megaterium, Microbacterium testaceum, Cedecea davisae

Production of phosphatase and indol acetic 
acid; control of coffee leaf rust, Hemileia 

vastatrix

[80]

Grapevine Bacillus pumilus, Paenibacillus sp. 
Biocontrol of fungal pathogen 
Phaeomoniella chlamydospore [81]

 Bacillus subtilis, Curtobacterium sp.
Biocontrol of Agrobacterium vitis crown gall 

disease [82]
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Bacillus, Staphylococcus, Microbacterium, Paenibacillus, 

Curtobacterium, Stenotrophomonas, Variovorax, Micrococcus, 

Agrococcus

To be determined [83]

Banana
Pseudomonas aeruginosa Antagonism against pathogen [34]

Serratia sp. Plant growth promotion [84]

Poplar tree Enterobacter sp., Stenotrophomonas maltophilia, Pseudomonas 

putida, Serratia proteamaculans

Acetoin and 2,3-butanediol synthesis; 
production of IAA and ACC deaminase; [85]

Importance of endophytes and potential use as inoculants

The potential of PGPBEs to improve plant health has led to a 
great number of studies examining their application as inoculants, 
primarily in agricultural crops [67,86-88]. Development and use 
of microbial inoculants can lead to a reduction of the need and use 
of agrochemicals such as pesticides and fertilizers [89] and help 
to promote sustainable agricultural practices. Several studies are 
being conducted in order to identify possible candidates for crops 
inoculation [58,59,90]. However, plant growth promotion and 
protection remain priorities in studying bacteria associated to crops, 
and the development of new inoculants could provide a sustainable 
biotechnological approach as demonstrated by those already on 
the market [91]. In this respect, Azospirillum brasiliense as well as 
Bradyrhizobium japonicum are examples of efficient plant growth 

promoting bacteria widely used in Brasil in soybean and maize 
[86]. However, it happens that many PGPB with good properties 
in the laboratory or greenhouse conditions, poorly behave when 
delivered in the field, mainly due to the high competitions for and 

complex mechanisms involved in colonization of the rhizosphere 
[92]. 

Endophytic bacteria are not subject to competition for 
nutrients that typically occurs in the rhizosphere, and can have 
higher efficiency than the rhizosphere colonizing bacteria in 

promoting growth, water absorption and the elimination of 
harmful microorganisms which are in the inside of the root system 
[93,94]. 

Endophytes, which are protected by the host against 
environmental stresses and competition with other organisms, are 
normally found in low densities compared to pathogenic bacteria 
or rhizobacteria [5,16]. Therefore, the potential of PGPBEs can be 
a valid alternative to the PGP rhizobacteria, since the competition 
inside the plant is lower and, once the plant is colonized by means 
of mechanisms involving motility, attachment, plant-polymer 
degradation, iron uptake and evasion of plant defenses [20,24,95], 
these bacteria could exploit their PGP functions in a more efficient 

manner.   

Despite the fact that endophytes are protected inside the 
plants, there are several factors that can affect the type and density 
of the endophytic bacterial population in the interior of the host 

such as plant genotype and the type of farming, the tissue where 
they are located and the stage of plant development; in addition, 
also environmental factors such as variations in temperature 
and humidity, agronomic management adopted and application 
of agrochemicals can have significant effects. However, there 

are probably other limiting factors that may be relevant during 
the establishment of populations in the plant tissues. Thus, the 
establishment and maintenance of the bacterial population could 
be limited and influenced by the same factors that affect the health 

of the plant [5]. Currently it is unclear whether plants benefit more 

from the colonization by endophytic bacteria or rhizobacteria. 
However, both can promote plant growth. Therefore, there is an 
increasing interest in studying these bacteria and in the development 
of biofertilizers to increase crop yields [96].

Plant growth promoting bacterial endophytes and crop 

management

Plant genotype can have a direct influence on plant-

associated bacteria, as this can change the exudates released 
by the roots and made available to bacterial groups, affecting 
colonization by rhizobacteria [97] and, consequently, entry into the 
plant and colonization by endophytes. Besides the genotype, the 
stage of development of the host may also influence the bacterial 

population. In endophytic bacteria associated with soybean the 
population increases with the development of the plant and start to 
decrease at the beginning of the reproductive stage [98]. However, 
a major influence is determined by environmental factors such as 

variations in temperature (heat or cold depending on the season in 
which the samples were collected) and the observed tissue (roots, 
stems or leaves) [99]. Furthermore, the soil was found to be the 
main factor in determining the population variance of Burkholderia 

cepacia associated with maize roots [100].

Crop agronomic management is a factor of great importance 
and impact on the microbial community, mainly due to the use of 
agrochemicals. The bacterial community and the density of bacteria 
populations in transgenic and non-transgenic sugarcane plants were 
found to be affected by crop management; the density of bacterial 
population associated with the rhizosphere of transgenic sugarcane 
plants treated with the herbicide Imazapyr was found reduced if 
compared with the non-trangenic one [101].



Citation: Degrassi G and Carpentieri-Pipolo V (2020) Bacterial Endophytes Associated to Crops: Novel Practices for Sustainable Agriculture. Adv Biochem Biotechnol 
5: 1099. DOI: 10.29011/2574-7258.001099

8 Volume 5; Issue 01

Adv Biochem Biotechnol, an open access journal
ISSN: 2574-7258

The most important herbicide used in herbicide-resistant 
soybean and maize fields is glyphosate. Glyphosate is a systemic 

herbicide with wide spectrum of activity, recommended for post-
emergence control of a wide range of plants, and not selective in 
its action on mono and dicotyledons since it inhibits the enzyme 
5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) involved 
in the synthesis of aromatic amino acids, therefore causing 
developmental delay, imbalance of amino acids and eventual death 
of the plants [102]. The use of herbicide-tolerant soybean yielded 
several benefits to farmers, including a decreased use of more toxic 

herbicides, and the ease of management. According to Cerdeira and 
Duke [103], glyphosate would have a much smaller residual effect 
in the soil if compared with the replaced active ingredients used 
for broad and narrow leaf plant control, therefore representing an 
option with less impact on soil, water and subsequent cultures in 
the area. 

Despite its advantages, the use of glyphosate has some 
impacts on crops and also on the soil biota. It is reported that 
the application of glyphosate produces a shift in the microbial 
community [104,105]. In addition, glyphosate may be toxic to 
certain organisms or, in others, be used as a source of energy 
and nutrients [106]. de Almeida Lopes, et al. [31] found that the 
bacterial endophytic population associated to conventional and 
glyphosate-tolerant soybean in Brazil is significantly different both 

in term of composition and density, suggesting the importance of 
weed control strategy in determining the crop-bacterial endophyte 
association. Dallmann, et al. [107] found that the use of herbicides 
in herbicide-tolerant soybeans reduced the fungal flora of the 

soil and did not significantly alter the bacterial count. However, 

Arantes, et al. [108] found that glyphosate reduced microbial 
activity in two types of soil (Psament and Oxisol), whether or 
not the use of liming. A similar result was reported by Andrea, 
et al. [109], which found that the biomineralization of glyphosate 
decreased with increasing applications, suggesting an effect of 
the herbicide on soil microbial activity. Studying fungi and soil 
bacteria, Busse, et al. [106] found that there was toxic effect on 
population growth and metabolic diversity for continuous use 
(9-13 years) of glyphosate in the same area.

Regarding the endophytic populations associated to crops, 
herbicides has a significant influence on their composition [110] 

and contribute to select those endophytes that are able to withstand 
the adopted weed control strategy or those able to metabolize the 
used herbicide. This observation represents a pivotal starting point 
for the isolation of endophytes that can degrade herbicides with the 
aim of using them to inoculate crops and confer herbicide tolerance 
as an alternative approach to genetic modification [111]. 

The promotion of plant growth through protection from 
phytopathogens is known as biocontrol. Several mechanisms 
may be involved [112], including the production of antibiotics or 

secondary metabolites, the acquisition of iron by siderophores, 
and the secretion of enzymes such as chitinases and proteases. 
Crops are exposed to many microbial diseases whose agents come 
in contact with the endophytic population during the infection of 
inner parts of plant tissues. The development of competitive factors 
in endophytes is therefore highly probable in such conditions as 
a necessary step to be competitive and survive. Therefore, the 
isolation and characterization of these bacteria could lead to the 
identification of suitable candidates to be used for the development 

of biological control agents [113]. In the work of de Almeida 
Lopes, et al. [32] bacteria of genera Bacillus and Burkholderia 
isolated from soybean in Brazil were found to have antimicrobial 
properties against several soybean bacterial and fungal pathogens, 
and the molecules responsible for this activity produced by these 
bacteria were secondary metabolites, peptides, lipopeptides and 
bacteriocins. Among the bacterial endophytes reported to have 
antimicrobial activity, the endophyte Enterobacter sp. strain 638 
produces antibiotic substances, including 2- phenylethanol and 
4-hydroxybenzoate [9]. Endophytic Streptomyces spp. are known 
producers of antimicrobial compounds such as kakadumycins 
[114], coronamycin [115] and multicyclic indolosesquiterpenes 
[116]. Recently, Streptomyces sp. was found able to inhibit the 
growth of Burkholderia glumae, a bacterial rice pathogen, and 
other bacterial and fungal pathogens. Interestingly, this strain 
produced three small antibiotics, streptotricins D, E and F, in 
addition to colonization of rice plants and growth promotion [54]. 
These and other similar reports suggest further investigation to 
assess the ability of antimicrobial compounds-producing bacterial 
endophytes to efficiently colonize the plant from where they have 

been isolated and the ability to control the pathogens sensitive to 
their antimicrobial molecules from inside the plant. 

As discussed previously, many bacterial endophytes have 
been found to have PGP properties and are potential candidates for 
the development of biofertilizers. However, they are sensitive to 
the agronomic management, including soil and plant fertilization. 
Therefore, the study of compatibility with mineral and organic 
fertilizers is advisable to optimize their use in combination and 
reduce the use of chemical fertilizers and the loss of fertilization 
potential of both components [117-119].

Conclusion and future perspectives

In conclusion, the current knowledge about the actual 
role of endophytes associated with crops, their beneficial effects 

and the influence of the environment as well as the agronomic 

management on the bacterial population suggest additional effort 
to explore the potential of endophytes as new biological tools 
for a range of applications in agriculture mainly as biofertilizers 
and biocontrol agents. More investigations on the effects of 
agronomical practices on endophytes and the differences between 
the populations associated to transgenic and conventional crops 
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could also help in this direction. Biotechnology can be applied to 
further improve strains that have prized qualities. All these aspects 
should be further investigated and put together to the development 
of commercially viable PGPBE inoculant strains to be utilized in 
agriculture, able not to lose PGP qualities under the environment 
variation, as sustainable strategies to promote growth and to 
protect crops.
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