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Abstract

The estimation of predictive uncertainty and its application as a post-processor of

hydrological model output, such as water level, can provide additional informa-

tion useful for short-term hydrological forecasting. In this study, We applied qua-

ntile regression models for estimating predictive hydrological uncertainty and

used it to derive probabilistic hydrological forecasts. Forecast water levels and

associated forecast errors were used as predictor and predictand, respectively, to

develop three regression models: (a) linear quantile regression (LQR),

(b) weighted LQR and (c) LQR in Gaussian space using Normal Quantile Trans-

formation. These different models for hydrological forecasting were developed

for, and applied to, the operational flood forecasting system in the Upper Chao

Phraya River, Thailand. The quality of these forecasts in terms of reliability,

sharpness and overall skill were assessed using various graphical and numerical

verification metrics. Results show that the improvement of forecast in terms of

either reliability or sharpness depends upon the configurations used. With com-

parable overall performance, weighted LQR provided a relatively simple configu-

ration, which can be used for estimating uncertainty in hydrological forecasting.
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1 | INTRODUCTION

Hydrological forecasting is used to predict the future state
of a hydrological system to support water management. It
is relevant on different temporal scales, ranging from
short and medium range (few hours to some days
ahead)—such as for flood forecasting and warning and
emergency management—to seasonal and long-range

forecasting for optimising reservoir operations, water allo-
cation and drought management. Accurate and reliable
hydrological forecasts can reduce the impacts from water-
related hazards and provide the basis for more effective
water resources management.

In this context, information on predictive uncertainty
is important for forecast-based decision making (Arnal
et al., 2016; Krzysztofowicz, 2002; Ramos, van Andel, &
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Pappenberger, 2013; Verkade & Werner, 2011). The prob-
abilistic information on forecasts can assess reliability,
resolution and discrimination as measures of forecast
quality and hence serves as an essential step for improv-
ing the quality of forecasts (Murphy, 1993). Additional
information of uncertainty in probabilistic forecasts over
deterministic forecasts allows authorities to set risk-based
criteria to make rational decisions and also offers poten-
tial for additional economic benefits accrued from fore-
casts (Krzysztofowicz, 2001; Todini, 2017). The use of
probabilistic forecasts in risk-based decision making
yields higher flood risk reduction, as compared to deter-
ministic forecast-based decision making (Verkade & Wer-
ner, 2011).

Uncertainty in hydrological forecasts cannot be elimi-
nated, however, its estimation can help to generate prob-
abilistic forecasts by processing deterministic forecasts
(Krzysztofowicz, 2001). Different sources of uncertainties
like meteorological information, the initial condition and
the model uncertainty are associated with streamflow
prediction (Cloke & Pappenberger, 2009). However, the
estimation of total predictive uncertainty is a first step
towards a better understanding of the uncertainty in fore-
casts. This total predictive uncertainty can be effectively
computed using statistical tool which is further applied to
generate probabilistic forecasting for the short and
medium ranges.

Todini (2009) defined predictive uncertainty as the
‘expression of our assessment of the probability of occur-
rence of a future (real) event conditional upon all the
knowledge available up to the present and the informa-
tion we were able to acquire through a learning inferen-
tial process.’As the definition suggests, uncertainty can
be expressed in terms of the probability of exceedance
over a threshold, or in terms of a probability distribution
conditioned upon hydrological forecasts. The former can
be computed from the latter and hence was used to
express uncertainty in this study.

Predictive uncertainty can be estimated by developing
joint distributions of forecasts and observations
(Montanari & Brath, 2004) or by analysing a series of fore-
cast errors. This process usually requires long data series.
Since, extreme events such as floods are rare, the estimation
of such events is highly uncertain (Cloke & Pappenberger,
2009; Pappenberger et al., 2005; Weerts, Winsemius, &
Verkade, 2011). Various methods to estimate predictive
uncertainty are available, including quantile regression
(QR; Bremnes, 2004; Dogulu, López López, Solomatine,
Weerts, & Shrestha, 2015; Koenker & Hallock, 2001; López
López, Verkade, Weerts, & Solomatine, 2014; Weerts et al.,
2011), Bayesian model averaging (BMA; Raftery, Gneiting,
Balabdaoui, & Polakowski, 2005), the hydrologic uncer-
tainty processor (HUP; Krzysztofowicz & Kelly, 2000), the

model conditional processor (MCP; Todini, 2008) and the
nonparametric data-based approach (NDA) (Van
Steenbergen, Ronsyn, & Willems, 2012), multi-temporal
approach of the model conditional processor (MCP-MT;
Barbetta, Coccia, Moramarco, Brocca, & Todini, 2017) and
uncertainty estimation based on local errors and clustering
(UNEEC; Solomatine & Shrestha, 2009). In addition, a sum-
mary of Bayesian approaches used in flood forecasting are
reviewed in Han and Coulibaly (2017). However, we
focused on the application of QR and its configurations in
this study.

Quantile Regression, in contrast to Ordinary Least
Squares regression, extends the approach of classical
regression to estimate conditional quantiles rather than
means, which makes it robust to outliers. It can also
describe the full distribution as any quantile can be com-
puted. Another important strength of using quantile
regression is that QR does not require any assumption
based on a prior distribution and can be computed
irrespective on distribution of the predictand (Y) and pre-
dictor (X) used.

The heteroscedastic and non-linear behaviour of the
distribution of forecast errors often seen in hydrological
applications should be accounted for in the regression.
Apart from using complex non-linear regression, trans-
formation into Gaussian space allows us to use linear
regression in Gaussian space, which is then transformed
back to the original space (Dogulu et al., 2015; López
López et al., 2014; Muthusamy, Godiksen, & Madsen,
2016; Roscoe, Weerts, & Schroevers, 2012; Weerts et al.,
2011). This transformation method introduces non-
linearity in the regression line in the original space (after
the back transformation). This method redistributes the
data based on the rank in the Gaussian space, thereby all-
owing different distributions of forecast errors in different
ranges of forecast values. The back-transformation may
not be straight-forward if the quantile to be back-
transformed lies outside the range of calibration data and
could introduce more uncertainty. This is particularly
important if we are considering large events, where, deci-
sions are to be made based on the forecasts. This issue
has been treated using linear extrapolation at both
extreme ends by López López et al. (2014) and Weerts
et al. (2011), however, the performance of such a method
was not evaluated in these studies due to lack of extreme
events in the validation dataset.

In this study, QR was applied to forecast data using a
forecast system of the Chao Phraya River Basin (CPRB)
in Thailand. Major floods in CPRB have occurred several
times in the past: in 1942, 1978, 1983, 1995, 1996, 2002,
2006, 2010 and 2011. Despite different structural and
non-structural measures in place, the flooding problem
in CPRB still exists. The recent flood in 2011, which
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caused devastating damage of property, has emphasised
the importance of a forecasting system and decision-
making based on the system. A real-time flood fore-
casting and management decision support system based
on MIKE, customised by DHI, was set up in order to
compensate for the lack of reliable flood forecast data
during the monsoons (Sisomphon, Boonya-aroonnet, &
Chonwattana, 2013). However, the question of the reli-
ability of the forecasting system continues to exist as
the forecasting system is currently not able to provide
an estimate of the uncertainty of the forecasts. This
study, driven by a potential of shift from deterministic
forecasting towards probabilistic forecasting, investi-
gated methods based on QR for the provision of predic-
tive hydrological uncertainty associated with the flow
forecasting system. This study applied and compared
three different configurations of QR: (a) Linear quantile
regression (LQR), (b) Weighted LQR that gives larger
weights to higher water levels in the regression and
(c) LQR in Gaussian space using Normal Quantile
Transformation. We evaluated these QR models with
the aim of investigating whether the non-linearity
introduced in the regression lines in the original space
by applying QR in Gaussian space provide a good rep-
resentation of the actual error and increases the perfor-
mance of the QR model in comparison to other
configurations. In addition, we explored whether a sim-
pler weighted QR configuration could perform on par
or better than the method involving transformation of
the data. These methods were compared using a range
of probabilistic verification metrics.

2 | STUDY AREA

The area for this study is CPRB in Thailand. It is located
entirely within Thailand and covers an area of
157,925 km2. The river drains from north to south and
finally into the Gulf of Thailand (Figure 1). The basin
consists of four large tributaries, namely, Ping, Wang,
Yom and Nan, which merge into the main Chao Phraya
River. Chao Phraya River Basin has a monsoon domi-
nated weather regime with a rainy season lasting from
May to October. The annual average rainfall is 1,153 mm
and the annual averaged runoff is 3,762 MCM. About
90% of the annual rainfall occurs during the rainy season,
causing high discharge and heavy floods in the area.

The present study focuses on the Upper CPRB
(Figure 1). The Upper Chao Phraya rivers—Ping, Wang,
Yom and Nan—flow into the main Chao Phraya river
at Nakhon Sawan province. The upper CPRB is a hilly
area and covers approximately 109,973 km2. The dis-
charge of Ping, Wang and Nan rivers are mainly

controlled by Bhumibol Dam, Kiew Lom Dam and
Sirikit Dam, respectively.

The flood forecasting system, which is currently being
operated by the Hydro-Informatics Institute was used.
This real-time flood forecasting system is composed of a
weather forecasting system, catchment hydrological
model, river hydrodynamic model and a data assimila-
tion system for real time model updating. The weather
research and forecasting (WRF) model is used to forecast
rainfall for 7 days ahead. The input data for WRF is
derived from the NCEP Global Forecasting System. The
hydrological models are implemented using the NAM
module of the MIKE Powered by DHI MIKE 11 software.
NAM is a lumped, conceptual rainfall-runoff model. The
hydrodynamic models are implemented using the MIKE
11 river modelling system. It is a one-dimensional hydro-
dynamic software package including a full solution of the
St. Venant equations. The MIKE 11 model calculates
water levels and discharges along the modelled river
stretches. As part of the forecasting system, data assimila-
tion is carried out to update and adjust the MIKE
11 model to available observations. The total simulation
period of a forecast run is 14 days, consisting of 7 days of
hindcast (with data assimilation) and 7 days of forecast.
More information about the forecast system can be found
in Sisomphon et al. (2013).

The operationally available forecasted and observed
water level data for three stations: NAN007, NAN008 and
PIN004 were used in this study. These stations are
located at the lower part of the Upper CPRB as shown in
Figure 1. For this study, the available data was split into
calibration (09/2013–09/2014) and validation datasets
(10/2014–12/2014).

3 | METHODOLOGY

3.1 | Quantile regression

Quantile regression is a regression of conditional quantiles.
For a given random variable Y, the τ0th quantile is the
value y for which the probability of occurrence of a quan-
tity below this value is equal to τ, that is, P(Y < yτ) = τ.
The interval between quantiles gives the confidence
interval. For example, 25 and 75% quantiles give 50%
confidence interval, whereas 5 and 95% quantiles give
90% confidence interval. In terms of distribution, the
cumulative distribution function for the random vari-
able Y can be written as F(y) = P(Y < y), and the
quantile function is the inverse of this function,
Q(τ) = F−1(τ).

QR minimises the absolute sum of deviations from
the regression line. For two variables X and Y whose
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relation is to be established using quantile regression at a
quantile τ, the conditional quantile regression can be
expressed as a minimization problem as:

min
Xn
i=1

ρτ yi− ŷτ xi,βτð Þð Þ ð1Þ

where ðxi, yiÞ, i = 1,2,…,n is the sample of (X,Y), ŷτ is
the estimate of the quantile of Y, βτ represents the param-
eters of the regression line and ρτ(.) is an asymmetric loss
function given by:

ρτ yð Þ= τ−1ð Þ y, y≤ 0

τ y, y>0

�
ð2Þ

From the available series of water level forecasts (X) and
observations (O), the forecast error at a given lead time of
interest, t, can be computed as:

Y tð Þ=O tð Þ−X tð Þ ð3Þ

It was assumed that, for a given lead time, the forecast
error changes (mostly increases) with the forecast value
and we were interested in determining the quantiles of
the error distribution as a function of the forecast
using QR.

The regression parameters for each quantiles are
independent of each other and hence may result in the
crossing of quantiles. Therefore, a fixed error model
described in Weerts et al. (2011) was applied below the

FIGURE 1 Location map of Chao

Phraya river Basin
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crossing point in this study as the crossing usually occurs
at lower forecast values.

The different configurations of QR used in this study
are: LQR (López López et al., 2014), LQR:NQT (López
López et al., 2014; Roscoe et al., 2012; Weerts et al.,
2011), and a modification of LQR focusing on higher
flows LQR:WT, which are presented in Table 1.

3.1.1 | LQR in original space

This is the simplest and most direct approach of QR using
data in original space.

The linear regression equation is described by:

Y tð Þ= β0 + β1X tð Þ+ ε ð4Þ

where β0 and β1 are the intercept and slope of the linear
regression line and ε is the residual.

The minimization problem of quantile regression
applies the loss function to the residual ε for each qua-
ntiles to find the optimum parameters, that is, defined as
follows.

min
Xn
i=1

ρτ Yi− β0,τ + β1,τ*Xi
� �� � ð5Þ

3.1.2 | LQR in original space with
weights (LQR:WT)

Although the estimation of uncertainty is targeted espe-
cially for higher flows in the flood forecasting system, few
data are available in that flow range. Most of the data are
concentrated at lower water levels. This uneven distribu-
tion of data could lead to biased regression models when
used in the original space. To address this, weighted linear
quantile regression is used in the study. This configura-
tion is different from LQR only in the application of
weights.

The weighing can be applied by ranking the data on
the basis of the forecast water level and then providing
the weight based on the rank of the data. In this study,
the weight was applied such that the highest ranked data
was given the highest weight (= 1), that is,

wi = ri=N , ð6Þ

where ri is the rank of ith forecast water level data (from
lowest to highest), N is the total number of data.

3.1.3 | LQR in Gaussian space using NQT
(LQR:NQT)

A transformation such as normal quantile transform
(NQT) can be applied to the forecast and error series to
make the distributions Gaussian. The NQT transforma-
tion was applied to both Y(t) and X(t).

YT tð Þ=Q−1 F Y tð Þð Þ½ � ð7Þ

XT tð Þ=Q−1 F X tð Þð Þ½ � ð8Þ

where F(.) is the Weibull plotting position and Q−1 is the
inverse of the standard normal distribution.

Quantile regression was applied thereafter solving the
minimization:

min
Xn
i=1

ρτ YT,i− β0,τ + β1,τ*XT, i
� �� � ð9Þ

After the analysis in Gaussian space, the variables are
back transformed into original space.

3.2 | Forecast evaluation

We compared the performances of the QR models using
different metrics. The aspects of forecast evaluation we
considered were reliability, sharpness and skill. Reliabil-
ity is a measure of statistical consistency between the
forecast probability and the observed frequency of the
events. Sharpness refers to the spread of forecast distribu-
tion and is solely a function of forecast. Skill measures
the quality of forecast by considering both reliability and
sharpness. The verification metrics were chosen based on
the type of probabilistic forecast, that is, full continuous
forecast probability distribution and central credible
interval (CCI) forecasts (Gneiting & Raftery, 2007; Wilks,
2011). The generation of full continuous probability

TABLE 1 Various configurations of quantile regression used

in the study

Name Description

LQR Linear quantile regression in original space

LQR:WT Linear quantile regression in original space with
higher weight applied to higher water level

LQR:NQT Linear quantile regression in Gaussian space
using NQT
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distributions was done by computing a large number of
quantiles over [0,1], whereas some quantiles (0.25 and
0.75 for 50% CI and 0.05 and 0.95 for 90% CI) were
selected to generate CCI forecasts. Reliability, continuous
ranked probability score (CRPS) and its skill score
(CRPSS) were computed as measures of full continuous
forecast probability distribution, while prediction interval
coverage probability (PICP), mean prediction interval
(MPI) and interval score were computed for CCI.

3.2.1 | Reliability diagram

The reliability diagram is an approach used to graphically
represent the performance of probability forecasts
expressed in terms of quantiles. A reliability diagram con-
sists of a plot of observed relative frequency as a function
of forecast probability.

For n pairs of observed O and forecast X, the forecast
non-exceedance probability is τ (equal to the quantile of
consideration) and the observed relative frequency of
non-exceedance is given byfτ:

f τ =
1
n

Xn
i=1

1 Oi ≤Xτf g ð10Þ

where 1{.} represents the value of 1 when the inequality
inside the bracket is satisfied and 0 otherwise.

For perfect reliability, the forecast non-exceedance
probability and observed relative frequency are equal and
the reliability line follows the 1:1 diagonal line.

3.2.2 | Continuous ranked probability
score

The ranked probability score is essentially an extension
of the Brier score to multiple categories. It is used to
access the overall forecast performance of probabilistic
forecasts. The ranked probability score is the sum of
squared differences between the components of the
cumulative forecast and observation vectors, and it is
given by

RPS=
1

J−1

XJ
m=1

Xm

j=1
x j

� �
−

Xm

j=1
o j

� �h i2
ð11Þ

where J is the number of events being forecasted, x is the
forecast and o is the observation.

Similar to the Brier score, RPS = 0 represents a per-
fect forecast and a higher RPS reflects a poorer forecast.

For continuous predictands, the RPS is extended to
CRPS (Wilks, 2011)

CRPS=
ð∞

−∞

F xð Þ−Fo xð Þ½ �2dx ð12Þ

where F(x) is cumulative distribution function of probabi-

listic forecast and Fo xð Þ= 0, x< o

1, x≥o

�
.

3.2.3 | Skill score

Forecast skill measures the quality of a set of any forecast
with respect to a reference or benchmark forecast. It is
represented by skill score, which gives the percentage
improvement of the forecast compared to its reference
forecast. For any score S, the corresponding skill score
can be calculated as:

SS=
S−Sref

Sperf−Sref
ð13Þ

where Sref is the score of the reference forecast which cor-
responds to threshold forecast over which improvement
is computed and Sperf is the score of the perfect forecast
which is equal to the best score that could be achieved.
In present study, S = CRPS; Sref = CRPSref, the CRPS
score for a reference forecast; Sperf = 0, which is maxi-
mum value of CRPS score that can be attained for a per-
fect forecast.

The reference forecasts used for computing skill scores
may be calculated by using a reference lumped hydrologi-
cal model with persistent or climatological meteorological
forcing, or may directly be obtained from climatologic or
persistent observed discharge (Pappenberger et al., 2015).
In this study, a probabilistic distribution based on
climatologic observed discharge was used as the reference
forecast.

3.2.4 | PICP and MPI

PICP and MPI (Shrestha & Solomatine, 2006) are mea-
sures of reliability and sharpness based on the prediction
interval. Thordarson et al. (2012) used the same metrics
for evaluating probabilistic forecasts of sewer flow. The
reliability plot described above shows the reliability in
terms of forecast quantiles. However, the forecast uncer-
tainties are often expressed in centred intervals. For a
given percentage of centred interval β, the interval with
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the quantiles are [α/2, 1 − α/2] where α = 1 − β. The reli-
ability diagram gives the theoretical quantiles and
corresponding observed quantiles, whereas PICP gives
the proportion of the data lying in the centred interval.
MPI is the average width of the forecast interval. These
measures together can be used to compare different
methods and their performance for both reliability and
sharpness.

For a given model, the upper and lower boundary for
the forecast interval are defined as xui,β and xli,β , respec-
tively, for a given confidence interval β, at forecast time
i. The observation at that time is denoted by Oi. Then the
hit and miss of the observed value within the given fore-
cast interval can be given by a binary indicator variable:

hi,β =1 xui,β≥Oi≥xli,β
n o

ð14Þ

where 1{.} represents the value of 1 when the inequality
inside the bracket is satisfied and 0 otherwise, and
α = (1 − β) so that the upper and lower quantiles of the
prediction interval are u = 1 − α/2 and l = α/2.

PICP is the fraction of observations occurring within
the given interval determined by the expected value of
hi,β over the range of n forecasts and observations:

PICPβ =E hi,β
� �

=
1
n

Xn
i=1

hi,β: ð15Þ

MPI for the confidence interval β, expressed in the
unit of the forecasted variable, is given by:

MPIβ =
1
n

Xn
i=1

xui,β−xli,β
� �

: ð16Þ

Better reliability is obtained for PICPβ values closer to
the considered confidence interval β. A smaller value of
MPI implies a sharper forecast. If the PICP is smaller
than the corresponding confidence interval, the PICP can
be improved at the expense of an increase in MPI, and
vice versa.

3.2.5 | Interval score

The interval score can be expressed as a combination of
reliability and sharpness as shown in Gneiting and
Raftery (2007) and Thordarson et al. (2012). The interval
score is given by:

FIGURE 2 Forecast error versus forecast water level with regression lines of various quantiles for NAN007 station. QR configurations

are shown in rows and lead time (in hr) is in columns
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ISi,β =
xui,β−xli,β

� �
+

2
α

xli,β−Oi

� �
, Oi < xli,β

xui,β−xli,β
� �

+
2
α

Oi−xui,β
� �

, Oi > xui,β

8><
>: : ð17Þ

For a series of n forecasts and observations, the score is
averaged over the whole period to obtain an average
interval score:

�ISβ =MPIβ +
2

α*n

Xn
i=1

xli,β−Oi

� �
1 Oi < xli,β
n oh

+ Oi−xui,β
� �

1 Oi > xui,β
n o

� ð18Þ

Equation (18) shows that the interval score is the sum
of MPI and a penalization term for the observations outside
the prediction interval range. If the interval gets wider,
MPI will increase, which increases the score, on the other
hand a smaller MPI will lead to a penalization of the obser-
vations that lies outside the prediction interval and thereby
increases the overall score. The interval score can also be
expressed in terms of reliability and sharpness as:

�ISβ =MPIβ +
2

α*n

Xn
i=1

1−hi,β
� �

min Oi− xli,β, x
u
i,β

h i			 			� �
ð19Þ

where the second summation term accounts for propor-
tion of observed data lying outside the described

prediction interval and the minimum distance from pre-
diction interval (either upper or lower limit) to those
observed value.

4 | RESULTS AND DISCUSSION

4.1 | Error models

The QR models generated for the three different stations
NAN007, NAN008 and PIN004 are shown in Figures 2–4
respectively. The plots consist of scatter of forecasted
water levels and corresponding forecast errors with
regression lines obtained from QR. The quantiles shown
in the plots are 0.05, 0.25, 0.5, 0.75 and 0.95. However,
quantiles were computed with intervals of 0.05 over the
[0, 1] domain. The study was conducted for lead time of
each hours of forecast up to 168 hr, however, in this
paper we presented the results up to a lead time of 72 hr.

The regression model, in principle, could be fitted
either on forecast values or forecast errors. Although this
investigation is not presented in detail, we found that the
regression based on forecast values yielded a narrow CI
at higher water level regime and provided unreliable esti-
mates. This effect was particularly mentioned in Weerts
et al. (2011) and was also observed in López López et al.
(2014) yet not described in detail. On using NQT, the
higher water levels in forecasts and observed data in

FIGURE 3 Same as Figure 2 for NAN008 station
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transformed space are close to each other irrespective of
their magnitude. This will result in convergence of
regression lines at that domain. This effect was not
observed in LQR and LQR:WT, which does not involve
any transformations.

Each station in the study showed different patterns of
forecast errors. For station NAN007, the errors increased
with the increase in water level forecast with a tendency
towards negative errors for larger lead times. Station
NAN008 showed no clear pattern of the errors, which are
almost uniformly distributed over the full range of the
forecasted water levels. The error at station PIN004
increased for increasing water level and shows a biased
forecast with negative errors implying over-forecasting at
higher flow ranges. For all the stations, the uncertainty
tended to increase with lead time which was expected.
Similar behaviour of uncertainty was observed in the pre-
vious studies as well (López López et al., 2014; Weerts
et al., 2011). Despite increasing uncertainty, the patterns
of error models were similar across lead times. It is worth
noting that the model at different lead times include
same set of observation values and ultimately leads to
similar pattern.

Configurations LQR and LQR:WT provide linear rela-
tionships and are hence quite similar. However, the
regression lines in LQR:WT were more influenced by the
pattern of the errors at the higher water levels. Due to
influence of higher values, crossing of quantiles in LQR:

WT occurred more at higher values than it did in LQR,
which was observed at stations NAN007 and PIN004.

Figure 5 shows the regression lines in the Gaussian
space. It explains the non-linearity introduced in the
LQR:NQT configuration. The linear regression in the
Gaussian space from Figure 5 was transformed back to
the original domain and is compared to the other two
configurations in Figures 2–4. The overall regression line
seemed to follow the trend of the data. However, the
nonlinear line was affected by the data at a given loca-
tion. The LQR:NQT regression line seemed to be more
horizontal where the data were less dense. This is due to
the re-distribution of data in the Gaussian space which is
based on the Weibull plotting position. The tendency to
under-forecast at NAN007 for lower flows was better cap-
tured by LQR:NQT for lower quantiles than higher qua-
ntiles. This is due to the application of linear quantile
regression, which overlooks local trends and follows the
general trend of the data.

The fixed error model which is observed at the lower
regime of level does not affect the performance of higher
levels. Such fixed error model is clearly visible in lower
flow regime. Such error model is sometimes dominant at
transformed domain in LQR:NQT, however, it is not even
visible when transformed back. For probabilistic flood
forecasting, where only large levels are involved, any
additional models describing the lower level regimes
could be ignored. However, in a general-purpose

FIGURE 4 Same as Figure 2 for PIN004 station
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FIGURE 6 Hydrograph at NAN007 station for October–December 2014. Configurations are in rows while lead time (in hr) is in

columns. Grey bands show confidence interval of 50 and 90%, and lines show forecasted and observed water levels, and the median of the

probabilistic forecast

FIGURE 5 Forecast error versus forecast water level with regression lines of various quantiles at different stations in Gaussian space.

Stations are shown in rows and lead time (in hr) is in columns
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hydrological forecasting system, the lower level regimes
could be described. Such models may either be a simple
fixed error model (Weerts et al., 2011), non-crossing qua-
ntiles or stepwise regression (López López et al., 2014).

4.2 | Forecast hydrographs

The quantile regression models were used to generate
probabilistic forecasts for the period October 2014 to

FIGURE 7 Same as Figure 6 for NAN008 station

FIGURE 8 Same as Figure 6 for PIN004 station

ACHARYA ET AL. 11 of 16



December 2014 for the three stations NAN007, NAN008
and PIN004. The probabilistic forecasts are represented
in the form of hydrographs in the plots in Figures 6–8.

The three stations showed different behaviour, which
can also be interpreted from the regression models

explained in the previous section. For NAN007 and
PIN004, the width of the uncertainty bands increased
with increased water level as well as with the increase in
the lead time, showing forecasts to be more uncertain at
higher water levels and larger lead times. However,

FIGURE 9 Reliability Q–Q plot for various stations (in rows) at different lead times (in columns, in hr)

TABLE 2 Comparison of MPI for different configurations at different confidence intervals

50% CI 90% CI

Station and lead time (hr) LQR LQR:WT LQR:NQT LQR LQR:WT LQR:NQT

NAN007

12 0.363 0.462 0.340 1.160 1.136 1.016

24 0.502 0.590 0.463 1.408 1.332 1.278

48 0.598 0.777 0.566 1.708 1.602 1.597

72 0.649 0.865 0.617 1.817 1.871 1.676

NAN008

12 0.275 0.279 0.260 0.852 0.785 0.831

24 0.429 0.470 0.398 1.111 1.002 1.018

48 0.656 0.652 0.827 1.457 1.457 1.454

72 0.757 0.704 0.704 1.796 1.822 1.680

PIN004

12 0.280 0.281 0.267 0.772 0.744 0.786

24 0.281 0.268 0.266 0.929 0.857 0.892

48 0.330 0.327 0.297 1.046 0.974 0.996

72 0.391 0.370 0.343 1.141 1.064 1.128

Note: The numbers in the bold indicate best value among the configurations.
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NAN008 did not show an increase in uncertainty with
increasing water level as seen in the error model
(Figure 3). The error model of station PIN004 gave
smaller forecast intervals as the error was lower and the
uncertainty increased only slightly with the forecast
water level.

PIN004 showed biased forecasts (over-forecasting)
with the median lying below the forecasted water level
for most of the flow regime. For station NAN007, for the
lowest flow range, the forecasts were much lower than
the observed (under-forecasting). This trend was seen in
the calibration dataset also but all three configurations
failed to represent the trend of errors at lower flows
(Figure 2).

4.3 | Forecast evaluation

Figure 9 shows the reliability Q-Q plots to evaluate reli-
ability of the forecasts. It can be stated that the forecasts
are more reliable for stations NAN007 and NAN008 as
the lines are closer to the diagonal. The reliability of fore-
casts for all three QR configurations is similar, with the
configuration LQR:WT producing slightly more reliable
forecasts compared to the others. For station PIN004, the
reliability plot shows S-shaped curve implying that the
forecast at this station was under-confident. This can also
be seen in the hydrograph as almost all the data lies
within the prediction interval indicating that the forecast
intervals are wider than required. The MPI of the valida-
tion data for 50% CI and 90% CI for each stations and
configurations are shown in Table 2 to ascertain the
sharpness of the forecast. For 50% CI, LQR:NQT shows
smaller confidence band across all lead times for
NAN007 and PIN004 stations and at certain lead times
for NAN008 station. For 90% CI, the confidence band is
smaller in LQR:NQT for NAN007 station, LQR:WT for
PIN004 station and mixed results for NAN008 station.

The CRPS requires full distribution of forecasts. Since
the forecast of quantiles is less likely to be symmetrical
and follow the normal distribution, the empirical cumu-
lative distribution function of forecasts was used in the
estimation of CRPS. The climatological CRPS was also
calculated and the skill scores for the forecast were com-
puted using Equation (13). Results are shown in
Figure 10.

The LQR:NQT configuration showed higher skills as
compared to other configurations, for station NAN007.
For stations NAN008 and PIN004, the skill scores were
close to each other for all configurations. In general, the
skill of the forecast decreases with the increase in lead
time. It was seen that the performance evaluation using
interval score was similar to CRPSS. Also, the quality of

probabilistic forecast in terms of skill depended largely
on the quality of deterministic forecasts. The station
NAN008 whose forecast error was smaller showed better
CRPSS (0.9 at 12 hr to 0.67 at 72 hr) as compared to the
other stations.

Figure 11 shows the PICP-MPI plots as well as the
interval scores. The scores were computed for confidence
intervals of 50, 80 and 90%. For NAN007 station, the
interval score was minimum for the LQR:NQT configura-
tion, which had, in general, better MPI and almost the
same PICP as the other configurations. For NAN008, the
interval scores are almost equal at lower lead time but for
higher lead time, scores are higher for LQR:NQT which
can be explained with lesser reliability from the PICP-
MPI diagram. For PIN004, the interval scores were better

FIGURE 10 Continuous Ranked Probability Skill Score

(CRPSS) for different configurations at various lead times at

stations NAN007, NAN008 and PIN004
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for LQR:WT for 90% CI but were almost equal for lower
CI values. The forecasts at PIN004 were equally
unreliable and the interval score solely depend upon MPI
for given forecasts. The lowest value for LQR:WT at
PIN004 was due to the lowest value of MPI compared to
the other configurations. Despite one of the configura-
tions being better in overall Interval score, the forecasts
at PIN004 were unreliable, which can be seen in the reli-
ability plot as well as the PICP-MPI plot. The ways in
which the forecast can be improved can be assessed using
the PICP-MPI plot, which includes both reliability and
sharpness and hence, room for improvement can be visu-
ally observed.

The overall performance suggests that the predictive
uncertainty increases with lead times and it is reflected
in the skill scores. Despite increasing uncertainty, reli-
ability plot shows similar performance across lead times

because the reliability does not evaluate the sharpness
(width of confidence band). The performance measures
which measures sharpness, MPI in this study, is highly
affected by the increasing lead times. The metrics which
consider both reliability and sharpness shows a deteriora-
tion of the score along lead times. This is observed in
decreasing CRPSS and increasing MPI with lead times.

5 | CONCLUSIONS

The research demonstrates a comparison of various con-
figurations of quantile regression as a post-processor for
the generation of probabilistic hydrological forecasts.
Multiple metrics and skill scores were calculated to assess
and compare the quality of the generated forecasts. Over-
all, the performance of the LQR in original and

FIGURE 11 PICP-MPI plots (top row) and Interval scores (bottom row) for stations NAN007, NAN008, PIN004 at various lead times

and confidence intervals. The colour and shape of scatter corresponds to CI and configuration, respectively. The number in each panel of

PICP-MPI plot represents lead time in hours and the Interval score plot represents CI
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transformed space was similar to the previous studies.
The QR configurations in original space in this study,
however, used forecast error as predictand and applied a
weighted regression.

The post-processor generates a probabilistic forecast
as well as provides a bias correction of the deterministic
forecast. Quantile regression in Gaussian space restruc-
tures the data and introduces non-linearity in the regres-
sion but does not consider extreme events, which lie at
the tail of the Gaussian distribution. The application of
linear extrapolation for forecasts beyond the range of his-
torical forecasts gives unrealistically high values. How-
ever, weighted quantile regression gives importance to
less frequent extreme values and can easily extrapolate
forecasts beyond the calibration dataset. This reduces the
complexity associated with the transformation and
assumption of extrapolation at extreme values. Despite
showing mixed results for weighted LQR and LQR in
Gaussian space, the former approach is therefore
recommended.

However, the QR methods have some limitations.
The methods develop a direct relation between forecasts
and forecast errors. Therefore, it requires long time series
of calibration and validation dataset containing multiple
extreme events to obtain credible uncertainty estimation
models. This limits the model skills for extreme events.
Although QR can accommodate heteroscedastic forecast
errors, it assumes a linear variation of heteroscedasticity.
This also reduces the performance of the QR models
analysed in this study.
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