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Abstract. Accurate mapping of the functional interactions between remote

brain areas with resting-state functional magnetic resonance imaging requires the

quantification of their underlying dynamics. In conventional methodological pipelines,

a spatial scale of interest is first selected, and dynamic analysis then proceeds at

this hypothesised level of complexity. If large-scale functional networks or states

are studied, more local regional rearrangements are then not described, potentially

missing important neurobiological information. Here, we propose a novel mathematical

framework that jointly estimates resting-state functional networks, and spatially more

localised cross-regional modulations. To do so, the changes in activity of each

brain region are modelled by a logistic regression including co-activation coefficients

(reflective of network assignment, as they highlight simultaneous activations across

areas) and causal interplays (denoting finer regional cross-talks, when one region active

at time t modulates the t to t+1 transition likelihood of another area). A two-parameter

`1 regularisation scheme is used to make these two sets of coefficients sparse: one

controls overall sparsity, while the other governs the trade-off between co-activations

and causal interplays, enabling to properly fit the data despite the yet unknown balance

between both types of couplings. Across a range of simulation settings, we show that

the framework successfully retrieves the two types of cross-regional interactions at

once. Performance across noise and sample size settings was globally on par with that

of other existing methods, with the potential to reveal more precise information missed

by alternative approaches. Preliminary application to experimental data revealed that

Page 1 of 32 AUTHOR SUBMITTED MANUSCRIPT - JNE-103328.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Sparse coupled logistic regression for dynamic FC mapping 2

in the resting brain, co-activations and causal modulations co-exist with a varying

balance across regions. Our methodological pipeline offers a conceptually elegant

alternative for the assessment of functional brain dynamics, and can be downloaded

at https://c4science.ch/source/Sparse_logistic_regression.git.

Keywords: functional magnetic resonance imaging, dynamic functional connectivity,

effective connectivity, sparse coupled logistic regression, `1 regularisation

Submitted to: J. Neural Eng.
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Sparse coupled logistic regression for dynamic FC mapping 3

1. Introduction

How the brain is structurally wired at its most global spatial scale, and how information

flows between remote processing centres, are essential questions to improve our

mechanistic understanding of high-level behaviours [1]. When it comes to functional

magnetic resonance imaging (fMRI), the mapping of brain function is commonly

performed from resting-state (RS) recordings through the computation of functional

connectivity (FC), that is, the statistical interdependence between different time courses

reflective of regional activity [2], as can be assessed from an array of measures [3]. This

approach has revealed the presence of a set of RS networks (RSNs) [4, 5, 6], whose

properties are critical landmarks of healthy and perturbed cognition [7, 8, 9].

Over the past decade, it has become increasingly clear that quantifying FC between

two brain regions throughout a full scanning session as only one scalar is an overly

simplistic approach; indeed, it does not characterise the numerous reconfigurations that

occur at the time scale of seconds [10]. Accordingly, many methodological pipelines

have been developed to dig into time-resolved FC, and map brain function dynamically

(see [11, 12, 13, 14] for contemporary reviews).

One of the most notorious family of dynamic approaches simplifies the originally voxel-

wise fMRI data into a state-level representation: first, whole-brain FC is computed

over successive temporal sub-windows, and then, the concatenated data across the

full subject population at hand is decomposed into a set of dynamic FC (dFC)

states. Each of them is temporally recurring, short-lived, and renders a distinct set

of correlational relationships across individual brain parcels, or—if spatial independent

component analysis (ICA) is performed prior to sliding window computations—across

RSNs [15, 16, 17].

In other analytical schemes, whole-brain voxel-wise activity [18], or activity

transients [19], undergo clustering instead of FC patterns; in this case, each of the

retrieved centroids directly stands for an RSN. If temporal ICA is directly cascaded to

spatial ICA, temporally mutually independent functional modes that highlight specific

RSN combinations are retrieved [20]. Finally, the use of a hidden Markov model (HMM)

also enables to derive hidden states reflective of RSNs, or of their interplays, which are

parameterised as (sparse) FC patterns [21, 22, 23] or vectors of activation [24].

In all the above cases, one assumes that the fMRI data can be efficiently understood

in terms of a restricted set of RSNs, and that functional brain dynamics should be

investigated from a fixed and restricted set of spatial patterns. Recent results, however,

challenge the sufficiency of such postulates: first, some brain regions do not remain

attached to the same network throughout a scanning session, but instead adjust their

modular allegiance over time in a way that relates to cognitive performance [25, 26].

Second, brain regions and networks morph spatially over time, with this spatial dynamics

bearing promising clinical relevance [27, 28]. Third, spatio-temporal patterns have been
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Sparse coupled logistic regression for dynamic FC mapping 4

suggested as more telling features extracted from the fMRI signal [29, 30, 31].

In order to capture such subtle propagation of activity at the finer regional scale, effective

connectivity (EC) approaches have also been developed. In opposition to the above

correlational tools, they explore the causal relationships (i.e., from time t to t+ 1) that

link distinct brain areas. Notoriously, dynamic causal modelling has been leveraged to

the RS setting: the cross-spectral content of the data is described probabilistically—

including haemodynamic effects—and model inversion yields the posterior probability

density for each EC coefficient (i.e., the probability that it takes a given value knowing

the cross-spectra). Recent technical improvements have pushed towards making such

computationally greedy approaches applicable at the whole-brain scale [32, 33]. In other

related work that did not employ a Bayesian framework, EC coefficients were derived

from the empirical cross-spectral density of the data with an added `1 regularisation

constraint, forcing the set of cross-regional causal relationships to be sparse [34].

An alternative to a spectral characterisation of the data is to remain in the temporal

domain, and explicitly enforce the causality of the system. If working in the continuous

domain, with a multivariate Ornstein-Uhlenbeck model, regional activity can be

described by a system of coupled ordinary differential stochastic equations reaching

a steady-state, and the EC coefficients that yield the best set of lagged covariance

matrices (in terms of fitting empirical ones) are obtained by iterative updates [35, 36].

In the discrete domain, first-order multivariate autoregressive models have also been

applied: with such causal tools, sliding window-based fluctuations in FC—a correlational

measure, as highlighted above—could be well replicated [37]. In addition, autoregressive

approaches have shown relevance in the characterisation of several facets of human

behaviour [38].

It transpires from the above that at present, there are two conceptually distinct ways

to view RS dFC: on the one hand, as sets of simultaneously activating regions that

make networks, and on the other hand, as effective connectivity between individual

areas. Which of these two alternatives offers the best representation of RS dynamics,

and whether they describe overlapping or distinct facets of the data, remain important

questions to explore. In the present work, we have attempted to progress in answering

them by developing a novel methodological framework that characterises whole-brain

activity through coupled logistic regression equations. Co-activations and causal

couplings are jointly derived for each pair of brain regions, and the inclusion of sparsity

constraints in our model enables us to only extract a parsimonious array of coefficients,

while enabling, at the same time, to modulate the trade-off in data fitting between both

viewpoints.
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Sparse coupled logistic regression for dynamic FC mapping 5

2. Materials and Methods

2.1. Mathematical framework

Let us denote the activity of a region r (out of R in total) at time t as h
(r)
t . We

hypothesise two possible states of activity: baseline (h
(r)
t = 0) or active (h

(r)
t = +1). We

further posit that each region may interact with all the other areas s 6= r in two ways: (1)

showing simultaneous activity (that is, episodes of co-activation), or (2) being causally

modulated. To jointly describe these two phenomena, we characterise the probability

of a region r to switch between activity states via logistic regression [39]:

(1)


P(h

(r)
t+1 = +1|h(r)

t = 0,h
(−r)
t ,h

(−r)
t+1 ) = 1

1+e
−(α

(r)
B

+γ(r)>
B

h
(−r)
t+1 +β(r)>

B
h

(−r)
t )

P(h
(r)
t+1 = 0|h(r)

t = +1,h
(−r)
t ,h

(−r)
t+1 ) = 1

1+e
−(α

(r)
A

+γ(r)>
A

h
(−r)
t+1 +β(r)>

A
h

(−r)
t )

.

The baseline-to-active transition is modelled by the first equation, while the return

to baseline from an active state is governed by the second. Associated coefficients are

respectively written with the ·B and ·A subscripts. In what follows, for the sake of clarity,

we will omit these subscripts and only consider one set of equations, as the formulations

are strictly equivalent for both types of transitions.

If all other regions are at a baseline level of activity at the start (h
(−r)
t = 0) and end

(h
(−r)
t+1 = 0) of the transition, only the scalar coefficient α(r) plays a role in shaping the

transition likelihood. The vector γ(r) ∈ RR−1 contains the co-activation coefficients for

all regions s 6= r: positive-valued coefficients will enhance the likelihood of the transition

of interest if h
(s)
t+1 = +1 (that is, if regions r and s are co-active at time t+ 1). Negative-

valued coefficients will, likewise, reduce the transition probability. The reasoning is

similar for the vector β(r) ∈ RR−1, except that a modulatory effect is then exerted if

h
(s)
t = +1 (i.e., region s is active before the transition in activity level of region r,

resulting in a causal modulation instead of a co-activation).

The concomitant modelling of co-activations and causal modulations enables to jointly

derive the two sets of coefficients. Given the fact that the resting brain is often

characterised as a set of RSNs [4, 5, 6], we expect only a sparse subset of non-null

co-activation coefficients. Similarly, only a restricted amount of areas or networks are

expected to causally modulate each other [40, 41]. To fit these neurobiological priors, we

can consider that the joint set of coefficients is sparse by imposing an `1 regularisation

term on them:

(1− ξ(r))||γ(r)||1+ξ(r)||β(r)||1< ρ(r) ∀ r = 1, . . . , R. (2)

In the above, ρ(r) controls the extent of regularisation casted on all coefficients associated

to region r (it relates to an inversely proportional parameter λ(r) in Equation 3 below).
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Sparse coupled logistic regression for dynamic FC mapping 6

The parameter ξ(r) enables to balance to what extent the co-activation and causal

sets are regularised for a given area: if ξ(r) = 0, regularisation only operates on co-

activation coefficients, while if ξ(r) = 1, only causal coefficients are made sparse. This

respectively amounts to a description of regional brain dynamics where causal influences,

or co-activations, dominate. Note that, since each region is associated to dedicated

regularisation parameters, it becomes possible to address nuanced differences in influence

within the whole-brain circuitry, and in causal/co-activation balance.

2.2. Implementation

Solving the above set of coupled logistic regression equations requires that the activity

levels of all regions be known. To binarise the input time courses, we individually z-score

each, and set to +1/0 the time points with a value above/below 0. While binarisation

may remove part of the insightful information from the original data, it has been used

in recently developed methodological pipelines [42]. In the Discussion, we touch upon

possibilities to make the framework amenable to a case with more than 2 states of

activity.

After defining the activation states, initial parameter estimates can be computed.

Co-activation and modulatory coefficients are all set to 0, and intrinsic transition

probabilities are set to 0.5 (i.e, α(r) = 0).

Following [39], in a regularised logistic regression, one attempts to solve the following:

(3)min
α(r),γ(r),β(r)

−L(r)(α(r),γ(r),β(r)) + λ(r)
[
(1− ξ(r))||γ(r)||1 + ξ(r)||β(r)||1

]
,

where r is the assessed region, and the log-likelihood is approximated as:

(4)L(r)(α(r),γ(r),β(r)) = − 1

2|T |
∑
t∈T

ω
(r)
t (z

(r)
t − α(r) − γ(r)>h

(−r)
t+1 − β(r)>h

(−r)
t ) + C.

The ensemble T contains all the data points for which the probed region is in the

currently considered start state at time t (e.g., baseline for the baseline-to-active

transitions), and C is a constant. If we define the probability of the transition of

interest as p(α(r),γ(r),β(r),h
(−r)
t ,h

(−r)
t+1 ), the parameters ω

(r)
t and z

(r)
t depend on the

current estimates of the coefficients—which we denote with a tilda—as:
ω

(r)
t = p(α̃(r), γ̃(r), β̃

(r)
,h

(−r)
t ,h

(−r)
t+1 )− p(α̃(r), γ̃(r), β̃

(r)
,h

(−r)
t ,h

(−r)
t+1 )2

z
(r)
t = α̃(r) + γ̃(r)>h

(−r)
t+1 + β̃

(r)>
h

(−r)
t + 1

ω
(r)
t

[
y

(r)
t − p(α̃(r), γ̃(r), β̃

(r)
,h

(−r)
t ,h

(−r)
t+1 )

] ,
(5)
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Sparse coupled logistic regression for dynamic FC mapping 7

where y
(r)
t defines whether there was a change in activity level in region r from time t

to t+ 1 or not (respectively, y
(r)
t = 1 or y

(r)
t = 0). Coefficients are iteratively estimated

by a coordinate-wise descent algorithm, following [43]: the initial estimates outlined

above are used at the maximal regularisation level λMAX, and individual coefficients

are successively re-estimated in random order (note that for α(r) coefficients, which

do not enter the `1 regularisation term, soft shrinkage is not required). After cycling

through all coefficients, the Euclidean distance of the whole coefficient vector with

respect to the prior iteration is assessed, and the algorithm stops either when the change

across two iterations becomes lower than a defined tolerance threshold ε, or when niter

iterations have been performed. The next regularisation level is then considered, using

warm restarts to speed up computations (i.e., the estimates obtained at the end of a

regularisation cycle are used as initial values for the following one).

In all the analyses performed therein, we compared five levels of trade-off between co-

activation and causal coefficients (ξ(r) = {0, 0.25, 0.5, 0.75, 1} ∀ r = 1, . . . , R), and

used convergence parameters ε = 10−2 and niter = 5.

In our simulations, we considered a regularisation path with λ(r) ∈ [10000, 0] ∀ r =

1, . . . , R (80 logarithmically distributed values), while for our application to

experimental data, we used λ(r) ∈ [50000, 0] ∀ r = 1, . . . , R (60 logarithmically

distributed values). We always verified that at λMAX, all coefficients remained equal

to 0.

2.3. Determination of final co-activation and causal modulation values

Upon solving, the framework yields an array of co-activation and causal coefficients

across all examined regulariser values. In order to determine the optimal parameters

for each region r, we resorted to cross-validation, using otherwise untouched data. In

the cases considered in this work (both simulations and experimental data), the cross-

validation dataset always had 60% of the training set size. Following z-scoring and

binarisation of each regional time course in the same way as described in Section 2.2,

the exact log-likelihood was computed, for each candidate parameter set (ξ(r), λ(r)), as:

(6)L(r)(ξ(r), λ(r)) =
1

|T |
∑
t∈T

y
(r)
t (α(r) + γ(r)>h

(−r)
t+1 + β(r)>h

(−r)
t )

+ log(1 + eα
(r)+γ(r)>h

(−r)
t+1 +β(r)>h

(−r)
t ),

where α(r) = α(r)(ξ(r), λ(r)), γ(r) = γ(r)(ξ(r), λ(r)) and β(r) = β(r)(ξ(r), λ(r)) were used

as short-hand notations for the sake of clarity, and y
(r)
t ,h

(−r)
t and h

(−r)
t+1 are computed

from the cross-validation set. For each region r, optimal coefficients were set as the ones

maximising the above log-likelihood function.
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Sparse coupled logistic regression for dynamic FC mapping 8

Following this step, coefficients are converted into a probabilistic equivalent. Let two

regions r and s; we can use Equation 1 to define the probability for region r to undergo

a change in activity when region s is itself active, and similarly, when it is not. The

difference is then taken as the measure of interest. For co-activation, we contrast

h
(s)
t+1 = +1 and h

(s)
t+1 = 0, while h

(s)
t = 0; by this mean, we selectively evaluate co-

activation independently from causal regulation. This gives the following probability

differential:

(7)∆PΓ,s→r = P(h
(r)
t+1 6= h

(r)
t |h

(s)
t+1 = +1,h

(−r)
t = 0,h

(−r,−s)
t+1 = 0)

− P(h
(r)
t+1 6= h

(r)
t |h

(−r)
t = 0,h

(−r)
t+1 = 0).

In a similar vein, for causal modulations, we have:

(8)∆PB,s→r = P(h
(r)
t+1 6= h

(r)
t |h

(s)
t = +1,h

(−r,−s)
t = 0,h

(−r)
t+1 = 0)

− P(h
(r)
t+1 6= h

(r)
t |h

(−r)
t = 0,h

(−r)
t+1 = 0),

where this time we contrast the activity of region s at time t instead.

The resulting values can be arranged in two matrices (one per type of coefficient), where

the rth column contains the R − 1 influences onto region r (diagonal elements are left

empty). Recall that this process is performed separately for two types of transitions:

baseline to active, and vice versa. Let us respectively denote the associated co-activation

matrices by ΓB and ΓA, while we term causal modulation matrices BB and BA.

Considering an example coupling between regions s and r, a positive-valued ΓB(s, r)

element means that when region s is active at time t + 1, region r will have a greater

likelihood to transit to the active state from time t to t+ 1. A positive-valued ΓA(s, r)

value, however, means that upon activity of region s at time t + 1, region r is more

likely to transit back from the active to the baseline state from time t to t+ 1. Similar

observations can be made for causal modulations.

Thus, a simple solution to aggregate both types of transition is to consider Γ = ΓB−ΓA

and B = BB − BA as the final values of interest. Positive-valued entries then reflect

up-regulatory influences, irrespective of the transition type. Figure 1 schematically

recapitulates the undertaken steps to generate the examined features. Note that, while

we stick to such a simplified representation throughout most of our work, in Figure 5C,

we briefly touch upon the theoretical ability of our framework to reveal subtler types of

dynamics that dissociate activity states.
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1. Solve the sparse logistic regression framework on training data

2. Cross-validate on unseen data to extract optimal coefficients

3. Compute probabilistic influences between all pairs of regions

4. Arrange into matrices, and aggregate across transition types

Figure 1. Overview of the framework. (A) Example activity time courses for a set of 9 regions;
each can transit between a baseline state of activity (symbolised by a grey circle) and an active state
(red circle). The green, brown and blue underlays highlight the regions that belong to the same RSN,
and thus exhibit a similar transitory dynamics. (B) Coefficient matrices associated to the example
presented in (A) for co-activations (top row) and causal modulations (bottom row). The left column
pertains to the transition from the baseline to the active state: a positive-valued coefficient at element
(s, r) means that when region s is active, it enhances the likelihood of a transition for region r at
the same time point (for co-activations) or one time point later (for causal modulations). The middle
column similarly characterises transitions from the active to the baseline state; thus, modulations
that enhance the overall activity of an area are here reflected by negative-valued coefficients (i.e.,
the probability to go down in activity is lowered). The right column yields total influences summed
across both transition types. (C) First, the sparse logistic regression framework is solved along a
regularisation path (λ parameter), for different co-activation/causal coupling balances (ξ parameter),
as described in Section 2.2. Second, cross-validation is performed to extract, for each region r, the
best set of coefficients that maximise the log-likelihood of the unseen data (see Equation 6). Third,
coefficients are converted into cross-regional probabilistic modulations (see Equations 7 and 8). Fourth,
the resulting values are arranged into matrices, and information is aggregated across transition types
by a subtraction. R: region. N: network.

2.4. Validation of the framework on simulated data

To verify the face validity of our framework, and assess its flexibility under different

settings, we first considered simulated data containing cross-regional causal modulations

as well as co-activations. We simulated activity time courses for R = 35 regions (or

R = 40 in a sub-case presented in Figure 5B). To match the experimental data case

as much as possible, we considered T = 1200 time points per subject, and we used a

number of subjects S that would yield a similar amount of available data points for the

estimation of each parameter of the model. In more details, we have:

(9)S =
nDP(2R + 4R(R− 1))

T
,

where nDP denotes the number of data points required for properly estimating one
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Sparse coupled logistic regression for dynamic FC mapping 10

parameter, and 2R + 4R(R − 1) is the total number of parameters to estimate. The

number of available subjects on experimental data (S = 350, for the estimation of

R = 94 regions) is achieved with nDP = 12; applying the same equation to R = 35 (or

R = 40) then yields S = 50 (or S = 65).

In our initial simulation (presented in Figure 2) and the majority of ensuing ones, we

considered N = 7 separate RSNs, a number that matches data from the RS literature [6].

In all simulations conducted with N = 7, each network contained between 4 and 7 areas

(from network 1 to 7: 5, 4, 7, 6, 4, 5 and 4 regions), and time courses for all regions

belonging to the same network were similar (prior to the addition of noise). To examine

the flexibility of our pipeline, we also explored some cases with N = 3 (presented in

Figures 3A and 3B), where networks 1, 2 and 3 respectively comprised 10, 14 and 11

regions. In the case examined in Figure 5B, a few additional regions were also set as

hubs that jointly belong to two networks, and activate as soon as one of the networks

turns on.

Each simulated dynamics was associated to a probability to switch from the baseline

to the active state, and to a probability to transit from the active to the baseline

state. In all examined simulation cases, both were set to 0.5. Causal modulations were

introduced between a subset of networks: when a modulating network turned active, it

could enhance the activity of the modulated network (both by enhancing the likelihood

of a 0 to +1 transition, and reducing that of a +1 to 0 one), as symbolised by a positive-

valued causal coefficient, or decrease that activity, as reflected by a negative-valued

element. We always considered a probability modulation equal to 0.4, and in one case

examined in Figure 5C, also considered distinct pools of causal modulations between

the baseline-to-active and active-to-baseline transition cases.

The number of simulated networks is directly related to the density of co-activation

coefficients present in the problem, ρΓ (a larger N lowers ρΓ). The number of causal

modulations across networks then defines the density of causal coefficients, ρB. In

Figure 3, we explored the robustness of our framework to the exact balance between

co-activation and causal coefficients.

Eventually, all time courses were corrupted with Gaussian noise with σ2 = 2, apart from

the results shown in Figure 4 where our framework is compared to alternative approaches

(described in Section 2.6) while exploring a range of possible noise variances. Indicative

regional time courses for a simulated subject under such noise settings are presented in

Figure 2A, where noise is sufficient not to be able to infer any cross-regional relationships

by mere eyesight.
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Sparse coupled logistic regression for dynamic FC mapping 11

2.5. Quantification of the ability to retrieve the ground truth

In order to assess how accurately ground truth parameters could be retrieved, we

considered an array of quality measures. Separately for co-activation and causal

coefficients, we first computed Pearson’s correlation coefficient between the ground truth

coefficient matrix, and the output from our pipeline (respectively, Γ and B). In what

follows, we term this metric similarity.

For extracted co-activation coefficients, we also examined whether the contained

information was sufficient to re-order the regions into their underlying networks, by

computing Ward’s linkage from the columns of Γ (having excluded diagonal elements).

We separated all regions into N clusters using the constructed dendrogram, and used

the purity measure [44] to compare the obtained clusters to the ground truth. A purity

of 1 denotes perfect agreement between both sets.

For causal modulations, we used the ground truth network structure to construct a

directional graph: first, the elements of B that were associated to null values in either

BB or BA were set to 0, so that the regularisation potential of our framework is

fully exploited in yielding a sparse graph. Second, from this modified matrix B̂, all

probabilistic causal couplings associated to the same network-to-network modulation

were joined together, resulting in an N × N graph. In doing so, we used the median

operator instead of the mean to preserve sparsity. From the generated directional graph,

we computed sensitivity and specificity in directional edge detection as two separate

quality metrics.

2.6. Comparison of performance to other approaches

We compared our framework to four alternative approaches (two that derive co-

activations, and two that extract causal modulations), using the metrics introduced in

Section 2.5. For all these methods, all data points across subjects were jointly analysed

in a population-level analysis, to match the application of our framework, and the same

number of samples was used for both the training and the cross-validation datasets.

For co-activation, we first selected the graphical lasso (GLasso) [45], which also leverages

`1 regularisation, and is widely applied for the estimation of static or dynamic FC

in the literature. We performed cross-validation to extract the optimal regularisation

parameter, and were always able to locate a clear log-likelihood maximum within the

interval of probed values.

As a second co-activation approach, we considered the point process analysis (PPA)

put forward in [46], which derives a proxy for FC using only a subset of the available

time samples per voxel or region. We found it interesting to compare our framework

to another methodology that operates at the frame-wise level, without the reliance on

Page 11 of 32 AUTHOR SUBMITTED MANUSCRIPT - JNE-103328.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Sparse coupled logistic regression for dynamic FC mapping 12

second-order statistics. The approach relies on a thresholding parameter TPPA to define

the moments of interest in each activity time course (i.e., those that overcome this

threshold): to set it, we performed cross-validation by computing Pearson’s correlation

coefficient between the estimated FC proxy from the training data, and the FC matrix

derived from the cross-validation dataset. In all examined cases, the probed range for

TPPA yielded a clear similarity maximum.

For the estimation of causal coefficients, we first selected the approach introduced by [34],

which works at the level of the cross-spectral density (CSD) of the data with an added `1

regularisation constraint, making it somehow conceptually related to our framework. No

parameter needed to be tuned, but to enhance sparsity of the output matrix (for which

many non-null, but negligible values remained), coefficients lower than εCSD = 10−7 were

set to zero. The rationale for this was to ease the generation of a network-to-network

directional graph representation, which we use in the evaluated quality metrics.

As a second alternative, we considered the use of an order-1 multivariate autoregressive

model (MAR) [37], for which we only considered the cross-regional coefficients. In order

to enable sparsity of the outputs, we generated null realisations in which regional time

courses were independently randomly shuffled across subjects, and assessed significance

of the coefficients at a Bonferroni-corrected p-value of 0.05
N(N−1)

(that is, correcting for the

known maximal number of possible cross-network couplings).

All five candidate approaches were examined across a series of noise values σ2 =

{1, 2, 4, 9, 16, 25}, for a total number of subjects in the training dataset equal to

S = {1, 15, 30, 40, 50, 80}. We assessed how much performance would decrease with

larger noise and/or less available subjects to derive coefficients. The results of these

analyses are presented in Figure 4.

2.7. Application of the framework to experimental fMRI data

We applied our framework to experimental RS fMRI data from the Human Connectome

Project [47]. We considered one scanning session long of T = 1200 time points. The

data from S = 350 subjects served to extract co-activation and causal coefficients,

and SCV = 207 separate subjects were considered for cross-validation. Finally, a yet

distinct pool of SVAL = 350 subjects was leveraged to rerun the framework at optimal

regularisation values, yielding new co-activation and causal coupling estimates that we

compared to the original ones to gauge the generalisability of our findings.

The data was acquired at a fast TR of 720 ms, at a spatial resolution of 2 × 2 × 2

mm3; additional acquisition details can be found elsewhere [48]. We considered ICA-

FIX denoised preprocessed voxel-wise time courses with extra Wishart rolloff filtering to

improve signal to noise ratio, similarly to [49]. The data was originally parcellated into

376 separate areas (360 from the Glasser atlas [50], and 16 added subcortical regions),
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Sparse coupled logistic regression for dynamic FC mapping 13

but as we did not have enough data to our disposal for properly estimating parameters

from such a high-dimensional representation, we downscaled these 376 areas into R = 94

separate parcels. To do so, we computed a weighted average of the parcels from the

Glasser atlas that overlapped with a given parcel from the AAL atlas [51], where the

weights jointly reflected the size of the original parcels, and their relative overlap with

the output parcel.

As a final step, from the fully preprocessed data, we used a total variation-based

denoising approach [52, 53] to derive cleaned activity-inducing signals freed from

haemodynamic effects. We only included temporal regularisation in the process, without

any spatial prior, to avoid the need to manually specify any parameter. By this

deconvolution step, we hoped to minimise auto-correlation in the analysed time courses.

From columns of the co-activation matrix Γ, Ward’s linkage analysis was conducted to

perform hierarchical clustering into distinct networks. To effectively look at network

identities, we defined a distance cutoff by generating 10000 null realisations in which

each column was independently shuffled prior to linkage analysis. For each of these null

cases, the maximal distance between columns was sampled, and eventually, we used the

95th percentile of this null distribution as cutoff.

From the causal coupling matrices BB and BA, a directional graph representation was

generated as described in Section 2.5, using the network assignments derived from the

above hierarchical clustering process.

To compare our findings to those from the validation dataset, we considered (1)

similarity between the co-activation matrices Γ and ΓVAL, (2) purity between the

network assignments derived from the training data, and the ones extracted by running

hierarchical clustering on the validation data, using the training-inferred number of

networks, (3) similarity between the matrices containing causal modulations (B and

BVAL), and (4) comparison between the directional graphs obtained from the training

data, and from the validation data, using the training-inferred network assignments.
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Sparse coupled logistic regression for dynamic FC mapping 14

3. Results

3.1. Validation of the framework on simulated data

Figure 2 displays the results from an example simulation for which we go in depth

into the information provided by our sparse logistic regression (SLR) framework. At

the considered noise level σ2 = 2, regional time courses cannot easily be assigned to

their underlying networks (Figure 2A, left colour-coding), although in fact, there is

an underlying organisation into N = 7 distinct systems (Figure 2B, bottom left ΓGT

matrix). In addition to the co-activation structure, there are also three positive-valued

causal modulations, and two negative-valued ones, across the networks (Figure 2B,

bottom right BGT matrix). As a function of their network assignment, different regions

thus showcase distinct densities in co-activation coefficients ρΓ (as a function of how

many regions are part of the same network), and in causal ones (ρB; see Figure 2B, top

half).

In Figure 2C, example outputs of the framework (i.e., Γ and B matrices) are provided

when the same ξ and λ values are used across all regions. As anticipated, it can be

seen that for ξ = 0, co-activations are more strongly attenuated, while for ξ = 1,

causal modulations are more largely removed. Furthermore, as λ decreases, the overall

extent of regularisation is lowered, yielding a less sparse set of coefficients. There are

two further interesting points to note: first, co-activation probabilistic influences are

generally larger than causal ones. Second, regardless of the exact ξ and λ values used,

the SLR outputs strongly resemble the ground truth.

In Figure 2D, the log-likelihood (as computed on cross-validation data, and summed

across both transition types) is plotted for each region as a function of λ, at the region-

specific optimum ξ∗(r). Regardless of the region, the log-likelihood was lowest around

the largest regularisation values (right of the graph), a scheme in which it can be seen

from Figure 2C that fittingly, the ground truth structure is then not captured. When

λ became lower, the log-likelihood gradually increased, until it reached a clear peak

at values around λ = 100, with the exact location differing from region to region (see

the coloured vertical bars). Note that the regions belonging to network 6 (light brown

colour) were those linked to the lowest optimal regularisation level, fitting the fact that

they had the most elevated overall density in incoming influences. As regularisation

became still weaker, the log-likelihood decreased back, because many noisy coefficients

then pollute the estimates compared to the ground truth.

Figures 2E and 2F further disentangle the results from the log-likelihood computation

by separating the optimal ξ∗(r) and λ∗(r) for both types of transitions (baseline to active,

or active to baseline). In Figure 2E, the regions that belong to the networks that do

not receive any causal modulation (networks 1, 2, 5 and 7, respectively colour-coded

in turquoise, orange, green and dark brown) are associated to higher ξ∗(r) values (as

Page 14 of 32AUTHOR SUBMITTED MANUSCRIPT - JNE-103328.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Sparse coupled logistic regression for dynamic FC mapping 15

N1

N2

N3

N4

N5

N6

N7

B
ra

in
 r

e
g

io
n

s

20 40 60 80 100 120 140 160 180 200

Sample index

Signal

0

4

6

2

-2

-4

-6

0

0.1

ΔP

-0.1

ΔP

0

0.04

-0.04

0 1 10 100 1000 10000
-1.39

-1.38

-1.37

-1.36

0

0.1

0.2

ρ
Γ

N1

N2

N3

N4

N5

N6

N7

0

0.2

0.4

ρ
Β

B
ra

in
 r

e
g

io
n

s
B

ra
in

 r
e

g
io

n
s

ξ = 1

Brain regions Brain regions Brain regions

λ = 7000 λ = 160 λ = 0.8

ξ = 0.5

Brain regions Brain regions Brain regions

λ = 7000 λ = 160 λ = 0.8

ξ = 0

λ = 7000 λ = 160 λ = 0.8

Brain regions Brain regions Brain regions

Lo
g

-l
ik

e
li

h
o

o
d

Regularisation parameter λ

Strongly regularisedWeakly regularised
λ

*

0

100

200

300

400

ξ*

0

1

0.8

0.6

0.4

0.2

ξ*

0

1

0.8

0.6

0.4

0.2

0

100

200

300

400

λ
*

Brain regions Brain regions

Brain regionsBrain regions

Baseline to active transitions

Active to baseline transitions

ξ*

0

1

0.8

0.6

0.4

0.2

ρΓ - ρΒ

0 0.2-0.2-0.4

0

100

200

300

λ
*

ρΓ + ρΒ

0 0.2 0.4 0.6

28 31 27 29 3032 33 34 35 6 7 8 9 23 26 24 25 17 18 2219 20 21 1 3 5 2 4 10 1215 13 16 11 14

0.3

0.7

0.6

0.4

0.1

0.5

0.2

D
is

ta
n

ce

Ground truth SLR output

Brain regions

SLR output

Brain regions

Ground truth

A B

C

D E

F G H

SΒ = 0.9

SΓ = 0.98

Figure 2. In-depth analysis of example simulation outcomes. (A) Simulated time courses
on R = 35 regions, each displayed as one row for 200 samples. Colour coding denotes the network
attribution of the regions (N1 to N7) (B) Co-activation and causal ground truth matrices (Γ and B),
with associated region-specific density in coefficients (ρΓ and ρB). (C) Example outputs at selected
ξ and λ parameter values (uniformly shared by all regions), for co-activations (top row) and causal
modulations (bottom row). (D) For each region, log-likelihood as a function of the regularisation
parameter λ (summed across transition types), with the colour coding denoting network assignment.
Vertical bars outline the log-likelihood maxima for all areas. (E) For all regions and both types
of activity level transition, optimal regularisation parameters ξ∗(r) and λ∗(r). (F) Relationship
between these optima and the difference between co-activation and causal coefficient densities (for
ξ∗(r), top plot), or its sum (for λ∗(r), bottom). Data points are colour-coded as a function of the
network to which they belong. (G) SLR outputs (right) as compared to the ground truth (left)
for co-activations (top) and causal modulations (bottom). (H) Hierarchical clustering result from
Γ (top), and comparison between ground truth and output directional network-to-network graphs
(bottom). Red/blue edges denote up-regulatory/down-regulatory influences, and the arrow stands for
the direction of the modulation. SLR: sparse logistic regression.
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Sparse coupled logistic regression for dynamic FC mapping 16

co-activations then dominate in such settings), and to higher λ∗(r) values as well (since

they are associated to less coefficients overall). Conversely, and fitting the above log-

likelihood-based observations, regions from network 6 (light brown)—the most heavily

causally modulated—show the lowest ξ∗(r) and λ∗(r) values. In Figure 2F, it can be seen

that, expectedly given the mathematical underpinnings of the framework, regions with a

higher overall density of coefficients (ρΓ+ρB) were linked to larger λ∗(r). Meanwhile, ξ∗(r)

was lower/larger for regions with a balance in incoming modulations leaning towards

the causal/co-activation case.

The final outputs of the SLR framework, when the probabilistic influences onto each

region are sampled from its optimal ξ∗(r)/λ∗(r) values, are depicted in Figure 2G (right

half), and compared to the ground truth (left half). Similarity was very elevated (SΓ

= 0.98 and SB = 0.9). Accordingly, hierarchical clustering from Γ could separate all

7 networks with a perfect purity of 1 (Figure 2H, top half), and the directional graph

representation generated from the SLR framework exactly matched the ground truth

one (Figure 2H, bottom half).

Figure 3 considers the outputs from our framework upon different network structures

and co-activation/causal balances. In Figure 3A, we considered N = 3 networks

with only one up-regulatory influence from network 1 to network 2. Similarity values

were high for both types of coefficients (SΓ = 0.97, SB = 0.71), network assignment

could be perfectly retrieved, and so could the network-wise directional graph. Similar

observations were made when instead, 5 of the 6 possible cross-network couplings were

included (Figure 3B), demonstrating the flexibility of our SLR framework. Note that

the median of optimal λ values across regions and transition types was larger in the

former case (λmed = 120 as opposed to λmed = 60), and so was the median of ξ

values (ξmed = 0.75 as opposed to ξmed = 0.5). This is unsurprising, since the former

case included less coefficients to retrieve overall, and a balance more in favour of co-

activations.

Figures 3C and 3D depict the results from conceptually similar simulations when

conducted with N = 7 networks instead. Given the elevated similarities between ground

truth and SLR output matrices and the perfect network assignments, it can be seen that

our framework graciously handles changes in the underlying network structure. There

was only one disagreement between ground truth and extracted values at the level of the

directional network-wise graph representation in Figure 3D: while all true edges were

correctly retrieved, an erroneous one depicted a down-regulatory influence of network

5 onto network 6 (note that this can already be seen from B, where some negative-

valued probabilistic influences populate the associated patch of the matrix, as labelled

in orange). However, this false positive edge was also the weakest of all the retrieved

ones.
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Figure 3. Flexibility of the framework to changes in network structure and causal
modulation density. (A) For N = 3 networks and a weak extent of causal modulations (ρB = 0.12
compared to ρΓ = 0.32), ground truth co-activation and causal coefficients (left column), outputs
from the SLR framework (middle column), dendrogram obtained upon hierarchical clustering from
Γ (top right), and network-wise directional graphs for the ground truth and the SLR output cases
(bottom right). λmed and ξmed are the median optimal λ and ξ values across all regions and transition
types. SΓ and SB are the similarities between ground truth and output matrices for the co-activation
and causal modulation cases, respectively. (B) Obtained results for a larger amount of cross-network
causal modulations (ρB = 0.55) and N = 3 networks. (C) Obtained results for N = 7 networks, and
a low amount of cross-network causal modulations (ρB = 0.05 compared to ρΓ = 0.12). (D) Obtained
results for N = 7 networks, and a greater amount of cross-network causal modulations (ρB = 0.21).
The orange contour in the output B matrix shows the patch yielding the false positive edge found in
the directional graph representation. SLR: sparse logistic regression.
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3.2. Comparison of performance to other approaches

In Figure 4, we compare the performance of the SLR framework to other approaches:

for the quality of co-activation coefficients, we consider the graphical lasso (GLasso)

and a point process analysis (PPA). Regarding causal modulations, we consider a

cross-spectral density (CSD)-based approach, and an order-1 multivariate autoregressive

model (MAR). The ground truth for these simulations is depicted in Figure 4A: it is the

same as that probed in Figure 2, but here, we consider the evolution of quality metrics

as noise level and/or the number of training subjects change(s).

Figure 4B presents the results obtained by all approaches at σ2 = 2 with S = 50 subjects

(i.e., same parameters as in Figure 2). Using GLasso, the co-activation structure is

clearly retrieved, as in the SLR case. With PPA, it is also possible to resolve the different

networks, but background intensity is larger. Regarding causal modulations, the use of

MAR results in excellent outputs and in a perfect directional graph representation, as

with the SLR framework. However, a CSD approach instead yields a sparser matrix of

coefficients; while true modulations are indeed pinpointed, the anti-symmetrical nature

of the output matrix prevents from inferring if network i up-regulates network j, or if

instead, network j down-regulates network i. This is also seen in the directional graph

representation, where edges always appear in pairs. Furthermore, the more prominent

of the two edges is not always the correct one: while network 3 up-regulates network 6,

the CSD approach instead yields a larger edge for a down-regulation from network 6 to

network 3.

The outputs provided by all approaches are examined under more challenging settings in

Figures 4C (σ2 = 2 and S = 1) and 4D (σ2 = 16 and S = 50). While GLasso still enables

to retrieve the majority of ground truth co-activations, PPA becomes almost incapable to

do so (indeed, only very faint network-like patterns are seen in the associated matrices).

The outputs from the SLR framework are intermediate: less coefficients are retrieved

than in the GLasso case, but an underlying structure can still be discerned.

As for causal modulations, none of the outputs at such challenging noise settings are

truly satisfying. Note that the MAR results in the single-subject case (Figure 4C)

are not sparse, because our cross-subject null strategy would not be applicable in that

setting. Accordingly, it is the only case for which a non-empty directional graph is

retrieved: while containing many erroneous edges, the strongest ones nicely match the

ground truth.

The full results of our comparative assessment are summarised in Figure 4E. It can be

seen that when noise is increased (going from top to bottom in a given heatmap),

or when less subjects are available for parameter estimation (going from right to

left), performance degrades as quantified by almost all metrics. The only exception

is specificity, because causal modulation outputs will become fully sparse under more

challenging simulation circumstances, thus preventing the detection of false positives
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Figure 4. Comparison to other approaches. (A) Ground truth parameters of the examined
simulation, including co-activations (left, Γ), causal modulations (middle, B) and network-wise
directional graph (right). (B) Results obtained from all examined approaches at noise level σ2 = 2
and for S = 50 subjects. Co-activation results are provided at the top, and causal ones at the bottom,
with their associated directional graph representations. (C) Results obtained from all examined
approaches for σ2 = 2 and S = 1. The empty space symbol denotes empty directional graphs. (D)
Results obtained from all examined approaches for σ2 = 16 and S = 50. (E) Summary of performance
across all examined methods, and 5 quality metrics, as a function of noise level σ2 and number of
subjects S. The first two rows of heatmaps denote the results for co-activations, and the last three
for causal modulations. SLR: sparse logistic regression. GLasso: graphical lasso. PPA: point process
analysis. MAR: multivariate autoregressive model. CSD: cross-spectral density.
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Figure 5. Performance under more complex settings. (A) Ground truth parameters for
the considered simulation in a “simple” setting (left side), and associated SLR-based outputs (right
side). (B) Ground truth coefficient matrices for a more complex case where hub nodes are added
(left), results derived using the SLR framework (middle), and results obtained with the GLasso (for
co-activations) and MAR (for causal couplings) approaches (right). (C) Ground truth coefficient
matrices, SLR-based co-activation matrix, and directional graphs for a more complex case where
causal modulations are different as a function of the level of activity of the modulated region (left set
of plots), causal outputs generated using the SLR framework (middle set of plots), and results using
the MAR approach (right column). SLR: sparse logistic regression. GLasso: graphical lasso. MAR:
multivariate autoregressive model.

(except for MAR at S = 1, as mentioned above).

While qualitatively similar, it can also clearly be seen that performance degrades most

rapidly in the PPA case (for co-activation metrics) and in the CSD case (for causal

metrics). GLasso and MAR are the most precise approaches, shortly followed by

our SLR framework, which performs slightly worse under more challenging settings.

However, we should emphasise that co-activations and causal modulations are then

jointly derived, instead of only one of the two sets with other competing approaches.

To complement the above, Figure 5 provides evidence that our SLR framework may also
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be of use in more complex (and possibly more realistic) settings. We first consider a

new simple simulation case, as depicted in Figure 5A (noise settings are similar to those

employed elsewhere, with σ2 = 2 and S = 50): unsurprisingly, the retrieved coefficient

maps convincingly reveal the true underlying co-activation and causal structures of the

system.

In Figure 5B, we consider a first increase in complexity by adding in 5 hub regions

that jointly co-activate with two separate networks. Since we now deal with R = 40

regions, the number of subjects used for the estimates was increased to S = 65 (see

Section 2.4). Recovery of the ground truth remained excellent despite this additional

layer of complexity, both for Γ and for B. Interestingly, while with MAR the causal

structure was still very cleanly recovered, GLasso started mistakenly revealing some

cross-network co-activations between networks 2 and 3, 1 and 5, 2 and 7, and 3 and 7

(see the small pink patches in the associated matrix).

In Figure 5C, we instead consider a ground truth scenario in which the causal

modulations differ from one type of transition in activity level to the other. In more

details, network 1 only up-regulates network 2 when the latter is at a baseline level

of activity; mechanistically speaking, this could reflect the fact that network 2 then

starts self-sustaining itself, becoming immune to external modulations when it is active.

Conversely, network 1 only up-regulates network 3 when the latter is active. Similar

state-specific modulations are also introduced for down-regulatory influences from

network 5 to 4 (only when network 4 is at baseline level of activity), and from network

6 to 5 (only when network 5 is active). Logically, a MAR approach cannot disentangle

both ground truths, and provides a trade-off solution that mixes the different types of

edges, while even discarding one (the down-regulatory modulation from network 6 to

5). Using our SLR framework, while the results remain somehow noisy, both scenarios

can be disentangled, as seen from the network-wise directional graph representations,

and this is so despite still resorting to only S = 50 subjects in the estimations.
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3.3. Application of the framework to experimental fMRI data

Figure 6 shows the results when applying our framework to experimental fMRI data

(R = 94 regions). A main dataset of S = 350 subjects was used to derive the SLR

outputs, and the framework was then applied to a separate validation set of SVAL = 350

subjects at the extracted region-specific optimal regularisation parameters.

Computationally speaking, on an Intel Xeon Platinum 8160 CPU at 2.1 GHz with 24

cores, 512 GB RAM and Ubuntu 18.04, z-scoring and binarisation of the time courses

were always achieved in a few seconds, while the selection of time points featuring both

types of transition took in the order of half an hour per dataset. As for SLR framework

steps, average computational time values across regions and regularisation levels were

0.13±0.03 s for the computation of z
(r)
t and ω

(r)
t , and 153.51±45.6 s for the computation

of the α(r), β(r) and γ(r) coefficients. Finally, the evaluation of the log-likelihood took

0.13±0.02 s. Thus, the two most time-consuming factors were the selection of time

points, and most importantly, the computation of the coefficients.

In Figure 6A, we can visualise optimal regularisation parameters extracted across all

the regions at hand. Values for ξ∗(r) fluctuated across areas, highlighting how some

brain regions may highlight more co-activations, while others undergo more causal

modulations. In general, the values were however closer to 1 (0.69±0.24, with a median

of 0.75), denoting that co-activation is globally more influential than causal interplays.

Regarding λ∗(r), a variable range of values could also be seen across areas, denoting that

some are more heavily interconnected with the rest of the brain circuitry than others.

Figure 6B depicts the co-activation matrices Γ on the main and on the validation

datasets. Visual agreement between both outputs is evident, and this is quantitatively

confirmed by a large similarity value of SΓ = 0.9. Co-activations resulting from the

main dataset then underwent hierarchical clustering, revealing a complex multi-scale

organisation (Figure 6C). An extensive analysis of such data would require to investigate

the results at various possible numbers of clusters, gradually cutting the dendrogram

at lower distance cutoffs. However, since our purpose only was the preliminary

experimental application of our SLR framework, here, we solely considered one such

cutoff value (dcut = 2.02, as depicted by the horizontal red line; see Section 2.7 for

details).

With this partitioning, 5 distinct networks were extracted: network 1 (in green) included

all subcortical regions as well as medial frontal, posterior cingulate and angular areas

characteristic from the default mode network (DMN) [54]. Note that subcortical

and DMN regions would be segmented into two separate networks at a lower cutoff

value. Network 2 (in turquoise) primarily featured frontal areas reminiscent of executive

control, while network 3 (in orange) included temporal regions, likely representing an

auditory network. Network 4 (in purple) included precentral, paracentral, postcentral

and supplementary motor areas typically associated to somatomotor function, and also
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Figure 6. Results on experimental fMRI data. (A) Optimal regularisation parameters ξ∗(r)

(top plot) and λ∗(r) (bottom plot) found across regions, and averaged across both types of transition
in activity level. (B) Co-activation matrices Γ found from the main dataset (left), and the validation
one (right). (C) Hierarchical clustering results obtained from Γ, with colour coding reflecting the
5 yielded networks. The red horizontal line denotes the used cutoff for network assignment. (D)
Network-wise directional graph representations obtained from the main dataset (top), and from the
validation one (bottom), using the network assignment results derived from the main dataset. L: left.
R: right.

comprised the bilateral insula. Finally, network 5 (in pink) exclusively consisted in

occipital regions characteristic of the visual system; it would be further split into primary

and secondary sub-systems at a lower cutoff. Overall, the obtained network assignments

are thus in line with RS neurophysiological knowledge. In addition, when regional

assignments were extracted from the validation dataset, purity as computed between

both clustering outcomes showed a fair value of 0.64, highlighting somehow generalisable

subdivision of the regional data into networks.

Causal modulations considered across the extracted 5 networks are displayed in

Figure 6D for the main dataset, and for the validation one (using similar regional

assignments). Several observations can be made: first, more causal modulations are

retrieved in the validation graph, possibly owing to the fact that the SLR algorithm was

rerun only at optimal regularisation values, thus yielding slightly less tailored estimates

to the data at hand. Second, the overlap with the main dataset results is nonetheless

quite good: all the edges found from the main dataset are indeed present in the validation
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one, and are also those with the strongest values. This provides confidence that the

directional cross-network couplings seen in the main dataset are generalisable, and can

thus soundly be discussed. Third, all these retrieved causal modulations are negative-

valued: this means that when the modulating network is active, it will down-regulate the

activity of the modulated network (either by making it more likely to transit from the

active to the baseline state, or by making it less likely to become active). In particular,

the subcortical/DMN, executive and temporal networks primarily inhibit each other by

this mean, while visual and somatomotor networks remain more independent in their

activity.
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4. Discussion

In this work, we introduced a novel mathematical framework enabling to jointly derive

the patterns of co-activation between brain regions, reflective of the brain’s functional

organisation as a set of RSNs [4, 6], and additional cross-regional causal modulations

that enable to go beyond this network-level characterisation and also model more subtle

cross-regional interplays. One can conceive our strategy as a joint recovery of FC

(embedded in the Γ matrix) and EC (in B).

Our strategy is an improvement over previous work that also used a logistic regression

characterisation to describe causal interactions between functional brain networks [41]:

in this former methodology, network maps had to be computed in a separate analytical

step, prior to the establishment of their causal interplays. As such, and much like the

majority of other prominent dynamic FC approaches—see for instance [55, 16, 19, 22],

more subtle relationships at a smaller spatial scale than that of RSNs are then lost.

On simulated data, both co-activation and causal coefficient sets could accurately

be retrieved by our framework despite marked noise, and this held true in various

configurations regarding the number of simulated networks and the balance between

co-activations and causal influences (Figures 2 and 3). In all the assessed cases,

clear maxima could be observed in the log-likelihood curves of the simulated regions,

confirming the efficiency of our cross-validation strategy in selecting meaningful

regularisation parameters tailored to each area.

In the majority of our simulations, we considered enough data points for accurate

estimation of the full model, as around 12 data points were available per parameter.

Upon the investigation of more challenging cases, either due to increased noise or to a

lower available amount of subjects for estimation (Figure 4), only a restricted subset

of ground truth entries were recovered, owing to the `1 norm properties [56]. These

correctly retrieved coefficients were co-activations, not causal couplings, indicating that

the former could more easily be extracted from our simulations. This is not so surprising

given the used simulation strategy, where co-activation was modelled by simulating two

identical time courses before noise addition, while causal couplings only changed the

probability to transit across activity levels. It will be interesting to consider alternative

simulation schemes in future work, to more comprehensively evaluate the ease with

which each coefficient type can be extracted.

Across the assessed noise and dataset size settings, our SLR framework was, on the

whole, competitive in comparison to other existing methods. It globally outperformed

PPA for the estimation of co-activations, and CSD-based retrieval of causal couplings. In

addition, it came a close second to the widely applied GLasso and MAR in the respective

recovery of co-activation and causal coefficients, only providing worse performance in

the most challenging investigated settings.
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Importantly, the worse outcomes of the PPA and CSD-based methods in our analyses

do not imply that such tools are useless: in fact, one of the major assets of PPA is

its computational speed compared to classical FC estimation [46], and indeed, it was

the fastest of the examined pipelines. As for the use of CSD information to estimate

causal modulations, results from such a family of approaches show an anti-symmetrical

structure [57], which does not accommodate our underlying simulation assumptions as

well as for other methods. In sum, which tools perform the best always depends on the

considered metrics and simulation specificities.

In any case, our framework showed promising potential from the examined angles,

especially given that it is the only of the assessed approaches that jointly retrieves

co-activation and causal information at once. Theoretically speaking, it also enables

to go even further, as two separate maps are obtained: one for the baseline-to-active

transitions, and one for the active-to-baseline ones. In most of the presented content, we

treated the 0→ +1 and +1→ 0 transitions as mirrors of each other, subtracting both

sets of probabilistic couplings to obtain the analysed outputs. However, more complex

information may lie within the individual coefficient matrices. Figure 5 showed that

such activity state-specific modulatory influences can indeed be disentangled, although

we leave more detailed investigations for future work.

On experimental fMRI data (Figure 6), the optimal balance between co-activations

and causal modulations—rendered by the ξ∗(r) parameter—fluctuated across regions,

evidencing the fact that both types of cross-regional interactions are required to

accurately describe functional brain dynamics, in a way that is not spatially trivial.

While the obtained median value of 0.75 indicates that on the whole, co-activations

play a somehow dominating role, these results nonetheless highlight the importance of

developing methodological approaches that do not only focus on one viewpoint, but

instead attempt to jointly capture co-activations and causal interplays.

An important aspect to keep in mind—and a limitation of the present work—is the

fact that although the SLR framework goes beyond the network-level spatial scale by

revealing region-wise interactions, it still considers a set of spatially fixed parcels in

doing so. The resolution of the used atlas can then be expected to influence obtained

results, and here, we only considered R = 94 separate areas, which remains a modest

amount compared to the most state-of-the-art parcellations [50, 58]. This was, however,

necessary to ensure the presence of enough data points for sound estimation.

Several technical developments may be envisioned to further improve our approach.

First, the purely `1 regularisation strategy could be turned into an elastic net mix

between `1 and `2 norms [59], but it would then come at the cost of an extra free

parameter to specify. Second, neurobiologically relevant additional assumptions could

be introduced to the model formulation, such as symmetry and non-negativity in the

co-activation matrix Γ, or the fact that co-activations and causal influences should be

mutually exclusive.
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Third, instead of the probability to transit from a given state of activity to another,

one could consider the likelihood to show an innovation [19] (that is, go up or down in

activity regardless of the exact starting point). By this mean, the current framework

could seamlessly be generalised to more than only 2 states of activity, which may better

represent the dynamics of some brain regions. This information is already available (by

comparison to phase-randomised null data) from the total activation pipeline used in

the deconvolution of the analysed fMRI data [52, 19, 53]. An additional interest would

then be the easier comparison of results obtained from datasets acquired at various

TRs, so that the increasingly understood specificities of fast TR datasets [60, 61] can be

better disentangled from more general effects. To do so, one could determine whether a

transient has just occurred prior to the assessed time point by jointly examining a span

of a few samples (t− 1, t− 2, etc.).

Fourth, the current framework enables to go from networks to regions, but one

could push the same reasoning further by attempting to further separate this regional

categorisation into smaller individual units—finer-grained parcels, or voxels. Such a

multi-scale analysis would enable to dig into important aspects that may for now be

blurred, such as the notable idiosyncrasy in FC patterns and network identities known

to exist across subjects [62, 63].

Finally, a few promising practical applications of our framework can be foreseen: first, it

will be exciting to compare co-activation and causal coefficients across different subject

populations (e.g., a set of healthy volunteers as opposed to a diseased population).

To do so, bootstrapping could be conducted on each population, and statistical

testing could then be applied for each coefficient of interest. The examination of

subject-specific properties will, however, be more challenging to address, as typically

available amounts of data only permit sound population-wise inference. Second,

another possible application could be in hyperscanning [64], where two subjects are

scanned in parallel while they interact. Co-activations, or causal modulations, could be

quantified across both subjects as a way to shed light on the functional underpinnings

of cooperative processing. Third, the specificities of our framework may be even better

suited to the analysis of other data modalities for which temporal resolution enables

to more closely track neuronal activity; applications to magnetoencephalography,

electroencephalography or electrocorticography datasets are thus interesting avenues

to explore.
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