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Summary

Estimation of unmeasured variables is a crucial objective in a broad range of appli-
cations. However, the estimation process turns into a challenging problem when the
underlying model is nonlinear and even more so when additionally it exhibits multi-
ple time scales. The existing results on estimation for systems with two-time scales
apply to a limited class of nonlinear plants and observers. We focus on analysing
nonlinear observers designed for the slow state variables of nonlinear singularly per-
turbed systems. Moreover, we consider the presence of bounded measurement noise
in the system. We generalise current results by considering broader classes of plants
and estimators to cover reduced-order, full-order and higher-order observers. First,
we show that the singularly perturbed system has bounded solutions under an appro-
priate set of assumptions on the corresponding boundary layer and reduced systems.
We then exploit this property to prove that, under reasonable assumptions, the error
dynamics of the observer designed for the reduced system are semi-globally input-
to-state (ISS) practically stable when the observer is implemented on the original
plant. We also conclude 2 stability results when the measurement noise belongs
to 2 ∩ ∞. In the absence of measurement noise, we state results on semi-global
practical asymptotical (SPA) stability for the error dynamics. We illustrate the gen-
erality of our main results through three classes of systems with corresponding
observers and one numerical example.

KEYWORDS:
Singularly Perturbed Systems, Observer Design, Semi-global Practical Asymptotical Stability, Input-to-
State Stability, 2 Stability.

1 INTRODUCTION

In general, it is infeasible or prohibitively expensive tomeasure all variables of interest in a dynamic system.When state variables
are required and not measured, they need to be estimated using observers. There exists a robust estimation framework for linear
plant models based on the Luenberger observer and Kalman filter. These linear estimation techniques have been applied to
nonlinear systems after linearisation of the system dynamics. Nevertheless, those observers are valid only locally and only work
well when the system is evolving close to the equilibrium point considered for the linearisation. To counteract this problem, a
wide variety of nonlinear observer design methods have been developed1–10, but these approaches may lead to ill-conditioned
gains when used for systems exhibiting multiple time scales.
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Although systems with multiple time scales are standard in a wide range of applications, observers for general nonlinear sys-
tems exhibiting time-scale separation aremissing. Power electronic systems11, chemical process12,13, electrochemical systems14,
biological processes1 and electromechanical systems15 are just some examples in which multiple time-scales arise. Observer
design for linear singularly perturbed systems has been studied previously16–19. As far as we are aware, there are limited results
on nonlinear estimation for systems with two-time scales. For instance, an approach for the estimation of slow variables of a
deterministic singularly perturbed system is presented in Kazantzis et al1. The authors in Kazantzis et al1 only consider a par-
ticular class of plants and a specific nonlinear observer that exhibits linear error dynamics for the slow system. An observer for
spring-mass-damper systems with singularly perturbed structure is given in Saha and Valasek6,7; however, those results apply
to a very specific class of systems and observers. Other results on observer design for nonlinear singularly perturbed systems
are available in Wang and Liu20, and Darrogheh et al21.
We recently reported results on SPA stability for a general class of plants and full-order observers in Cuevas et al22. We

illustrated and demonstrated the applicability of those results in Cuevas et al23. Moreover, we presented global results to cover
globally Lipschitz nonlinear systems in Cuevas et al24. To generalise findings in Kazantzis et al1 and Cuevas et al22–24, here
we consider a broader class of systems and nonlinear observers of general dimension. Furthermore, we deal with the case
where the measured output is corrupted by measurement noise. Here, we call measurement noise to a external disturbance with
appropriately bounded amplitude, which can be high or low frequency. The stochastic properties of the high-frequency noise
are outside of the scope of this manuscript. Our goal is to analyse the robustness with respect to singular perturbations and
measurement noise of nonlinear observers designed to estimate the slow states of a nonlinear singularly perturbed system when
the input and output are available. We do not consider the fast variables for the observer design process; instead, the observer is
designed on the basis of the reduced (slow) model. We work with this approach since model-based observer design for singularly
perturbed systems may lead to ill-conditioned observer gains, and subsequently, to undesired convergence properties of the
estimation error if the observer is designed for the full plant. An important case where our results can be applied is the class of
systems in which the sensor and/or actuator dynamics are much faster than the dynamics of the plant. The fast (sensor/actuator)
states are typically not needed in such situations; hence, we need to estimate only the slow variables of the process.
We provide a general estimation framework for nonlinear singularly perturbed systems in the standard form. To the best of our

knowledge, there are no known general results in the form we state ours. By taking advantage of the cascade properties of the
observer and error dynamics, we prove that, under general conditions on observer and plant, the estimation error is semi-globally
input-to-state practically stable where the slow and fast states are seen as inputs. Moreover, we show that the ISS property leads
to SPA stability in the singular perturbation parameter �. We also provide 2 ∩ ∞ stability results to cover cases where the
noise is a bounded input signal that belongs to 2 ∩ ∞. To analyse the observer design problem, we first show that, under
certain assumptions on the reduced and boundary layer systems, the original system exhibits an input-to-state practical stability
property with respect to the input and its derivative (practical DISS) as well as a practical 2 stability as defined in Nešić and
Dower25 (Property I3). We provide examples to demonstrate the generality and usefulness of our results.
The paper is organized as follows. Section 2 introduces the plant and assumptions placed upon it. Section 3 demonstrates

boundedness of solutions of the original system (Lemma 1) and SPA stability for the fast states of the system (Corollary 1).
Section 4 contains the main result of the paper. First, boundedness of solutions is proven for the observer dynamics (Corollary 2).
Then, a semi-global practical ISS and 2 ∩ ∞ stability properties are proven for the error dynamics in our main contribution
(Theorem 1). Then, in Section 5 we illustrate and demonstrate the applicability of our results by presenting three classes of
plants and observers for which our results hold. Although not presented here, the results cover the situation when the reduced
(slow) system is such that reduced-order2, full-order1–7, and higher-order8 observers can be used to estimate the slow variables.
Finally, to demonstrate the theoretical findings, we test the results on a simulation of a suspension system.

Notation: Let ℝ = (−∞,∞) and ℝ≥0 = [0,∞). The (Euclidean) norm of a vector x ∈ ℝn is denoted as |x|. We say that
s ∈ ∞ if ||s||∞ < ∞, where ||s||∞ ∶= ess supt |s(t)|. We use the notation ||s[t1, t2]|| ∶= ess supt∈[t1,t2] |s(t)|. The maximum
(minimum) eigenvalue of a square matrix A is denoted by �max{A} (�min{A}). A function �(⋅) ∶ ℝ≥0 → ℝ≥0 is said to be of
class- (�(⋅) ∈ ) if it is continuous, zero at zero and strictly increasing; additionally, if �(r) → ∞ as r → ∞, �(⋅) is said to
be a class-∞ function (�(⋅) ∈ ∞). A function �(⋅) is said to be of class- (�(⋅) ∈ ), if it is continuous, non-increasing and
�(r) → 0 as r → ∞. A function �(⋅, ⋅) ∶ ℝ≥0 × ℝ≥0 → ℝ≥0 is said to be of class- (�(⋅, ⋅) ∈ ), if for each fixed s ∈ ℝ≥0,
�(⋅, s) ∈  and for each fixed r ∈ ℝ≥0, �(r, ⋅) ∈ .
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2 SINGULARLY PERTURBED PLANT

We consider a class of plants in the following form

ẋ = fs(t, x, z, u(t), �), (1a)
�ż = ff (t, x, z, u(t), �), (1b)
y = ℎ(t, x, z, u(t), w(t), �), (1c)

where x ∈ ℝn and z ∈ ℝm are the slow and fast states of the system respectively. Themeasured output is y ∈ ℝp, the perturbation
parameter of the system representing the time scale separation is � > 0, u ∈ ℝr denotes the input vector and w ∈ ℝs is
the measurement noise to the system which is assumed to be bounded. The vector u(t) is a measured input that may represent
a control input, exogenous measured disturbances, constant or time-varying parameters or tracking signals. In the sequel, for
simplicity, we will suppress the argument t in the notation of the vector input u(t) and in the measurement noise w(t).

Remark 1. The state estimation literature deals with the development of reliable methods (observers) to accurately reconstruct
the state variables of a system. In this context, accuracy is understood as the quality of the estimates to converge to the true states.
Observers have a wide range of applicability, which may include modelling (identification), monitoring (fault detection), or
driving (control) the system9. Hence, the observer design problem can be formulated as an open-loop or a closed-loop problem.
When it is addressed in an open-loop setting, the input of the plant is understood as a known external signal. When the problem
is studied from its closed-loop viewpoint, the observer is used to produce state estimates for control purposes. Here, we state
our results in an open-loop setting so that the measured input u(t) in (1) is regarded as an external bounded signal, which may
take different meanings depending on the context. The input signal may represent a control, exogenous measured disturbances,
constant or time-varying parameters or tracking signals. Although we consider an open-loop setting, we state semi-global results
which cover closed-loop scenarios (i.e. when u = u(x)) under extra mild assumptions. Therefore, we address the observer design
problem from its more general perspective.

Remark 2. We use the term measurement noise when we refer to an external disturbance affecting the output of the system.
We study the impact of the amplitude of such a disturbance on the convergence properties of a state observer. Since we only
care of the measurement noise amplitude, it can be high or low frequency. Although the study of the stochastic properties of the
measurement noise is an important problem in its own right, it is outside of the scope of this manuscript. Note that the study of
the noise as an stochastic quantity may be of interest in some areas of engineering. However, it is a different problem that has to
be addressed separately as it requires of a different modelling framework.

Our aim is to analyse the robustness, with respect to singular perturbations, of nonlinear observers designed to estimate
the slow variable x of the singularly perturbed system (1), by assuming that y and u are available. We follow the standard
procedure on linear/nonlinear observer design for singularly perturbed systems; 1) we approximate the full system (1) by two
lower dimensional systems: the reduced and the boundary layer systems, 2) we then design an observer using the reduced
(slow) system, and implement it on the original system. Then, we analyse the performance of the estimation error in the original
system and prove that, under a set of appropriate general conditions, the aforementioned approach leads to ISS and 2 stability
properties for the error dynamics. We state useful SPA convergence results for the estimation error.
The standard singular perturbations technique is the decomposition of original system (1) into lower dimensional systems

associated with different time scales. Then, we set � = 0 to obtain the following algebraic equation

0 = ff (t, x, z, u, 0). (2)

Assumption 1. The algebraic equation (2) has an isolated solution z = H(t, x, u) that can be obtained analytically and is used
to define the reduced (slow) system.

Assumption 1 is common in the singular perturbations framework since it is required to analyse the quasi-steady state
behaviour of the singularly perturbed system. Moreover, we must know H(t, x, u) to define the slow system which is needed
to designing an observer for the slow states of the plant. Since we assume that we know H(t, x, u), we substitute the isolated
solution z = H(t, x, u) in (1a) and (1c) at � = 0 to obtain the reduced (slow) dynamical system

ẋ = fs(t, x,H(t, x, u), u, 0), (3a)
ys = ℎ(t, x,H(t, x, u), u, w, 0). (3b)
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Assumption 2. For the slow system (3), there exists a continuously differentiable function V1(t, x), class-∞ functions �V1(⋅),
�V1(⋅), �V1(⋅), V1(⋅), and �1 > 0, �V1 ≥ 0, such that for all x ∈ ℝn, u ∈ ℝr, t ≥ 0

�V1(|x|) ≤ V1(t, x) ≤ �V1(|x|), (4)
)V1
)t

+
)V1
)x

fs(t, x,H(t, x, u), u, 0) ≤ −�1�2V1(|x|) + V1(|u|) + �V1 . (5)

Remark 3. Assumption 2 implies that, for any essentially bounded input, the system (3) is globally input-to-state practically
stable26–28. This assumption is standard in nonlinear systems since the observer design for nonlinear unbounded systems is
notoriously difficult. Assumption 2 covers systems with globally stable limit cycles, i.e. systems with slow states that do not
necessarily converge to the origin. For instance, the Van der Pol Oscillator29, Hamiltonian systems30, the elastic pendulum31,
some biological systems32, and so on.

To analyse the fast dynamics behaviour, we consider the change of variables � = z −H(t, x, u). The system (1) in the new
coordinates (x, �) is represented by

ẋ = fs(t, x, � +H(t, x, u), u, �), (6a)

��̇ = ff (t, x, � +H(t, x, u), u, �) − �
()H
)t

+ )H
)x

fs(t, x, � +H(t, x, u), u, �) +
)H
)u

u̇
)

, (6b)

y = ℎ(t, x, � +H(t, x, u), u, w, �), (6c)

in which the quasi-steady-state of the fast dynamics is � = 0. Consider the fast time scale � defined as � ∶= t−t0
�
. Hence, in

the �-time scale, the singularly perturbed system (6a)-(6b) takes the form
dx
d�

= �fs(t, x, � +H(t, x, u), u, �), (7a)
d�
d�

= ff (t, x, � +H(t, x, u), u, �) − �
()H
)t

+ )H
)x

fs(t, x, � +H(t, x, u), u, �) +
)H
)u

u̇
)

. (7b)

Setting � = 0 freezes the variables t = t0 and x = x(t0), and reduces (7b) to the autonomous system
d�
d�

= ff (t0, x(t0), � +H(t0, x(t0), u), u, 0). (8)

Observe that the solutions of (8) will converge to a O(�) neighbourhood of the origin during the boundary layer interval. After
that interval, the slowly varying parameters (t, x) are not longer close enough to their initial values (t0, x(t0)). Then, a stability
property must be assumed for (8) such that its solutions remain in a neighbourhood of zero. To do so, the frozen variables t = t0
and x = x(t0) must be allowed to take values in the region of the the slowly varying parameters (t, x). Therefore, we rewrite (8)
as follows

d�
d�

= ff (t, x(t), � +H(t, x(t), u), u, 0), (9)

where (t, x) are thought as fixed parameters.We refer to (9) as the boundary layer system. For further details on how the boundary
layer system is obtained, the reader can refer to Chapter 11 of Khalil29 and/or Chapter 7 of Kokotović et al33.

Assumption 3. For the Boundary Layer System (9) there exists a Lyapunov functionW (t, x, �) and class-∞ functions �W (⋅),
�W (⋅) and �W (⋅), and �3 > 0 such that for all t, x, � we have

�W (|�|) ≤ W (t, x, �) ≤ �W (|�|), (10)
)W
)�

ff (t, x, � +H(t, x, u), u, 0) ≤ −�3�2W (|�|). (11)

Note that Assumption 3 implies that the boundary layer dynamics are globally asymptotically stable uniformly in t, x and u.
The above assumption is standard in the singular perturbation literature15,28,29, and is critical in justifying the model reduction.

3 BOUNDEDNESS OF SOLUTIONS OF THE PLANT

In this section, we provide a result that shows the boundedness of solutions of the system (6) under certain conditions, with a view
to later using it for robustness analysis of the proposed approach to observer design. Although boundedness of solutions of the
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full system can be assumed, we state it for two reasons, 1) this result is of interest in its own right and 2) some of the assumptions
we state for this result are also needed to prove much stronger conclusion on the stability of the error dynamics. In our analysis,
we compute the derivatives of V1(t, x) andW (t, x, �), given in Assumptions 2 and 3, along the trajectories of (6). This leads to
some terms representing the interconnections between the slow and the fast dynamics. In general, those interconnection terms
are sign indefinite; therefore, we need appropriate conditions to bound them to conclude boundedness of solutions.

Assumption 4. Consider �V1(⋅) and �W (⋅) given in Assumptions 2 and 3 respectively. Suppose there exist non-negative constants
ai (i = 1, 2, 3) and bi (i = 1, 2, 3), and class-∞ functions i(⋅) (i = 1,… , 4), so that the following conditions hold

|

|

|

|

)V1
)x

[fs(t, x, � +H(t, x, u), u, �) − fs(t, x,H(t, x, u), u, 0)]
|

|

|

|

≤ �a1�
2
V1
(|x|) + �1(|u|)�V1(|x|) + b1�V1(|x|)�W (|�|), (12)

|

|

|

|

)W
)�

[ff (t, x, � +H(t, x, u), u, �) − ff (t, x, � +H(t, x, u), u, 0)]
|

|

|

|

≤ �a2�
2
W (|�|) + �2(|u|)�W (|�|) + �b2�V1(|x|)�W (|�|), (13)

|

|

|

|

|

)W
)t

− )W
)�

)H
)t

− )W
)�

)H
)u

u̇ +
[

)W
)x

− )W
)�

)H
)x

]

fs(t, x, � +H(t, x, u), u, �)
|

|

|

|

|

≤ a3�
2
W (|�|)

+b3�V1(|x|)�W (|�|) + 3(|u|)�W (|�|) + 4(|u̇|)�W (|�|), (14)

for all (x, �) ∈ ℝn ×ℝm, u ∈ ℝr, u̇ ∈ ℝr and t ≥ 0.

Remark 4. Assumption 4 can be relaxed to hold regionally or locally. Moreover, conditions in Assumption 4 can be relaxed
to hold semi-globally with respect to the perturbation parameter �. This means that for any positive constants �1 > 0, �2 > 0,
�3 > 0 there exists �∗a5 > 0 such that (12)-(14) holds for all � ∈ (0, �

∗
a5
) and for all |(x, �)| ≤ �1, |u| ≤ �2, |u̇| ≤ �2 and t ≥ 0. Our

proofs are such that our results can be easily extended to cover these cases.

The inequalities (12)-(14) are general and similar to the ones in Kokotovic et al15. These interconnection conditions are
satisfied in a number of real world examples we considered; for instance, a suspension system29, a biological reactor1, a three-
state SCR catalyst13, and so on. Note that we have also checked classes of plants for which these interconnection conditions hold.
For example, the class of systems covered by the circle criterion observer2 and the class of plants in the observability canonical
form8. Moreover, the above inequalities can be verified in several examples by using quadratic-type Lyapunov functions34. A
mechanical example that satisfies Assumption 4 is presented in Section 5.
We now present our first result (Lemma 1) which states that, under Assumptions 1 - 4, for sufficiently small values of �,

the singularly perturbed system (6) has bounded solutions for essentially bounded inputs with essentially bounded derivatives.
Moreover, we also present a result in terms of 2 stability which guarantees that bounded energy inputs imply practical bounded
solutions. Results in Lemma 1 are used later to prove some corollaries and the main result.

Lemma 1. Consider the singularly perturbed system (6). If Assumptions 1 - 4 hold, there exists a composite Lyapunov func-
tion V (t, x, �), class-∞ functions �V (⋅), �V (⋅), V (⋅), ̃V (⋅), ̂V (⋅), and �V > 0, such that there exists �̃∗ > 0 and �V (⋅) ∈ ∞,
such that

�V (|(x, �)|) ≤ V (t, x, �) ≤ �V (|(x, �)|), (15)
)V
)t

+ )V
)x
fs +

)V
)�
ff ≤ −�V (|(x, �)|) + V (|u|) + �̃V (|u|) + �̂V (|u̇|) + �V , (16)

hold for all � ∈ (0, �̃∗) and for all (x, �) ∈ ℝn × ℝm, u ∈ ℝr, u̇ ∈ ℝr and t ≥ 0. Consequently, there exists �L1(⋅, ⋅) ∈ ,
L1(⋅) ∈ ∞, class-∞ functions ̃�(⋅), ̂�(⋅) parametrized by � (their argument is of order O(�)), and �L1 > 0, such that, for any
Δ̂u1 > 0 and Δ̂u2 > 0,

a

|(x(t), �(t))| ≤ �L1
(

|(x0, �0)|, t − t0
)

+ L1(||u[t0, t]||) + ̃�(||u[t0, t]||) + ̂�(||u̇[t0, t]||) + �L1 , (17)

for all � ∈ (0, �̃∗) and for all (x0, �0) ∈ ℝn×ℝm, ||u||∞ ≤ Δ̂u1 , ||u̇||∞ ≤ Δ̂u1 and t ≥ t0 ≥ 0. Furthermore, the system (6) satisfies
t

∫
t0

�V (|(x(s), �(s))|)ds ≤ �V (|(x0, �0)|) +

t

∫
t0

V (|u(s)|)ds + �

t

∫
t0

̃V (|u(s)|)ds + �

t

∫
t0

̂V (|u̇(s)|)ds + �V (t − t0), (18)

aIn the sequel, x0 ∶= x(t0). The same applies for the other states.
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for all � ∈ (0, �̃∗), (x0, �0) ∈ ℝn × ℝm, for any input satisfying ||u||∞ ≤ Δ̂u1 , ||u̇||∞ ≤ Δ̂u2 , ||u||2 ≤ Δ̂u1 , ||u̇||2 ≤ Δ̂u2 , and for
all t ≥ t0 ≥ 0.

The proof for Lemma 1 is omitted since the major contribution of this work lies in the robustness analysis of the observer.
Lemma 1 implies that both slow and fast states are bounded. Note that we stated ISS and 2 ∩ ∞ stability properties with
gains from the input and its derivative as u(t) is regarded as a general exogenous signal to the system which can take different
meanings depending on the context. Now, we state that the fast states are ultimately bounded by a constant term that one can
make arbitrarily small by reducing �. We also show that the 2 upper bound is parametrized by �, which is a desired property
in this framework.

Corollary 1. Consider the singularly perturbed system (6). If Assumptions 1 - 4 hold, there exists ��(⋅, ⋅) ∈ , such that for
any Δ̃ > 0, Δ̃u1 > 0, Δ̃u2 > 0 and �̃ > 0, there exists �

∗ > 0, such that

|�(t)| ≤ max
{

��

(

|�0|,
t − t0
�

)

, �̃
}

, (19)

for all � ∈ (0, �∗), |(x0, �0)| ≤ Δ̃, ||u||∞ ≤ Δ̃u1 , ||u̇||∞ ≤ Δ̃u2 and t ≥ t0 ≥ 0. Consequently, there exists a time T
∗
> 0 such that

|�(t)| ≤ �̃, (20)

for all � ∈ (0, �∗), |(x0, �0)| ≤ Δ̃, ||u||∞ ≤ Δ̃u1 , ||u̇||∞ ≤ Δ̃u2 and t ≥ �T
∗
+ t0 > 0. Furthermore, there exists �Wc

(⋅) ∈ ∞, such
that for the given Δ̃ > 0, Δ̃u1 > 0, Δ̃u2 > 0 and �̃ > 0 there exist �

∗
2
> 0, such that

t

∫
t0

�W (|�(s)|)ds ≤ ��Wc
(|�0|) + �̃(t − t0), (21)

for all � ∈ (0, �∗2), |(x0, �0)| ≤ Δ̃, for any input satisfying ||u||∞ ≤ Δ̃u1 , ||u̇||∞ ≤ Δ̃u2 , ||u||2 ≤ Δ̃u1 , ||u̇||2 ≤ Δ̃u2 , and for all
t ≥ t0 ≥ 0.

The proof for Corollary 1 is omitted too. The proof relies on the analysis of the fast dynamics by considering the Lyapunov
function for the boundary-layer system and Lemma 1. Note that the statement of the corollary implies that the ultimate bound
in (19) and (20) can be made arbitrarily small. To do so, it is required to reduce �, i.e., the magnitude of the ultimate bound
determines the maximum value that the perturbation parameter can take. The properties given by Corollary 1 are exploited later
in the proof of our main result.

4 MAIN RESULT

In this section, we analyse the performance of a nonlinear observer designed for the reduced system (3) and implemented on
the system (6). We do not estimate the fast states of the system. We study the robustness of the observer with respect to singular
perturbations due to the neglected fast dynamics.We provide a general set of conditions to cover a large class of plant models and
observers of general dimension. Since we assume that a nonlinear observer exists, our results are prescriptive. Our conditions
justify the use of a broader class of observers than results in Kazantzis et al1. While Kazantzis et al1 considers nonlinear plants
where the slow part of the model satisfies a Lipschitz condition and the fast dynamics and the output of the system are linear, here
we deal with a more general class of nonlinear plants. Moreover, whilst Kazantzis et al1 only works with a nonlinear Luenberger-
type observer that exhibits a linear error dynamics for the reduced system, our results can cover a number of nonlinear observers
including reduced-order2, full-order1–7, and higher-order8 observers.
We now assume that a nonlinear observer is designed for the reduced system (3). So, consider the following dynamical system

called the observer

�̇ = fo(t, �, ys, u), (22a)
x̂ = ℎo(t, �, u), (22b)

where � ∈ ℝq is the observer’s state, x̂ ∈ ℝn is the observer’s output and an estimate of x (slow variable), ys and u are the
output and input of the nonlinear reduced system (3). Note that, in general, q is arbitrary and not necessarily equal to n. The
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class of observers that we consider in (22) covers observers of general dimension. Existing results on nonlinear observer design
for singularly perturbed systems only cover a Luenberger-type full-order observer1.

Remark 5. In the case of reduced-order observers, the observer dynamics are generally designed on the basis of an auxiliary
subsystem. Then, for reduced-order observers, the output of the observer (22b) may depend on the output of the system (ys).
We allow this dependency only if ys does not appear in the estimation error. We demonstrate in Section 5 that the reduced-order
circle criterion observer2 satisfies this condition.

Assumption 5. The map ℎo(t, �, u) ∶ [0,∞) ×ℝq ×ℝr → ℝn is a continuously differentiable function in all its arguments.

Remark 6. Assumption 5 implies that ℎo(t, �, u), )ℎo∕)� and )ℎo∕)u are continuous. Consider the variable �̂ = [�, u]T , it
follows from Lemma 3.2 in Khalil29 that for any Δ1 > 0 and Δ2 > 0 there exists L0 > 0 so that when |)ℎo∕)�̂| ≤ Lo for all �
and u such that |�| ≤ Δ1 and |u| ≤ Δ2, there exists L > 0 such that |)ℎo∕)�| ≤ L. We have verified that Assumption 5 holds
for reduced-order2, full-order1–7, and higher-order8 observers.

Define the estimation error as e = x̂ − x. Note that the error dynamics for the observer designed for the reduced system (3)
are given by

ė = fe(t, x, �, e,H(t, x, u), ys, u, u̇, 0). (23)

where

fe(t, x, �, e,H(t, x, u), ys, u, u̇, 0) =
)ℎo
)t

+
)ℎo
)�

fo(t, �, ys, u) +
)ℎo
)u

u̇ − fs(t, x,H(t, x, u), u, 0).

Remark 7. For reduced-order observers relying on Remark 5, the error dynamics are defined by considering an auxiliary system
used to construct the observer dynamics and the observer model itself. Later in Section 5, we illustrate this statement and
Remark 5 via a reduced-order circle criterion observer2.

Assumption 6. For the error dynamics in (23), there exists a continuously differentiable function V3(t, e), class-∞ functions
�V3(⋅), �V3(⋅), �V3(⋅), V3(⋅), and �2 > 0, �̂2 > 0, such that for all (x, e) ∈ ℝn ×ℝn, u ∈ ℝr, t ≥ 0

�V3(|e|) ≤ V3(t, e, x, �) ≤ �V3(|e|), (24)
)V3
)t

+
)V3
)e

fe(t, x, �, e,H(t, x, u), ys, u, u̇, 0) +
)V3
)x

fs(t, x,H(t, x, u), u, 0) +
)V3
)�

fo(t, �, ys, u) ≤

−�2�2V3(|e|) + V3(|w|), (25)
|

|

|

|

)V3
)e

|

|

|

|

≤ �̂2�V3(|e|). (26)

The reduced-order observer presented in Arcak2, the full-order observers introduced in1–7, and the higher-order observer in
Astolfi andMarconi8 satisfy Assumption 6. It is observed that in the case of reduced-order observers e ∈ ℝq . Note that condition
(26) is common when one wants to use a Lyapunov function to prove robustness of a stability property, which is the case in this
work. Since we only deal with the amplitude of the measurement noise, we analyse its effect on the observer performance by
introducing a nonlinear gain from the measurement noise to the state estimation error in (25).

Remark 8. It can be proven that Assumption 6 implies a boundedness of solutions property for the observer dynamics when
q = n, i.e., the observer is of full-order. This can also be shown for reduced-order observers like the one in Section 5.2 of Arcak2.
Note that the estimation error completely captures the behaviour of the observer state in full-order observers and some particular
reduced-order observers. To show a boundedness property from Assumption 6, one can use V3(t, �) as a candidate Lyapunov
function for the observer dynamics; then, by using some mild conditions on fs and using (26) the result can be proven.

When q ≠ n (higher order and reduced order observers), it might be complicated or even impossible to show boundedness
of solutions of the observer dynamics by just using Assumption 6. Hence, we need to assume that the observer has bounded
solutions since we need such a property to prove a robustness result for observers of general dimension.

Assumption 7. For the observer dynamics (22), there exist class-∞ functions �o1(⋅), �o2(⋅), and �o3(⋅), such that for all �0 ∈ ℝq ,
y, u ∈ ∞, t ≥ t0 ≥ 0

|�(t)| ≤ �o1(|�0|) + �o2(||y||∞) + �o3(||u||∞). (27)
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Moreover, if u(t) and y(t) are essentially bounded input signals to the observer dynamics (22), there exist
�o4(⋅), �o5(⋅), �o6(⋅), �o7(⋅) ∈ ∞, such that

t

∫
t0

�o4(|�(�)|)d� ≤ �o5(|�0|) +

t

∫
t0

�o6(|y(�)|)d� +

t

∫
t0

�o7(|u(�)|)d�. (28)

To prove the robustness of the observer (22), its dynamics must have some kind of boundedness of solutions property when
implemented on the original system. We use Assumption 7 to show that the observer states are ultimately bounded when we
apply it to the original singularly perturbed system. Moreover, we prove that the observer states has a practical 2 stability
property in the sense of Property I3 in Nešić and Dower25.
As mentioned above, the observer designed for the slow system (3) must be implemented on the original system (1). Due to

the influence of the perturbation parameter � and the fast state �, the observer and error dynamics are given by

�̇ = fo(t, �, y, u), (29a)
ė = fe(t, x, �, e, � +H(t, x, u), y, u, u̇, �), (29b)

whereb

fe =
)ℎo
)t

+
)ℎo
)�

fo(t, �, y, u) +
)ℎo
)u

u̇ − fs(t, x, � +H(t, x, u), u, �).

Note that the extended state (x, �, e, �) represents the interconnection between the system (6), and the observer and error dynam-
ics in (29). Hence, we need to analyse the estimation error performance in the full extended interconnected system given by

ẋ = fs(t, x, � +H(t, x, u), u, �), (30a)
�̇ = fo(t, �, y, u), (30b)
ė = fe(t, x, �, e, � +H(t, x, u), y, u, u̇, �), (30c)

��̇ = ff (t, x, � +H(t, x, u), u, �) − �
)H
)t

− � )H
)x

fs(t, x, � +H(t, x, u), u, �) − �
)H
)u

u̇, (30d)

y = ℎ(t, x, � +H(t, x, u), u, w, �). (30e)

Note that the observer dynamics are in a cascade with the original state (x, �), while the error dynamics are in cascade with the
extended state (x, �, �). We exploit these properties to conclude our main result.

Assumption 8. Consider the output of the system (30). There exists class-∞ functions �y(⋅), y(⋅) and w(⋅), such that, for
any Δ̂ > 0, Δ̂u1 > 0 and Δ̂w > 0, there exists �y such that

|ℎ(t, x, � +H(t, x, u), u, w, �)| ≤ �y(|(x, �)|) + y(|u|) + w(|w|). (31)

for all � ∈ (0, �y) and for all |(x, �)| ≤ Δ̂, |u| ≤ Δ̂u1 , |w| ≤ Δ̂w and t ≥ 0.

Assumption 8 is a mild assumption that allows us to show in Corollary 2 that the solutions of the observer are bounded
when the observer is implemented on the original system. Observe that any continuous map ℎ that is zero at zero satisfies our
assumption, see Sontag26. We use Assumption 8 in the proof of the main result to bound terms related to the output of the
observer.

Corollary 2. Consider the observer dynamics (30b). If Assumptions 1 - 5, 7 and 8 hold, there exists a class-∞ function �c1(⋅),
such that for any Δ > 0, Δu1 > 0, Δu2 > 0, and Δw ≥ 0 there exists �̂∗ > 0 and Υ > 0 such that

|�(t)| ≤ �c1(|�0|) + Υ, (32)

for all � ∈ (0, �̂∗) and for all |(x0, �0, �0)| ≤ Δ, ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||w||∞ ≤ Δw and t ≥ t0 ≥ 0. Furthermore,
there exist class-∞ functions �c2(⋅), �c3(⋅), such that for the given Δ > 0, Δu1 > 0, Δu2 > 0, and Δw ≥ 0 there exists �̂∗ > 0

bIn the sequel, when needed, we would suppress arguments of some functions to simplify the notation.
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and Υ2 > 0 such that
t

∫
t0

�c2(|�(�)|)d� ≤ �c3(|�0|) + Υ2(t − t0), (33)

for all � ∈ (0, �̂∗), |(x0, �0, �0)| ≤ Δ, for any input satisfying ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||u||2 ≤ Δu1 , ||u̇||2 ≤ Δu2 , for any
||w||∞ ≤ Δw, ||w||2 ≤ Δw and for all t ≥ t0 ≥ 0.

The proof for Corollary 2 is omitted. Note that the above result implies that the states of the observer will remain bounded
even under the influence of the fast variables and the perturbation parameter. Since we study the stability property of the error
dynamicswhen the observer is implemented on the original system,we compute the derivative ofV3(t, e, x, �) along the solutions
of (30) in our main proof. This leads to interconnection terms which, in general, are of sign indefinite. So, we need conditions
to bound those terms.

Assumption 9. Consider �V1(⋅), �W (⋅) and �V3(⋅) given in Assumptions 2, 3, and 6 respectively. Suppose there exist non-negative
constants ai and bi (i = 4,… , 7), and class-∞ functions 5(⋅) and 6(⋅), so that the following conditions hold

|

|

|

|

)V3
)x

[fs(t, x, � +H(t, x, u), u, �) − fs(t, x,H(t, x, u), u, 0)]
|

|

|

|

≤ �a4�V1(|x|)�V3(|e|) + �5(|u|)�V3(|e|)

+ b4�V3(|e|)�W (|�|), (34)
|

|

|

|

)V3
)�

[fo(t, �, y, u) − fo(t, �, ys, u)]
|

|

|

|

≤ �a5�V1(|x|)�V3(|e|) + b5�V3(|e|)�W (|�|), (35)

|

|

|

|

)V3
)e
[fs(t, x, � +H(t, x, u), u, �) − fs(t, x,H(t, x, u), u, 0)]

|

|

|

|

≤ �a6�V1(|x|)�V3(|e|) + �6(|u|)�V3(|e|)

+ b6�V3(|e|)�W (|�|), (36)
|

|

|

|

)V3
)e

[

fo(t, �, y, u) − fo(t, �, ys, u)
]

|

|

|

|

≤ �a7�V3(|e|)�V1(|x|) + b7�V3(|e|)�W (|�|). (37)

for all (x, �, e, �) ∈ ℝn ×ℝm ×ℝn ×ℝq , u ∈ ℝr, u̇ ∈ ℝr and t ≥ 0.

Remark 9. Assumption 9 can be relaxed to hold regionally or locally. Moreover, conditions in Assumption 9 can be relaxed
to hold semi-globally with respect to the perturbation parameter �. This means that for any positive constants �̂1 > 0, �̂2 > 0,
�̂3 > 0 there exists �∗a10 > 0 such that (34) - (37) holds for all � ∈ (0, �∗a10) and for all |(x, �)| ≤ �̂1, |u| ≤ �̂2, |u̇| ≤ �̂2 and t ≥ 0.
Our proofs are such that our results can be easily extended to cover these cases.

Remark 10. For reduced-order observers that satisfy conditions in Remarks 5 and 7, the notation on all of the above assumptions
and definitions must be slightly modified. However, these modifications do not affect the essence of the assumptions and the
results.

Our goal is to ensure that the observer designed for the reduced model (3) works properly when applied on the full system (1).
Corollary 2 states that, under a general set of assumptions, the observer is semi-globally ultimately bounded. In the next sub-
section, we use that result and the results in the previous section to prove that the estimation error is semi-global practical ISS
stable. We also prove a 2 ∩ ∞ stability property for the error dynamics. Moreover, we show through a useful result that, in
the absence of measurement noise, the error dynamics are SPA stable and that the ultimate bound for the error dynamics can be
reduced by reducing �.

4.1 Robustness Analysis
We now present Theorem 1 which states that the error dynamics exhibit a semi-global practical ISS and a 2 ∩ ∞ stability
properties. Our proof focuses on the convergence of the estimation error while the other states in (30) are bounded. It is crucial
for our proof to take into account that the error dynamics are in cascade with the original system and the observer dynamics.
The next theorem summarises our main result.
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Theorem 1. Consider the singularly perturbed system (30). If Assumptions 1 - 9 hold, there exists �T1(⋅, ⋅) ∈  and
T1(⋅) ∈ ∞, such that for any Δ > 0, Δu1 > 0, Δu2 > 0, Δw > 0 and � > 0, there exists �T1 = �T1(�) > 0 and �

∗ > 0 such that

|e(t)| ≤ �T1
(

|

|

|

(

x0, �0, e0
)

|

|

|

, t − t0
)

+ T1
(

|

|

|

|

|

|

w
[

t0, t
]

|

|

|

|

|

|

)

+ �T1 + �, (38)

for all � ∈ (0, �∗), and for all |(x0, �0, �0, e0)| ≤ Δ, ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||w||∞ ≤ Δw, and t ≥ t0 ≥ 0. Furthermore, there
exists �T1(⋅, ⋅) ∈  and T1(⋅)∞, such that for the given Δ > 0, Δu1 > 0, Δu2 > 0, Δw > 0 and � > 0, there exists T

∗ > 0 and
�∗ > 0 such that

|e(t)| ≤ �T1
(

|

|

e0|| , t − t0
)

+ T1
(

|

|

|

|

|

|

w
[

t0, t
]

|

|

|

|

|

|

)

+ �, (39)

for all � ∈ (0, �∗), |(x0, �0, �0, e0)| ≤ Δ, ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||w||∞ ≤ Δw, and t ≥ �T ∗ + t0. In addition, there
exists kT1 > 0 and �T1(⋅), �T1(⋅) ∈ ∞ such that for the given Δ > 0, Δu1 > 0, Δu2 > 0, Δw > 0 and � > 0, there exists
�2 = �2(�) > 0 and �

∗
2
> 0 such that

t

∫
t0

�2V3(|e(�)|)d� ≤ �T1(|(x0, �0, e0)|) + ��T1(|(x0, �0, e0)|) + kT1

t

∫
t0

V3(|w(�)|)d� + �2(t − t0) + �(t − t0), (40)

for all � ∈ (0, �∗2), |(x0, �0, �0, e0)| ≤ Δ, for any input satisfying ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||u||2 ≤ Δu1 , ||u̇||2 ≤ Δu2 , for
any ||w||∞ ≤ Δw, ||w||2 ≤ Δw and for all t ≥ t0 ≥ 0. Furthermore, there exists kT1 > 0 and �T1(⋅) ∈ ∞ such that for the
given Δ > 0, Δu1 > 0, Δu2 > 0, Δw > 0 and � > 0, there exists T

∗ > 0 and �∗2 > 0 such that
t

∫
t0

�2V3(|e(�)|)d� ≤ �T1(|e0|) + kT1

t

∫
t0

V3(|w(�)|)d� + �(t − t0). (41)

for all � ∈ (0, �∗2), |(x0, �0, �0, e0)| ≤ Δ, for any input satisfying ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||u||2 ≤ Δu1 , ||u̇||2 ≤ Δu2 , for
any ||w||∞ ≤ Δw, ||w||2 ≤ Δw and for all t ≥ �T ∗ + t0.

The proof of Theorem 1 is given in Appendix A. Note that in the absence of measurement noise, stronger conclusions can be
obtained as an immediate consequence of Theorem 1. The next corollary presents these sharper results.

Corollary 3. Consider the singularly perturbed system (30). Let Assumptions 1 - 9 hold and assume that w(t) = 0 for all
t ≥ t0 ≥ 0. Then, there exists �c(⋅, ⋅) ∈  such that for any Δ > 0, Δu1 > 0, Δu2 > 0 and � > 0, there exists T

∗ > 0 and �∗ > 0
such that

|e(t)| ≤ �c
(

|

|

e0|| , t − t0
)

+ �, (42)

for all � ∈ (0, �∗), |(x0, �0, �0, e0)| ≤ Δ, ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , and t ≥ �T ∗ + t0. Furthermore, there exists �c(⋅) ∈ ∞
such that for the given Δ > 0, Δu1 > 0, Δu2 > 0 and � > 0, there exists T

∗ > 0 and �∗2 > 0 such that
t

∫
t0

�2V3(|e(�)|)d� ≤ �c(|e0|) + �(t − t0). (43)

for all � ∈ (0, �∗2), |(x0, �0, �0, e0)| ≤ Δ, for any input satisfying ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||u||2 ≤ Δu1 , ||u̇||2 ≤ Δu2 , and
for all t ≥ �T ∗ + t0.

The proof is omitted since the result follows directly from Theorem 1.

Remark 11. Corollary 3 implies a SPA stability property for the error dynamics in the absence of measurement noise. It is semi-
global because the result holds for a given set of initial conditions and bounded inputs with bounded derivatives. It is practical in
the perturbation parameter because one can make � arbitrarily small by reducing �. And it is asymptotical because of the class-
 function �e(⋅, ⋅). These results (Theorem 1 and Corollary 3) imply important robustness properties for a large class of plants
and observers. So, we can choose any existing observer, satisfying this framework, to estimate the slow states of a singularly
perturbed system that satisfies the given assumptions.
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Remark 12. The global and semi-global assumptions for the boundary layer and reduced systems, and for the observer and error
dynamics can be relaxed. If all assumptions hold on appropriate bounded sets, the results hold in a given region defined by those
sets. Moreover, our approach is such that local results can easily be stated if the assumptions are relaxed to hold locally.

Remark 13. If the fast dynamics (1b) do not depend on the input u, there is no need of any conditions on u̇. Moreover, the results
would not depend on u̇ either.

Remark 14. Theorem 1 and Corollary 3 cover and generalise results in Cuevas et al22 since any system and any observer that
satisfy the assumptions in there also satisfy the assumptions in this manuscript. Moreover, here we have considered a more
general class of plants and observers than those in Cuevas et al22. Note that SPA results for full-order observers are presented
in Cuevas et al22 where we do not consider the presence of measurement noise.

Remark 15. Since we deliver semi-global results, we can relate the estimated states with the input to cover the observer design
problem for control purposes. Suppose that in a closed-loop setting the input is a function of the state, i.e. u = u(x). Then, we
have that u̇ = )u

)x
ẋ = )u

)x
f . Then, semi-global bounds on u and u̇ become semi-global bounds on u(x) and )u

)x
f which lead to

semi-global bounds on x only if u, )u
)x

and f are continuous and zero at zero, which is not very restrictive.

5 APPLICATIONS

In Cuevas et al23, we illustrated the applicability of our results presented in Cuevas et al22. We showed that those results apply
for a class of systems with reduced order models for which the circle criterion observer in Arcak2 can be designed. Moreover,
we demonstrated that results in Cuevas et al22 cover conclusions in Kazantzis et al1.
Results in Kazantzis et al1 apply for nonlinear singularly perturbed systems with linear fast dynamics, linear output and

slow dynamics satisfying a Lipschitz condition. Their approach only allows to obtain conclusions for a specific Luenberger-
type nonlinear observer. We have proven in Cuevas et al23 that our results in Cuevas et al22 cover those ones in Kazantzis et
al1. Therefore, relying on Remark 14, this manuscript covers results in Kazantzis et al1 too. This work generalises findings
in Kazantzis et al1 because we deal with a general class of systems and estimators that covers several classes of plants and
observers. Moreover, we have studied the robustness of the error dynamics with respect to measurement noise within the singular
perturbation framework.
In the following subsections, we demonstrate that our results cover at least other three classes of plants and three nonlinear

observers (one full-order4, one reduced-order2 and one higher-order8 observer). Moreover, we illustrate our results through one
numerical example.

5.1 Circle Criterion Observer
In this section, we consider a class of singularly perturbed plants where the reduced (slow) model takes the form in which results
from Chong et al4 can be applied to design a full-order observer. This class of plants is covered by the general model (1). Note
that this class of systems and the observer are not covered by results in Kazantzis et al1. Consider the class of plants with the
following nonlinear singularly perturbed form

ẋ = Ax + Bz + G(F1x + F2z) + �(y, u), (44a)
�ż =M1x +M2z, (44b)
y = C1x + C2z +Dw, (44c)

where the state vector x ∈ ℝn corresponds to the slow state, z ∈ ℝm is the fast state, y ∈ ℝp is the measured output variable,
u ∈ ℝr is the control input,w is themeasurement noise, � is the perturbation parameter of the process, (⋅) = [1(⋅),⋯ , n (⋅)]

T is
a nondecreasing locally Lipschitz function, and A, B, F1, F2, G, C1, C2,D,M1 andM2 are matrices of appropriate dimensions.
We require a linear dynamics in (44b) for two reasons: 1) it is easier to compute the slow manifold, and 2) with a linear fast
dynamics we end up with a reduced model that exhibits a structure for which we can design a circle criterion observer2.

Assumption 10. The matrixM2 in (44b) is Hurwitz.

Assumption 11. The solutions of the system belong to a compact set. Moreover, the functions (⋅) and �(⋅, ⋅) are locally
Lipschitz, and (⋅) satisfies Assumption 1 in Chong et al4.
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Assumption 11 over �(⋅, ⋅) is useful to prevent the solutions of x from escaping to infinity in a finite time2. Note that this
example satisfies our results relaying in Remark 12 since we consider a local Lipschitz condition. From Assumption 11, we
know that for any i-entry (i) of the vector  , there exists a time-varying gain �i(t) taking values in the interval [0, Li] such that

i(ai) − i(bi) ≤ �i(t)(ai − bi), ∀ ai, bi ∈ ℝ, (45)

where Li is a Lipschitz constant for i. This property must hold in order to implement the circle criterion observer introduced
by Chong et al4. We now check our assumptions for the class of systems represented by (44). To obtain the lower dimensional
systems, we set � = 0 such that the system is restricted to the slow manifold

M1x +M2z = 0. (46)

Then, it follows that, H(x) = −M−1
2 M1x, is an isolated solution of (46). Then, Assumption 1 holds with H(x) = −M−1

2 M1x
which always exists by virtue of Assumption 10. By usingH(x), we have that the reduced system is given by

ẋ = A0x + G(Fx) + �(ys, u), (47a)
ys = Cx +Dw, (47b)

where A0 = A − BM−1
2 M1, C = C1 − C2M−1

2 M1, and F = F1 − F2M−1
2 M1. Note that it is assumed that the pair (A0, C) is

detectable. Therefore, to allow more generality for the matrix A0, we need to assume that the reduced system (47) is input-to-
state practical stable (ISpS), such that there exists a Lyapunov ISpS function that satisfies Assumption 2. This is required since
there is no need for A0 to be Hurwitz.

Remark 16. If the matrix A0 is Hurwitz, Assumption 2 holds with V1(x) being a quadratic Lyapunov function. Moreover, it is
straightforward to find the functions and constants for which Assumption 4 is satisfied.

We now define the change of variables z = � −M−1
2 M1x. Then, the original system (44) in the (x, �) variables is given by

ẋ = Ax + G(F1x + F2(� −M−1
2 M1x)) + �(y, u) + B(� −M−1

2 M1x), (48a)
��̇ =M2� + �(M−1

2 M1)[Ax + G(F1x + F2(� −M−1
2 M1x)) + �(y, u) + B(� −M−1

2 M1x)], (48b)
y = Cx + C2� +Dw (48c)

By expressing (48) in the fast time-scale � = t∕�, we have that the boundary layer system at � = 0 is given by
d�
d�

=M2�, (49)

Since M2 is Hurwitz, we have from Theorem 4.6 in Khalil29 that for any given positive definite symmetric matrix Q� there
exists a positive definite symmetric matrix P� that satisfies the following Lyapunov equation

P�M2 +MT
2 P� = −Q� . (50)

To check Assumption 3, considerW (�) = �TP�� as a candidate Lyapunov function for (49). It follows that
)W
)�

M2� ≤ −�min{Q�}|�|2, (51)

Therefore, Assumption 3 is satisfied with �W (|�|) = �min{P�}|�|2 and �W (|�|) = �max{P�}|�|2 as the lower and upper bounds
for W (�) respectively, and with �3 = �min{Q�} and �W (|�|) = |�| as the terms satisfying (51). Due to the generality of the
matrixA0, we need to assume that the full system (48) satisfies the interconnection conditions in Assumption 4.We now consider
the circle criterion observer proposed in Section 5.1 of Arcak2 and in Chong et al4 with the following dynamics

̇̂x = A0x̂ + L(Cx̂ − y) + G(F x̂ +K(Cx̂ − y)) + �(y, u), (52)

where x̂ ∈ ℝn is the observer’s state and an estimate of the state,K andL are gainmatrices of appropriate dimensions whichmust
be designed. By following the approach described in this manuscript, the observer (52) is designed for the reduced system (47),
and then implemented on the full singularly perturbed plant (48). Since we are dealing with a full order observer, it follows that
Assumption 5 trivially holds because the output of the observer is a linear map in which the transformation matrix is the identity
matrix. We now define the estimation error as e ∶= x − x̂. It follows that the error dynamics are given by

ė = (A0 + LC)e − LDw + G[(Fx) − (F (x − e) −KCe −KDw)]. (53)
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To check Assumption 6, we consider the Lyapunov function V3(e) = eTP3e, where P3 = P T
3 > 0. The matrix P3 is obtained by

solving the following LMI from Chong et al2

⎡

⎢

⎢

⎢

⎣

(A0 + LC)TP3 + P3(A0 + LC) + �̂I P3G + (F +KC)TΛ −P3LD

GTP3 + Λ(F +KC) −2Λ
(

1
L1
,⋯ , 1

Ln

)

−ΛKD

−P3LD −ΛKD �wI

⎤

⎥

⎥

⎥

⎦

≤ 0, (54)

where Λ > 0 is a diagonal matrix and an observer design parameter, �w > 0 is a scalar constant and �̂ > 0 is also an observer
design parameter. When the LMI in (54) is satisfied, it follows from Chong et al4 that

)V3
)e

fe(x, e) ≤ −�̂|e|2 + �w|w|2, (55)

with fe(x, e) = (A0 + LC)e − LDw + G[(Fx) − (F (x − e) − KCe − KDw)]. Then, Assumption 6 holds with
�V3(|e|) = �min{P3}|e|2 and �V3(|e|) = �max{P3}|e|2 being the lower and upper bounds for V3(|e|) respectively, with �2 = �̂,
�V3(|e|) = |e| and V3(|w|) = �w|w|

2 being the elements that satisfy the bound in (55), and with �̂2 = 2|P3| being the constant
that multiplies �V3(⋅) to bound the norm of the gradient of V3(e) with respect to e.
It follows from Remark 8 that Assumption 7 holds when using the Lyapunov function V3(x̂) as a Lyapunov function for the

observer dynamics (52). Moreover, Assumption 8 holds globally since the output does not depend on the perturbation parameter.
Then, Assumption 8 is satisfied with �y(|(x, �)|) = 2max{|C|, |C2|}|(x, �)| and w(|w|) = |D||w|. Note that in the case of
full order observers we do not need Assumptions 5, 7 and 8 and Corollary 2 since the error dynamics completely capture the
performance of the observer states.
To verify Assumption 9, we need to obtain the error dynamics when the observer (52) is implemented on the full system (48).

Then, by considering the full system we obtain that the error dynamics are given as follows

ė = (A0 + LC)e + G([F , F2][x, �]T ) + B� + LC2� − LDw − G(F (x − e) −K(Ce + C2�) −KDw). (56)

By considering Assumption 11 and equations (53) and (56), we have that Assumption 9 holds with b6 = 2(|P1||B + LC2| +
L0|P1G||F2| + L0|P1G||KC2|), while the rest of the constants and functions are zero. L0 is the Lipschitz constant on the
compact set where the solutions belong. We have checked that Assumption 1 - 9 hold for plants in the form of (44) and the circle
criterion observer (52). Therefore, we conclude that all our results holds relaying on Remark 12. We summarise this section in
the following corollary which is an immediate consequence of Theorem 1.

Corollary 4. Consider the singularly perturbed plant (44), the circle criterion observer (52) and the error dynamics (56). If
Assumptions 2, 4, 10, and 11 hold, there exists a positive definite matrix P3, constants �̂ > 0 and �w > 0, such that for any
Δ > 0, Δu1 > 0, Δu2 > 0, Δw > 0 and � > 0, there exists T

∗ > 0 and �∗ > 0 such that

|e(t)| ≤

√

�max(P3)
�min(P3)

|e0| exp
(

− �̂
2�max(P3)

t
)

+

√

8�max(P3)
�̂�min(P3)

�w
|

|

|

|

|

|

w
[

t0, t
]

|

|

|

|

|

|

2
+ �, (57)

for all � ∈ (0, �∗), |(x0, �0, e0)| ≤ Δ, ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||w||∞ ≤ Δw, and t ≥ �T ∗ + t0. Furthermore, for the given
Δ > 0, Δu1 > 0, Δu2 > 0, Δw > 0 and � > 0, there exists T

∗ > 0 and �∗2 > 0 such that
t

∫
t0

|e(�)|2d� ≤
2�max(P3)

�̂
|e0| +

2�w
�̂

t

∫
t0

|w(�)|2d� + �(t − t0). (58)

for all � ∈ (0, �∗2), |(x0, �0, e0)| ≤ Δ, for any input satisfying ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||u||2 ≤ Δu1 , ||u̇||2 ≤ Δu2 , for any
||w||∞ ≤ Δw, ||w||2 ≤ Δw and for all t ≥ �T ∗ + t0.

5.2 Reduced-Order Circle Criterion Observer
Reduced-order observers are useful in a number of applications in which it might be more convenient to estimate only the
unmeasured states. Here, we deal with a reduced-order version of the circle criterion observer considered in Section 5.1. In this
section, we follow the same approach as in the previous one to analyse the robustness, with respect singular perturbations, of
the reduced-order circle criterion observer introduced in Section 5.2 of Arcak2.
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The class of plants we consider in this section is the same class of systems introduced in Section 5.1, but with an special
output map. Then, we just make reference to the content in Section 5.1 and mention the slight differences considered for this
new case. Here, we focus on analysing nonlinear singularly perturbed systems with an structure given by (44a)-(44b), and an
output defined by

y = Ex, (59)

where E ∈ ℝp×n is defined as E ∶= [I 0] with I being a p × p identity matrix and 0 being a p × (n − p) zero matrix. The
definition of the output implies that y consists of p elements of the state vector. We consider Assumptions 10 and 11 for this
case too. It is observed that Assumptions 1 - 4 are only related to the system dynamics without considering the output. Since we
already analysed the plant in Section 5.1, we now focus on the reduced-order circle criterion observer introduced in Section 5.2
of Arcak2 when is used to estimate the slow states of the system. To design a reduced-order observer for the slow system (47),
we need an extra assumption over the model (47).

Assumption 12. There is a change of coordinates such that the slow state vector is given by x = [yT , xTo ]
T . Moreover, the slow

system in the new coordinates is

ẏ = A1xo + G1([F 1, F 2][y, xo]T ) + �1(y, u), (60a)
ẋo = A2xo + G2([F 1, F 2][y, xo]T ) + �2(y, u), (60b)

where the linear terms in y are incorporated in the nonlinearities �1(y, u), and �2(y, u), and F 1 and F 2 are matrices of appropriate
dimensions.

By following the design process given in Arcak2, we have that the estimate of the unmeasured variable xo is obtained via
� = xo+ Ny, whereN ∈ ℝ(n−p)×p is to be designed. The following auxiliary subsystem is constructed from the definition of � ,

�̇ = (A2 +NA1)� + (G2 +NG1)(F 2� + (F 1 − F 2N)y) + �̃(y, u), (61)

where �̃(y, u) = N�1(y, u) + �2(y, u) − (A2 + NA1)y. The reduced-order observer is designed by considering the auxiliary
system (61). Then, the observer dynamics are given by

̇̂� = (A2 +NA1)�̂ + (G2 +NG1)(F 2�̂ + (F 1 − F 2N)y) + �̃(y, u), (62)

The estimate of xo, i.e., the output of the observer is given by x̂o = �̂ − Ny, which agrees with our framework relaying on
Remarks 5, 7 and 10. The estimation error is defined as e = xo− x̂o = � − �̂ which verify that this design method fits our theory
since conditions in Remark 5 hold. It follows that the error dynamics are given by

ė = (A2 +NA1)e + (G2 +NG1)[(F 2� + (F 1 − F 2N)y) − (F 2(� − e) + (F 1 − F 2N)y)]. (63)

It can be proven that y can be removed from the error dynamics (63) such that it becomes a function that only depends on e, see
Section 5.2 of Arcak2. The alternative representation of (63) is

ė = (A2 +NA1)e + (G2 +NG1) (t, F 2e), (64)

where  (⋅, ⋅) = (F 2� + (F 1 − F 2N)y) − (F 2(� − e) + (F 1 − F 2N)y). To verify Assumption 6, we consider the Lyapunov
function V3(e) = eT P̂ e, where P̂ = P̂ T > 0 is different from the the matrix considered in Section 5.1. Here, the matrix P̂ is
obtained by solving the following LMI

[

(A2 +NA1)T P̂ + P̂ (A2 +NA1) + �̂I P̂ (G2 +NG1) + F
T
2Λ

(G2 +NG1)T P̂ + ΛF 2 0

]

≤ 0, (65)

where Λ > 0 is a diagonal matrix and an observer design parameter, and �̂ > 0 is also an observer design parameter. It follows
from Arcak2 that

)V3
)e

fe(e) ≤ −�̂|e|2, (66)

when the LMI (65) is satisfied. Note that fe(e) = (A2 +NA1)e + (G2 +NG1) (t, F 2e) in (66). Therefore, we conclude that
Assumption 6 is satisfied with �V3(|e|) = �min{P̂ }|e|2 and �V3(|e|) = �max{P̂ }|e|2, �2 = �̂, �V3(|e|) = |e|, and �̂2 = 2|P̂ |.
We know from Remark 8 that it is not mandatory to check Assumption 7 when the reduced-order observer relies on Remark 5.
For this case, Assumption 7 can be verified by using the Lyapunov function V3(�̂) as a Lyapunov function for the observer
dynamics (62). Moreover, Assumption 8 holds globally with �y(|(x, �)|) = 2|E|}|(x, �)| since the output does not depend on the
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perturbation parameter. Similar to the full-order observers case, we do not need Assumptions 5, 7 and 8 and Corollary 2 since
the error dynamics completely capture the performance of the observer states.
Under the proposed approach, the observer designed for the reduced model must be implemented in the full system. Then,

we have that the error dynamics when the observer is applied to the true system are given by

ė = (A2 +NA1)e + Bo� + (G2 +NG1)[(F 2� + (F 1 − F 2N)y + F2�) − (F 2(� − e) + (F 1 − F 2N)y + F2�)], (67)

where Bo is a matrix of appropriate dimensions that agrees with the unmeasured state. Then, it follows that Assumption 9 is
satisfied with b6 = 2|P̂ ||B0|, while the rest of the constants and functions of u are zero. Since Assumption 1 - 9 hold, we conclude
that our framework applies to the class of systems and the reduced-order observer considered in this section. We summarise the
content of this section in the next corollary which is an immediate consequence of Theorem 1 and Corollary 3.

Corollary 5. Consider the singularly perturbed plant (60), the circle criterion observer (62) and the error dynamics (67). If
Assumptions 2, 4 and 10 - 12 hold, there exists a positive definite matrix P̂ and �̂ > 0, such that for any Δ > 0, Δu1 > 0, Δu2 > 0
and � > 0, there exists T ∗ > 0 and �∗ > 0 such that

|e(t)| ≤

√

�max(P̂ )
�min(P̂ )

|e0| exp

(

− �̂
2�max(P̂ )

t

)

+ �, (68)

for all � ∈ (0, �∗), |(x0, �0, �0, e0)| ≤ Δ, ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , and t ≥ �T ∗ + t0. Furthermore, for the given Δ > 0,
Δu1 > 0, Δu2 > 0 and � > 0, there exists T

∗ > 0 and �∗2 > 0 such that
t

∫
t0

|e(�)|2d� ≤
2�max(P̂ )

�̂
|e0| + �(t − t0). (69)

for all � ∈ (0, �∗2), |(x0, �0, �0, e0)| ≤ Δ, for any input satisfying ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||u||2 ≤ Δu1 , ||u̇||2 ≤ Δu2 and
for all t ≥ �T ∗ + t0.

5.3 High-Gain Observer with Limited Gain Power
We now analyse the class of singularly perturbed systems which has a structure such that the reduced (slow) model takes the
form in which results from Astolfi andMarconi8 can be applied to design a higher-order observer. It is observed that this class of
plants is covered by the general model (1). Moreover, available results1,22,24 do not cover the class of systems and the observer
considered in this section. Consider the class of systems with the following form

ẋ = fs(x, z), (70a)
�ż = ff (x, z), (70b)
y = ℎ(x, z) +w(t), (70c)

where the state vector x ∈ X ⊂ ℝn corresponds to the slow state, z ∈ Z ⊂ ℝm is the fast state, y ∈ ℝp is the measured output
variable, w ∈ ℝ is the measurement noise which belongs to ∞ and 2, and � is the perturbation parameter of the process. We
now check our assumptions for the class of systems represented by (70). To obtain the lower dimensional systems, we set � = 0
such that the system (70) is restricted to the slow manifold 0 = ff (x, z).

Assumption 13. The algebraic equation 0 = ff (x, z) has a solutionH(x) which can be obtained analytically.

Then, Assumption 1 holds by virtue of Assumption 13. Note that the reduced system is given by

ẋ = fs(x,H(x)), (71a)
ys = ℎ(x,H(x)) +w(t). (71b)
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Assumption 14. The reduced system (71) is input-to-state practical stable, such that there exists a Lyapunov ISpS function that
satisfies Assumption 2. Moreover, there exists a transformation x = �x(x), such that the reduced system (71) can be written as

ẋ = Anx + Bn (x), (72a)
y = Cnx +w(t), (72b)

where  (⋅) is a locally Lipschitz function, and (An, Bn, Cn) is a triplet in “prime form" of dimension n, that is

An =
(

0(n−1)×1 In−1
0 01×(n−1)

)

, Bn =
(

0(n−1)×1
1

)

, Cn =
(

1 01×(n−1)
)

.

The system (72) is defined on the set X ⊂ ℝn where X = �x(X).

Note that the ISpS condition in Assumption 14 can be checked either in (71) or (72). It follows that Assumption 2 holds by
virtue of Assumption 14. We have that the boundary layer system is given by

d�
d�

= ff (x, � +H(x)) (73)

where � = t∕� is the fast-time scale and � = z −H(x).

Assumption 15. There is a Lyapunov functionW (�) such that it can be proven that the boundary layer system is asymptotically
stable. Furthermore, the full system (70) satisfies the interconnection conditions in Assumption 4.

We require Assumption 15 to hold due to the generality of the boundary layer system (73). It follows from Assumption 15
that Assumptions 3 and 4 are satisfied. We now consider the high-gain limited power observer8 with the following dynamics

�̇i = A�i +N�i+1 +D2(l)Kiêi, i = 1,… , n − 2,
⋮

�̇n−1 = A�n−1 + B s(x̂) +D2(l)K(n−1)ên−1, (74)

where (A,B, C) is a triplet in prime form of dimension 2, � = col(�1,… , �n−1) ∈ ℝ2n−2 is the state of the observer with �i ∈ ℝ2,
Ki = (ki1, ki2)T are the gains to be designed,D2(l) = diag(l,l2)with l being the high gain parameter, x̂ = L1x is the output of
the observer with L1 = blkdiag( C,… , C

⏟⏞⏟⏞⏟
(n−2) times

, I2), ê1 = y−C�1, êi = BT�i−1 −C�i (i = 2,… , n− 1), and  s(⋅) is an appropriate

saturated version of  (⋅). Note that state of the observer has a dimension of 2n − 2 so that the redundancy of the observer is
used to obtain tow estimates with the asymptotic properties of the standard high-gain observer. Since the output of the observer
is a linear map, it follows that Assumption 5 trivially holds. We now define the estimation error as e ∶= x̂ − x. It can be show
that the error dynamics are given by

ė = lL1ML−1 e + L1[l
−(n−1)(B2n−2Δ l(e, x) +wl(t))], (75)

where L−1 is the left inverse of L1, Δ l(⋅, ⋅) =  s(e + x) −  (x), wl(⋅) = lnK1w(⋅) with K1 = col(K1, 0,… , 0), and

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E1 N 0 ⋯ ⋯ 0
Q2 E2 N ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ Qi Ei N ⋱ ⋮
⋮ ⋱ Qn−2 En−2 N
0 ⋯ ⋯ ⋯ 0 Qn−1 En−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

with Ei =
(

−ki1 1
−ki2 0

)

, Qi =
(

0 ki1
0 ki2

)

, N =
(

0 0
0 1

)

. Since the solutions evolve in a compact set and  (⋅) is locally Lipschitz,

it follows that  (⋅) is uniformly Lipschitz in X and  s(⋅) is bounded. Moreover, there exists �1 > 0 and �2 > 0 such that

|l−(n−1)Δ l(e, x)| ≤ �1|e|, and |l−(n−1)wl(t)| ≤ �2|lw(t)|,

for all e ∈ ℝn, x ∈ X and l ≥ 1. Now, let Pe = P T
e be such that PeML +MT

LPe = −I where ML = L1ML−1 and I is the
identity matrix. Consider V3(e) = eTPe as a candidate Lyapunov function for (75). It can be proven that the time derivative of
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the aforementioned Lyapunov function along the solutions of (75) is bounded as follows

V̇3||(75) ≤ −a1l|e|
2 + a2|w|, (76)

for all l ≥ 4�1|P | where a1 and a2 are positive constants. Therefore, Assumption 6 holds with �V3(|e|) = �min{Pe},
�V3(|e|) = �max{Pe}, �2 = a1l, �V3(|e|) = |e|2, V3(|w|) = a2|w|, and �̂2 = 2|Pe|. The Lyapunov analysis carried out in Astolfi
and Marconi8 considers the auxiliary variables �i = l2−iD2(l)−1(�i − col(xi, xi+1)) to construct a vector � = col(�1,… , �n1)
which represent the estimation error of the two available estimates of x.
By using the Lyapunov function used in Astolfi and Marconi8, it can be proven that (27) in Assumption 7 holds with

�o1(|�0|) = c1 exp(−c2lt)|�0|, �o2(||y||∞) = c3||y||∞ and �o3(||u||∞) = 0where c1 =
√

�max{P }∕�min{P }, c2 = d1∕2�max{P },
and c3 =

√

�max{P }∕�min{P }d2 with d1 > 0, d2 > 0 and P = P T satisfying PM +MTP = −I . Since we use a definition of
2 equivalent to ISS, the condition (28) can be concluded from the same analysis.
Note that the output of the system does not depend on the perturbation parameter. Then, Assumption 8 must hold globally.

Due to the generality of the output map, we assume that Assumption 8 holds. The generality of the system (70) does not allow to
obtain a unique solution for the constants and functions in Assumption 9. The best we can do is to guarantee that Assumption 9
holds with b6 > 0 and b7 ≥ 0 while a4 = 0, a5 = 0, a6 = 0, a7 = 0, 5(⋅) = 0 and 6(⋅) = 0.

Remark 17. Sharper conclusions on the bounds in Assumption 9 can be concluded if we restrict the class of systems in (70).
For instance, one can consider a linear fast dynamics.

The following result is a consequence of a direct application of Theorem 1 to the class of systems and the higher-order observer
considered in this section.

Corollary 6. Consider the singularly perturbed plant (70), the higher-order observer (74) and the error dynamics (75). If
Assumptions 13 - 15 hold, there exists a positive definite matrix Pe, and constants a1 > 0 and a2 > 0, such that for any Δ > 0,
Δw > 0 and � > 0, there exists T ∗ > 0 and �∗ > 0 such that

|e(t)| ≤

√

�max(Pe)
�min(Pe)

|e0| exp
(

−
a1l

2�max(Pe)
t
)

+

√

8�max(Pe)
a1l�min(Pe)

a2
|

|

|

|

|

|

w
[

t0, t
]

|

|

|

|

|

|

2
+ �, (77)

for all � ∈ (0, �∗), |(x0, �0, �0, e0)| ≤ Δ, ||w||∞ ≤ Δw, and t ≥ �T ∗ + t0. Furthermore, for the given Δ > 0, Δw > 0 and � > 0,
there exists T ∗ > 0 and �∗2 > 0 such that

t

∫
t0

|e(�)|2d� ≤
2�max(Pe)

a1l
|e0| +

2a2
a1l

t

∫
t0

|w(�)|2d� + �(t − t0). (78)

for all � ∈ (0, �∗2), |(x0, �0, �, e0)| ≤ Δ, for any ||w||∞ ≤ Δw, ||w||2 ≤ Δw and for all t ≥ �T ∗ + t0.

5.4 Simulation Results: An automotive suspension system
Here, we present simulations results to illustrate the applicability of our results. Consider the quarter-car model of automotive
suspension in Chapter 11 of Khalil29 with nonlinear hardening spring between the car body and the tire. Furthermore, assume
that there is no disturbance to the system. Let define ẋ = dx∕dtr with tr = t

√

ks∕ms. Then, the model of the system can be
expressed in the following standard singularly perturbed form29

ẋ1 = x2 − z2, (79a)
ẋ2 = −x1 − x31 − �(x2 − z2) + u, (79b)
�ż1 = z2, (79c)
�ż2 = �x1 + �x31 − ��(z2 − x2) − z1 − �u, (79d)

with � =
√

ksmu
ktms

, � =
√

ksms
ktmu

, � = bs
√

ksms
, u = F

ksl
, where ms and mu are the car body and tire masses, ks and kt are the spring

constants of the strut and tire, l is a constant distance, which is used to normalize variables, bs is the shock absorber constant
(damping term), and F is a bounded force generated by a force generator that acts as an active element. By following the singular
perturbation techniques, Assumption 1 holds withH(x, u) = [�x1 + �x31 + ��x2 − �u, 0]

T . Then, the reduced system system is
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given by

ẋ1 = x2, (80a)
ẋ2 = −x1 − x31 − �x2 + u. (80b)

While the boundary layer system in the fast time scale � − t∕�, is defined by
d�1
d�

= �2, (81a)
d�2
d�

= −���2 − �1. (81b)

We now assume that an accelerometer, located on the car body, is used to measure the vertical velocity of the system; such a
sensor allows having an output for the system in the form of

y = x2 +w(t), (82)

where w(t) = 0.05 sin(0.3t) is the measurement noise. Note that the reduced system (80) with the output (82) can be written in

the form of (47) with �(y, u) = [y, u − �y]T , and A =
[

0 0
−1 0

]

, G =
[

0
−1

]

, H =
[

1 0
]

, C =
[

0 1
]

, D = 1. Therefore, it

follows that a circle-criterion observer (52) can be used to estimate the slow states of (79). Note that this problem falls within
the framework presented in Section 5.1. Hence, the estimation error is expected to converge to a region around the origin as
highlighted in Corollary 4. The aforementioned region is critically related to � and to the bound of the measurement noise.
To perform simulations, we consider the following parameters: ks = 500[N − m], kt = 6[KN − m], ms = 200[Kg],

mu = 20[Kg], bs = 35[N − s∕m]. For these values, we have that � = 0.913 and � = 0.111. Note that, for the given parameters,
the perturbation parameter for the system is � = 0.0913. By following the design procedure described in Section 5.1, we obtain

the following gain matrices for the circle-criterion observer K = 2.548, L =
[

1.503
−1.281

]

. It can be calculated from the values of

the constants above and the Lyapunov functions V1(x) =
1
2

(

x1 +
1
�
x2
)2
+ 1

2

(

1 + 1
�2

)

x21 +
1
2
x22 andW (�) =

(

��
2
+ 1

��

)

�21 +
�1�2 +

1
��
�22 that, for this example, Corollary 4 holds for all � ∈ (0, 0.129).

The performance of the Circle Criterion Observer designed for the slow system (80) and implemented on the full system (79)
is presented in Figure 1 for different values of �. It is observed that the estimation error performs as expected, i.e. it converges to
a small offset around the origin. Even though the Circle Criterion Observer has an exponential convergence rate for the reduced
system, its performance on the original system is affected by the perturbation parameter and the fast part of the state as stated
in our main result and illustrated in Figure 1 .
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−
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ǫ = 0.0645

FIGURE 1 Estimation error performance for the estimates of x1 and x2 trough the Circle Criterion Observer.

6 CONCLUSIONS

We have developed a new estimation framework for a general class of singularly perturbed systems in the standard form by
considering nonlinear observers of general dimension. Estimation of the slow variables was analysed. Under the considered
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approach, an observer for the slow part of the system must be designed while the fast dynamics are neglected. The given
conditions guarantee an acceptable performance of the error dynamics when the observer is implemented on the full system. We
delivered results that show robustness of observers with respect to singular perturbations and with respect to measurement noise.
The main contribution of this work fills in a gap in the literature. With this work, we cover a wide range of plants and nonlinear
observers that were not covered by previous results. Moreover, the inclusion of the measurement noise gives significance to this
work. Our results are useful to mathematically justify the observer design for the slow states by just considering the reduced
(slow) model. We showed that three types of existing observers are covered by our results; therefore, we have illustrated and
demonstrated the generality of our findings.

APPENDIX

A . PROOF OF THEOREM 1

We first prove that the error dynamics are ISS with respect to x, �, u and w. Moreover, we show the system (30) satisfies a 2
stability property. These results are the key ingredients that allow us to show our main result in Section 4.1.

Lemma 2. Consider the singularly perturbed system (30). If Assumptions 1 - 9 hold, there exists �e(⋅, ⋅) ∈ , func-
tions �(⋅), w(⋅) ∈ ∞, and class-∞ functions x,�(⋅), u,�(⋅) parametrized by � (their argument is of order O(�)), such that for
any ΔL > 0, ΔLu1 > 0, ΔLu2 > 0, and ΔLw > 0, there exists �

∗
L > 0, such that

|e(t)| ≤ �e(|e0|, t − t0) + �(||�[t0, t]||) + x,�(||x[t0, t]||) + u,�(||u[t0, t]||) + w(||w[t0, t]||), (A1)

for all � ∈ (0, �∗L) and for all |(x0, �0, �0, e0)| ≤ ΔL, ||u||∞ ≤ ΔLu1 , ||u̇||∞ ≤ ΔLu2 , ||w||∞ ≤ ΔLw and t ≥ t0 ≥ 0. Furthermore,
there exists k1 > 0 and ki ≥ 0 (i = 2, 3) such that

t

∫
t0

�2V3(|e(�)|)d� ≤ k1�V3(|e0|) + �k2

t

∫
t0

�2V1(|x(�)|)d� + �k1

t

∫
t0

[

25 (|u(�)|) + 
2
6 (|u(�)|)

]

d�

+ k3

t

∫
t0

�2W (|�(�)|)d� + k1

t

∫
t0

V3(|w(�)|)d�, (A2)

for all � ∈ (0, �∗L), |(x0, �0, �0, e0)| ≤ ΔL, for any input satisfying ||u||∞ ≤ ΔLu1 , ||u̇||∞ ≤ ΔLu2 , ||u||2 ≤ ΔLu1 , ||u̇||2 ≤ ΔLu2 ,
for any ||w||∞ ≤ ΔLw , ||w||2 ≤ ΔLw and for all t ≥ t0 ≥ 0.

Proof of Lemma 2. We split the proof in two steps. In the first step, we prove that (A1) holds under Assumptions 1 - 9. We then
show that the error dynamics satisfy (A2).
Step 1) Let Assumptions 1 - 9 hold. Let �e(⋅, ⋅) ∈  be defined as the solution of the following scalar differential equation,

ẏe = −�̂V3(ye), ye(t0) = ye0 , (A3)

with �̂V3(⋅) =
1
4
�2�2V3◦�

−1
V3
(⋅) where �2, �V3(⋅) and �V3(⋅) come from Assumption 6. Then, y(t) = �e(ye0 , t − t0). The existence

of �e(⋅, ⋅) follows from Lemma 4.4 in Khalil29. Define the class- function

�e(r, s) ∶= �−1V3 (�e(�V3(r), s)), (A4)
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where the functions �V3(⋅) and �V3(⋅) come from Assumption 6. Define

�(s) ∶= �−1V3 ◦�V3◦�̃
−1
V3

(

8(b4 + b5 + b6 + Lb7)2

�22
�2W (s)

)

, (A5a)

x,�(s) ∶= �−1V3 ◦�V3◦�̃
−1
V3

(

�
8(a4 + a5 + a6 + La7)

�2
�2V1(s)

)

, (A5b)

u,�(s) ∶= �−1V3 ◦�V3◦�̃
−1
V3

(

� 8
�2

[

25 (s) + 
2
6 (s)

]

)

, (A5c)

w(s) ∶= �−1V3 ◦�V3◦�̃
−1
V3

(

8
�2
V3(s)

)

. (A5d)

where �̃V3(⋅) = �2V3(⋅), and all constants and functions come from Assumptions 2 - 5, 8 and 9, and L > 0 is such that
|)ℎo∕)�| ≤ L for all � ∈ B1 with B1 = {� ∈ ℝq

| |�| ≤ Δ1} where Δ1 > 0. Let ΔL > 0, ΔLu1 > 0, ΔLu2 > 0, and ΔLw > 0
be given such that |(x0, �0, �0, e0)| ≤ ΔL, ||u||∞ ≤ ΔLu1 , ||u̇||∞ ≤ ΔLu2 , and ||w||∞ ≤ ΔLw . By using Lemma 1, we generate
�̃∗ > 0 such that (17) holds for all � ∈ (0, �̃∗). Define (Δ,Δu1 ,Δu2 ,Δw) as Δ ∶= ΔL, Δu1 ∶= ΔLu1 , Δu2 ∶= ΔLu2 , Δw ∶= ΔLw .
Using Corollary 2, let (Δ,Δu1 ,Δu2 ,Δw) generate �̂

∗ > 0 and Υ > 0 such that (32) holds for all � ∈ (0, �̂∗).
We now introduce Δx ∶= �L1(ΔL, 0)+ L1(ΔLu1 )+ ̃L1(ΔLu1 )+ ̂L1(ΔLu2 )+�L1 and Δ� ∶= �c1(Δ)+Υ, where �L1(⋅, ⋅), L1(⋅),

̃L1(⋅), ̂L1(⋅) and �L1 come from (17) in Lemma 1, and �c1(⋅) andΥ come from (32) in Corollary 2. Then, we have that |x(t)| ≤ Δx
for all |(x0, �0)| ≤ ΔL, u ∈ Bu1 , u̇ ∈ Bu2 , and t ≥ t0 ≥ 0 where Bu1 = {u ∈ ℝr

| |u| ≤ ΔLu1 } and Bu2 = {u̇ ∈ ℝr
| |u̇| ≤ ΔLu2 }.

From Lemma 1, we have that |(x(t), �(t))| ≤ Δx for all |(x0, �0)| ≤ ΔL, u ∈ Bu1 , u̇ ∈ Bu2 , and t ≥ t0 ≥ 0. Moreover, from the
choice of (Δ,Δu1 ,Δu2 ,Δw), we conclude that |�(t)| ≤ Δ� for all |(x0, �0, �0)| ≤ Δ, u ∈ Bu1 , u̇ ∈ Bu2 , and t ≥ t0 ≥ 0. Let �∗L3 > 0
be such that �(a4 + a5 + a6 + La7 + 2) − �2 < 0 for all � ∈ (0, �∗L3), �

∗
L3

is given below. Hence, define

�∗L ∶= min{�
∗
L1
, �∗L2 , �

∗
L3
}, (A6)

with

�∗L1 ∶=
2
3
�1�3

b1(b2 + b3) + �1(a2 + a3) +
2
3
�3
(

a1 +
1
4

) , (A7a)

�∗L2 ∶= �y, (A7b)

�∗L3 ∶=
�2

a4 + a5 + a6 + La7 + 2
, (A7c)

where all of the above constants come from Assumptions 2 - 5, 8 and 9.
Note that (A7a) comes from �̃∗ in Lemma 1. Moreover, from the choice of (Δ,Δu1 ,Δu2 ,Δw) and Corollary 2 we have that

(A7b) comes from �̂∗. We have introduced above the condition from which �∗L3 has been constructed. To prove that (A1) holds,
we now consider the Lyapunov function V3(t, e, x, �) in Assumption 6 and take its derivative along the solutions of (30), which
is given by

V̇3||(30) =
)V3
)t

+
)V3
)e

fe(t, x, �, e, � +H(t, x, u), y, u, u̇, �) +
)V3
)x

fs(t, x, � +H(t, x, u), u, �) +
)V3
)�

fo(t, �, y, u). (A8)

By adding and subtracting terms and using the definition of the error dynamics, we can rewrite (A8) as follows

V̇3||(30) =
)V3
)t

+
)V3
)e

fe(t, x, �, e, � +H(t, x, u), ys, u, u̇, 0) +
)V3
)x

fs(t, x,H(t, x, u), u, 0) +
)V3
)�

fo(t, �, ys, u)

+
)V3
)x

[

fs(t, x, � +H(t, x, u), u, �) − fs(t, x,H(t, x, u), u, 0)
]

+
)V3
)�

[

fo(t, �, y, u) − fo(t, �, ys, u)
]

+
)V3
)e

[

fs(t, x,H(t, x, u), u, 0) − fs(t, x, � +H(t, x, u), u, �)
]

+
)V3
)e

[

)ℎo
)�

[

fo(t, �, y, u) − fo(t, �, ys, u)
]

]

. (A9)

As showed above, it follows from Corollary 2 that |�| ≤ Δ� for all � ∈ (0, �̂∗) where �̂∗ ≤ �∗L. Let define Δ1 ∶= Δ�
and Δ2 ∶= ΔLu1 , so we have from Remark 4 that for the given Δ1 and Δ2 there is L > 0 such that |)ℎo∕)�| ≤ L for all � ∈ B1
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withB1 = {� ∈ ℝq
| |�| ≤ Δ1}whereΔ1 ∶= Δ� . By using the norm and applying inequalities in Assumptions 6 and 9, we have

V̇3||(30) ≤ −�2�
2
V3
(|e|) + �(a4 + a5 + a6 + La7)�V1(|x|)�V3(|e|) + (b4 + b5 + b6 + Lb7)�V3(|e|)�W (|�|)

+ �5(|u|)�V3(|e|) + �6(|u|)�V3(|e|) + V3(|w|). (A10)

Applying completion of squares to (A10) leads to

V̇3||(30) ≤ −
3
4
�2�

2
V3
(|e|) + � 1

4
(a4 + a5 + a6 + La7 + 2)�2V3(|e|) + �(a4 + a5 + a6 + La7)�

2
V1
(|x|)

+ �25 (|u|) + �
2
6 (|u|) +

k1
�2
�2W (|�|) + V3(|w|), (A11)

with k1 = (b4 + b5 + b6 + Lb7)2. It follows from (A11) that

V̇3||(30) ≤ −
1
2
�2�

2
V3
(|e|) + �(a4 + a5 + a6 + La7)�2V1(|x|) + �

2
5 (|u|) + �

2
6 (|u|) +

k1
�2
�2W (|�|) + V3(|w|), (A12)

for all � ∈ (0, �∗L3) with �
∗
L3

given by (A7c). It is observed that �∗L3 ≤ �∗L. Then, it follows from (24) and (A12) that

|e| ≥ �̃−1V3

(

4
�2

[

�(a4 + a5 + a6 + La7)�2V1(|x|) + �
2
5 (|u|) + �

2
6 (|u|) +

k1
�2
�2W (|�|) + V3(|w|)

])

⇐⇒ V̇3||(30) ≤ −�̂V3(V3),

(A13)

where �̃V3(⋅) = �
2
V3
(⋅) and �̂V3(⋅) =

1
4
�2�2V3◦�

−1
V3
(⋅). We can conclude an ISS result from (A13) if the following condition holds

�̃−1V3

(

4
�2

[

�(a4 + a5 + a6 + La7)�2V1(Δx) + �
2
5 (ΔLu1 ) + �

2
6 (ΔLu1 ) +

k1
�2
�2W (Δx) + V3(ΔLw)

])

≤ ΔL, (A14)

for any (x, �, �, e) ∈ B�, where B� ∶= {(x, �, �, e) ∈ ℝn × ℝm × ℝq × ℝn
| |(x, �, �, e)| ≤ �−1◦�(ΔL)}. If (A14) does not

hold, the solutions would not belong to the invariant set that agrees with (24) and the dissipation inequality (A12), see Theorem
4.18 in Khalil29. We now exploit the cascade properties of the error dynamics, which are in cascade with the x, � and � . Since
Lemma 1 and Corollary 2 hold, |x(t)| ≤ |(x(t), �(t))| and |�(t)| ≤ |(x(t), �(t))|, it follows that x, � and � are essentially bounded
inputs to the error dynamics. Then, (A13) implies that the error dynamics are ISS with respect to x, �, u, and w. By applying
results in Sontag26 and Sontag and Wang27, we obtain

|e(t)| ≤ �e(|e0|, t − t0) + �−1V3 ◦�V3◦�̃
−1
V3

(

4
�2

[

�(a4 + a5 + a6 + La7)�2V1(||x[t0, t]||)

+�25 (||u[t0, t]||) + �
2
6 (||u[t0, t]||) +

k1
�2
�2W (||�[t0, t]||) + V3(||w[t0, t]||)

])

, (A15)

where �e(⋅, ⋅) ∈  is given by (A4). By applying the weak triangle inequality to the second term on the right-hand side of (A15),
we conclude that (A1) holds for all � ∈ (0, �∗L) and for all |(x0, �0, �0, e0)| ≤ ΔL, ||u||∞ ≤ ΔLu1 , ||u̇||∞ ≤ ΔLu2 , ||w||∞ ≤ ΔLw
and t ≥ t0 ≥ 0, where �(⋅), x,�(⋅), u,�(⋅), and w(⋅) are given by (A5).
Step 2) We now prove that (A2) holds. Define

k1 ∶=
2
�2
, (A16a)

k2 ∶=
2
�2
(a4 + a5 + a6 + La7), (A16b)

k3 ∶=
2(b4 + b5 + b6 + Lb7)2

�22
, (A16c)

where all constants come fromAssumptions 6 and 9, andL is defined as in Step 1 of this proof. Let ||u||2 ≤ ΔLu1 , ||u̇||2 ≤ ΔLu2 ,
and ||w||2 ≤ ΔLw . Consider the set Ω1 = {(x, �, �, e) ∈ ℝn × ℝm × ℝq × ℝn

| |(x, �, �, e)| ≤ �(ΔL)} which is a subset of
B� = {(x, �, �, e) ∈ ℝn ×ℝm ×ℝq ×ℝn

| |(x, �, �, e)| ≤ �−1◦�(ΔL)}.
Claim: If (x0, �0, �0, e0) ∈ Ω1 for some t0 ≥ 0, then (x(t), �(t), �(t), e(t)) ∈ Ω1 for all t ≥ t0. Proof of claim: We proof our

claim by contradiction. Assume there exists � > 0 and some t1 > t0 such that

V3(t1, e(t1), x(t1), �(t1)) ≥ �(ΔL) + �.
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Let t1 be minimal value of t such that the above inequality holds (for a fixed �). Hence, V3(t, e(t), x(t), �(t)) > �(ΔL) for some t
close to t1. Since |e| ≥ �−1(V3) and V3(t, e(t), x(t), �(t)) > �(ΔL), we have

|e| ≥ ΔL.

Then, it follows from (A14) that the inequality on the left-hand side of (A13) holds for each t in the neighbourhood of t1, and the
continuous function V3(t, e(t), x(t), �(t)) has negative derivative near t1. Thus, V3(t, e(t), x(t), �(t)) > V3(t1, e(t1), x(t1), �(t1))
for some t ∈ (t0, t1), contradicting minimality of t1. Therefore, Ω1 must indeed be invariant, as claimed. This completes the
proof of the claim.
SinceΩ1 is an invariant set, we know that any trajectory starting within the set will remain in it, and subsequently, in B�. This

implies that the norm infinity of the estimation error will remain bounded for all t ≥ t0. Moreover, we know from Lemma 1 and
Corollary 2 (see Step 1 of this proof) that the states of the system and the state of the observer have finite and bounded infinity
norm for all � ∈ (0, �∗L), |(x0, �0, �0, e0)| ≤ ΔL, ||u||∞ ≤ ΔLu1 , ||u̇||∞ ≤ ΔLu2 , ||w||∞ ≤ ΔLw and t ≥ t0 ≥ 0. Therefore, we can
now integrate (A12) as follows

V3(t, e(t), x(t), �(t))−V3(t0, e(t0), x(t0), �(t0)) ≤ −
1
2
�2

t

∫
t0

�2V3(|e(�)|)d� + �(a4 + a5 + a6 + La7)

t

∫
t0

�2V1(|x(�)|)d�

+ �

t

∫
t0

25 (|u(�)|)d� + �

t

∫
t0

26 (|u(�)|)d� +
k1
�2

t

∫
t0

�2W (|�(�)|)d� +

t

∫
t0

V3(|w(�)|)d�, (A17)

where x(t) and �(t) are the solutions of (6). We use the fact that V3(t, e(t), x(t), �(t)) ≥ 0 to obtain

1
2
�2

t

∫
t0

�2V3(|e(�)|)d� ≤ V3(t0, e(t0), x(t0), �(t0)) + �(a4 + a5 + a6 + La7)

t

∫
t0

�2V1(|x(�)|)d� + �

t

∫
t0

25 (|u(�)|)d�

+ �

t

∫
t0

26 (|u(�)|)d� +
k1
�2

t

∫
t0

�2W (|�(�)|)d� +

t

∫
t0

V3(|w(�)|)d�. (A18)

It follows from (24) that V3(t0, e(t0), x(t0), �(t0)) ≤ �V3(|e0|). Therefore, it follows from (A18) that (A2) holds for all � ∈ (0, �∗L),
|(x0, �0, �0, e0)| ≤ ΔL, for any input satisfying ||u||∞ ≤ ΔLu1 , ||u̇||∞ ≤ ΔLu2 , ||u||2 ≤ ΔLu1 , ||u̇||2 ≤ ΔLu2 , for any ||w||∞ ≤
ΔLw , ||w||2 ≤ ΔLw and for all t ≥ t0 ≥ 0, where ki (i = 1, 2, 3) are given by (A16). This completes the proof.

Proof of Theorem 1. We split the proof in four steps. In the first step, we prove that (38) holds under Assumptions 1 - 9. Then,
we show that (39) holds under the same assumptions. In the third step, we demonstrate that the error dynamics satisfy (40).
Finally, we show that the error dynamics also satisfy (41).
Step 1) Let Assumptions 1 - 9 hold. Define the class- function

�T1(r, s) ∶= �e
(

2
[

�e
(

r, s
2

)

+ �
(

2��(r, 0)
)

]

, s
2

)

+ �
(

2��
(

r, s
2�

))

, (A19)

where �e(⋅, ⋅) ∈  and �(⋅) ∈ ∞ come from Lemma 2, and ��(⋅, ⋅) ∈  is given in Corollary 1. Define the class-∞
function

T1(s) ∶= w(s) + �e
(

2w(s), 0
)

, (A20)

where w(⋅) ∈ ∞ comes from Lemma 2. Let Δ > 0, Δu1 > 0, Δu2 > 0, Δw > 0 and � > 0 be given such that |(x0, �0, �0, e0)| ≤
Δ, ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , and ||w||∞ ≤ Δw. Define

�T1 ∶= �e(2�, 0). (A21)

Let (Δ,Δu1 ,Δu2 ,Δw) be defined as Δ ∶= Δ, Δu1 ∶= Δu1 , Δu2 ∶= Δu2 , Δw ∶= Δw. Using Corollary 2, let (Δ,Δu1 ,Δu2 ,Δw)
generate �̂∗ > 0 and Υ > 0 such that (32) holds for all � ∈ (0, �̂∗). We now introduce Δ� ∶= �c1(Δ)+Υ, where �c1(⋅) and Υ > 0
come from (32) in Corollary 2. From the choice of (Δ,Δu1 ,Δu2 ,Δw), we conclude that |�(t)| ≤ Δ� for all |(x0, �0, �0, e0)| ≤ Δ,
u ∈ Bu1 , u̇ ∈ Bu2 , and t ≥ t0 ≥ 0 where Bu1 = {u ∈ ℝr

| |u| ≤ Δu1} and Bu2 = {u̇ ∈ ℝr
| |u̇| ≤ Δu2}. Define (Δ̃, Δ̃u1 , Δ̃u2 , �̃)
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as Δ̃ ∶= Δ, Δ̃u1 ∶= Δu1 , Δ̃u2 ∶= Δu2 , and

�̃ ∶= �−1W
⎛

⎜

⎜

⎝

√

�22
8[b4 + b5 + b6 + Lb7]2

�̃V3◦�
−1
V3
◦�V3

(�
2

)
⎞

⎟

⎟

⎠

, (A22)

where all of the above constants come from Assumptions 6 and 9, the class-∞ functions come from Assumptions 3 and 6,
and L > 0 is such that |)ℎo∕)�| ≤ L for all � ∈ B1 with B1 = {� ∈ ℝq

| |�| ≤ Δ1} where Δ1 ∶= Δ� . From the
choice of (Δ̃, Δ̃u1 , Δ̃u2 , �̃), we generate �

∗ such that Corollary 1 hold. Define (ΔL,ΔLu1 ,ΔLu2 ,ΔLw) as ΔL ∶= Δ, ΔLu1 ∶= Δu1 ,
ΔLu2 ∶= Δu2 , ΔLw ∶= Δw. Let Lemma 2 hold with the choice of (ΔL,ΔLu1 ,ΔLu2 ,ΔLw), which means that Lemma 1 holds too.
Introduce Δx ∶= �L1(Δ, 0) + L1(Δu1) + ̃L1(Δu1) + ̂L1(Δu2) + �L1 where �L1(⋅, ⋅), L1(⋅), ̃L1(⋅), ̂L1(⋅) and �L1 come from (17)
in Lemma 1. We now define an auxiliary constant C ∶= �c1 + c2 with

c1 = (a4 + a5 + a6 + La7)�2V1(Δx) + 
2
5 (Δu1) + 

2
6 (Δu1), (A23)

c2 =
[b4 + b5 + b6 + Lb7]2

�2
�2W (�̃), (A24)

where all constants come fromAssumption 6 and 9, �̃ is defined as in (A22),L > 0 is as defined above, �V1(⋅), �W (⋅), and i(⋅) (i =
5, 6) come from Assumptions 2, 3 and 9, respectively. Define the auxiliary constant

Ĉ ∶= �−1V3 ◦�V3◦�̃
−1
V3

(

4
�2
C
)

, (A25)

where it is observed that Ĉ can be made small by reducing C , which implies to reduce � and �̃. The weak triangle inequality for
comparison functions leads to

Ĉ ≤ �−1V3 ◦�V3◦�̃
−1
V3

(

8
�2
�c1

)

+ �−1V3 ◦�V3◦�̃
−1
V3

(

8
�2
c2

)

. (A26)

Note that �̃ in (A22) is such that the second term on the right-hand side of (A26) is half of �, i.e., 1
2
� = �−1V3 ◦�V3◦�̃

−1
V3

(

8
�2
c2
)

.
So, let (Δ,Δu1 ,Δu2 , �) generate

�∗a ∶=
�2
[

�̃−1V3 ◦�
−1
V3
◦�V3

(

1
2
�
)]

8
[

(a4 + a5 + a6 + La7)�2V1
(

Δx
)

+ 25 (Δu1) + 
2
6 (Δu1)]

] , (A27)

such that � > Ĉ holds for all � ∈ (0, �∗a ), which implies that 1
2
� > �−1V3 ◦�V3◦�̃

−1
V3

(

8
�2
�c1

)

. Hence, define

�∗ ∶= min
{

�∗L, �
∗, �∗a

}

. (A28)

Note that �∗a is given by (A27), �∗ is generated by Corollary 1, and �∗L in (A28) comes from (A6) in Lemma 2 and implies that
Lemma 1 and Corollary 2 hold. It follows from Lemma 2 that

|e(t)| ≤ �(|e0|, t − t0) + �−1V3 ◦�V3◦�̃
−1
V3

(

4
�2

[

�(a4 + a5 + a6 + La7)�2V1(||x[t0, t]||)

+�25 (||u[t0, t]||) + �
2
6 (||u[t0, t]||) +

k1
�2
�2W (||�[t0, t]||) + V3(||w[t0, t]||)

])

, (A29)

with k1 = (b4 + b5 + b6 + Lb7)2. By virtue of Lemma 1 and Corollary 1, we have that x(t) and �(t) are bounded signal inputs
to the error dynamics. We now use the cascade properties of the system to conclude the result. By using the ISS approach for
interconnected systems proposed in Lemma 4.7 of Khalil29, we have that (A29) yield to

|e(t)| ≤ �T1
(

|(x0, �0, e0)|, t − t0
)

+ �e

(

2�−1V3 ◦�V3◦�̃
−1
V3

(

4
�2
(�c1 + c2)

)

,
t − t0
2

)

+ T1
(

|

|

|

|

|

|

w
[

t0, t
]

|

|

|

|

|

|

)

+ �−1V3 ◦�V3◦�̃
−1
V3

(

8
�2
�c1

)

+ �−1V3 ◦�V3◦�̃
−1
V3

(

8
�2
c2

)

, (A30)

where �T1(⋅, ⋅) ∈  and T1(⋅) ∈ ∞ are given by (A19) and (A20), respectively. Therefore, by the fact that � > Ĉ ,
�(r, 0) ≥ �(r, s), and using (A21), we conclude that (38) holds for all � ∈ (0, �∗) and for all |(x0, �0, �0, e0)| ≤ Δ, ||u||∞ ≤ Δu1 ,
||u̇||∞ ≤ Δu2 , ||w||∞ ≤ Δw and t ≥ t0 > 0.
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Step 2) We now prove that (39) holds under Assumptions 1 - 9. Define the functions �T1(⋅, ⋅) ∈  and T1(⋅)∞

�T1(r, s) ∶= �e(r, s), (A31)
T1(s) ∶= w(s), (A32)

where �e(⋅, ⋅) ∈  and w(⋅) ∈ ∞ come from Lemma 2. For the givenΔ > 0,Δu1 > 0,Δu2 > 0,Δw > 0 and � > 0, let �
∗ > 0

be as defined in (A28). As showed in Step 1, Lemmas 1 and 2 and Corollaries 1 and 2 hold. Using Corollary 1, let (Δ̃, Δ̃u1 , Δ̃u2 , �̃)
generate T ∗ > 0 such that (20) in Corollary 1 holds for all � ∈ (0, �∗), |(x0, �0)| ≤ Δ̃, ||u||∞ ≤ Δ̃u1 , ||u̇||∞ ≤ Δ̃u2 , t ≥ �T ∗ + t0.
Hence, T ∗ is given by

T ∗ ∶= � � − �
K

, (A33)

where � ∶= �W ◦�̃−1W
(

� 4
�3
[(b2 + b3)2�2V1(Δ̃x) + 

2
2 (Δ̃u1) + 

2
3 (Δ̃u1) + 

2
4 (Δ̃u2)]

)

with Δ̃x = Δx, �̃W (⋅) ∶= �2W (⋅), � ∶= �W (Δ̃),
K = min{�̂W (|�|)} over the set {Δ̃ ≤ |�| ≤ Δ̃�} with �̂W (⋅) =

�3
4
�2W ◦�

−1
W (⋅) and Δ̃� = �−1W ◦�W (Δ̃), where all the constants

and class-∞ functions come from Assumptions 3, 4 and 5.
To show the result, we consider (A29) which comes from Lemma 2. It is observed that x(t) and �(t) are essentially bounded

signal inputs to the error dynamics. We know from the SPA result in Corollary 1 that the fast state rapidly converges, and it
becomes ultimately bounded by �̃ after a finite time T ∗ > 0 defined by (A33). This occurs because ��(⋅, ⋅) ∈  in (19) quickly
converges to zero. Hence, ||�[�T ∗, t]|| ≤ �̃ for all t ≥ �T ∗ + t0 where �̃ is given by (A22). Moreover, ||x[t0, t]|| ≤ Δx, and
||u[t0, t]|| ≤ Δu1 . Therefore, by considering c1 and c2 in (A23) and (A24), (A29) leads to

|e(t)| ≤ �T1(|e(t0)|, t − t0) + �
−1
V3
◦�V3◦�̃

−1
V3

(

8
�2
�c1

)

+ �−1V3 ◦�V3◦�̃
−1
V3

(

8
�2
c2

)

+ T1(||w[t0, t]||), (A34)

for all � ∈ (0, �∗) and for all t ≥ �T ∗ + t0, where �T1(⋅, ⋅) ∈ ∞ and T1(⋅) ∈ ∞ given by (A31) and (A32). Note that the
sum of second and third terms on the right-hand side of (A34) is equal to right hand side of (A26), which is smaller than � for
all � ∈ (0, �∗). Therefore, we conclude that (39) holds for all � ∈ (0, �∗), |(x0, �0, �0, e0)| ≤ Δ, ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 ,
||w||∞ ≤ Δw and t ≥ �T ∗ + t0.
Step 3) We now prove the 2 stability property (40). Define

kT1 ∶=
2
�2
, (A35)

and the class-∞ functions

�T1(s) ∶= kT1�V3(s), (A36)

�T1(s) ∶=
kT1
�2
(b4 + b5 + b6 + Lb7)2�Wc

(s), (A37)

where �Wc
∈ ∞ come from Corollary 1. For the given Δ > 0, Δu1 > 0, Δu2 > 0, Δw > 0 and � > 0, let |(x0, �0, �0, e0)| ≤ Δ,

||u||2 ≤ Δu1 , ||u̇||2 ≤ Δu2 , ||w||2 ≤ Δw. Let Lemmas 1 and 2 and Corollary 2 hold as in Step 1 of this proof where the
2 results hold for any input satisfying ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||u||2 ≤ Δu1 , ||u̇||2 ≤ Δu2 , and for any ||w||∞ ≤ Δw,
||w||2 ≤ Δw. Define (Δ̃, Δ̃u1 ,Δu2 , �̃) as Δ̃ ∶= Δ, Δ̃u1 = Δu1 , Δ̃u2 = Δu2 and

�̃ ∶= �−1W
⎛

⎜

⎜

⎝

√

�22
4(b4 + b5 + b6 + Lb7)2

�
⎞

⎟

⎟

⎠

. (A38)

From the choice of (Δ̃, Δ̃u1 ,Δu2 , �̃), we generate �
∗ > 0 such that Corollary 1 holds. Define

�2 ∶=
kT1
�2
(b4 + b5 + b6 + Lb7)2�−1W

⎛

⎜

⎜

⎝

√

�22
4(b4 + b5 + b6 + Lb7)2

�
⎞

⎟

⎟

⎠

, (A39)
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where �w(⋅) ∈ ∞ and the rest of the constant come from Assumptions 3, 4 and 9, and L is defined as in Step 1 of this proof.
Let �∗b > 0 be such that �

2
�2

[

(a4 + a5 + a6 + La7)�2V1(Δx) + 
2
5 (Δu1) + 

2
6 (Δu1)

]

≤ 1
2
� for all � ∈ (0, �∗b ). Hence, define

�∗b ∶=
�2�

4
[

(a4 + a5 + a6 + La7)�2V1(Δx) + 
2
5 (Δu1) + 

2
6 (Δu2)

] , (A40)

and

�∗2 ∶= min{�
∗
L, �

∗, �∗b}, (A41)

where �∗L and �∗ come from Lemma 2 and Corollary 1, respectively. We now consider (A2) in Lemma 2 and (21) in Corollary 1.
Note that (A2) holds for all � ∈ (0, �∗) since �∗L ≤ �∗. It follows that (A2) can be written as follows

t

∫
t0

�2V3(|e(�)|)d� ≤
2
�2
�V3(|e0|) + �

2
�2
(a4 + a5 + a6 + La7)

t

∫
t0

�2V1(|x(�)|)d� + �
2
�2

t

∫
t0

25 (|u(�)|)d�

+ � 2
�2

t

∫
t0

26 (|u(�)|)d� +
2k1
�22

(

��Wc
(|�0|) + �̃(t − t0)

)

+ 2
�2

t

∫
t0

V3(|w(�)|)d�, (A42)

where �Wc
(⋅) comes from Corollary 1 and k1 = (b4+ b5+ b6+Lb7)2. We use the fact that |x(t)| ≤ Δx and |u(t)| ≤ Δu1 to obtain

t

∫
t0

�2V3(|e(�)|)d� ≤
2
�2
�V3(|e0|) + �

2
�2

[

(a4 + a5 + a6 + La7)�2V1(Δx) + 
2
5 (Δu1) + 

2
6 (Δu1)

]

t

∫
t0

d�

+
2k1
�22

(

��Wc
(|�0|) + �̃(t − t0)

)

+ 2
�2

t

∫
t0

V3(|w(�)|)d�. (A43)

Note that (A43) and � 2
�2

[

(a4 + a5 + a6 + La7)�2V1(Δx) + 
2
5 (Δu1) + 

2
6 (Δu1)

]

≤ 1
2
� lead to

t

∫
t0

�2V3(|e(�)|)d� ≤
2
�2
�V3(|e0|) + �

2k1
�22
�Wc

(|�0|) +
2
�2

t

∫
t0

V3(|w(�)|)d� +
2k1
�22
�̃(t − t0) + �(t − t0), (A44)

for all � ∈ (0, �∗2). By using �T1(⋅), �T1(⋅) ∈ ∞, kT1 and �2 given in (A35) - (A39) and by the fact that |e0| ≤ |(x0, �0, e0)| and
|�0| ≤ |(x0, �0, e0)|, we conclude from (A44) that (40) holds for all � ∈ (0, �∗2), |(x0, �0, �0, e0)| ≤ Δ, for any input satisfying
||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||u||2 ≤ Δu1 , ||u̇||2 ≤ Δu2 , for any ||w||∞ ≤ Δw, ||w||2 ≤ Δw, and for all t ≥ t0 ≥ 0.
Step 4) Finally, we demonstrate that the2 stability property (41). To prove this final result, let Lemmas 1 and 2 and Corollary 2
hold as in previous steps, and let Corollary 1 holds as stated in Step 3 of this proof. Let kT1 > 0 and �T1(⋅) ∈ ∞ be such as
defined in (A35) and (A36), respectively. Moreover, define �∗2 > 0 as in (A41). From the choice of (Δ̃, Δ̃u1 ,Δu2 , �̃) in Step 3
where �̃ is given by (A38), we generate T ∗ > 0 such that |�(t)| ≤ �̃ for all t ≥ �T ∗ + t0. Since we work with the intersection of
the infinity norm and the 2 norm, we use the fact that |�(t)| ≤ �̃ for all t ≥ �T ∗ + t0 and we consider |x(t)| ≤ Δx, |u(t)| ≤ Δu1
and |u̇(t)| ≤ Δu2 . Therefore, we obtain from (A2) that the following holds

t

∫
t0

�2V3(|e(�)|)d� ≤
2
�2
�V3(|e0|) + �

2
�2

[

(a4 + a5 + a6 + La7)�2V1(Δx) +
[

25 (Δu1) + 
2
6 (Δu1)

]

]

t

∫
t0

d�

+
2k1
�22
�2W (�̃)

t

∫
t0

d� + 2
�2

t

∫
t0

V3(|w(�)|)d�, (A45)

for all t ≥ �T ∗ + t0. From the choice of �̃ in (A38), we have that 2k1
�22
�2W (�̃) ≤

1
2
�. Moreover, it follows from Step 3 of this proof

that

� 2
�2

[

(a4 + a5 + a6 + La7)�2V1(Δx) +
[

25 (Δu1) + 
2
6 (Δu1)

]

]

≤ 1
2
�, (A46)
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for all � ∈ (0, �∗b ) where �
∗
b ≤ �∗2 . Hence, (A45) leads to

t

∫
t0

�2V3(|e(�)|)d� ≤
2
�2
�V3(|e0|) +

2
�2

t

∫
t0

V3(|w(�)|)d� + �(t − t0). (A47)

Therefore, by using kT1 > 0 as in (A35) and �T1(⋅) ∈ ∞ as in (A36), it follows from (A47) that (41) holds for all � ∈ (0, �∗2),
|(x0, �0, �0, e0)| ≤ Δ, for any input satisfying ||u||∞ ≤ Δu1 , ||u̇||∞ ≤ Δu2 , ||u||2 ≤ Δu1 , ||u̇||2 ≤ Δu2 , for any ||w||∞ ≤ Δw,
||w||2 ≤ Δw, and for all t ≥ �T ∗t0. This completes the proof.
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