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Backflow events under the effect of secondary flow of Prandtl’s first kind
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A study of the backflow events in the flow through a toroidal pipe at friction Reynolds
number Reτ ≈ 650 is performed and compared with the results in a straight turbulent pipe
flow at Reτ ≈ 500. The statistics and topological properties of the backflow events are
analysed and discussed. Conditionally averaged flow fields in the vicinity of the backflow
event are obtained, and the results for the torus show a similar streamwise wall-shear stress
topology which varies considerably for the azimuthal wall-shear stress when compared
to the pipe flow. In the region around the backflow events, critical points are observed.
The comparison between the toroidal pipe and its straight counterpart also shows fewer
backflow events and critical points in the torus. This is attributed to the secondary flow
of Prandtl’s first kind present in the toroidal pipe, which is responsible for the convection
of momentum from the inner to the outer bend through the core of the pipe, and back
from outer bend to the inner bend along the azimuthal direction. These results indicate
that backflow events and critical points are genuine features of wall-bounded turbulence,
and are not artefacts of specific boundary or inflow conditions in simulations and/or
measurement uncertainties in experiments.
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I. INTRODUCTION

A detailed assessment of the near-wall region in turbulent flows is a very complex problem,
which involves a number of interesting fundamental questions including its modulation by the flow
in the outer region [1–5]. The transport phenomena [6] present close to the wall, which can be
characterized in terms of the wall-shear-stress vector field, are relevant to understand a wide range
of applications, including cardiovascular flows [7] (e.g., in the context of Lagrangian wall-shear
stress structures [8]) and heat transfer [9,10]. In particular, the presence of regions of instantaneous
reverse flow (denoted in the present work as backflow events) in wall-bounded turbulence is a topic
of relevance for the understanding of separation mechanisms, both in steady [11] and unsteady
[12] aerodynamic applications. A recent review by Carlomagno and Ianiro [13] discussed that
flow reversal produced by local pressure-gradient fluctuations in the near-wall region can initiate
secondary vortices. It is reported that this flow reversal is one of two features (the other being
vortex generation) that can enhance the heat-transfer characteristics in the flow. Moreover, backflow
events and the topology of the wall-shear stress have been used to further understand the separation
mechanisms from the perspective of dynamical systems [14], control theory [15], and reduced-order
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modeling [16], among others. Backflow events in turbulent channel flow were for the first time
characterised in detail by Lenaers et al. [17], together with extreme wall-normal velocity fluctuations
near the wall. In their direct numerical simulations (DNSs), they found that both the probability of
finding a backflow event and the distance from the wall at which reverse flow was observed increased
with Reynolds number. These indications show that there is a connection between the modulation
of the near-wall region by the large-scale motions in the outer part of the flow and the presence
of backflow events. This connection was quantitatively investigated by documenting the backflow
event density beneath large-scale structures residing in the logarithmic layer. Their conclusions
were confirmed in a DNS of turbulent channel flow [18] at a slightly higher Reynolds number,
where a probability of finding backflow events of around 0.07% was reported at a friction Reynolds
number of Reτ = 2000. In both studies a strong connection between the presence of backflow events
and energetic large-scale motions in the outer region were reported. These studies confirmed the
indications in earlier works [19–21] regarding the presence of backflow events in wall-bounded
turbulence, despite the fact that they had not been detected in certain measurement campaigns
[22,23]. The more recent experimental study by Willert et al. [24], who performed particle image
velocimetry (PIV) measurements in zero-pressure-gradient (ZPG) turbulent boundary layers (TBLs)
at Reτ = 1000 and 2700, confirmed the findings by Lenaers et al. [17] and Yao, Huang, and Xu
[18]. Brücker [25] used micropillar sensors to measure the topology of the wall-shear stress vector
in a ZPG TBL at Reτ � 940, and identified a probability of finding backflow events of around
0.05%, aligned with the results by Lenaers et al. [17] at approximately the same Re. Note that
micro-pillar sensors, based on correlating the deflection of small flexible pillars on the wall and
the shear stress, provide accurate measurements of the τw fluctuations (where τw is the wall-shear
stress), as well as their spatial correlations [26–29]. Thus, Brücker [25] was able to determine
that backflow events are correlated with strong spanwise gradients of the wall-shear stress, and
characterised the topology of critical points (defined as points where both the wall-shear stress
and the surface vorticity are zero). These backflow events are thought to strongly correlate with
large-scale events in the logarithmic layer [17]. This correlation was further investigated using DNS
of turbulent channel [30] and pipe [31] flows, and they reported that critical points are formed when
large-scale motions transport vorticity toward the wall. Backflow events have also been studied in
more complicated configurations, such as adverse-pressure-gradient (APG) TBLs, both numerically
[32] and experimentally [33]. These studies show that APGs increase the probability of occurrence
of backflow events, while their topology in inner-units remains unchanged.

While all of the aforementioned experimental studies investigating backflow events are able
to document and characterise backflow events qualitatively and quantitatively, they often have
difficulties to assess the Reynolds-number scaling of these extreme events, due to insufficient
temporal and spatial resolution with increasing Reynolds number. However, the DNS studies
discussed above are able to provide such resolution requirements. Given the fact that the existence
of backflow events has been established beyond doubt in canonical wall-bounded flows, in this
study we aim at evaluating the effect of a nonzero cross-stream velocity distribution (i.e., secondary
flow) on such backflow events. The flow through curved pipes is characterised by a strong in-plane
secondary flow of Prandtl’s first kind driven by the centrifugal force and accompanied by a pressure
gradient, which has a strong impact on the kinematics and dynamics of the flow [34,35]. This makes
the toroidal pipe a very interesting flow case regarding backflow events. The relevance of this flow
case is related to the fact that it serves as the common asymptotic limit of two distinct classes of
important flow cases, i.e., the flow in spatially developing pipe bends (when entry effects become
negligible), and the flow in helical pipes (when the torsion becomes negligible). Additionally, it
serves as a test case with natural periodicity, which is experimentally difficult to realize, but not
impossible as shown by Kühnen et al. [36]. This type of flow has recently been explored by means
of DNS in terms of its stability [37] as well as laminar [38] and turbulent [39] base flows (covering
a wide range of curvatures) and is here for the first time explored to study back-flow events.

In the present study we analyze the characteristics of back-flow events in toroidal pipes using
a numerical approach similar to the one reported by Noorani and Schlatter [40]. The results are
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also compared to the corresponding straight pipe at a similar Reτ . In incompressible wall-bounded
flows, the near-wall vorticity fields, which are related to the wall-shear stress, are associated with
turbulence transport mechanisms [41]. Therefore, in this work we aim at further understanding such
mechanisms in toroidal pipes by providing detailed analyses of the wall-shear stress distributions in
this flow case.

II. METHOD

A. Pipe flow simulations

The turbulent pipe flow data used for the present study comes from a direct numerical simulation
(DNS) [41,42]. The numerical scheme employed to perform the pipe flow simulations is detailed in
Blackburn and Sherwin [43]. The scheme uses a spectral element discretization in the meridional
semi-plane with an 11th-order Gauss–Lobatto–Legendre nodal-based expansion in each element
and a Fourier discretization in the azimuthal direction. The details of the present simulation are
summarised in Table I. The coordinate system is defined as x, y = Rp − r (where Rp is the pipe
radius and r is the radial distance measured from the pipe center) and z = rθ , which are the
streamwise, wall-normal, and azimuthal directions, respectively. The mesh resolutions in the stream-
wise and spanwise (azimuthal) directions are denoted by �x and �z= �rθ , respectively, and the
corresponding lengths of the computational domain are Lx and Lz. The streamwise computational
domain length is Lx = 8πδ. The effects of insufficient computational length are well documented
[44] (e.g., lack of convergence of higher-order turbulence statistics). The superscript “+” is used to
denote viscous scaling, i.e., in terms of the friction velocity uτ or the viscous length ν/uτ .

B. Simulation of the flow through a toroidal pipe

The DNS of the turbulent flow through a toroidal pipe was performed using the numerical
code Nek5000, developed at the Argonne National Laboratory [45] and based on spectral-element
method (SEM) [46]. Lagrange interpolants of order N are used to expand the velocity and pressure,
respectively, at the Gauss–Lobatto–Legendre (GLL) quadrature points within the spectral elements.
The nonlinear terms in the incompressible Navier–Stokes equations are treated explicitly through
third-order extrapolation (EXT3), and an implicit third-order backward differentiation (BDF3)
scheme is used for the viscous terms. Numerical stability of the SEM was ensured through explicit
filtering of 5% of the energy of the highest mode (see the work by Fischer and Mullen [47] for
additional details). The simulations were carried out on the Cray XC40 system “Beskow,” located
at the PDC Center from KTH, running on 4096 cores.

The toroidal pipe under consideration is shown in Fig. 1, which is similar to the bent pipes
considered by Noorani, El Khoury, and Schlatter [39]. Figure 1(a) shows the instantaneous
streamwise wall-shear stress and in Fig. 1(b) a cross-sectional view of the torus is presented. The
coordinate system for the torus is defined as x = rtφ (where rt denotes the radial distance with
respect to the torus center), y = Rp − r and z = rθ , which are the streamwise, wall-normal and
azimuthal directions, respectively. This is chosen to be consistent with the pipe flow notation.
The corresponding instantaneous streamwise, wall-normal and azimuthal velocities are U , V and
W . We consider a bulk Reynolds number Reb = 2UbRp/ν (based on bulk velocity Ub and pipe
diameter 2Rp) of 19 000, which yields a corresponding Reτ = 550 in straight pipes [48]. As will

TABLE I. Computational parameters for the toroidal pipe and the pipe.

Flow case Reτ L
+
x L

+
z �

+
x �

+
z �+

y Nx Ny Nz Ny × Nz uτ

Pipe 500 12566 3142 6.8 8.2 0.07 1940 160 384 – 5.88 ×10−2

Torus 650 13614 4084 [3.62, 11.81] [1.71, 5.61] 0.5 1936 – – 189696 6.84 ×10−2
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FIG. 1. (a) Instantaneous inner-scaled streamwise wall-shear stress in the torus. (b) Cross-sectional view
of an instantaneous streamwise velocity field, also showing one quarter of the in-plane spectral-element mesh.
Note that the individual GLL points within elements are also shown, and that in this panel dark blue and dark
red correspond to −0.1 and 1.4, respectively. The coordinate system is defined as x, y and z, which are the
streamwise (into the page), wall-normal, and azimuthal directions, respectively.

be discussed below, due to the presence of the secondary flow induced by the pipe curvature, the
value of Reτ depends on the particular azimuthal location, and the averaged value is different from
550. The friction Reynolds number based on the averaged uτ is Reτ ≈ 650. Note that the Reynolds
numbers are slightly different between the torus and pipe as shown in Table I. The geometry is
completely defined with the curvature κ = Rp/Rt (where Rt denotes the radius of the torus, i.e.,
the distance from the torus center to the pipe centreline), which in the present study is set to 0.3.
The computational mesh is designed for a straight pipe first [39,48], following typical guidelines
for DNS, and then this mesh is bent through analytical morphing to obtain the geometry of the
toroidal pipe as discussed by Noorani, El Khoury, and Schlatter [39]. A total of 717 288 spectral
elements with N = 7 was used to discretise the domain, which amounts to around 370 million grid
points. The in-plane SEM mesh is shown in Fig. 1(b) and the simulation parameters are summarised
in Table I. The simulations are run with constant mass flux, and periodicity is imposed in the
streamwise direction. The laminar Poiseuille profile was used as initial condition, and low-amplitude
pseudo-random noise was added to trigger transition to turbulence. After around 200 convective time
units the turbulence could be considered fully developed and independent of the initial conditions.
Thus, the data under consideration in the present work was obtained after the initial 200 time
units of simulation. Note that although Nek5000 solves the Navier–Stokes equations in a Cartesian
frame of reference, rotation matrices were employed to express all the tensors in the local toroidal
frame of reference as stated previously.

In Fig. 2 we show a cross-sectional view of the mean velocity through the torus, so as to illustrate
the effect of the secondary flow. First, it can be observed that the streamwise velocity exhibits very
low speed at the inner bend, whereas the maximum is in the upper half of the cross section. The in-
plane streamfunction 
 shows the formation of the so-called Dean vortices, which are characteristic
of the secondary flow of Prandtl’s first kind present in bent pipes (see, e.g., Ref. [39]). The in-
plane velocity magnitude shows a strong secondary flow along the azimuthal direction of the pipe,
combined with milder convection of momentum directed from the inner to the outer bend of the
pipe, as also indicated by the streamlines. The impact of these features on the near-wall events will
be discussed in the remainder of the manuscript.

C. Definition of backflow events

Backflow events result from strong but spatially localized unsteady effects. The latter lead to brief
lifetimes, as evidenced in studies of turbulent plane channels where regions of negative velocity and
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FIG. 2. (Left half) Pseudocolors of mean streamwise velocity with isocontours of the streamfunction 
;
(right half) pseudocolors of mean in-plane velocity magnitude with a vector plot of the in-plane motion. Note
that the maximum in-plane velocity magnitude is around 0.12 (very close to the wall), but the employed scale
allows to better observe the details of the field.

critical points in the skin-friction fields were spatially time-tracked [30,49]. Other approaches to
analyze unsteady separation are discussed by Surana et al. [50]. However, by means of instantaneous
flow fields that are distant in time (compared to typical backflow object lifetimes), we can still collect
valuable information such as average size and area density. That is one of the aims of the present
study. The classification of backflow events is straightforward for the pipe flow, where negative
dU/dy values correspond to backflow or reverse-flow events. This is not the case for the flow
through a toroidal pipe as shown in Fig. 3. Figures 3(a) and 3(b) show the instantaneous streamwise
wall-shear stress for the torus and pipe, respectively. It is clear that in the pipe flow, the streamwise
wall-shear stress profile exhibits an homogeneous pattern in the spanwise direction, whereas in the
torus the distribution varies significantly from the inner bend (z/δ = 0 and 2π ) to the outer bend
(z/δ = π ) as shown in Noorani et al. [51]. Note that in the context of the present work the variable
δ denotes both the pipe radius Rp in the torus and the pipe radius. In the straight pipe flow, without
any external spanwise forcing, the mean spanwise wall-shear stress is zero. Note that the wall-shear
stresses is directly proportional to the velocity gradient at the wall, i.e., τw ∝ dU/dy|wall, therefore
the velocity gradient is used as a reference for the wall-shear stress in this paper. In the toroidal
pipe, the existence of secondary flow induces a nonzero spanwise wall-shear stress. The magnitude
of the local spanwise wall-shear stress is highly dependent on the strength of the secondary flow
and the azimuthal location. This local nonzero spanwise wall-shear stress and the local streamwise
wall-shear stress result in a local preferential flow direction. Therefore, to determine the backflow
events in a toroidal flow, the local mean wall-shear-stress angle has to be considered using the
streamwise and spanwise wall velocity gradients dU/dy and dW /dy, respectively. Consequently,
negative events are defined when the flow direction is opposite to the local mean wall-shear-stress
angle.

The probability density function of the orientation of the wall-shear-stress vector is shown,
in the form of a wind-rose plot, for the torus and the pipe in Figs. 3(c), 3(e) and 3(d), 3(f),
respectively. The wind rose plots essentially provide information of the magnitude and direction
of the wall-shear-stress vector. Figure 3(d) shows that the wall-shear-stress vector in the pipe is
oriented predominantly in the streamwise direction (denoted by π/2). However, in the flow through
the toroidal pipe the wall-shear-stress vector exhibits three main preferential directions: the flow
being aligned with the streamwise pressure gradient (denoted by π/2) and the flow at approximately
±5π/18 with respect to the streamwise pressure gradient direction. Comparing the zoomed-in
wind-rose plots of the torus [Fig. 3(e)] and pipe [Fig. 3(f)] clearly shows that backflow events occur
in both cases.
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FIG. 3. Instantaneous streamwise wall-shear stress for (a) torus (unwrapped) and (b) pipe. Probability
density function of the orientation of the wall-shear-stress vector and magnitude for (c) torus with (e) zoomed-in
view and for (d) pipe with (f) zoomed-in view.

The results also show a higher percentage of backflow events in the pipe as compared to the
torus. The temporal and streamwise average of the local wall-shear stress angle ψ (in degrees) is
shown in Fig. 4(a), using the same angular frame of reference as the one considered in Fig. 3. The
angle ψ at the inner and outer bends is ψ = 90◦, which implies that in these regions the wall-shear
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FIG. 4. (a) Local average wall-shear stress angle ψ (in degrees) for the torus. (b) Derivative of ψ in the
azimuthal direction. The solid line denotes the location of the outer bend. The dash lines split the torus into six
regions, denoted R1 to R6, used for analysis purposes.

stress vector is aligned with the streamwise direction, and that there is no preferential direction for
the spanwise wall-shear stress. The angle ψ is continuously changing from the inner to the outer
bend. As expected, our results clearly show that ψ is symmetrical about either the inner or the outer
bend. Since, as observed in Fig. 3(c), there are three preferential directions of the wall-shear stress,
we will split the toroidal wall surface into several different regions to account for the variation in
the local flow direction.

To determine suitable regions to analyze backflow events, three distinct ψ values can be identified
from Figs. 3(c) and 4(a), which are ψ ≈ 50◦ (occurring at z/δ ≈ 3π/2), ψ ≈ 90◦ (occurring at
z/δ ≈ 0 and 2π ) and ψ ≈ 130◦ (occurring at z/δ ≈ π/2). In Fig. 3(c), the probability density
function shows a range of angles of around ±20◦-25◦ from the three distinct ψ values ψ = 50◦,
90◦, and 130◦. A further analysis on the rate of change of ψ and dψ/dz is used to discriminate the
regions as shown in Fig. 4(b). The torus wall surface is split into six regions, which are denoted
from R1 to R6. Note that R1, R2, and R3 are mirrored regions of R6, R5, and R4, respectively. The
regions R3 and R4 show an approximately constant dψ/dz, R2 and R5 exhibit a constant slope of
dψ/dz and the remaining R1 and R6 have steep variations in dψ/dz.

Coincidentally, this is similar to splitting the wall surface into four quadrants (Q) along the
circumference in the cross section. Each quadrant has an arc length of Larc = π/2. The four quadrant
are: Q1 = R1(0 < z/Rp < π/4) + R6 (7/4π < z/Rp < 2π ), Q2 = R2 (π/4 < z/Rp < 3/4π ),
Q3 = R5 (5/4π < z/Rp < 7/4π ), and Q4 = R3 (3/4π < z/Rp < π ) + R4 (π < z/Rp < 5/4π ).

III. RESULTS

The conditional average of the wall-shear stresses (or the velocity gradients), dU(x, z)/dy about
a backflow event is computed as follows:〈

dU
dy

〉
=

〈
dU(x, z)

dy

∣∣∣∣arctan

(
dW (x, z)

dy

/
dU (x, z)

dy

)
�⊂

[
ψ

( z

δ

)
− π

2
, ψ

( z

δ

)
+ π

2

]〉
. (1)

The local wall-shear stress angle ψl is first evaluated using dW/dy and dU/dy, this angle ψl

is then compared to the mean ψ (see Fig. 4) at the same z/δ location. If ψl is not within
ψ (z/δ) ± π/2, it is considered a backflow event and will be included in the conditional average.
〈dU/dy〉 = 〈dU/dy〉(�x,�z), where the conditional average domain plane is bounded by −100 �
�x � 500,−50 � �z � 50, with a backflow event nominally centered at (0,0). The conditional
averaging of 〈dU +/dy+〉 and 〈dW +/dy+〉 in the vicinity of a backflow event is first performed for
the entire toroidal pipe without considering the local flow angle. The results are compared with
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FIG. 5. Distributions of 〈dU +/dy+〉 (a), (b) and 〈dW +/dy+〉 (c), (d) conditionally averaged to the presence
of a backflow event at �x = �y = 0. The evaluation was performed over the entire azimuthal direction of the
toroidal pipe. Left panels correspond to the torus and right panels to the pipe. The white contour in panels
(a) and (b) denote zero streamwise wall-shear stress.

the pipe flow and are shown in Fig. 5. The top row, i.e., Figs. 5(a) and 5(b), show a comparison
of the streamwise wall-shear stress 〈dU +/dy+〉 in the torus and in the pipe. Note that in these
figures the center of the backflow event is located at �x = �z = 0. The overall distribution is
qualitatively similar in both cases, with low 〈dU +/dy+〉 values right upstream and right downstream
of the backflow event. The backflow events are flanked by regions of strong 〈dU +/dy+〉 values,
and interestingly the torus exhibits consistently larger shear-stress values in the vicinity of the
backflow event than the pipe. The mean diameter of these backflow events differs between the
torus and the pipe, with a mean diameter of about 16 viscous units in the torus and around 20
viscous units in the pipe. Note that a diameter of around 20 viscous units was also reported in the
adverse-pressure-gradient turbulent boundary layer developing on the suction side of a wing section
[32] and in channel-flow simulations [17].

Figures 5(c) and 5(d) show the spanwise wall-shear-stress distribution 〈dW +/dy+〉 for the torus
and the pipe, respectively. In the case of the torus, the backflow event is flanked by two regions
of positive (negative) 〈dW +/dy+〉, immediately followed by small areas of opposite sign in the
downstream direction. This pattern suggests the presence of a pair of counter-rotating vortices in
the vicinity of the backflow events, as illustrated in Fig. 5(c), which is kinematically consistent with
the presence of a region of reverse streamwise velocity. The symmetry of these vortices is to be
interpreted with care, since instantaneously only one vortex could be present and indeed Lenaers
et al. [17] show single oblique vortical structures in instantaneous visualisations above backflow
regions. In the region around the backflow event, i.e., �x+ ≈ [−50, 20], �z+ ≈ [−25, 25], this
alternating pattern in 〈dW +/dy+〉 is also present in the pipe, although its topology is slightly
different: the regions of positive (negative) spanwise wall-shear stress flanking the backflow event
are larger, as opposed to what is observed in the torus. It is interesting to note that at farther
downstream distance (�x+ > 50) of the backflow event in the toroidal pipe, the 〈dW +/dy+〉
signature is significantly stronger and longer than the upstream distribution, whereas the opposite is
observed in the pipe.

Since the results in Fig. 5 for the torus are a combination of contributions from the different
regions defined in Fig. 4(b) (R1 to R6), it will be natural to investigate the influence of the
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FIG. 6. (Left panels) streamwise wall-shear stress 〈dU +/dy+〉 and (right panels) spanwise wall-shear stress
〈dW +/dy+〉. The results are shown for (a), (b) region R1, (c), (d) region R2, and (e), (f) region R3. Regions
are as defined in Fig. 4(b).

secondary motion in the flow within the various areas of the torus. Due to the fact that the regions
are symmetrical about the symmetry line (see Fig. 4), only results from regions R1, R2, and R3
will be presented, which, however, include the contributions from their symmetrical counterparts to
increase the sample space. The streamwise wall-shear stress 〈dU +/dy+〉 from the torus is shown
in Figs. 6(a), 6(c), and 6(e) for regions R1, R2, and R3, respectively. This field exhibits significant
differences in R1 compared to the field obtained when the contributions from all the regions are
combined, as can be observed comparing Figs. 6(a) and 5(a). As documented in the literature
[39,52–54], the pipe curvature induces an in-plane secondary flow which convects momentum from
the inner to the outer bend through the core of the pipe, and from the outer bend back to the inner
bend along the azimuthal direction, as shown in Fig. 1(c). This secondary flow amounts to around
15% of the bulk velocity for the present curvature, which implies that it has a strong effect on the
local flow features. The conditionally averaged field in R1 shows a significantly weaker shear-stress
field at the inner bend, with a small region of higher 〈dU +/dy+〉 on one of the sides of the backflow
event, induced by the secondary flow returning to the inner bend along the pipe wall. This reduced
wall-shear stress was also observed by Noorani, El Khoury, and Schlatter [39] in bent pipes with
high curvature, together with a plateau in τw and reduced turbulent kinetic energy at the inner bend,
which suggest partial relaminarization of the flow in this region. The distribution shown in Fig. 6(e)
for region R3, i.e., for the outer bend, resembles the one in Fig. 5(a), although the latter exhibits
smaller shear-stress values due to the fact that it also accounts for the weaker field present in the
inner bend. Regarding region R2, the 〈dU +/dy+〉 field shown in Fig. 6(c) shares some similarities
with the outer bend, although its asymmetry is produced by the strong effect of the secondary
flow in that region of the pipe. Figures 6(b), 6(d), and 6(f) show the spanwise wall-shear stress
〈dW +/dy+〉 for regions R1, R2, and R3, respectively. Here the profiles are clearly different from
the ones obtained by considering the whole torus, which are shown in Fig. 5(c). This discrepancy
is somewhat expected, since the secondary flow imprints a strong spanwise velocity footprint on
the flow. The distributions for regions R1, R2, and R3 show a clear spanwise inclination, which is
most prominent in Fig. 6(d), corresponding to region R2. Regions R1 and R3, i.e., the inner and
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FIG. 7. (a) Percentage of backflow events %BF with increasing inner-scaled wall-normal distance for torus
(blue line with ◦) and pipe [red line with (box)]. (b) Backflow events %BF for torus decomposed into different
regions. R1 + R6 blue line; R2 + R5 red line; and R3 + R4 black line. Note that the percentages for the regions
are given such that their sum equates to the total percentage of backflow events. The blue line with dots is the
same torus data as in panel (a).

outer bend regions, are therefore slightly less influenced by the spanwise motion imposed by the
secondary flow.

Next, a comparison of the percentage of backflow events (%BF) with increasing wall-normal
distance y+ is performed for the toroidal pipe and the pipe flow and is shown in Fig. 7. The
percentage of backflow events decreases exponentially with increasing wall-normal distance, an
observation in agreement with previously reported results [17,32]. Regarding the results from the
torus, Fig. 7(a) shows that the percentage of backflow events is almost an order of magnitude lower
than that of the pipe flow at a comparable Reynolds number. Moreover, the %BF trend shows a
similar exponential decay with y+. A decomposition of the %BF for the torus into the different
regions defined in Fig. 4 is shown in Fig. 7(b), and also in Fig. 8. The regions R1 + R6 and R3 + R4,
which are least subjected to the influence of the secondary flow, have very similar %BF away from

2

4

6

8

0 π/2 π 3/2π 2π

z/δ

%

R1 R2 R3 R4 R5 R6

FIG. 8. Histogram of backflow events in the toroidal pipe along the spanwise direction. R1 to R6 are the
different regions as defined in Fig. 4. The histogram is scaled to 100% of the total 0.006% occurrence of
backflow events at the wall; cf. Table II.
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TABLE II. Summary of backflow statistics in toroidal pipe and pipe flow. Note that the average of the
percentage area of backflow events for the sum of the different regions of the toroidal pipe equates to the total
percentage and number (indicated in boldface), respectively.

Quantity Torus Pipe

Percentage area of backflow 0.006% 0.05%
Percentage area of backflow for R1+R6 0.0010% –
Percentage area of backflow for R2+R5 0.0038% –
Percentage area of backflow for R3+R4 0.0012% –
Number of backflow events (per 106 viscous unit area) 0.3 1.8
Mean diameter of backflow event (in viscous units) 16 18
Number of critical points (per 106 viscous unit area) 0.35 2

the wall. The %BF for region R2 + R5 is, however, consistently larger than in the other regions,
such that approximately 2/3 of the backflow events are encountered in this region, i.e., in 1/3
of the area. These results suggest that the strong spanwise secondary motion is less effective in
reducing the occurrence of backflow events (with respect to the straight pipe) in regions R2 + R5,
while the formation of backflow events is even more significantly reduced in regions R1 + R6
and R3 + R4. It can be stated that the vortical structures required for the production of backflow
events are significantly affected by the secondary flow in the toroidal pipe. Further inspection of
Figs. 5(c) and 5(d) indicates that the spanwise wall-shear stress pattern responsible for the pair of
counter-rotating vortices is weaker in the torus, a fact that is connected with the lower occurrence
of reverse flow events. As reported by Vinuesa, Örlü, and Schlatter [32], APG TBLs exhibit higher
occurrence of backflow events than ZPGs at the same Reynolds number. This is due to the fact that
the wall-normal convection produced by the APG reduces the near-wall velocity, thus promoting
the formation of regions of negative velocity. In the case under study here, the strong secondary
flow convects momentum from the inner to the outer bend of the pipe; therefore, the flow on the
outer bend experiences a strong convection toward the wall, with the opposite effect to that of an
APG, thus resulting in a reduction of backflow events. As reported by Lenaers et al. [17], backflow
events are absent in laminar flows, and are only produced as extreme events in turbulent flows. As
discussed above, the strong convection away from the inner bend produces laminarlike conditions,
as can be observed for instance in Fig. 1(b), therefore justifying the reduction of backflow events
in this region. Overall, the present results indicate that the percentage of backflow events drops to
around zero for wall-normal locations above y+ = 5. It is interesting to observe that critical points,
which exist in the vicinity of these backflow events [31,49,55], occur in similar numbers to backflow
events for a given flow. Therefore, less critical points in the torus than in the pipe is reported.

A summary of the statistics for the backflow events in the toroidal and the straight pipes is
presented in Table II. The toroidal pipe consistently shows a lower occurrence of backflow events
(both in terms of percentage area of the wall and number of events per 106 viscous unit area) when
compared to the pipe flow. The further decomposition of the torus statistics (%BF at the wall) into
the three main regions are also shown in Table II. Our results clearly indicate that the secondary
flow present in regions R2 and R5 is less effective in reducing the appearance of backflow events
(with respect to the straight pipe) compared with that in the other four regions.

IV. CONCLUSIONS

A DNS of the turbulent flow through a toroidal pipe at Reτ � 650 was performed, using the
spectral-element code Nek5000 [45], with the aim of analyzing the characteristics of the wall-shear
stress vector. Backflow events, i.e., regions of reverse flow, were characterised in the torus and
compared with the ones obtained in a DNS of turbulent pipe flow at Reτ � 500. Our results show
that backflow events are less numerous in the toroidal pipe than in the pipe, with probabilities of

074606-11



R. C. CHIN et al.

occurrence of approximately 0.006% and 0.05% in both cases, respectively. The fields of streamwise
and spanwise wall-shear stress conditioned to the presence of a backflow event are stronger in the
torus, and the diameter of the reverse flow regions is smaller than in the pipe. The diameter is
around 16 viscous units in the former, while its value is about 18 in the pipe, in agreement with the
results reported in other channel flow simulations [17] and in APG TBLs [32]. Note that, although
the two flows are compared at different Reynolds numbers, the Re effect is much weaker than the
discrepancy observed in the two cases, as reported by Ref. [17]. These differences are therefore
explained by the effect of the secondary flow present in the torus, which convects momentum
from the inner to the outer bend through the core of the pipe, and back from the outer to the
inner bend through the pipe walls. This secondary flow, which amounts to around 15% of the bulk
velocity [39] for the present curvature, inhibits the formation of backflow events in the outer bend
through a mechanism opposite to the one reported in APG TBLs [32]. However, the significant
wall-normal convection from the inner bend produces laminar-like conditions, which also lead to
a dramatic reduction in the emergence of reverse-flow regions [17]. It is important to note that
although it is common to impose periodicity in the streamwise and spanwise directions in turbulent
pipe flow simulations, in the torus the flow is naturally streamwise-periodic. Therefore, the present
results provide clear evidence that backflow events are genuine features and not artifacts of specific
boundary or inflow conditions in simulations and/or measurement uncertainties in experiments.
Future extensions of the present study will utilize the entire flow field of the toroidal pipe to
investigate flow structures above these backflow events and critical points, which occur in close
vicinity.
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