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We identify the two scalar leptoquarks capable of generating sign-dependent contributions to leptonic
magnetic moments, R2 ∼ ð3; 2; 7=6Þ and S1 ∼ ð3; 1;−1=3Þ, as favored by current measurements. We
consider the case in which the electron and muon sectors are decoupled, and real-valued Yukawa couplings
are specified using an up-type quark mass-diagonal basis. Contributions to Δae arise from charm-
containing loops and Δaμ from top-containing loops—hence avoiding dangerous LFV constraints,
particularly from μ → eγ. The strongest constraints on these models arise from contributions to the
Z leptonic decay widths, high-pT leptonic tails at the LHC, and from (semi)leptonic kaon decays. To be a
comprehensive solution to the ðg − 2Þe=μ puzzle we find that the mass of either leptoquark must be

≲65 TeV. This analysis can be embedded within broader flavor anomaly studies, including those of
hierarchical leptoquark coupling structures. It can also be straightforwardly adapted to accommodate future
measurements of leptonic magnetic moments, such as those expected from the Muon g − 2 collaboration in
the near future.
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I. INTRODUCTION

The remarkable agreement between measurements and
predictions of the muon and electron magnetic dipole
moments has long been testament to the success of
quantum field theory. Precise measurements of the
deviation of this observable from the classical, tree-level
value, gl ¼ 2, give a sensitive probe of higher-order effects
within the Standard Model (SM) and beyond. SM correc-
tions are precisely known, and therefore these specify the
quantity aSMl , where

al ≡ 1

2
ðg − 2Þl: ð1Þ

This makes anomalies in ðg − 2Þl, particularly if these
differ between lepton flavor, a very strong indication of new
physics (NP) effects at loop level [1,2].
For the muon, there is persistent deviation between the

SM prediction and the measured value [3,4],

Δaμ ¼ aexpμ − aSMμ ; ð2Þ

corresponding to a 3.6σ anomaly1:

Δaμ ¼ ð286� 63� 43Þ × 10−11: ð3Þ

Similarly, recent experimental results have indicated a
deviation for the electron magnetic moment, of 2.5σ
significance [5]:

Δae ¼ −ð0.88� 0.36Þ × 10−12: ð4Þ

It is important to note that the sensitivity of al to NP at
energy scale Λ scales generally asmm

l =Λn, for some integer
n,m. This indicates that a heavier lepton generally provides
a more sensitive probe of NP. However, due to the short
lifetime of the tau, a precise measurement of its magnetic
moment (and, consequentially, any deviation from the SM)
is beyond the reach of current experiments. The important
issue to be addressed in this paper is that the discrepancies,
Δaμ and Δae, are of opposite sign, which is a difficulty to
be overcome when searching for a common explanation.2
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1The uncertainty values refer to the experimental and theoretical
prediction uncertainties, respectively. See also the Appendix at the
end of the conclusion.

2See, for example, Refs. [6–16] for alternative methods to
explain these anomalies in a single model.
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The leading candidates to explain these deviations
involve flavor-dependent, loop-level, NP effects. It has
long been established that exotic scalar-only extensions to
the SM are capable of generating sizeable corrections to
ðg − 2Þl. Of particular interest are scalar leptoquark (LQ)
models, which have proven to be useful for reconciling
other well-known flavor-dependent anomalies (e.g., see
Refs. [17–21]), provide a portal to generating radiative
neutrino mass [22], and are embedded in a number of
theories of unification (e.g., see Ref. [23]).

A. Chirality of scalar LQ models

To begin characterizing scalar LQ models, we first need
to introduce some terminology. Motivated by the intro-
duction of direct lepton-quark couplings, rather than
separately considering lepton (L) or baryon (B) number
conservation, these are absorbed into the definition of a
new conserved quantity [24] fermion number, F;

F ¼ 3Bþ L: ð5Þ

F is well defined for each of the finite number of LQ
models, and characterizes the types of interactions medi-
ated. The jFj ¼ 2 LQs couple to multiplets of the form lq,
and jFj ¼ 0 couple to l̄q [25]. Table I gives an overview of
the scalar LQs and their gauge-group transformations,
adopting the symbol notation from Ref. [17].
The important characteristic of models that can generate

contributions to ðg − 2Þðe=μÞ that are consistent with experi-
ment is the chirality of their Yukawa couplings. To generate
one-loop corrections whose sign can vary between lepton
flavors, the LQ must have mixed-chiral couplings; i.e., both
left- and right-handed couplings to charged leptons are
present. To see why this is, we begin with a brief overview
of the established calculations for al corrections from
scalar LQ states.

B. Scalar LQs for ðg− 2Þl
In this section, we follow the calculation procedure

for l → l0γ from Ref. [17], but adapt it specifically for

ðg − 2Þl. The generic effective Lagrangian corresponding
to contributions to al is given by:

Lal ¼ el̄
�
γμAμ þ al

4ml
σμνFμν

�
l;

⊂ el̄γμAμlþ 1

2
iel̄σμνFμνðσlLPL þ σlRPRÞl: ð6Þ

where Fμν ¼ ∂μAν − ∂νAμ, and σlL=R parametrize the effec-
tive left- and right-chiral interactions. Equation (6) reveals,
via coefficient matching, that

Δal ¼ imlðσlL þ σlRÞ: ð7Þ

For the purpose of this discussion, for general scalar LQ
ðϕÞ models, the couplings to charged leptons (l) and
quarks (q) can be expressed as follows:

Ll ¼ lðcÞ½yRPR þ yLPL�qϕ† þ H:c: ð8Þ

where lðcÞ ¼ l for jFj ¼ 0 and lðcÞ ¼ lc for jFj ¼ 2.
We consider the two leading-order topologies for these

corrections illustrated in Fig. 1. Their contributions to σlL=R
are well established in the literature [17]. For F ¼ 0
scalar LQs:

σlL¼
iNc

16π2m2
ϕ

X
q

½mlðjyRlqj2þjyLlqj2ÞκþyRlqy
L�
lqmqκ

0�; ð9Þ

and σlR ¼ −½σlL��. In Eq. (9),

κðxqÞ ¼ QϕfSðxqÞ − fFðxqÞ;
κ0ðxqÞ ¼ QϕgSðxqÞ − gFðxqÞ; ð10Þ

where xq ¼ m2
q=m2

ϕ. These contributions are proportional
to the number of colors, Nc ¼ 3, and are summed over
quark flavors q running in the loop. The electric charge of

TABLE I. Scalar LQs and their transformation properties,
under the hypercharge convention Q ¼ I3 þ Y. The penultimate
column indicates whether the model is able to generate one-loop
(1L) corrections to the muon and electron magnetic moments
with opposite sign—i.e., the LQ has mixed-chiral couplings.

Symbol SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ðg − 2Þl at 1L jFj
S̃1 ð3; 1;−4=3Þ ✗ 2
S1 ð3; 1;−1=3Þ ✓ 2
S3 ð3; 3;−1=3Þ ✗ 2
S̄1 ð3; 1; 2=3Þ ✗ 2
R2 ð3; 2; 7=6Þ ✓ 0
R̃2 ð3; 2; 1=6Þ ✗ 0

FIG. 1. Dominant contributions to the lepton magnetic moment
from scalar LQs. Arrows indicating fermion flow are omitted as
there are multiple valid assignments possible for these topologies,
each of which will be considered in calculations.
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the field ϕ is given byQϕ, and the loop functions in (10) are
[17,26]:

fSðxÞ ¼
xþ 1

4ðx − 1Þ2 −
x logðxÞ
2ðx − 1Þ3 ;

fFðxÞ ¼
x2 − 5x − 2

12ðx − 1Þ3 þ x logðxÞ
2ðx − 1Þ4 ;

gSðxÞ ¼
1

x − 1
−

logðxÞ
ðx − 1Þ2 ;

gFðxÞ ¼
x − 3

2ðx − 1Þ2 þ
logðxÞ
ðx − 1Þ3 : ð11Þ

Therefore, we conclude via Eq. (7) that

Δal ¼ −
3ml

8π2m2
ϕ

X
q

½mlðjyRl j2 þ jyLl j2ÞκðxqÞ

þmqReðyL�l yRlÞκ0ðxqÞ�: ð12Þ

For a scalar LQ with maximally chiral Yukawa couplings,
the second term will not be present and contributions from
each propagator will be of definite relative sign. However,
for mixed-chiral scalar LQs, we can access terms propor-
tional to κ0, allowing us to vary the sign of the NP
contribution. As these contributions scale proportional to
mq, we expect the dominant contributions to be those with
the third-generation quarks entering the loop.
Taking ml ≪ mq, the like-handed terms are subdomi-

nant to the mixed-handed contributions—exactly the terms
required for generating contributions with relative sign.
This leaves the following:

Δal ∼ −
3ml

8π2m2
ϕ

X
fq∶ml≪mqg

mqReðyL�l;qyRl;qÞκ0ðxqÞ: ð13Þ

For jFj ¼ 2 LQs, the above applies but with Qϕ ↦ −Qϕ,
yRl ↦ yL�l and yLl ↦ yR�l .
For mixed-chiral scalar LQ models, this provides a portal

to flavor-dependent sign allocation for the correction. We
have the clear prospect of meeting current experimental
measurements with simple, single-scalar field extensions,3

such as those identified in Table I. Please note that we
simply require the mixed-chiral term to dominate, but that
the like-chiral terms will also be included in later calcu-
lations (see Sec. III).

C. Is there a no-go theorem for single scalar LQs
to generate ðg− 2Þe=μ?

As the mixed-chiral contributions in Eq. (13) are propor-
tional to the mass of the quark in the loop, we may initially,
naively, restrict LQ couplings to represent a top-philic
coupling texture, which maximizes this mq enhancement.
However, we will begin here by discussing why such a
model is severely disfavored.
In Ref. [7], the authors show that, for a single-field

extension of the SM, with the muon and electron sector not
decoupled, the anomalies in Δaμ=e are incompatible with
the rare decay μ → eγ. For the scalar leptoquarks discussed
in Sec. I B, from Fig. 1 if the quark (qi) coupling to the
leptoquark (ϕ) is identical for both charged-leptons, then
the μ → eγ transition can be obtained by combining a
subset of the leptoquark vertices involved in generating
Δaμ=e. As a result, the following expression holds:

Br½μ → eγ� ¼ e2

64πΓμ

m2
μ

me
jΔaμΔaej ∼ 9 × 10−5; ð14Þ

where Γμ is the full decay width of the muon. This algebraic
expression is consistent with that quoted in [7], within the
justifiable limit that me ≪ mμ. The numerical value is a
result of inputting the results from (3) and (4), which is
eight orders of magnitude above the current experimental
bound on this process from the MEG collaboration [28]:

Br½μ → eγ�MEG < 4.2 × 10−13: ð15Þ

For this reason, the single-leptoquark solution to this
process seems to be heavily disfavored. However, the
validity of Eq. (14) relies on the assumption that the quark
in the loop of Fig. 1 is the same for both the muon and
electron Δal contributions. This no-go result could be
avoided by relaxing this assumption.
Without a like-quark coupling between the leptoquark and

both charged-lepton generations, we can avoid the constraint
from Br½μ → eγ� by restricting any contributions to be a
higher-order process. The same philosophy applies to other
lepton-flavor violating processes such as Z → eμ, KL → eμ
and muon-electron conversion in nuclei. The relative success
of such a restriction is dependent on the flavor ansatz for
Yukawa couplings, as will be further discussed in Section II
A.Although this decouplingmay reduce the dominanceof the
mixed-chiral term toΔal, it remains to be seenwhether such a
model could still be successful.

II. MODELS OF INTEREST

As summarized in Table I, the S1 and R2 leptoquarks are
able to induce opposite-sign ðg − 2Þe=μ contributions via
the mixed-chiral contribution in Eq. (13). These LQs have
also garnered recent attention in other flavor anomaly
studies [29–34]. The relevant LQ couplings for each

3We consider only a single-scalar solution, whereas with
multiple scalar LQ models the idea of using LQ mixing to
generate (at least) ðg − 2Þμ was explored in Ref. [27].
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extension, represented here as 3 × 3 Yukawa coupling
matrices, are given by4:

LS1
int ¼ ðLc

LλLQQL þ ecRλeuuRÞS†1 þ H:c:; ð16Þ

LR2

int ¼ ðLLλLuuR þ eRλeQQLÞR†
2 þ H:c: ð17Þ

The doublet, R2, can be expressed in terms of its electric
charge-definite components:

R2 ∼
�
R5=3
2

R2=3
2

�
; ð18Þ

with charges as indicated by the superscripts. We assume
negligible mass splitting between the components of the
multiplet, i.e,

mR2
≈mR5=3

2

≈mR2=3
2

;

so as to avoid constraints from electroweak oblique
corrections [17].

A. COUPLING FRAMEWORK

1. “Up-type” vs “down-type” mass-diagonal basis
for Yukawa couplings

When rotated into the flavor eigenbasis, we have two
choices to redefine the couplings: either an “up-type” or
“down-type” mass-diagonal basis. Practically, this involves
a choice of which couplings we “fix” to a particular texture,
and which we allow to be generated by CKM (Cabibbo–
Kobayashi–Maskawa) mixing.
The “up-type” mass-diagonal Yukawas are defined in

accordance with the mappings

ReλeuRu ↦ ySeu; LeλLQLu ↦ ySLQ;

L†
eλLuRu ↦ yRLu; L†

eλeQLu ↦ yReQ: ð19Þ

Here, L and R represent the basis mapping between the
gauge and flavor eigenstates, and V ¼ L†

uLd is the standard
CKM matrix.5

By “mass-diagonal” we refer to the mathematical out-
come of this choice. The nonphysical, left-handed rotation
matrix (L) for either the “up-type” or “down-type” quarks
is set to the identity, and we allow the CKM to be

correspondent directly with the L of the alternative quark
type.
In the “up-type’ formalism, the relevant down-type quark

couplings are related to those of the up-type quarks via the
CKM matrix. This flavor ansatz allows us to explicitly
forbid one-loop contributions to LFV processes by decou-
pling the muon and electron sectors.
The alternative basis choice would be to select the down-

type quark couplings to fix, and allow associated up-type
quark couplings to be generated via CKM mixing, thus
defining the “down-type” mass diagonal basis. This for-
malism for tackling ðg − 2Þe=μ, for which models with
single scalar leptoquarks have been shown to be ruled out
by a significant contribution to μ → eγ [16].
Of course, the validity of a particular field content in NP

models is basis independent; however, we typically model-
build around choices of specific nonzero coupling textures.
This may lead to missing allowed parameter space if one
were to consider only one of these two Yukawa cou-
pling bases.

2. Model framework under the “up-type” flavor ansatz

There are two independent coupling matrices for
each model, and the interaction Lagrangians may be
reexpressed as

LS1 ⊃ ySLQij ½ecL;iuL;j − VjkvcL;idL;k�S†1
þ ySeuij ecR;iuR;jS

†
1 þ H:c:; ð20Þ

LR2 ⊃ yRLuij ½νL;iuR;jR2=3;†
2 − eL;iuR;jR

5=3;†
2 �

þ yReQij eR;i½uL;jR5=3;†
2 þ VjkdL;kR

2=3;†
2 �

þ H:c: ð21Þ

Recalling the discussion in Sec. I, we note that R5=3
2 , and S1

both have left- and right-handed couplings to charged
leptons and SM up-type quarks. It is these couplings that
we have deemed most important for the ðg − 2Þl anoma-
lies, and so we will fix the up-type couplings to ϕ, and
allow down-type interactions to be generated only by virtue
of their model-dependent relationships to these. We will
discuss these couplings further in Sec. II A.
The parameters κ0 for each model, as per (10), are given

by the following, assuming m2
q ≪ m2

ϕ:

κ0S1ðmqÞ ¼
7

6
þ 2

3
log

�
m2

q

m2
S1

�
;

κ0R2
ðmqÞ ¼ −

1

6
−
2

3
log

�
m2

q

m2
R2

�
: ð22Þ

Their mixed-chiral Δal contributions are therefore, via
Eq. (13), given by

4We implement the interaction basis with neutrinos in their
flavor eigenstates (i.e., no PMNS rotation) and consider only
terms in which these fields couple as leptoquarks. We impose
conservation of baryon number Uð1ÞB to forbid diquark cou-
plings.

5As neutrino masses are negligible for the phenomenology of
this paper, we keep neutrinos in the flavor eigenbasis and set the
PMNS (Pontecorvo–Maki–Nakagawa–Sakata) matrix to the
identity throughout all subsequent calculations.

INNES BIGARAN and RAYMOND R. VOLKAS PHYS. REV. D 102, 075037 (2020)

075037-4



ΔaS1l ∼ −
mlmq

4π2m2
S1

�
7

4
− 2 log

�
mS1

mq

��
ReðyL�lqyRlqÞ; ð23Þ

ΔaR2

l ∼
mlmq

4π2m2
R2

�
1

4
− 2 log

�
mR2

mq

��
ReðyL�lqyRlqÞ; ð24Þ

where, for S1,

yR ¼ ySeu and yL ¼ ySLQ; ð25Þ

and, for R2,

yR ¼ −yRLu and yL ¼ yReQ: ð26Þ

For consistency between jFj ¼ 0 and jFj ¼ 2 models, and
with Eq. (6), we have labeled the chirality to be that of the
quark field in the associated interaction term. Furthermore,
the strongest contributions in the R2 model arise only from
interactions of the R5=3 component of the LQ doublet. The
component R2=3 does not have couplings of both chiralities
to charged leptons.
Input quark masses are the MS masses at the scale where

each contribution is “integrated out,” i.e, mcðmcÞ and
mtðmtÞ. The Yukawa couplings here are at the high scale
(mϕ), where we have neglected running of these NP
contributions between this and lower energy scales. We
estimate via numerical trial that this introduces ∼Oð10%Þ
effect. For larger LQ masses, a more careful EFT (effective
field theory) analysis may be preferable, but within the
scope of this work we have neglected such effects for
calculation of Δal.

B. Coupling textures

The Yukawa coupling values themselves are a priori
completely arbitrary. The mixed chiral terms shown in (23)
and (24) are directly proportional to the mass of the quark
in the loop in Fig. 1—so an enhancement of this term is best
achieved by LQ couplings to higher-generation quarks.
Ideally, contributions to the muon and electron magnetic
moments would both be enhanced proportional to mt;
however, Section II C has shown that this is incompatible
with constraints from Brðμ → eγÞ. The next-best thing is to
couple these charged leptons separately to either the top or
the charm; in both models, it is only the up-type quarks that
have both chiralities of the required coupling.
In this framework, there are two options for textures

to generate Δal ≠ 0, l ∈ fe; μg, labeled texture 1 and
texture 2. We reiterate that the convention adopted here is
such that the rows are labeled as charged-lepton, and
columns as up-type quark, generations. Here, nonzero
couplings are indicated by a cross:

Texture1∼

0
B@

0 0 ×

0 × 0

0 0 0

1
CA; Texture2∼

0
B@

0 × 0

0 0 ×

0 0 0

1
CA:

ð27Þ

For the mixed-chiral interaction to be present, and thus
enhanced, both the left- and right-handed couplings need to
have the same nonzero texture.

1. Texture 1: the charmphilic solution for ðg− 2Þμ
A “charmphilic” model for Δaμ was explored for both

R2 and S1 by Kowalska et al. [35]. Notably, for generating
Δaμ via charm-muon coupling, the R2 model is found to be
entirely ruled out by a combination of flavor constraints and
searches in the LHC dimuon channel [35]. As a solution for
ðg − 2Þμ, the muon-charm coupling for S1 was explored
and found to have highly constrained but nonzero allowed
parameter space.
For S1 under texture 1, the most constraining process on

the muon NP couplings is from the decay Kþ → πþνν.
Couplings between the strange-quark and neutrinos
are unavoidably generated via CKM mixing, where
Vcs ∼Oð1Þ. For nonzero left-handed couplings to the
charm, there will be non-negligible contributions to this
decay width. Following the derivation from Ref. [35], the
2σ bound on Br(Kþ → πþνν)(Table I) generates the fol-
lowing constraint:

jySLQ22 j < 5.26 × 10−2
mϕ

TeV
: ð28Þ

Note that larger LQ masses allow a weakening of this
bound when applied to the coupling ySLQ22 . However, such
mass and coupling combinations are found to be heavily
constrained by LHC dimuon channel searches, via
pp → μμðjÞ. The S1 model is found to viable only within
two sigma of the Δaμ central value, by a combination of
flavor constraints and searches in the LHC constraints [35].
The results of Ref. [35] motivate consideration of the

alternative coupling structure, texture 2, in this work. For
both R2 and S1, we will explore a novel, minimal parameter
space, and extend the single-leptoquark model to both
electron and muon magnetic moments.

2. Texture 2: establishing the focus of this work

As argued above, the most sensible approach hereon will
be to implement texture 2 in (27), i.e., for the remainder of
this work we will consider the following nonzero couplings
for both models:

yL ∼

0
B@

0 × 0

0 0 ×

0 0 0

1
CA; yR ∼

0
B@

0 × 0

0 0 ×

0 0 0

1
CA: ð29Þ
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Also, for the remainder of this work we will restrict our
input couplings to real values in order to circumvent
constraints from CP-violating observables.6

Assuming that the mixed-chiral terms of (23) and (24)
dominate,we begin by deriving rough analytic bounds on the
products of relevant couplings. The current experimental
values for Δae (4) and Δaμ (3) yield the following for S1:

yL23y
R
23 ¼ −ð0.35� 0.09Þ ×

�
mS1

10 TeV

�
2

; ð30Þ

yL12y
R
12 ¼ ð0.46� 0.19Þ ×

�
mS1

10 TeV

�
2

; ð31Þ

and for R2:

yL23y
R
23 ¼ ð0.20� 0.05Þ ×

�
mR2

10 TeV

�
2

; ð32Þ

yL12y
R
12 ¼ −ð0.41� 0.17Þ ×

�
mR2

10 TeV

�
2

: ð33Þ

Note that the loop functions in (11) depend explicitly on
the leptoquark mass, and so the mϕ dependence cannot
truly be completely factored out. The above bounds rely on
the assumption that evaluating (11) formϕ ¼ 1 TeV gives a
reasonable numerical approximation to their behavior in a
viable mass range.
Although relations (30)–(33) guide us to the relative

sizes of these couplings, we will proceed with a more
careful phenomenological analysis to grasp the full scope
of these models.

C. Consideration of relevant constraints

Regardless of which of the two models we consider, the
crossing-symmetry between the topologies in Fig. 1 and
contributions of the form l → l0ðγ=ZÞ, we expect the
strong constraints to be from Z → ll0 processes [19,37–
40]. As we have decoupled the leptonic sectors, the
strongest constraints of this form will be from LFU
processes, particularly from muon-top couplings i.e.,
l ¼ l0 ¼ μ. By virtue of the structure of Eqs. (20) and
(21), couplings to neutrinos generate contributions to the
invisible width of the Z. These effective electroweak
couplings provide the most stringent constraints on muon
couplings to the top quark.
The couplings between the electron and the charm-quark

give a more rich phenomenology. They are most strongly
constrained by dimension six contact interactions, which
manifest in high-pT lepton tails at the LHC, short-distance

effects in leptonic charged-current charmed meson decays,
and related constraints from the kaon sector [41].
Contributions to mesonic decays are parametrized using
a low-energy EFT, and as such the Wilson coefficients
(WCs) corresponding to SMEFT (standard model effective
field theory) operators outlined in Table III are run and
matched to low-energy prior to the calculation of observ-
ables. This is achieved using the combination of WILSON

[42] and FLAVIO [43] packages.

1. Effective electroweak couplings

We follow the calculation of effective Z couplings to
charged-leptons l, and associated observables, from
Ref. [40]. The couplings gfLðRÞ are the effective left- and
right-handed couplings of the Z boson to fermions, f. The
effective Lagrangian for describing these interactions is
given by

LZ
eff ¼

g
cosðθWÞ

X
i;j

fi γμ½gijfLPL þ gijfRPR�fjZμ; ð34Þ

where θW is the weak-mixing angle, and, for i ¼ j, we
relabel the coupling giifLðRÞ ≡ gfiLðRÞ for clarity.
The strongest contributions to these corrections come

from top-containing loops that have the same topology as
those in Fig. 1, but with a Z rather than photon line
attached. The same couplings are relevant for these con-
tributions as to Δaμ—which motivates careful consider-
ation of Z → μμ in our numerical study. For this study, we
enforce 2σ agreement for the effective left- and right-
handed couplings about the central values (gμL=R) quoted in
Table II. We do not directly consider the correlation
between these two parameters.
We also follow the calculation of Ref. [40] to consider

any sizeable contribution to the invisible width of the Z
boson—particularly for R2, where neutrino LQ couplings
are not purely CKM generated. We enforce 2σ agreement
for the observable effective number of neutrinos, Nν, in
which contributions to this width are manifest (Table II).
Although electroweak constraints provide significant

bounds on the top-muon coupling in these models, they
are not a sensitive probe for the charm-electron coupling
necessary to generate Δae. Loop corrections to Z → ll
from charm-containing loops scale proportional to the
Z-boson threshold, ∝ m2

Z=m
2
ϕ, notably without a top-mass

enhancement. For constraining these couplings, we turn to
complementary constraints from both high- and low-energy
physics.

2. Contact interactions and high pT leptonic tails

Our model generates NP effects in dimension-6 SMEFT
operators, contributing to pp → ll (dilepton production)
and pp → lν (monolepton production), via tree-level

6The parameter space could, of course, be extended to complex
couplings, but to do so we would need to carefully consider
(among other things) the contribution of the diagrams in Fig. 1 to
electric dipole moments [36].
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t-channel processes. These can be probed directly in the
high-pT tails of Drell-Yan processes at the LHC [47]. For
these processes, numerical analyses find minimal interfer-
ence between NP effective operator contributions and
a priori several NP operators can be simultaneously con-
strained [45,48].
Under the assumption of no new degrees of freedom at or

below the electroweak scale, NP contributions can be
parametrized using the SMEFT:

LSMEFT ⊃
X
α

CαOα: ð35Þ

The analytic expressions for the relevant operators and
corresponding WCs at a high scale (mϕ) can be found in
Table III. We emphasize that here we restrict our discussion
to constraints on tree-level contributions to canonically
dimension-6 SMEFToperators.7 As noted in Section II C 1,
these processes will be most relevant for constraining input
“charm-electron” Yukawa couplings.
For second-generation quark processes generated in these

models, effective interactions are also constrained by low-
energy (semi)leptonic meson decays (Section II C 3).

Amplitude contributions to these high- and low-energy
processes are related by a crossing-symmetry, and there-
fore provide complementary constraints.8

Note that with increased LHC luminosity, the allowed
regions for the effective interactions manifest in high-pT
leptonic tails are forecast to shrink significantly [41,45],
further restricting parameter space for both models. Here
we limit our discussion to the present constraints.

Neutral currents and dilepton searches.—These processes
provide the strongest constraints on the charged-current
cc → ee transition generated at tree level, constraining the
magnitudes of Yukawa couplings responsible for correcting
Δae. The WCs and associated operators constrained by
these processes are indicated in Table III. For these
processes, constraints on chirality-flipping scalar and
tensor operators are irrelevant at this order, due to sup-
pression from a light-fermion mass insertion. In Table II we
quote the numerical upper bounds on explicit Yukawa
couplings, derived from the two-sigma limits on the
corresponding SMEFT WCs, using ATLAS 36.1 fb−1

dataset [47]—Table 1 of Ref. [45]. For correlated WCs,
e.g., Clqð1Þ and Clqð3Þ, we take the most constraining of the
two as a conservative bound.
Furthermore, in the R2 model, tree-level contributions to

the process bb → μμ are generated via CKM mixing.
Taking Vtb ∼ 1, this process constrains the magnitude of
the Yukawa coupling yReQ23 , resulting in the upper bound
quoted in Table II.

Charged currents and monolepton searches.—Broadly
speaking, high-pT monolepton searches give strong con-
straints on the relevant scalar and tensor operators.
Constraints on the relevant WCs are given for rescaled
versions of those quoted in Table III, defined via the tree-
level matching conditions between the SMEFT and the
low-energy effective theory [41]:

ϵαβiVL
¼ −v2

Vji

V2i
½Cαβ2j

lqð3Þ�;

ϵαβiSL
¼ −v2

Vji

2V2i
½Cβαj2

lequð1Þ��;

ϵαβiT ¼ −v2
Vji

2V2i
½Cβαj2

lequð3Þ��; ð36Þ

where v ∼ 246 GeV is the electroweak vev, and Vij are
CKM matrix elements. Note that ϵVL

is relevant for the S1
model but not for R2.
In Table II, we quote constraints on the relations in (36),

derived via Ref. [41] from the ATLAS 139 fb−1[49] and
CMS 35.9 fb−1[50] datasets. These limits will be

TABLE II. Processes most constraining on this model. Values
quoted without citation are from PDG [44]. Constraints from
pp → ee are derived from Table 1 of Ref. [45], in conjunction
with the expressions from Table III. For c → dkēiνj, 95% con-
fidence intervals for parameters (36) are quoted where accessible,
otherwise upper bounds on their magnitudes are given [41].

Process Observable Limits

Z → lilj fgμL; gμRg f−0.2689ð11Þ;þ0.2323ð13Þg
Z → νν Nν 2.9840(82)
D� → eν Br <8.8 × 10−6

D�
s → eν Br <8.3 × 10−5

Kþ → πþνν Br ð1.7� 1.1Þ × 10−10

K0
L → eþe− Br ð9þ6

−4 Þ × 10−12

pp → ll jySeu12 j <0.648 mϕ=TeV
[45] jySLQ12 j <0.537 mϕ=TeV

jyReQ12 j <0.393 mϕ=TeV

jyRLu12 j <0.524 mϕ=TeV

jyReQ23 j <0.904 mϕ=TeV

c → dkēiνj ϵ111VL
∈½−0.52; 0.86� × 10−2

[41] ϵ112VL
∈½−0.28; 0.59� × 10−2

fjϵ121VL
j; jϵ122VL

jg f<0.67; <0.42g × 10−2

fjϵ111SL
j; jϵ112SL

jg f<0.72; <0.43g × 10−2

fjϵ211SL
j; jϵ212SL

jg f<1.1; <0.68g × 10−2

fjϵ111T j; jϵ112T jg f<4.3; <2.8g × 10−3

fjϵ211T j; jϵ212T jg f<6.6; <4.0g × 10−3

7As our models do not induce corrections to the W vertex at
tree level, those constraints from Ref. [41] are omitted from this
discussion.

8For a review of these limits in the context of charm decays and
high-pT limits, see Ref. [41].
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numerically accounted for in our phenomenological study
(Section III).

3. Mesonic decays: D-meson decays

As the lepton Yukawa sector is explicitly flavor
decoupled in these models, this leads to mesonic con-
straints governed primarily by charged-current decays
DðsÞ → eν. Contributions to these processes are generated
by both models at tree level.
For both models in the considered parameter space,

D-meson decay constraints are significantly weaker than the
correlated high-pT leptonic constraints. We cross-checked

BrðDðsÞ → eνÞ constraints within two-sigma of their central
values, for a sample of indicative allowed regions—includ-
ing, but not exclusive to, that shown in Figs. 2 and 3. We
found that this subset of mesonic decays did not to rule out
any additional parameter space, beyond what was already
excluded. The experimental values used for these cross
checks can be found in Table II.

4. Mesonic decays: K-meson decays

Interactions involving Kaons are generated by these LQ
couplings via SUð2ÞL invariance of the associated inter-
action, explicitly manifest in Eqs. (20) and (21).

TABLE III. Effective contact interactions in both LQ models. Labeling of WCs ðijklÞ indicates fermion flavor, and is ordered by
appearance of the fermion in the effective operator. Following the SMEFT basis as outlined in Ref. [46], σa are the Pauli matrices (a ¼ 1,
2, 3) and T is understood to indicate transposition of the SUð2ÞL indices, exclusively. Note that we have adopted the SMEFTWarsaw-up
basis, a variant of the standard Warsaw basis where the up-type quark mass matrix (rather than the down type) is diagonal, and each of
the nonphysical rotation matrices appearing in (19) are set to the identity matrices.

LQ, ϕ SMEFT Operator Wilson Coefficient LHC high − pT constraints

S1 Oð1Þ
lq ¼ ½LLγμLL�½QLγ

μQL� Cijkl
lqð1Þ ¼ 1

4m2
ϕ
ySLQ;�
ik ySLQjl

pp → lþl−

Oð3Þ
lq ¼ ½LLγμσaLL�½QLγ

μσaQL� Cijkl
lqð3Þ ¼ −Cijkl

lqð1Þ c → dkēiνj, pp → lþl−

Oeu ¼ ½eRγμeR�½uRγμuR� Cijkl
eu ¼ 1

2m2
ϕ
ySeu;�ik ySeujl

pp → lþl−

Oð1Þ
lequ ¼ ½LLeR�iσ2½QLuR�T Cijkl

lequð1Þ ¼ 1
2m2

ϕ
ySLQik ySeu;�jl

c → dkēiνj

Oð3Þ
lequ ¼ ½LLσμνeR�iσ2½QLσ

μνuR�T Cijkl
lequð3Þ ¼ − 1

4
Cijkl
lequð1Þ c → dkēiνj

R2 Olu ¼ ½LLγμLL�½uRγμuR� Cijkl
lu ¼ − 1

2m2
ϕ
yRLu;�jk yRLuil

pp → lþl−

Oð1Þ
lequ ¼ ½LLeR�iσ2½QLuR�T Cijkl

lequð1Þ ¼ 1
2m2

ϕ
yReQ;�
jk yRLuil

c → dkēiνj

Oð3Þ
lequ ¼ ½LLσμνeR�iσ2½QLσ

μνuR�T Cijkl
lequð3Þ ¼ 1

4
Cijkl
lequð1Þ c → dkēiνj

Oqe ¼ ½QLγμQL�½eRγμeR� Cijkl
qe ¼ − 1

2m2
ϕ
yReQ;�
li yReQkj

pp → lþl−

FIG. 2. S1 model for fixed benchmark LQ mass of 2 TeV: hashed regions indicate that they are ruled out by the labeled constraint, with
conditions for each constraint outlined in Section III. The leftmost plot indicates the allowed region in the yL12 − yL23 plane, with y

R
ij fixed

by the Δal central values. Here, the shaded perturbativity constraint refers to that region being ruled out by nonperturbative generated
right-handed couplings. The center and rightmost plots show the relevant constraints for a scan over a decoupled muon and electron
sector, and here the shaded region shows the one- and two-sigma allowed regions about the associated Δal central values.
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Following the derivations in Ref. [51], we rederive
the relevant constraints in terms of the Yukawas in the
“up-type” coupling regime. For this, we assume the
Wolfenstein parametrization for the CKM matrix.
Namely the relevant combination of parameters for the
decays considered here is this:

VcdVcs ∼ −λ
�
1 −

1

2
λ2
�
∼ 0.22; ð37Þ

where λ ∼ 0.226 is the standard Wolfenstein param-
eter [44].
Contributions to the theoretically clean rare process

BrðKþ → πþνν̄Þ are found to give competitive constraints
for the S1 model. In Section II B 1 we highlighted the
importance of this constraint for the case of a charmphilic
ðg − 2Þμ model, and it is similarly constraining for this
coupling texture. As the effective interaction here is purely
vector in nature, it does not run in QCD and has negligible
electroweak running effects within the scope of this
analysis. Following Ref. [51], considering the dominant
contribution at the 90% confidence level gives the follow-
ing upper bound:

jySLQ12 j ≲ 4.09 × 10−2
mϕ

TeV
: ð38Þ

For real-valued Yukawa couplings, this process generates a
more constraining bound for S1 than those from K − K̄
mixing or from the process KL → π0νν̄ [52]. For the R2

model, contributions to this process are loop-order and the
constraints are negligible relative to those otherwise
considered.

Conversely, for the R2 model the strongest constraint
from the kaon sector come from tree-level leptoquark
exchange to the helicity suppressed K0

L → eþe− transition.
Noting the vector nature of the effective contribution to this
process, and following again from Ref. [51], we derive an
upper bound at 90% confidence on the associated coupling:

jyReQ12 j≲ 9.5 × 10−2
mϕ

TeV
: ð39Þ

We emphasize that for the purpose of these derivations
we have assumed real-valued Yukawa couplings for each
model, and recognize that complementary constraints may
exist on any imaginary component if this assumption were
to be relaxed. The S1 leptoquark cannot contribute to this
process at tree level, and higher order contributions were
found to be weaker than those from the high-pT LHC
observables discussed in earlier subsections.

III. PHENOMENOLOGY

In both models, the free parameters are summarized by

fyL12; yL23; yR12; yR23; mϕg; ð40Þ

where we stress that the right- and left-handed couplings
are explicitly defined for each model as per (25) and (26).
Presently the scalar leptoquark mass, mϕ, is most strongly
directly constrained using LHC searches for the decay of
pairs of scalar LQ with couplings predominantly to first-
generation leptons [53]:

FIG. 3. R2 model for fixed benchmark LQ mass of 2 TeV: hashed regions indicate that they are ruled out by the labeled constraint, with
conditions for each constraint outlined in Section III. The leftmost plot illustrates a scan over the yL12 − yL23 plane, with yRij fixed by the
Δal central values. Here, the shaded perturbativity constraint refers to that region being ruled out by nonperturbative generated right-
handed couplings. The center and rightmost plots show the relevant constraints for a scan over a decoupled muon and electron sector,
and here the shaded region shows the one- and two-sigma allowed regions about the associated Δal central values.
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mϕ > 1.8 TeV at 95%C:L:; ð41Þ

providing a conservative lower bound.9

For the majority of this section, we will aim to fix the
values of Δal to a point within one sigma of the central
values, reducing the parameter degrees of freedom to
5 − 2 ¼ 3. To achieve this, we scan logarithmically over
positive perturbative left-handed couplings, and fix the
right-handed couplings according to the full calculation of
Δal (12); the relative sign is absorbed into the allocation of
right-handed couplings. Since this equation is a polynomial
in yRl , and we restrict the couplings to be real valued, we
solve for the value of yRl for which (i) ReðyRlÞ is perturba-
tive, and (ii) ImðyRlÞ is minimal. We truncate the input value
for yRl to be the real component of this root. This is done
algorithmically such that the input value is the closest fit to
these requirements, listed in order of preference. We then
check the calculated value for Δal and identify points that
remain within one sigma of the central values.
The conditions for this parameter study are as follows,

where experimental values implemented are as given in
Table II. The below represent the requirements for values to
pass constraints for each observable.
(1) Δae and Δaμ within 1σ;
(2) Yukawa coupling perturbativity bound jyj ≤ ffiffiffiffiffiffi

4π
p

;
(3) Effective Nν within 2σ;
(4) Effective left- and right-handed Z-muon couplings

within 2σ of their central values;
(5) LHC high-pT leptonic constraints, as listed in

Table II,
(6) and mϕ > 1.8 TeV.

Furthermore, we impose the following model-specific
constraints to the their respective parameter space:
(1) Kþ → πþνν̄ derived coupling bound in Eq. (38)

for S1,
(2) and K0

L → eþe− bound in Eq. (39) for R2.
We will begin by identifying a benchmark region of

parameter space for each model, then proceed to a full
parameter grid scan. We aim to achieve an upper bound on
the LQ masses capable of tackling the ðg − 2Þe=μ puzzle,
and explore the emergent coupling structures of these
solutions.

A. S1 and R2 models with mϕ = 2 TeV

We first begin to explore the available parameter space
by performing grid scans over coupling space projections,
with a fixedmϕ ¼ 2 TeV in both LQmodels. The results of
these scans are shown in Figs. 2 and 3. Constraints that do
not explicitly appear in these figures were not competitive
with those shown, within the illustrated region of interest.

1. Fixed about the Δal central values

The leftmost plots illustrate the results of a scan fixing
the right-handed couplings via the method outlined at the
beginning of Sec. III. Starting with S1, note particularly that
contributions to effective Nν, via Z → νν, are suppressed
significantly enough (i.e., by CKM) to render these
negligible for the considered parameter space. This is
not true for R2, and an effective Nν bound is found to
be competitive with that from Z → μμ. For the both LQs,
this indicates a preferred allocation of couplings such that

yL12 ∼Oð10−2Þ; and yL23 ≳Oð10−2Þ: ð42Þ

All points shown pass the requirement that ΔaeðμÞ fall
within the one-sigma region. These results act to demon-
strate explicit existence of viable parameter space.

2. Decoupled μ and e sectors

The center and leftmost plots in Figs. 2 and 3 illustrate
the planes of electron and muon couplings for each model.
In each of these plots, the relevant ðyL; yRÞl couplings are
scanned over perturbative values, without enforcing a fit
with Δal. For these scans, the effectively decoupled
parameters ðyL; yRÞl0 , where l0 ≠ l, are fixed to zero.
Shaded regions illustrate the one- and two-sigma agreement
with theΔal values in (3) and (4). Hashed regions illustrate
the strength of the important constraints on these parameter
subspace projections. These results demonstrate the impact
of uncertainties on theΔal measurements on these models’
parameter space regions.

B. Parameter scan for S1 and R2 models

Here we extend the benchmark region to include
variation in the LQ mass for each model. We logarithmi-
cally vary the parameters within the following ranges:

mϕ ∈ ½1.8; 100� TeV; y12L ; y23L ∈ ½0;
ffiffiffiffiffiffi
4π

p
� ⊂ Rþ: ð43Þ

The right-handed couplings are fixed, as per the algorithm
for Δal detailed in earlier discussion, and we require that
points satisfy the constraints outlined at the beginning of
Sec. III. We emphasize that the conclusions here are based
on the current central values and error ranges for the
anomalous magnetic moments, and should be revisited
when new experimental results are obtained. The results of
these scans are shown in Fig. 4. We have labeled the
couplings here explicitly in accordance with Eqs. (20)
and (21).
The left two plots in Figs. 4(a) and 4(b) can be thought of

as illustrating the shrinkage and translation with mϕ of the
constrained regions in the leftmost plots of Figs. 2 and 3.
Here, the colorbar for these indicates the maximum mϕ

value that is allowed for that parameter combination; these
masses are not unique for a particular coupling allocation

9A novel study by the CMS collaboration considered searches
for LQ with off-diagonal couplings to t − μ [54], although this
constraint is slightly weaker than that quoted above.
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because of the allowed region about the central values of
Δal. As expected, Yukawa couplings show a trend towards
higher magnitudes for larger LQ masses—reflecting
Eqs. (23) and (24). The upper limit on LQ mass for the
S1 and R2 models under the specified constraints was found
to be such that

mS1 ≲ 65 TeV; and mR2
≲ 68 TeV: ð44Þ

In the right two plots in Figs. 4(a) and 4(b), the colorbars
show the maximum allowed coupling value (labeled) for a
particular mass and coupling ratio. For S1, these narrow
rapidlywith increasedmassmϕ to a preferred coupling ratio,

y23=y12 ∼Oð10−1Þ; ð45Þ

for both right- and left-handed couplings. These plots forR2

show a much less rapid convergence to a coupling ratio with
increased mass mϕ, but to the same approximate ratios. For
smaller masses a wider range of coupling ratios are permit-
ted. These ratios are consistent with the relations in

Eqs. (30)–(33), where we allow for the one-sigma regions
about the central values of Δae=μ.
The rapid convergence of S1 to this ratio would indicate

that this LQ model structure is more sensitive to variations
about the central values of Δal, and therefore improve-
ments of these measurements (i.e., those expected in the
near future from the Muon g − 2 collaboration [4]) may
necessitate a reassessment of the viability of such a model.
This information is not immediately evident from contrast
with center and leftmost plots in Figs. 2 and 3, however we
note that the decoupled parameter planes do not reflect the
influence of interplay between electron and muon cou-
plings for relevant constraints.
Note that patterns emergent in the couplings within these

datasets may motivate an algebraic relationship between
LQ couplings of the quarks to charged-lepton generations.
Known theoretical approaches can be explored to generate
such hierarchical coupling structures in UV-complete NP
models: for example, Froggatt-Nielson mechanisms [55].
We refrain from discussing this concept further here, but
rather we identify it as an avenue for future exploration.

FIG. 4. Preferred coupling substructures for S1 (a) and R2 (b) Δae=μ model: these figures illustrate the results a grid scan of the
coupling values for parameter points, performed as outlined at the beginning of Sec. III. Colored points pass all constraints. In each
subfigure, the left two plots demonstrate the preferred right- and left-handed coupling assignments for varying LQ mass, and share an
associated color bar. The right two plots show the ratio of nonzero couplings for both coupling matrices, as they vary with the LQ mass.
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C. Future of predicting ðg − 2Þτ
There are proposed measurement techniques for the

quantity ðg − 2Þτ [56]; however, up to the present there
are only rough bounds on its experimental value [44]:

−0.052 < aτ < 0.013 ð95%C:L:Þ: ð46Þ

The short lifetime of the tau makes measurement of this
quantity notoriously difficult. By observation of the other
two lepton flavors, we would expect that a measurement of
this observable could provide further evidence for lepton
nonuniversality in NP models. Furthermore, exploring the
generation of hierarchical coupling structures could be
further motivated by a fitting also to ðg − 2Þτ, when such a
measurement becomes available.

IV. CONCLUSIONS

We have argued that the apparent lepton-flavor univer-
sality violation in measurements of the anomalous mag-
netic moments of the electron and muon can be explained
using either of the mixed-chiral subset of scalar leptoquark
models—provided that Yukawa couplings are real-valued,
and generated via an “up-type” mass basis. This mixed-
chiral nature is necessary for the sign dependence of one-
loop BSM corrections, consistent with the observed
anomalies, and the “up-type” flavor ansatz avoids the
explicit one-loop contributions to LFV processes such
as μ → eγ.
There are precisely two scalar LQs which have the

required coupling structure: the SUð2ÞL singlet S1 ∼
ð3; 1;−1=3Þ and the doublet R2 ∼ ð3; 2; 7=6Þ. We demon-
strated the allowed parameter space, assuming real-values
for Yukawa couplings, showing that both of these models
are capable of generating Δaμ and Δae within 1σ of the
current observed values, whilst also satisfying constraints
from precision electroweak observables, LHC constraints
and decays in the kaon sector—illustrated explicitly for a
benchmark mass of mϕ ¼ 2 TeV in Figs. 2 and 3. A
conservative upper bound on LQ mass in both models
results in the following range of allowed masses:

1.8≲ mϕ

TeV
≲ 65: ð47Þ

Hierarchical Yukawa coupling relationships may emerge
in the allowed points for S1 and R2, depending on the
particular choice of mϕ. This motivates further study into
possible texture generation mechanisms and their extension
to models including effects in ðg − 2Þτ.
The framework outlined in this paper can be easily

adapted when new experimental results for ðg − 2Þl are
obtained, as expected in the near-future from experiments
such as Muon g − 2 [4]. We motivate the ongoing consid-
eration of mixed-chiral LQs for flavor phenomenology in
new physics models, particularly those permitting violation
of lepton-flavor universality.
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APPENDIX: A NOTE ON THE Δaμ
THEORETICAL PREDICTION

After the initial version of work was completed, a result
from the BMWc collaboration [57] was released giving an
improvement on the theoretical prediction for hadronic
vacuum polarization contribution to ðg − 2Þμ from lattice
QCD. Their result indicates that within the current exper-
imental measurements, NP explanations in this quantity
may be entirely unnecessary. In the Δaμ result quoted in
Eq. (3), the hadronic contribution to the corresponding
theoretical calculation originates from the averaged R-ratio
procedural results for ðg − 2Þμ [58–60]. Prior to this BMWc
result, the R-ratio procedure was highly favored over lattice
methods—due to lattice methods having very large asso-
ciated theoretical uncertainties. Reference [57] is the first to
achieve competitive precision for the lattice method;
however, as the authors themselves acknowledge, this
result is yet to be independently verified. For this reason,
we use the R-ratio theoretical values for our study.

[1] G. F. Giudice, P. Paradisi, and M. Passera, J. High Energy
Phys. 11 (2012) 113.

[2] F. Campanario, H. Czy, J. Gluza, T. Jeliski, G. Rodrigo, S.
Tracz, and D. Zhuridov, Phys. Rev. D 100, 076004 (2019).

[3] T. Blum, A. Denig, I. Logashenko, E. de Rafael, B. L.
Roberts, T. Teubner, and G. Venanzoni, arXiv:1311.2198.

[4] A. Chapelain (Muon g-2 Collaboration), EPJ Web Conf.
137, 08001 (2017).

INNES BIGARAN and RAYMOND R. VOLKAS PHYS. REV. D 102, 075037 (2020)

075037-12

https://doi.org/10.1007/JHEP11(2012)113
https://doi.org/10.1007/JHEP11(2012)113
https://doi.org/10.1103/PhysRevD.100.076004
https://arXiv.org/abs/1311.2198
https://doi.org/10.1051/epjconf/201713708001
https://doi.org/10.1051/epjconf/201713708001


[5] R. Parker, C. Yu, W. Zhong, B. Estey, and H. Mãeller,
Science 360, 191 (2018).

[6] J. Liu, C. E. M. Wagner, and X.-P. Wang, J. High Energy
Phys. 03 (2019) 008.

[7] A. Crivellin, M. Hoferichter, and P. Schmidt-Wellenburg,
Phys. Rev. D 98, 113002 (2018).

[8] M. Abdullah, B. Dutta, S. Ghosh, and T. Li, Phys. Rev. D
100, 115006 (2019).
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