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Abstract 
Artificial Intelligence (AI) offers the potential to transform our lives in radical ways. However, not only do we 
lack the tools to determine what achievements will be attained in the near future, but we even underestimate 
what various technologies in AI are capable of today. Certainly, the translation from scientific papers and 
benchmark performance to products is faster in AI than in other non-digital sectors. However, it is often the 
case that research breakthroughs do not directly translate to a technology that is ready to use in real-world 
environments. This document describes an example-based methodology to categorise and assess several AI 
technologies, by mapping them onto Technology Readiness Levels (TRL) (e.g., maturity and availability levels). 
We first interpret the nine TRLs in the context of AI and identify different categories in AI to which they can be 
assigned. We then introduce new bidimensional plots, called readiness-vs-generality charts, where we see that 
higher TRLs are achievable for low-generality technologies focusing on narrow or specific abilities, while low 
TRLs are still out of reach for more general capabilities. We include numerous examples of AI technologies in a 
variety of fields, and show their readiness-vs-generality charts, serving as a base for a broader discussion of AI 
technologies. Finally, we use the dynamics of several AI technology at different generality levels and moments 
of time to forecast some short-term and mid-term trends for AI. 
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Executive summary 
We are still lack the capacity to predict what capabilities and products will become a reality even in the short 
term, a problem that is not particular for AI but any technology, and especially digital technologies. We are not 
always successful, even in hindsight, in understanding why some expectations are not met, and why some AI 
technologies have limitations or what kind of new technologies may replace them. Moreover, although many 
so-called breakthroughs in AI are associated with highly cited research papers or good performance in some 
particular benchmarks, research breakthroughs do not directly translate into a technology that is ready to use 
in real-world environments. 

In this paper, we present a novel example-based methodology to categorise and assess several AI research and 
development technologies, by mapping them onto Technology Readiness Levels (TRL) (representing their 
maturity and availability). We first interpret the nine TRLs in the context of AI, and identify several categories in 
AI to which they can be assigned. The selection of technologies is representative but not exhaustive: it is based 
on our own experience and knowledge in the area about their relevance and “general use”. Furthermore, for 
some specific cases, we have also considered the associated levels of research activity. 

We then introduce new bidimensional plots, called readiness-vs-generality charts, in which we define the 
degree of generality (in terms of being able to function over many diverse specific domains and tasks) expected 
for a particular technology on the x-axis vs the readiness level (the TRLs) on the y-axis. Generality is a key 
element to be recognised, apart from the readiness levels since AI is a field that develops (cognitive) 
capabilities at different generality levels. Consequently, we need to assign readiness levels according to 
different levels of generality: a technology that is specialised for a very specific, controlled, domain may reach 
higher TRL than a technology that has to be more general-purpose in terms of it not-being restricted to specific 
tasks or scenarios. Therefore, for each technology we define the different levels of capabilities based on a 
comprehensive analysis of the related scientific and industrial literature. We also include examples of AI 
technologies in a variety of fields and show their readiness-vs-generality charts (see Table 1). 

Table 1: AI categories and the sample of representative technologies evaluated for each of them. 

Category Technology 

Knowledge Representation & Reasoning Expert Systems 

Learning Recommender Systems 
Apprentices by Demonstration 

Communication Machine Translation 
Speech Recognition 

Perception Facial Recognition 
Text Recognition 

Planning Transport & Scheduling Systems 

Physical Interaction (Robotics) Self-Driving Cars 
Home Cleaning Robots 

Social & Collaborative Intelligence Negotiation Agents 

Integrating Technology Virtual Assistants 

Methodologically, the examples analysed serve to illustrate the difficulties of estimating the TRLs, a problem 
that is not specific to AI. The use of levels on the x-axis, however, has helped us be more precise with the TRLs 
than would be otherwise. It should be noted that our initial assessment has undergone a profound evaluation 
by an independent panel of specialists, recognised in at least one of the technologies (or areas) addressed.  

In the charts we see that higher TRLs are achievable for low-generality technologies focusing on narrow or 
specific abilities, while low TRLs are still out of reach for more general capabilities. Furthermore, the shapes of 
the curves seen in the charts of the previous section are informative about where the real challenges are for 
some technologies. Consequently, it seems that those curves that are flatter look more promising than those 
for which there is a steep step at some level on the x-axis. We use the dynamics of several AI technology 
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examples at different generality levels and moments of time to forecast some short-term and mid-term trends 
for AI. Finally, we illustrate that technological readiness does not mean technological success as well as the 
potential dangers of excessive focus on TRL when developing new AI technologies and the consequent 
criticisms related to the lack of generality of current AI technologies.  

Valuable contributions of this work are: (1) the definition of the maturity levels for an illustrative set of AI 
technologies through the use of Technology Readiness Level (TRL) assessment. (2) The interpretation of the 
nine TRLs (introduced by NASA and adapted by the EU) in the context of AI, and then its systematic application 
to different categories in AI, by choosing one or two examples in each category. (3) The development of new 
bidimensional plots, known as readiness-vs-generality charts, as a trade-off between how general a technology 
is versus its readiness level. (4) The analysis of numerous examples of AI technologies in a variety of fields by 
means of the readiness-vs-generality charts. (5) The discussion about the future of AI as a transformative 
technology and how the readiness-vs-generality charts are useful for short-term and mid-term forecasting.  
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Foreword 
This report is published in the context of AI WATCH, the European Commission knowledge service to monitor 
the development, uptake and impact of Artificial Intelligence (AI) for Europe, launched in December 2018.  

AI has become an area of strategic importance with potential to be a key driver of economic 
development. AI also has a wide range of potential social implications. As part of its Digital Single Market 
Strategy, the European Commission put forward in April 2018 a European strategy on AI in its Communication 
"Artificial Intelligence for Europe" COM(2018)237. The aims of the European AI strategy announced in 
the communication are:  

— To boost the EU's technological and industrial capacity and AI uptake across the economy, both by the 
private and public sectors   

— To prepare for socio-economic changes brought about by AI  

— To ensure an appropriate ethical and legal framework.  

Subsequently, in December 2018, the European Commission and the Member States published a “Coordinated 
Plan on Artificial Intelligence”, COM(2018)795, on the development of AI in the EU. The Coordinated Plan 
mentions the role of AI Watch to monitor its implementation.  

AI WATCH monitors European Union’s industrial, technological and research capacity in AI; AI-related policy 
initiatives in the Member States; uptake and technical developments of AI; and AI impact. AI WATCH has a 
European focus within the global landscape. In the context of AI Watch, the Commission works in coordination 
with Member States. AI WATCH results and analyses are published on the AI WATCH Portal 1.  

From AI Watch in-depth analyses, we will be able to better understand EU’s areas of strength and areas where 
investment is needed. AI Watch will provide an independent assessment of the impacts and benefits of AI on 
growth, jobs, education, and society.  

AI Watch is developed by the Joint Research Centre (JRC) of the European Commission in collaboration with 
the Directorate-General for Communications Networks, Content and Technology (DG CONNECT).  

This report addresses the following objectives of AI WATCH: Analysis of the evolution of AI technologies. As 
part of this objective this report particularly aims to introduce an example-based methodology to categorise 
and assess several AI research and development technologies, by mapping them into Technology Readiness 
Levels (TRL). 

 
1 https://ec.europa.eu/knowledge4policy/ai-watch_en  

https://ec.europa.eu/knowledge4policy/ai-watch_en
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1 Introduction  
 

Artificial Intelligence (AI) is poised to have a transformative effect on almost every aspect of our lives, from the 
viewpoint of individuals, groups, companies, and governments. While there are certainly many obstacles to 
overcome, AI has the potential to empower our daily lives in the immediate future. A great deal of this 
empowerment comes through the amplification of human abilities. Another important space AI systems are 
taking over comes from the opportunities of an increasingly more digitised and ‘datafied’ 2 world. Overall, AI is 
playing an important role in several sectors and applications, from virtual digital assistants in our smartphones 
to medical diagnosis systems. The impact on the labour market is already very visible, but the workplace may 
be totally transformed in the following years.   

However, there is already a high degree of uncertainty even when it comes to determining whether a problem 
can be solved or an occupation can be replaced by AI today (Brynjolfsson et al. 2018, Martínez-Plumed et al. 
2020). The readiness of AI seems to be limited to (1) areas that use and produce a sufficient amount of data 
and have clear objectives about what the business is trying to achieve; (2) scenarios where the suitable 
algorithms, approaches and software have been developed to make it fully functional into their relevant fields; 
and (3) situations whose costs of deployment are affordable (including data, expert knowledge, human 
oversight, software resources, computing cycles, hardware and network facilities, development time, etc., 
apart from monetary costs) (Martínez-Plumed et al. 2018a). To make things more complicated, AI is not one 
big, specific technology, but it rather consists of several different human-like and non-human-like capabilities, 
which currently have different levels of development (e.g., from research hypotheses and formulations to more 
deployed commercial applications). At a high level, AI is composed of reasoning, learning, perception, planning, 
communication, robotics and social intelligence. At a lower level, there are a myriad of applications that 
combine these abilities with many other components, not necessarily in AI, from driverless cars to chatbots.  

Many products we have today were envisaged decades ago but have only come into place very recently. For 
instance, virtual digital assistants, such as Alexa, Siri and Google Home, are still far from some of the imagined 
possibilities, but they are already successfully answering a wide gamut of requests from customers, and have 
already become common shoulders to lean on in daily life. Similarly, computers that recognise us have been in 
our imagination and desiderata for decades, but it is only recently that AI-based face recognition and biometric 
systems populate smartphones, security cameras and other surveillance equipment for security and safety 
purposes. Machine learning and other AI techniques are now ubiquitous; recommender systems are used to 
enhance customers’ experience in retailing and streaming services, fault detection and diagnosis systems are 
used in industry and healthcare, and planners and optimisers are used in logistics and transportation. Other 
applications, however, have been announced as imminent, but their deployment in the real world is taking 
longer than originally expected. For instance, self-driving cars are still taking off very timidly and in very 
particular contexts 3.   

The key question is not if AI is envisaged or working in restricted situations, but whether an AI technology is 
sufficiently developed to be applicable in the real world, as a viable product leading to public and business 
value and real transformation. Only if we are able to answer this question can we really understand the impact 
of AI research breakthroughs and the time from different stages of their development to viable products. 
Policy-makers, researchers and customers need a clear technical analysis of AI capacities not only to determine 
what is in-scope and out-of-scope of AI (Martínez-Plumed 2018b), but also what are the current level of 
maturity and readiness of newly introduced technologies.  

 

1.1 Objectives and contributions 
The aim of this paper is thus to define the maturity of an illustrative set of AI technologies through the use of 
Technology Readiness Level (TRL) assessment. We first interpret the nine TRLs (introduced by NASA and 
adapted by the EU) in the context of AI, and then we apply them systematically to different categories in AI, by 

 
2 https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#277a44c060ba  

3 https://www.vox.com/future-perfect/2020/2/14/21063487/self-driving-cars-autonomous-vehicles-waymo-cruise-uber 

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#277a44c060ba
https://www.vox.com/future-perfect/2020/2/14/21063487/self-driving-cars-autonomous-vehicles-waymo-cruise-uber
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choosing one or two examples in each category. In order to do this, we introduce new bidimensional plots, 
known as readiness-vs-generality charts, as a trade-off between how general a technology is versus its 
readiness level. We see that, in many domains, actual systems proven in operational environments are already 
out there, but still showing limited capabilities. For more generality in capabilities, the TRL is still at an earlier 
stage. We include numerous examples of AI technologies in a variety of fields and show their readiness-vs-
generality charts. These are used as exemplars that work as practical guidelines for anyone interested in 
analysing other AI technologies using a similar methodology. The examples selected in this paper are also 
sufficiently representative for a discussion about the future of AI as a transformative technology and how these 
charts can be used for short-term and mid-term forecasting. We start this open discussion at the end of this 
paper. 

 

1.2 Scope 
We potentially consider all AI technologies, as defined by the areas that are usually associated with the 
discipline and that is one of the main reasons why we enumerate a list of AI categories that correspond to 
subfields in AI. In this regard we follow the AI Watch operational definition (Samoili et al., 2020) which defines 
a concise taxonomy that characterise the core domains of the AI research field (as well as transversal topics). 
This categorisation, which proceeds from the absence of a mutually agreed definition and taxonomy of AI, is 
used as a basis for the AI Watch monitoring activity and has been established by means of a flexible scientific 
methodology that allows regular revision. We do not use other characterisations of AI as comprising systems 
that act rationally or act like a human, which may be more restrictive. About the ingredients that make an AI 
technology inherently ready, we cover techniques and knowledge, but also ‘compute’, data and other 
dimensions of AI solutions. However, other factors affecting pace and adoption of a technology (e.g, financial 
costs of deploying solutions, labour market dynamics, economic benefits, regulatory delays, social acceptance, 
etc.) fall outside the scope of this report.  

 

1.3 Intended Audience 
This document is addressed to, on one side, researchers and companies writing project proposals and trying to 
determine which TRLs they will be able to achieve, and, on the other side, to policy-makers and evaluators 
assessing how far a given proposal reaches in the TRL scale. For target readers not familiar with TRLs, this 
document is self-contained and can also serve as an introduction to TRLs and a way of analysing progress in AI 
in terms of TRLs. This approach may represent a more fine-grained (in terms of AI area-specific and, more 
specifically, example-specific readiness analysis) and systematic scale (in terms of data collection, 
implementation and analysis) than using performance in benchmarks, bibliometric analysis or simply 
popularity.   

 

The rest of the paper is organised as follows. Section 2 reviews the notion of technology readiness level, 
borrowed from NASA and adapted in the EU. Section 3 presents the key methodology: we first give the 
contours of what an AI technology is in particular, which is determined more precisely by those that can be 
assigned to one (or more) of the seven AI categories corresponding to subareas in the discipline. This section 
introduces the readiness-vs-generality charts, which are key for understanding the state of different 
technologies, by turning the conundrum between readiness and generality into a trade-off chart. Section 4 
includes one or two examples of AI technologies for each of the seven categories, with a short definition, 
historical perspective and the grades of generality that are used in the charts. Section 5 discusses all charts 
together, finding different dynamics, and considers a prototypical example of AI technology, virtual assistant, 
covering several categories. Section 6 closes the paper with an analysis of future trends in AI according to the 
evolution of TRL for different levels of generality. An appendix follows after the references, including a rubric 
for the TRLs.  
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2 Technology Readiness Levels 
Defined and used on-and-off for NASA space technology planning for many years, the Technology Readiness 
Levels (TRL) constitute a systematic measurement approach that supports consistent assessments, 
comparisons, and delimitations about the maturity of one or more technologies. TRL analysis was originally 
used for aeronautical and space projects and later generalised to any kind of project, covering the whole span 
from original idea to commercial deployment. The key point behind TRLs is that if we consider a specific 
technology and we have information about the TRL in which it is, we can get an idea of how mature it is. 
Therefore, the primary purpose of using TRLs is to help decision making concerning the development and 
transitioning of technology. TRL assessment should be viewed as one of several tools that are needed to 
manage the progress of research and development activity within an organisation.  

The European Commission (EC) slightly adapted the TRL descriptions to be used in the Horizon 2020 Work 
Programmes and calls for proposals4. The current TRL scale used by the EC consists of 9 levels. Each level 
characterises the maturity of the development of a technology, from the mere idea (level 1) to its full 
deployment on the market (level 9) 5.  

In what follows, we present these nine levels as we use them in this work (see the rubric for further details in 
the Appendix, and Table 1 for a summary): 

 

— TRL 1: Basic principles observed (Have basic principles been observed and reported?) Lowest level of 
technology readiness. Research begins to be translated into applied research and development. Examples 
might include paper studies of a technology's basic properties.  

— TRL 2: Technology concept formulated (Has a concept or application been formulated?) Invention begins. 
Once basic principles are observed, practical applications can be invented. Applications are speculative and 
there may be no proof or detailed analysis to support the assumptions. Examples are limited to analytic 
studies.  

— TRL 3: Experimental proof of concept (Has analytical and experimental proof-of-concept been 
demonstrated?) Continued research and development efforts. This includes analytical studies and 
laboratory studies to physically validate analytical predictions of separate elements of the technology. 
Examples include components that are not yet integrated or representative.  

— TRL 4: Technology validated in the lab (Has a component or layout been demonstrated in a laboratory 
(controlled) environment?) Basic technological components are integrated to establish that they will work 
together. This is relatively "low fidelity" compared to the eventual system. Examples include integration of 
"ad hoc" software or hardware in the laboratory.  

— TRL 5: Technology validated in a relevant environment 6 (Has a component or layout unit been 
demonstrated in a relevant —typical; not necessarily stressing— environment?) Reliability is significantly 
increased. The basic technological components are integrated with reasonably realistic supporting 
elements so it can be tested in a simulated environment. Examples include "high fidelity" laboratory 
integration of components. 

— TRL 6: Technology demonstrated in a relevant environment (Has a prototype been demonstrated in a 
relevant environment, on the target or surrogate platform?) Representative model or prototype system, 
which is well beyond that of TRL 5, is tested in a relevant environment. This represents a major step up in a 
technology's demonstrated readiness. Examples include testing a prototype in a high-fidelity laboratory 
environment or in a simulated operational environment. 

 
4 https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016-2017/annexes/h2020-wp1617-annex-ga_en.pdf 

5 Note that TRLs start from applied research, not covering the fundamental research that may lay the foundations of future technologies. The latter may be considered as a 

“TRL 0” (fundamental research), although this zero level is not contemplated in the original TRL scale, and we will not use it. The lowest level used in this paper will always 

be TRL 1. 

6 When, in the descriptions, we talk about “relevant environment” we refer to an environment with conditions that are close enough to or simulate the conditions that 

exist in a real environment (production). 

https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016-2017/annexes/h2020-wp1617-annex-ga_en.pdf
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— TRL 7: System prototype demonstration in operational environment (Has the prototype unit been 
demonstrated in the operational environment?) Represents a major step up from TRL 6, requiring 
demonstration of an actual system prototype in an operational environment. Examples include testing the 
prototype in operational testing platforms (e.g., a real-world clinical setting, a vehicle, etc.) .  

— TRL 8: System complete and qualified (Has a system or development unit been qualified but tools and 
platforms not operationally demonstrated?) Technology proved to work in its final form and under 
expected conditions. In most cases, this TRL represents the end of true system development. Examples 
include developmental test and evaluation of the system to determine if the requirements and 
specifications are fulfilled. By “qualified” we also understand that the system has been certified by 
regulators to be deployed in an operational environment (ready to be commercialised). 

— TRL 9: Actual system proven in operational environment (Has a system or development unit been 
demonstrated on an operational environment?) Actual application of the technology in its final form and 
under mission conditions, such as those encountered in operational test and evaluation. Examples include 
using the system under operational conditions. This is not a necessary end point, as the technology can be 
improved over the months or years, especially as more and more users can give feedback. But it may also 
happen that general use unveils some flaws or safety issues, and the system must be retired, with one or 
more TRLs being reconsidered for the technology. 

 

We may group the above nine TRLs in terms of the environment in which the project is developed. In the first 
four levels (TRL 1 - 4) the technology validation environment is in the laboratory, in levels TRL 5 and 6 the 
technology is being validated in an environment with characteristics similar to the real environment and the 
last three levels (TRL 7 - TRL 9) deal with the testing and validation of the technology in a real environment 7. It 
can be seen graphically in Table 2 below (column “Environment”).  

Given the type of research, technological development and innovation being addressed, it should be noted that 
the first four levels would address the most basic technological research involving, mostly, laboratory results. 
Technological development would then be carried out from the levels TRL 5 - TRL 6 until the first prototype or 
demonstrator is obtained. Technological innovation projects would be between TRL 7 to TRL 9 since 
technological innovation requires the introduction of a new product or service on the market and for this it 
must have passed the tests and certifications as well as all relevant approvals. These levels would involve 
deployment or large-scale implementation. These concepts are shown in the column “Goal” of Table 1. 

If we want to assess the life cycle of the technology to be developed in terms of outputs produced 8, TRL 1 to 
TRL 3 go from a first novel idea to the proof of concept. Subsequently, the technological development would be 
addressed (TRL 4 - TRL 7) until its validation. Finally, we would have its placing on the market and deployment 
(TRL 8 - TRL 9). This is shown in Table 2 below, column “Product/Evaluation”.  

Finally, one should also consider the results that each of the maturity levels would bring. Table 2 below shows 
this in the column “Outputs”. 

Last but not least, although TRLs have several advantages such as providing a unified and common framework 
for the understanding of the status of a technology, as well as helping to make decisions concerning technology 
funding and transition, there are some limitations. Readiness does not necessarily fit appropriateness or 
feasibility: a mature technology (e.g., an automated or self-driving train) may possess a greater or lesser degree 
of readiness to be used in a particular context (e.g., underground 9, airports 10, etc.), but the technology may not 
be ready to be applied to other contexts (e.g., general railways). We will deal with this issue later under the 
concept of generality.  

Some disciplines have introduced variants or specific TRL scales, e.g., changing granularity (Charalambous et al. 
2017), while others have given extra criteria for the particular discipline but keeping the original 9-level scale 
(Bucner et a. 2019). We will stick to the original scale here, and instead of giving a prescriptive refinement of 

 
7 https://www.solarsteam.ca/TRL-file 

8 https://www.cloudwatchhub.eu/exploitation/readiness-market-more-completing-software-development 

9 https://press.siemens.com/global/en/pressrelease/europes-longest-driverless-subway-barcelona-goes-operation 

10 http://www.mediacentre.gatwickairport.com/press-releases/2018/18_03_16_autonomous_vehicles.aspx 

https://www.solarsteam.ca/trl-file
https://www.cloudwatchhub.eu/exploitation/readiness-market-more-completing-software-development
https://press.siemens.com/global/en/pressrelease/europes-longest-driverless-subway-barcelona-goes-operation
http://www.mediacentre.gatwickairport.com/press-releases/2018/18_03_16_autonomous_vehicles.aspx
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each level for AI, we will use the standard rubrics (see appendix) complemented with an exemple-based 
approach, as we explain in the following section. 

 

Table 2: Summary of Technology Readiness Levels (TRLs) according to several characteristics. 

Environment Goal Product / 
Evaluation Outputs TRL Description 

Laboratory 

 
Research 

Proof of concept 

Scientific articles published 
on the principles of the 

new technology 
TRL 1 Basic principles observed 

Publications or references 
highlighting the 

applications of the new 
technology. 

TRL 2 Technology concept 
formulated 

Measurement of 
parameters in the 

laboratory 
TRL 3 Experimental proof of 

concept 

Prototype 

Results of tests carried out 
in the laboratory. TRL 4 Technology validated in 

lab 

Simulation Development 

Components validated in a 
relevant environment. TRL 5 Technology validated in 

relevant environment 

Results of tests carried out 
at the prototype in a 

relevant environment. 
TRL 6 

Technology 
demonstrated in relevant 

environment 

Operational Implementation 

Result of the prototype 
level tests carried out in 

the operating 
environment. 

TRL 7 
System prototype 
demonstration in 

operational environment 

Commercial 
product/service 

(certified) 

Results of system tests in 
final configuration. TRL 8 System complete and 

qualified 

Deployment 
Final reports in working 

condition or actual 
mission. 

TRL 9 
Actual system proven in 
operational environment 
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3 Methodology 
As the purpose of this paper is to determine a way to evaluate the TRLs of different AI technologies, it is key to 
be sufficiently general so that we could potentially consider and review any relevant and significant AI-related 
developments, covering both industry and academia. In this regard, we should first define what we mean by an 
AI technology, and whether this can capture new inventions and developments from all players related to 
innovation and production. Note that AI is not a single technology, but a research discipline in which different 
subareas have produced and will produce a number of different technologies. Of course, we could just 
enumerate a list of technologies belonging or involving AI, but it may well be imbalanced and non-
representative of the full range of areas in AI. Therefore, in order to be able to cover a good representation of 
AI technologies that have spun off from academic or industrial research, we will identify subfields and 
recognise the relevant technologies they comprise.  

It is also very important to recognise that apart from readiness levels, AI is a field that develops cognitive 
capabilities at different generality levels (e.g., voice recognition for different degrees of versatility and 
robustness can have different TRLs). Consequently, we need to assign readiness levels according to different 
levels of generality: a technology that is specialised for a very particular, controlled, domain may reach higher 
TRL than a technology that has to be more general-purpose (performing in a wide range of different scenarios 
and/or different tasks) or even open-ended (performing in uncontrolled scenarios). In order to represent the 
twin importance of these two concepts, in the last subsection we introduce the readiness-vs-generality charts, 
which will be applied over a subset of relevant AI technologies in the following sections. 

3.1 What is an AI technology? 
In any engineering or technological field, a particular technology is defined as the sum of techniques, skills, 
methods, and processes used in the resolution of concrete problems (Crabb 1823). Therefore, technology as 
such constitutes an umbrella term involving any sort of (scientific) knowledge that makes it possible to design 
and create goods or services that facilitate adaptation to the environment, as well as the satisfaction of 
individual essential needs and human aspirations. The simplest form of technology is the development and use 
of basic tools, either in the form of knowledge about techniques, processes, etc., or embedded into 
technological systems.  

Artificial intelligence (or more precisely the technology that emerges from AI) is usually defined as a “replacing 
technology”, or more generally as an “enabling technology” (Gadepally et al. 2019). Enabling technologies lead 
to important leaps in the capabilities of people or society overall. For instance, writing or the computer are 
such enabling technologies, as they replace or enhance human memory, information transmission or 
calculation. Definitely, AI introduces new capabilities, which can replace or augment human capabilities. It is 
important not to confound an AI system with the product of AI itself. For instance, if a generative model 
creates a painting, a poem or the plan of a house, the product the AI technology creates is not the painting, the 
poem or the plan of the house, but the generator, an AI system, which incarnates the autonomous ability. On 
the other hand, a tool such as a machine learning library is not an AI product, but a tool that allows people to 
create AI products; in this case, systems learning from data represent the autonomous ability. 

The technologies that emerge from AI are also catalogued as “general-purpose” (Brynjolfsson et al. 2017) 
defined as those that can radically change society or the economy, such as electricity or automobiles. This 
definition, however, is not necessarily associated with how many different uses a technology has11, so we 
prefer the alternative term “transformative technology”. Consequently, we see AI technologies as 
transformative (Gruetzemacher & Whittlestone 2019). Clearly, a technology cannot be transformative if it does 
not reach critical elements of society or become mainstream. This is not possible if the technology does not 
reach TRL 9. As a result, many promising technologies in AI will only become transformative when they reach 
this TRL 9, and this is one reason why it is so important to assess how far we are from this final level to really 
determine the expected impact of AI on society. 

All this is very well, but we still need a definition of AI technology. Although there are many different views on 
this, the overall research goal of AI is usually associated with the creation of technology that allows computers 
to function in an intelligent manner. However, assessing “intelligent behaviour” is still a matter of controversy 
and active research (Hernández-Orallo 2017). Therefore, we simply assume that an AI technology is any sort of 

 
11 Actually, whether an AI technology is general-purpose or not will be considered by the term “generality” below. Some AI technologies are actually very specific. 
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scientific or industrial knowledge derived from the research and development in any subareas of the field. Of 
course, this depends on how well the contours of AI are delimited (Martínez-Plumed 2018b). Therefore, in this 
document, when we talk about an AI technology, we may indistinctly refer to a particular method used or 
introduced in an AI subdiscipline (e.g., autoencoder), a distinctive application area (e.g., machine translation), a 
specific product (e.g., optical character recognition system), a software tool or platform (e.g., decision support 
system), etc. 

3.2 Categories of AI technologies 
AI is not one big, specific technology. Rather, it consists of several main areas of research and development 
that have produced a variety of technologies. In other areas, the identification of technologies is performed 
through different methods, depending on the goal of the technology: craft or industrial production of goods, 
provision of services, organisation or performance of tasks, etc. However, the common phases in the invention 
and development of a new technology start with the identification of the practical problem to be solved. In the 
case of artificial intelligence, we can assimilate this first stage of the identification of technology with a given 
cognitive capability that we want to reproduce or create mechanically. These capabilities are usually grouped 
into areas of AI. Therefore, before starting to analyse the maturity levels of these different AI technologies, we 
will introduce those main fields of research in AI and what sort of relevant technologies they comprise. This 
categorisation is inspired by the operational definition of AI adopted in the context of AI Watch (Samoili et al., 
2020), which proposes a concise taxonomy that characterises the core domains of AI research, as well as some 
transversal areas. In our case we focus on a list of seven categories, leaving out those more philosophical or 
ethical research areas related to AI. The categories selected are defined as follows: 

 

— Knowledge Representation and Reasoning: This subarea of AI focuses on designing computer 
representations (e.g., data structures, semantic models, heuristics, etc.) with the fundamental objective to 
represent knowledge that facilitates inference (formal reasoning) to solve complex problems. Knowledge 
representation is being used, for instance, to embed the expertise and knowledge from humans in 
combination with a corpus of information to automate decision processes. Some specific examples are IBM 
Watson Health (Ahmed et al., 2017), DXplain (Hoffer et al., 2005) and CaDet (Fuchs et al., 1999). 

— Learning: A fundamental concept of AI research since its inception is the study of computer algorithms that 
improve automatically through experience (Langley, 1996). While the term “learning” refers to more 
abstract, and generally complex, concepts in humans (such as episodic learning), today we tend to 
associate learning by computers with the prominent area of machine learning, in a more statistical or 
numeric fashion, such as implemented in neural networks or probabilistic methods (techniques that are 
now used in many of the other subdisciplines below). Machine learning involves a myriad of approaches, 
tools, techniques, and algorithms used to process, analyse and learn from data in order to create 
predictive models, identify descriptive patterns and ultimately extract insights (Flach 2012, Alpaydin 2020). 
These general algorithms can be adapted to specific problem domains, such as recommender systems (in 
retail or entertainment platforms), understanding human behaviour (e.g., predicting churn) or classify 
images or documents (e.g., filtering spam). 

— Communication: Natural Language Processing (NLP) is the AI subfield concerned with the research of 
efficient mechanisms for communication between humans and machines through natural language (Clark 
et al. 2013, Goldberg 2017). It is mainly focused on reading comprehension and understanding of human 
language in oral conversations and written text. There is considerable commercial interest in the field: 
some applications of NLP include information retrieval, speech recognition, machine translation, question 
answering and language generation. Today, NLP, for instance, can be used in advertising and market 
intelligence to monitor social media, analyse customer reviews or process market-related news in real time 
to look for changes in customers’ sentiment toward products and manufacturers. 

— Perception: Machine perception is the capability of a computer system to interpret data from sensors to 
relate to and perceive the world around them. Sensors can be similar to the way humans perceive the 
world, leading to video, audio, touch, smell, movement, temperature or other kind of data humans can 
perceive, but machine perception can also include many other kinds of sophisticated sensors, from radars 
to chemical spectrograms, to massively distributed simple sensors coming from the Internet of Things 
(IoT). Computer vision (Szeliski 2010) has received most attention in the past decades and deals with 
computers gaining understanding from digital images or, more recently, videos. Many applications are 
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already in use today such as facial identification and recognition, scene reconstruction, event detection or 
video tracking. Computer audition (Gold et al. 2011) deals with the understanding of audio in terms of 
representation, transduction, grouping, use of musical knowledge and general sound semantics for the 
purpose of performing intelligent operations on audio and music signals by the computer. Applications 
include music genre recognition, music transcription, sound event detection, auditory scene analysis, 
music description and generation, emotion in audio, etc. Speech processing is covered by both perception 
and communication, as it requires NLP. Finally, tactile perception, dexterity, artificial olfaction, and other 
more physical perception problems are usually integrated into robotics (see below), but are needed in a 
wide range of haptic devices too and many other applications. 

— Planning and search: This AI subject related to decision theory (Steele et. al., 2016) is concerned with the 
realisation of strategies or action sequences aiming at producing plans or optimising solutions for the 
execution by intelligent agents, autonomous robots, unmanned vehicles, control systems, etc. Note that a 
planning problem can be reduced to a search problem (Russell & Norvig, 2002). However, the actions to be 
planned or the solutions to be optimised are usually more complex than the outputs obtained in 
classification or regression problems, due to the multidimensional and structured space of solutions (e.g., a 
Markov Decision Process). In terms of applications, although planning has had real-world impact in 
applications from logistics (Kautz et al., 2000) to chemical synthesis (Segler et al. 2018) or health 
(Spyropoulos, 2000), planning algorithms have achieved remarkable popularity recently in games such as 
checkers, chess, Go and poker (Silver et al., 2016, 2017; Brown et al., 2019), usually in combination with 
reinforcement learning.  

— Physical interaction (robotics): This area deals with the development of autonomous mechanical devices 
that can perform tasks and interact with the physical world, possibly helping and assisting humans. 
Although robotics as such is an interdisciplinary branch of engineering and science (including remote-
controlled robots with no autonomy or cognitive behaviour), AI typically focuses on robots (Murphy 2019) 
with a set of particular operations and capabilities: (1) autonomous locomotion and navigation, indoor or 
outdoor; (2) interaction, working effectively in homes or industrial environments, perceiving humans, 
planning their motion, communicating and being instructed to perform their physical procedures; and (3) 
control and autonomy, including the ability for a robot to take care of itself, exteroception, physical task 
performance, safety, etc. As examples of well-known applications of robots with AI we find driverless cars, 
robotic pets or robotic vacuum cleaners.  

— Social abilities (collective intelligence): The broad category covering social abilities and collective 
intelligence has to do with Multi-Agent Systems (MAS), Agent-Based Modelling (ABM), Swarm Intelligence 
as well as other related topics such as Game Theory (in auctions, networks, economics, fairness equilibria, 
etc.)., where collective behaviours emerge from the interaction, cooperation and coordination of 
decentralised self-organised agents (Shoham et al., 2008). In general terms, here we include those 
technologies that solve problems by distributing them to autonomous “agents” that interact with each 
other and reach conclusions or a (semi-)equilibrium through interaction and communication. This area 
overlaps with learning, reasoning, and planning. For instance, recommender engines are well-known 
applications where group intelligence emerges from collaboration (Chowdhury et al., 2010). 

 

The above categorisation is sufficiently comprehensive of the areas of AI (and the capabilities that are being 
developed in the subject) to have a balanced first-level hierarchy where we can assign specific technologies to. 
Of course, there will be some technologies that may belong to two or more categories (we will include an 
example in the discussion), but we do not expect to have technologies that cannot be assigned to any category. 
Finally, note that AI technologies may be also categorised in the form of applications or programmes developed 
to perform specific tasks (weak AI). Actually, AI has been used to develop and advance numerous fields and 
industries and, therefore, we can find a wide range of examples of AI applications in areas such as healthcare 
(e.g., medical diagnosis), marketing (e.g., online assistants), automotive and transportation (e.g., self-parking 
and cruise controls), finance (e.g., electronic trading platforms), media (e.g., deep fakes), military (e.g., 
unmanned combat aerial vehicles), education (e.g., digital assistants/tutors), and more. These are all high-
profile examples which, underneath, are using different precise AI techniques (belonging to the above list of 
seven categories) to successfully perform their tasks. In this sense, whatever the categorisation we use for AI 
technologies, any subsequent TRL analyses would draw similar conclusions as we are following an example-
based approach for TRL evaluation choosing one or two examples in each of the considered categories. 
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3.3 TRL assessment in AI: readiness-vs-generality charts 
In order to assess the readiness levels of AI technologies, we also face an important dilemma between the 
readiness level and the ability to act and successfully perform in real-world, open-ended (uncontrolled) 
scenarios. If we describe a generic technology (e.g., a robotic cleaner), we will have a very different assessment 
of readiness depending on whether the specification of the AI system requires more or less capabilities12. For 
instance, if the robotic cleaner is expected to clean objects, by removing them and placing them back, and also 
to cover vertical and horizontal surfaces, when people and pets are around, then the readiness level is 
expected to be lower than a vacuum cleaner roaming around on the floor, with a particularly engineered 
design that avoids some of the problems of a more open-ended situation. Of course, one can specify all these 
technologies separately, and identify different clusters of functionalities, as we see below in Figure 1 (left). 
These technologies are mostly independent and can reach different TRLs (shown in different darkness levels). 
Progress would be analysed by seeing for how many of them the TRLs increase. However, the overlaps are not 
systematic and high TRLs could be obtained by covering the whole space with very specific solutions.  

 

          

Figure 1. Left: we can consider different instances of the technology covering different niches, each of them solving a set of 
tasks, situations and conditions that are not hierarchically related to each other. Each cluster of functionality achieves a 
different TRL (shown with different darkness levels) that is mostly independent of the other niches. Right: we choose a 
decomposition of the space such that each instance of the technology that we analyse is a superset of the previous 
instances. We call these instances “levels of generality”, as they are broader than the previous ones, containing them. 

  

A different way of organising this space is a hierarchical generality model of technology, as illustrated in Figure 
1 (right). In many areas, as we will see in the following sections, there is some meaningful way (many times 
more than one) to arrange the space of tasks, situations, and conditions in a hierarchical way. If we are able to 
select one hierarchy that is a total order (i.e., each pair of instances are comparable), then any instance is a 
subset of a more general instance and, thus, we will be able to talk about different levels of generality of the 
same technology. This ensures that no smaller task or situation is left out. Also, the idea of levels is a good 
representation of the fact that, very often, progress is cumulative. 

Note that the higher generality is, the lower the expected readiness level becomes and vice versa. This will help 
understand the common situation where a technology is stuck at TRL 7, but reducing the scope of the 
technology, i.e., less general, or focusing on a specific functionality can lead to a product with TRL 9. Robotic 
vacuum cleaners are a good example of this. By limiting the scope of the technology, whether it be the task 
(only floor vacuuming) or the range (simple trajectories), the system is more specialised (or narrow), with the 
successful outcome that these devices are found in many homes today (TRL 9).  

 
12 Note that we should not confuse capability (or functionality) with sophistication (or complexity): using a more sophisticated system does not guarantee further 

capabilities.   
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Another advantage of the hierarchical generality model of technology is that the total order allows the levels to 
be considered as an ordinal magnitude that can be represented in a Cartesian space along with another ordinal 
magnitude, the TRL. Thus, we can use two-dimensional plots13 (readiness-vs-generality charts) with the degree 
of generality anticipated on the x-axis and the readiness level (the TRLs) on the y-axis. Figure 2 illustrates this 
idea with an example. 

 

Figure 2. Readiness-vs-generality charts showing the different levels of capabilities (more specific to more general) on the x-
axis and TRLs on the y-axis. Typically, the points will form a “curve” with a descending curve. Progress towards really 
transformative AI will be achieved by moving this curve to the top right. 

 

As we move right on this plot, we have a system or application (i.e., an AI technology) that is more generally 
applicable. As we go up the plot, product readiness increases, in term of being used in the real world. Such a 
plot can be applied to any technology (e.g., a pencil is both general and ready, as a writing device), but 
determining the balance between generality and readiness is key in artificial intelligence, since many 
technologies sacrifice generality for performance in a particular niche of application to reach some narrow 
readiness. Only reaching the top right corner will generate really transformative technology14. For instance, a 
robotic vacuum cleaner moving around our floors has reached TRL 9 but has not transformed society. A fully-
fledged robotic cleaner would do so, affecting millions of jobs and the way homes are organised for cleaning, 
recycling and even decoration.  

The shape of these charts may reveal some important information. A steep decreasing curve that reaches high 
TRL levels for only low capabilities may show that important fundamental research is required to create —
probably new— AI technologies that reach higher levels of generality. A flat curve that reaches only medium 
TRL for a wide array of capabilities may mean that reaching a commercial product or general use may depend 
on issues related to safety, usability or societal expectations about the technology, and not so much about 
rethinking the foundations of the technology. Nevertheless, a case-by-case analysis may lead to different 
interpretations. The next section presents the respective readiness-vs-generality chart for an illustrative set of 
AI technologies.  

Before presenting the case-by-case analysis, we need to fix some criteria to determine the x-axis and the 
precise location of each point on the chart. Unfortunately, there is no standard scale for levels of generality 
that could be used for all technologies. For each technology, levels of generality are established by looking at 
the historical evolution of the technology, which means that some levels (e.g. word recognition for reduced 
vocabularies) did not get traction, while others (e.g., speech recognition for reduced vocabularies) can be 

 
13 Both magnitudes (generality and TRL) are ordinal rather than quantitative, so technically a grid would be a more accurate representation than a Cartesian plot. Also, we 

connect the points with segments, but this does not mean that the intermediate points in these segments are really meaningful. 

14 Here we refer to the concept of Radically Transformative AI (RTAI) from (Gruetzemacher et al., 2019) which is referred to as “AI capabilities or products which lead to 

societal change comparable to that precipitated by the agricultural or industrial revolutions”. We may find examples of RTAI in the literature such as high-level machine 

intelligence (Grace et al., 2018), comprehensive AI services (Drexler, 2019) or a broadly capable system (Gruetzemacher, 2019). 
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identified as an early milestone in this technology. In all technologies, we can identify different dimensions that 
can help us define the levels. For instance, two dimensions are commonly involved in the definition of the 
levels of generality: how many situations the technology can cover (environments, kinds of problems), which 
can be associated with task generality, and the diversity of conditions for these situations (e.g., quality of the 
information, noise, etc.), which can be associated with robustness. The first dimension (i.e. situation covered) 
can unfold into two or more parameters (e.g. for speech recognition: size of vocabulary and number of 
languages). In our hierarchical generality model of technology, we merge all of them into one single ordinal 
level. There are of course cases where more challenging versions of the technology cannot easily be reduced to 
such a unidimensional scale, but we can still try to find a scale of levels that go from lower to higher generality. 
In a few cases, we will simply reuse some pre-established standard levels (usually defined at a development 
level rather than at a capability level) that have been used in the past for that particular technology, or even 
used as standards, as happens with machine translation (see the four basic types of translation (Hutchins et al. 
1992)) and self-driving cars (see the US National Highway Traffic Safety Administration (NHTSA) definition of six 
levels of car autonomy70).  

Once the space is defined by the generality levels and the nine readiness levels, we locate the points in the 
following way. First, we follow the rubric in the appendix. Second, for each level, we identify the highest TRL 
according to the best player (research team or company) as per 2020. The reasoning behind this choice —e.g., 
instead of choosing an average— is due to the fact that on AI technologies being digital, which means that they 
are quickly imitated by other players. Indeed, the possible slowing factors such as patents are usually 
compensated by open publication platforms such as arXiv 15 and open software platforms such as github16, not 
to mention the common mobility of key people in AI between academia, industry and especially key tech 
giants, bringing the technology with them, and spreading it to other players. 

Finally, even using this generality-vs-readiness space and the rubric in the appendix, there will be cases where 
we struggle to assess the TRL precisely. This can be caused by partial information about the technology, a 
definition of the TRLs that is not crisp enough, or the literature-based definitions for the levels of generality. It 
may also be the result of the authors of this report not being experts in each and every subarea in AI (although 
some detachment may also be positive). In other cases, this is caused because our assessments have been 
overseen by several experts (see the list in the acknowledgements at the beginning of the document) and 
occasionally there were some minor discrepancies. For all these cases we will use vertical error bars. We hope 
that some of our assessments could be replicated by other groups of experts and build these bars as proper 
confidence bands from the variance of results from a wider population of experts.  

3.4 Methodology summary 
The methodology developed in this report to define the maturity of AI technologies through the use of 
Technology Readiness Level (TRL) assessment covers the identification of AI technologies through to the 
assessment of their maturity levels: 

1. Identification of relevant AI technologies. Based on the categorisation of AI technologies in section 
3.2, we have assigned specific (illustrative) technologies to each AI area. The selection of technologies 
is based on our own experience and knowledge about their relevance and “general use”. Furthermore, 
for some specific cases, we have also considered the associated levels of research activity (e.g., 
number of related papers, results, benchmarks, challenges, tasks, etc.) behind a particular technology. 
For the latter we have used the information provided in the AIcollaboratory (Martínez-Plumed et al. 
2020a, 2020b, 2020c).  

2. Analysis of the TRLs for AI technologies. We introduce and use two-dimensional plots called 
readiness-vs-generality charts in which we define the degree of generality of specific AI technologies 
on the x-axis vs the readiness level (the TRLs) on the y-axis. For each technology we define the 
different levels of capabilities based on a comprehensive analysis of the related scientific and 
industrial literature. 

3. Expert panel evaluation. Our initial assessment undergoes a thorough assessment by an independent 
panel of specialists, recognised in at least one of the technologies (or areas) addressed. The experts 
are asked to follow the rubric in Appendix A to estimate the particular level in the scale for specific 

 
15 https://arxiv.org/ 

16 https://github.com/ 

https://arxiv.org/
https://github.com/
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technologies. Furthermore, experts provide further information on the technology in question, such as 
signposting the most relevant research documents and publications which may help focus the analysis 
onto the most appropriate works, highlighting also any pertinent issues relating to the different 
technologies.  

4. Integration and evaluation. Both our evaluations and the (qualitative) feedback and discrepancies 
provided by the panel of experts are then used to derive error bars in the readiness-vs-generality 
charts for each technology. The results are then summarised, and a briefing is produced subjected to 
further series of reviews and revisions. Note that a wider group of experts, using more extensive 
training on the TRLs and usual methods for aggregation or consensus of opinions (such as the Delphi 
method (Bernice 1968)) would bring more robustness to the TRL estimates, including a systematic way 
of deriving the error bars.   
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4 TRL Assessment for Representative AI Technologies 
In this section, we select some illustrative AI technologies to explore how easy and insightful it is to determine 
the TRL for each of them. We will examine the technologies under the categories presented in section 3.2, and 
we use readiness-vs-generality charts for each of these technologies.  

 

4.1 Knowledge representation and reasoning 
Reasoning has always been associated with intelligence, especially when referring to humans. It is no wonder 
that the first efforts in AI were focused on building systems that were able to reason autonomously, going from 
some premises to conclusions, as in logic. We select one AI technology in this category, expert systems, 
because of its historical relevance and representativeness of reasoning systems.  

4.1.1 Technology: Expert Systems 

Expert systems, as introduced in the 1980s, is a traditional AI technology that humans can use to extend or 
complement their expertise. Expert systems are usually good at logical reasoning and receive inputs as facts 
that trigger a series of chain rules to reach some conclusions (typically as facts or statements). Expert systems 
are still fuelling many AI systems today, sometimes under the name “knowledge-based systems”, such as some 
digital assistants or chatbots. In the early days of expert systems, the rules, i.e., the expertise encoded by the 
expert system, were usually created by experts manually, but nowadays knowledge can be extracted from 
document repositories or other sources such as the web or Wikipedia (Mitchell et al., 2018; Gonçalves et al., 
2019). Modern systems can also revise their knowledge more easily than it was possible in the past. Such 
systems can deal with vast amounts of complex data in many application domains (Wagner 2017). 

Figure 3. Readiness-vs-generality chart for expert system technology. While TRL 9 has clearly been reached for narrow 
systems with static and certified knowledge (early commercial systems and many expert systems still in place today), a very 
low TRL is estimated for expert systems dealing with general, broad knowledge and common sense. Current development is 
taking place at an intermediate level of expert systems, where knowledge is still narrow, but is changing, uncertain and 
updatable. Error bars are shown at this level because of doubts in the autonomy of some of these systems (e.g., IBM 
Watson).  

 

Because of the evolution of expectations and capabilities of expert system technology, the x-axis of Figure 3 
uses three different generality levels of expert systems:  
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— Level 1 - narrow static and certified knowledge: manually codifying narrow expertise knowledge, reason 
through bodies of specific knowledge, explain the reasoning, draw complex conclusions, etc.  

— Level 2 - narrow dynamic and uncertain knowledge: automated knowledge refinement (belief revision, 
reason maintenance (Reinfrank 1988), etc.), reason under uncertainty, actionable insights, etc. 

— Level 3 - broad knowledge, common sense and meta-cognition: introspective and broad knowledge, 
common sense, creative responses. 

 

For the first level, early academic systems such as MYCIN (Shortliffe 2012) or CADUCEUS (Banks 1986) 
progressed from research papers to prototypes in relevant environments (TRL 7) in the 1970s and 1980s. 
Because of the excitement and expectations of expert systems in the 1980s, some commercial systems were 
used in business-world applications, reaching TRL 9. For instance, SID (Synthesis of Integral Design) was used 
for CPU design (Gibson et al, 1990). The success of former Expert Systems in TRL 9 also unveiled some 
limitations (e.g., narrow domains, manual knowledge acquisition, lack of common-sense knowledge, no 
revision, etc.). Today, many knowledge-based systems, usually coding business rules in database management 
systems as procedures or triggers, actually work as expert systems at this first level. Consequently, even if the 
term expert system is in disuse today, systems with these capabilities are still operating at TRL 9, as shown in 
Figure 3.   

The second level represents a new level of expectations raised after the limitations of the 1980s. A new 
generation of expert systems was sought to overcome the knowledge acquisition bottleneck and be robust to 
change and uncertainty. They have been integrating automated rather than manual knowledge acquisition, and 
are deployed in a variety of industrial applications, such as health/diagnosis (Hoffer et al., 2005), 
control/management/monitoring (Jayaraman et al., 1996), stock markets (Dymova et al., 2012), space 
(Rasmussen 1990), etc. However, many of these systems do not meet the expectations of robustness and self-
maintenance completely, and some of the features of level 2 are not fully autonomous (requiring important 
human maintenance). Because of this, we consider them more like market-ready research being tested and 
demonstrated in relevant environments, and thus covering different TRLs (from TRL 5 to TRL 9, ranging from 
prototypes to commercial products). This is reflected by the error bars in the figure. This can also be applied to 
a new generation of systems such as IBM Watson (Ahmed et al., 2017), which has already been validated and 
demonstrated in specific operational environments (e.g., health). Watson, in a limited sense, could be 
understood to be a powerful expert system, also combining a number of different techniques for natural 
language processing, information retrieval, hypothesis generation, etc.  

At the third level of generality, we are talking about systems incorporating broad knowledge and common 
sense reasoning over that knowledge, including reasoning about what the system does not know (beyond 
assigning probabilities to their conclusions, as Watson does).  While capturing and revising knowledge 
automatically for a wide range of domains has been illustrated in research papers and lab prototypes (Mitchell 
et al., 2018), nothing resembling true common sense reasoning has been shown even at a research level17, and 
that is why we assign TRL 1 to this level (although it is more likely a fundamental research stage even before 
this level). 

The schism between levels 2 and 3 (and the lack of progress on this schism in the past years) suggests there is 
still fundamental research to be done until AI systems exhibit more human-like common sense reasoning, being 
capable of predicting results and drawing conclusions that are similar to expert humans.  

Of course, expert systems are not the only technology in the knowledge representation and reasoning 
category. Automated theorem provers, Boolean satisfiability problem (SAT) solvers, belief revision engines, 
truth maintenance systems, etc., as well as other different types of deductive and inference engines, are 
successful technologies that could also be analysed to determine their TRLs at different generality levels. 

 

 

 
17 Despite the recent success of NLP systems in Winograd Schema Challenge (context-based pronoun disambiguation problems) (Levesque et al, 2012), an alternative of 

the Turing Test (Turing, 1950), several criticisms question whether improved performance on these benchmarks represents genuine progress towards common-

sense-enabled systems (see, e.g., Trichelair et al., 2019)  
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4.2 Learning 
Learning is probably the most distinctive capability of systems that adapt to their environment. Systems that do 
not learn are brittle and cannot cope with any situation that was not accounted for beforehand. In the case of 
AI technologies, we want to consider systems that are not the result of the capability (e.g., a static classifier 
built with a machine learning technique that is no longer learning), but systems that continually improve with 
experience. We choose two technologies in this category: recommender systems that are constantly updating 
their recommendations as new data comes in, including new items, and more sophisticated apprentices by 
demonstration, which learn by observing how a (human) expert performs a task. Both are good examples of AI 
technologies that represent learning systems.  

4.2.1 Technology: Recommender Systems 

A recommender system (Ricci et al., 2011) is a type of information filtering system that aims to provide a way 
to quickly show users or users different types of topics or information items (e.g., movies, music, books, news, 
images, web pages, etc.) that they are looking for as well as to discover new ones that may be of their  interest. 
A recommendation service should help cope with the flood of information by recommending a subset of 
objects to the user by predicting the “rating” or “weight” that the user would give to them. Recommender 
systems are based on the idea of similarities between items (i.e., an item is recommended based on interest of 
a similar item) or users (i.e., an item is recommended based on what a similar customer has consumed), or a 
combination between them both. 

Figure 4: Readiness-vs-generality chart for recommender engines technology. TRL 9 reached for those very well-known 
recommender systems based on user feedback and used in a variety of areas such as playlist generators for video and music 
services or product recommenders.  Current developments going beyond explicit feedback and using non-explicit latent 
attributes have already demonstrated their value in operational environments. Lower TRLs (TRL 2 to TRL 6) are estimated 
for more complete and flexible recommender systems being able to perform deeper personalisation using various 
dimensions of data. Finally, recommendation content generation would be a future direction in the field, with still little or 
no research nowadays.  

 

Because of the evolution of expectations and capabilities of recommender systems technology, the x-axis of 
Figure 4 uses four different generality levels described in the following: 

 

— Level 1 - Direct feedback-based recommendations: Personalised recommendation based on explicit 
rankings/feedback (click, buy, read, listen, watch...) over users/items and contexts. 
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— Level 2 - Indirect feedback-based recommendations: Recommendations beyond explicit feedback with 
latent attributes representing categories that are not obvious from the data. 

— Level 3 - Context-aware highly personalised recommendation: User-based and context-aware 
personalised optimisation/recommendation balancing competing factors such as diversity, context, 
evidence, freshness and novelty, and using direct/indirect feedback, adding value-aware 
recommendations, etc. 

— Level 4 - Content generation recommendation: Recommendations of what new items/content should be 
created to fill missing needs and add value. 

 

For the first level of generality, we find those recommender systems able to find explicit similarity in users and 
items (making use of either or both collaborative filtering and content-based filtering (Ricci et al., 2011)) based 
on explicit feedback. Here we find a number of commercial systems that are or have been used in business-
world applications, reaching TRL 9. For instance, we find the Pandora’s Music Genome Project (Howe 2009) or 
the Stitch Fix’s fashion box 18 as examples of content-based recommender systems. Also, the engines used in 
Amazon, Netflix (Gomez-Uribe, 2015), YouTube (Davidson, 2010), Spotify 19 or Linkedin (Wu et al., 2014) were 
(at the beginning of their development) examples of collaborative filtering-based approaches 20. Finally, there 
are also popular recommender systems for specific topics like restaurants and online dating as well as to 
explore research articles and experts (Chen et al., 2011), collaborators (Chen et al., 2015), and financial services 
(Felfernig et al., 2017). 

For the second level, more effective methods are currently being developed to look at similarity beyond explicit 
feedback as well as latent attributes (e.g., by using matrix factorization (Koren et al., 2009) or deep learning 
embeddings (Zhang et al., 2019)) revealing relationships that have not yet been realised. Research behind 
these more advanced and flexible approaches has increased exponentially in the past recent years 21 with 
notable examples such as those from Zillow 22, Netflix 23  and Airbnb (Grbovic, 2018) already demonstrated with 
success in operational and real-world environments (TRL 9). 

Although successful, recommender systems still need to account for and balance multiple (competing) factors 
such as diversity, context, popularity/interest, evidence, freshness and novelty (Amatriain et al. 2016), to, for 
instance, make sure the recommendations are not biased against certain kinds of users and thus going beyond 
being simple proxies of accurate rating predictors. Furthermore, multi-dimensional rating would also be a step 
beyond (Shalom et al.,2016) for recommender systems being able to optimise and personalise the whole user 
experience (e.g. using a product, website, platform, etc.) via deep personalisation and using various dimensions 
of data. In this regard, recommendations and optimisations should be based on the understanding of a user’s 
browsing or attention behavior. All this would correspond with the third level of generality in Figure 4, being 
still a matter of research and prototyping (TRL 2 to TRL 6) with some approaches and examples found in the 
literature (see e.g., Leonhardt et al. 2018, Ahmed et al. 2012, Kang et al. 2019). 

Regarding the fourth level of generality, we are including further innovations for recommendation systems 
such as recommending new items/products/services/contents that do not exist and should be created to fill 
missing needs aiming at increasing, for instance, the value of the company or platform. Generating the content 
of a recommendation is still a research matter, including proof-of-concepts validated in lab (TRL 2 to TRL 4) 
with some ideas already published such as automatic food menu generation (Bianchini et al. 2017), music 

 
18 https://algorithms-tour.stitchfix.com/ 

19 https://towardsdatascience.com/how-spotify-recommends-your-new-favorite-artist-8c1850512af0 

20 Note that, currently, some of these companies use more advanced neural-based approaches (see e.g., Covington et al, 2016) 

21 E.g.,  The leading international conference on recommendation systems (RecSys) started to organize regular workshops on deep learning in 2016. 

22 https://www.zillow.com/tech/embedding-similar-home-recommendation/ 

23 https://help.netflix.com/en/node/100639  

https://algorithms-tour.stitchfix.com/
https://towardsdatascience.com/how-spotify-recommends-your-new-favorite-artist-8c1850512af0
https://www.zillow.com/tech/embedding-similar-home-recommendation/
https://help.netflix.com/en/node/100639
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generation (Johansen 2018), simple fashion design 24 (Kang et al. 2017, Kumar and Gupta 2019) or even 
artificially generated comments (Lin et al. 2019). 

As a final note, and in terms of current advances, some authors (Ekstrand et al. 2011, Konstan et al. 2013, Beel 
et al. 2016) have found that current research in recommender systems is stagnated because it is not providing 
meaningful contributions neither in terms of more advanced capabilities, nor regarding practical applications. 
The main reasons regarding the little impact of the research in the area are mainly the difficulty to reproduce 
recommender systems’ research results, the lack of consistent and standard evaluations, the inexistence of 
comprehensive experiments and the necessity of establishing best-practice guidelines for recommender-
systems research. Hence, practitioners and operators of recommender systems may find little guidance in the 
current research when looking for which recommendation approaches to use to address their specific tasks and 
problems.    

4.2.2 Technology: Apprentice by Demonstration 

Recommender systems are complex systems involving different types of information. However, in some way, 
they do not differ much from a classification problem powered by statistical correlations and patterns. In the 
case of humans, learning is usually associated with more complex phenomena, such as episodic learning, the 
creation of abstract concepts and the internalisation of new procedures. Many of these areas are still at a 
preliminary stage in AI (as they have always been!), but some others are beginning to show more progress in 
recent years. Learning by demonstration (Schaal 1997) is one of these types of learning that is more complex 
than a classical supervised or unsupervised machine learning problem, or even a generative model. Learning by 
demonstration, and the related learning by imitation (Miller et al., 1941), is the way in which culture is 
transmitted in apes, including humans. It is also very relevant in the workplace, as many tasks are just taught 
by an expert illustrating a procedure to an apprentice, sometimes with little verbalised instruction involved. 
More recently, with the popularity of short videos demonstrating simple tasks such as fixing a bike brake to 
cooking a fried egg, learning by demonstration is becoming the preferred way of instruction for many people. 
Consequently, progress in this area could have a significant impact on society. 

Learning by demonstration is more technically defined in AI as learning a procedure or a task from traces, 
videos or examples of an operator (usually a human) performing the task. We limit our study here to tasks 
where the actions are discrete and relatively simple, to avoid overlapping with the robotics category. For 
instance, a videogame with a finite number of “action keys” is an example of this technology, or a spreadsheet 
automation that learns a simple programme snippet to perform an operation. A full operator in a factory is 
ruled out here because all the propriosensory complexity being involved. Consequently, we are referring to a 
technology that is usually known more specifically as programming by demonstration (Cypher 1993) or 
programming by example (Lieberman 2001). However, more recently, the combination of deep learning with 
reinforcement learning has developed new techniques, such as deep reinforcement learning, that are able to 
learn from the interaction with the environment. Soon, some of these techniques evolved to take advantage of 
traces (Sutton et al., 1998), or recorded interactions performed by a human or an artificial expert (Silver et al., 
2016,  Mnih et al., 2016, Harb et al., 2017).  

 
24 https://towardsdatascience.com/the-future-of-visual-recommender-systems-four-practical-state-of-the-art-techniques-bae9f3e4c27f 

https://towardsdatascience.com/the-future-of-visual-recommender-systems-four-practical-state-of-the-art-techniques-bae9f3e4c27f
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Figure 5: Readiness-vs-generality chart for learning by demonstration. We see that level 1 reaches TRL 9, especially because 
of the possibilities of deep reinforcement learning using human traces. level 2 also reaches TRL 9 in some domains, such as 
spreadsheet automation (although not in others, but we represent the maximum here, as we do in all other charts). Finally, 
level 3 requires learning systems that can process background knowledge in any domain, which is still at a very preliminary 
stage (TRL 2) with the principles and their envisaged applications. 

 

 

The x-axis of Figure 5 uses three different generality levels, defined as follows: 

 

— Level 1: Many examples, no background knowledge or common-sense needed for a particular domain: In 
this ‘simple’ case, a system can learn from a particular configuration of perceptions and actions (e.g., video 
games) and learn from thousands of traces of humans (or other systems) succeeding or failing at the task. 
Note that this is supposed to be more efficient than learning without traces, or necessary in some 
environments for which we lack a simulator, and a database of recorded cases is required (e.g., protocols, 
treatments, etc.). 

— Level 2: Very few examples, background knowledge needed, working for a particular domain: When few 
examples are available, learning needs to rely on background knowledge. Here, we assume that only one 
domain (i.e., particular scenario or task) can be handled, by embedding sufficient background knowledge 
into the system or in the domain-specific language used for the representation of the policies and 
procedures. 

— Level 3: Very few examples, background knowledge needed, working for any domain: In this case we 
want the system to handle virtually any domain. In order to reach this generality, we need the flexibility of 
changing the background knowledge from one domain to another, or a system that has wide knowledge 
about different areas, so that it can understand traces, videos, demos, etc., for different domains. For 
instance, the system should be able to automate a task, e.g., in a sales office or in a newspaper editorial 
office.  

 

Given these levels, we can now assign the TRLs. For level 1 we can use as evidence the progress of deep 
reinforcement learning from traces. For instance, AlphaGo (Silver et al., 2016) was able to learn how to play go 
but used some hints from human traces. Similarly, many deep reinforcement learning algorithms use traces 
(Mnih et al., 2016, Harb et al., 2017). Because new variants of these algorithms are open source and already 
implemented 25, with more modest resources than in the original paper, this puts us in TRL 9, at least for the 

 
25 See, e.g., https://github.com/openai/baselines 

https://github.com/openai/baselines
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video game case. If we want to create an agent that can learn to play different Arcade games from observation, 
this can be done, and no background knowledge about the games is needed.  

In level 2, the challenge comes from the limited number of examples. Humans usually need just one 
representative example to get the idea of a new task. This is possible because they have contextual information 
and background knowledge about the elements and basic actions that appear in the demonstrated task. This 
domain knowledge can be hardcoded into the system, either as rules or in the language itself used to express 
the learned procedures. We also assign a TRL 9 because of some successful systems in the domain of 
spreadsheet automation. In particular, Flash Fill (Gulwani et al., 2012) is based on a particular domain specific 
language that enables Microsoft Excel users to illustrate a simple formula with very few examples. The same 
idea has been brought to other domains, although each system requires a particular DSL for each domain 
(Polozov et al., 2015). 

Finally, for level 3, we would like the same system to be able to learn tasks in different domains. This would 
mean that this apprentice could be applied for traces or videos in any domain and could replicate the task 
reliably. This level is still in its inception, even if there has been research for decades (Muggleton 1992; Olsson 
1995; Ferri et al., 2001; Gulwani et al. 2015). While some systems have been applied to toy problems, we do 
not find evidence beyond having the technology concept formulated, and this is why we assign TRL 2.  

Clearly, progress in this final level would have a major impact in many daily tasks that are repetitive and would 
not need programming or writing scripts or code snippets by hand. Such a system would have a transformative 
effect on the labour market and the work of programmers, among other professions. Because the challenge 
may depend on symbolic representations (for knowledge representation) and it has been explored for decades, 
we do not expect a breakthrough to high TRL 9 in the near-term future. 

 

4.3 Communication 
Computers exchange information all the time, but their format is predefined and formal. However, humans 
exchange information and knowledge in much more complex ways, especially through natural language. One 
big challenge of computers and AI has been developing tools that allow humans and machines to communicate 
more smoothly in natural language, and more generally about tools that can do some tasks related to language 
processing. We have chosen two AI technologies that are very significant in natural language processing: 
machine translation and speech recognition. These are two examples of AI technologies that represent systems 
that (help) communicate.  

4.3.1 Technology: Machine Translation 

Machine translation (MT) is the automatic translation of texts from one language into another language by a 
computer programme. While human translation is the subject of applied linguistics, machine translation is seen 
as a subarea of artificial intelligence and computer linguistics. At a basic level, although originally machine 
translation was based on simple substitutions of the atomic words of one natural language for those of 
another. Through the use of linguistic corpora, more complex translations can be attempted, allowing for more 
appropriate handling of differences in linguistic typology, sentence recognition, translation of idiomatic 
expressions and isolation of anomalies. This translation process can also be improved thanks to human 
intervention, for example, some systems allow the translator to choose proper names in advance, preventing 
them from being translated automatically. MT services have become increasingly popular in recent years, and 
there is an extensive range of MT software and special tools available, enabling fast processing of large 
volumes of text. 
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Figure 6: Readiness-vs-generality chart for Machine Translation (MT) technology. TRL 9 has been reached for the first two 
types of MT (MAHT and HAMT). Currently, FATM approaches have reached a crucial moment, with powerful market-ready 
products such as Google Translator or DeepL, and a lively research community developing and testing new systems at the 
expense of the improvements in neural-based approaches. The two FAHQT levels, either at controlled or uncontrolled 
scenarios, are estimated to have very low TRW due to the current limitations in the area of MT.   

 
In terms of capabilities of MT, we define five levels of machine-assisted translation (see Figure 6) following the 
different types of translations already defined in the literature (Hutchins et al. 1992). While the level of 
autonomy is key in the first three of these types, and quality in levels 3 and 4, and these two factors are not 
necessarily aligned with levels of generality, we prefer to keep the original scale as the most interesting 
(challenging) levels are 4 to 5 and do correspond with varying generality: 

 

— Level 1 - Machine-assisted human translation (MAHT):  The translation is performed by a human 
translator who uses a computer as a tool to improve or speed up the translation process.  

— Level 2 - Human-assisted machine translation (HAMT): The source and/or the target language text is 
modified by a human translator either before, during, or after it is translated by the computer. 

— Level 3 - Fully automatic (automated) machine translation (FAMT): This represents automatic production 
of a low-quality translation from the source language without any human intervention.  

— Level 4 - Fully automatic high-quality machine translation in restricted and controlled domains 
(FAHQMTr): This represents automatic production of a high-quality translation from the source language 
without any human intervention in restricted and controlled domains.   

— Level 5 - Fully automatic high-quality machine translation in unrestricted domains (FAHQMTu): This 
represents automatic production of a high-quality translation from the source language without any 
human intervention in unrestricted domains.   

 

For the first two levels, it is clear we already reached TRL 9 levels, with a myriad of translation products26 as 
well as dictionaries 27 and, thesaurus 28 in the market, helping to combine machine and human-based 
translations. 

 
26 https://www.sdl.com/, https://www.memoq.com/ or https://www.wordfast.net/ 

27 https://www.wordreference.com/ 

https://www.sdl.com/
https://www.memoq.com/
https://www.wordfast.net/
https://www.wordreference.com/
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In terms of current developments in FAMT (third level of capabilities), we have a number of successful MT 
software and applications, Google Translator being the flag bearer in FAMT (TRL 9). In some instances, MT 
services can replace human translators and dictionaries, and provide (imperfect but satisfactory) translations 
immediately. This is the case when getting the general meaning across is sufficient, such as with social media 
updates, manuals, presentations, forums, etc. In this regard, current MT software and applications 29 are best 
suited when we need quick, one-off translations and accuracy is not of importance. Also, MT applications are 
particularly effective domains where formal (structured) language is used.  Finally, it should also be noted that 
although the technology has reached a TRL 9, MT is currently a hot area in AI in which a lot of advances are 
being achieved using new neural-based approaches (Sutskever et al., 2014), which have largely overcome the 
classical statistical approaches.  

In this setting, the fourth and fifth levels correspond with the ultimate goal of MT: FAHQMT. As already 
commented, MT produces more usable outputs than when translating conversations or less standardised text. 
However, when aiming at professional translations of complex texts, business communication, etc., MT does 
not constitute, currently, a genuine or satisfactory alternative to qualified specialist translators 30. A number of 
scholars questioned the feasibility of achieving fully automatic machine translation of high quality in the early 
decades of research in this area, first and most notably Yehoshua Bar-Hillel (Yehoshua, 1964). More recently, 
some research (TRL 1 to TRL 3) is being carried out for restricted scenarios (see, e.g., Muegge 2006), 
corresponding with the fourth level. Level 5 is still considered a utopia in MT (TRL 1) in the short or mid-terms. 
The most obvious scenario is the translation of literary texts: MT systems are unable to interpret text in 
context, understand the subtle nuances between synonyms, and fully handle metaphors, metonymy, humour, 
etc. 

4.3.2 Technology: Speech Recognition 

Speech recognition comprises those techniques and capabilities that enable a system to identify and process 
human speech. It involves sub-areas such as Speech Transcription (Seide et al. 2011) and Spoken Language 
Understanding (SLU) (Tur et al. 2011), among others, but we will focus on the former. Although speech 
recognition first came on the scene in the 1950s with a voice-driven machine named Audrey (by Bell Labs), 
which could understand the spoken numbers 0 to 9 with a 90 percent accuracy rate (Juang et al., 2005), 
nowadays, speech recognition programmes can recognise a virtually limitless number of spoken words, aided 
by cognitive and computational innovations (e.g., pure or hybrid neural models combining statistical 
approaches). 

 
28 https://www.thesaurus.com/ 

29 https://en.wikipedia.org/wiki/Comparison_of_machine_translation_applications 

30 https://en.wikipedia.org/wiki/Machine_translation 

https://www.thesaurus.com/
https://en.wikipedia.org/wiki/Comparison_of_machine_translation_applications
https://en.wikipedia.org/wiki/Machine_translation
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Figure 7: Readiness-vs-generality chart for speech recognition technology. TRL 9 has clearly been reached for narrow 
systems with limited voice commands or conversational interface such as those shown by the widespread VAs like 
Amazon's Alexa, Apple's Siri, etc. Current research is going towards more advanced speech capabilities including vocabulary 
size, speaker independence and attribution, processing speed, etc. Low TRLs are estimated for systems showing native-
speaker language understanding capabilities. 

 
Because of the evolution of expectations and capabilities of speech recognition technology, the x-axis of Figure 
7 uses four different generality levels: 

 

— Level 1 - Limited voice commands: Predefined instructions or voice commands in the recognition system 
with a particular (formal) syntax using, e.g., limited speech dictionaries. 

— Level 2 - Large-vocabulary continuous speech recognition systems: Restricted-domain speech recognition 
systems with larger vocabularies for the spoken (formal and informal) words and phrases, some interaction 
with the user, high levels of robustness and accuracy of data, endpoint detection, no speech timeout, etc. 

— Level 3 - Free speech recognition in restricted contexts: Open-ended vocabulary (formal and informal), 
far-field (remote) sources, speaker attribution, full transcription from any audio/video source, and able to 
deal with noise, echo, accents, disorganised speech, etc. 

— Level 4 - Native-level free speech recognition in unrestricted contexts: Native-speaker multi-language 
recognition in adversarial environments, involving complete processing of complex language utterances, 
spontaneous speech, confusability, speaker independence, etc., under (possibly) adverse conditions. 

 

For the first level, we find those voice recognition systems allowing predefined and limited system proprietary 
voice commands to perform specific instructions. We are able to find this technology in the market (TRL 9) 
since the 1980s in different products and applications, from voice-controlled operating systems (see e.g., the 
“Speakable Items” (Wallia 1994) in Mac OS in the 1990s) to toys (see, e.g., the Worlds of Wonder's Julie doll 31 
in the 1980s) or in-car voice recognition systems (Tashev et al., 2009) 

For the second level, common applications today include voice interfaces in robots, digital assistants or specific 
software such as voice dictation, voice dialling or call routing, domotic appliance control, preparation of 
structured documents, speech-to-text processing, and aircraft (e.g., direct voice input allowing the pilot to 
manage systems). Note that although all the above speech recognition-powered products and software are 
market-ready products (TRL 9) with high levels of robustness and accuracy, the capabilities achieved by these 

 
31 http://www.robotsandcomputers.com/robots/manuals/Julie.pdf 

http://www.robotsandcomputers.com/robots/manuals/Julie.pdf
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systems are still limited to restricted domains, also having problems with noise environments, different 
accents, disorganised conversations, echoes, speaker distance from the microphone, etc.   

Level 3 is still largely in research and evaluation phases; it is limited in that current approaches (e.g., language 
models and acoustic models) cannot handle the complexities of a free speech recognition application in 
unrestricted contexts with multiple speakers for a myriad of languages and different regional accents for the 
same languages. Furthermore, even in controlled contexts with a limited dictionary, there is still a lack of 
accuracy with common misinterpretations. Therefore, we can say that the technology achieving these 
capabilities is still a matter of research, prototyping and testing (TRL 3 to 7).  

Finally, much more advanced capabilities in terms of a complete natural (multi-)language recognition in 
complex and unrestricted scenarios (as adult native speakers would do for their mother tongue) is still a long-
term goal today for the research in the area (given the state being at TRL 1 to TRL 3). Working under adverse 
conditions (e.g., noise, different accents, complex language utterances, etc.) will be eventually solved in the 
short or medium term as they are problems that can be addressed with larger datasets and models. However, 
more complex scenarios such as language-independent speech recognition including the understanding of non-
explicit information such as the use of prosody, emotions, meaningful pauses, intentional accents or even 
“mind reading” (e.g., speaker intention modelling) are clearly more long-term goals in the field. 

 

4.4 Perception 
Perception is a capability that we find in most animals, to a greater or lesser extent. In humans, vision is usually 
recognised as a predominant sense, and AI, especially in the recent years, has given this predominance to 
machine vision 32. Even if we just cover vision below, we select two important technologies, facial recognition 
and text recognition, with very different perception targets, representing two good examples of AI technologies 
that incarnate systems that perceive.  

4.4.1 Technology: Facial Recognition 

A facial recognition (or identification) system is a technology capable of recognising or verifying a person from a 
digital image or a frame from a video source. In general, these systems work by comparing selected facial 
features from a given image (i.e., an “unknown” face) with faces within a database. An added difficulty is that 
this process may be needed in real time and, possibly, in adversarial scenarios. In recent years, facial 
recognition has gained a lot of attention, becoming an active research area and covering various disciplines 
such as image processing, pattern recognition, computer vision and neural networks. Facial recognition could 
also be considered within the field of object recognition, where the face is a three-dimensional object subject 
to variations in lighting, pose, etc., and has to be identified based on its 2D projection (except when 3D 
techniques are used).  

Because of the evolution of expectations and capabilities of expert system technology, the x-axis of Figure 8 
uses three different generality levels of expert systems:  

 

Level 1 - Recognition under ideal situations: gender, age or identity recognition from high-quality stand still 
full-frontal faces in controlled scenarios (illumination, camera and person are controlled). 

Level 2 - Recognition under partially controlled situations: gender, age or identity recognition from low-quality 
frontal faces (~20 degrees off) possibly in less controlled scenarios: illumination and camera are controlled, but 
not the person (e.g., railway stations or airports check-ins). 

Level 3 - Recognition under uncontrolled situations: gender, age or identity recognition at pose variations, in 
low-resolution and poorly illuminated from (partial) facial photos/video in uncontrolled scenarios: neither the 
camera, nor the illumination, nor the person is controlled, such as in open spaces where pictures may be taken 
using smartphones, dashcams, etc. The recogition must be robust to person characteristics such as race, sex, 
etc., as well as changes in hairstyle, facial hair, body weight, and the effects of aging. 

 
32 This predominance is perhaps exaggerated, at least with a view of AI as achieving intelligent behaviour. 
Blind people from birth are the proof that full cognitive development is possible without sight. 
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Figure 8: Readiness-vs-generality chart for facial recognition technology. TRL 9 has been clearly reached by facial 
recognition systems in controlled, ideal environments, with a number of systems being used for different applications 
(control, security, advertising, social media, etc.). Facial recognition systems under less controlled situations (such as in 
crowded train/metro stations or airports), and regardless of the expression, facial hair or age of the people, are also 
currently being tested and demonstrated in operational environments (TRL between 7 and 9). Lower TRLs are estimated 
when this sort of systems perform in totally uncontrolled scenarios having to deal with, for instance, pose variations, low 
quality/resolution, bad lighting, etc., and with people of various race, sex and other personal characteristics (e.g., facial hair, 
body weight, accessories, etc.).  

 
 

Regarding the first level, most current facial recognition systems excel in matching one image of an isolated 
face with another in very controlled situations, such as when checking a driver’s license or a passport. In this 
regard, nowadays we find lots of market-ready facial recognition applications (TRL 9) related to security, law 
enforcement or surveillance (helping police officers identify individuals 33, find missing people 34, etc.); retail and 
advertising (e.g., enabling more targeted advertising by predicting people’s age and gender 35), social media 
(e.g., to automatically recognise when its members appear in photos), financial services (e.g., digital payments, 
online account access 36, etc.), boarding controls in airports or train stations37, among others. At present 
development levels, these systems are also able to detect people’s gender (see, e.g., Mansanet et al., 2016), 
age 38 and even emotions (see, e.g., Ko 2018) with accuracy levels of over 99% 39 40. However, these systems still 
rely on full frontal face images with little or no change in illumination and orientation angle to achieve those 
high levels of predictive accuracy.  

As for the second level, facial recognition outside of a controlled environment is no simple task. It is true that 
the technology is being evolved and designed to compare and predict potential matches of faces regardless of 
their expression (see Samadiani et al., 2019 for a review), facial hair (see, e.g., Xie et al., 2018), and age (see 

 
33 https://www.interpol.int/How-we-work/Forensics/Facial-Recognition 

34 https://www.independent.co.uk/life-style/gadgets-and-tech/news/india-police-missing-children-facial-recognition-tech-trace-find-reunite-a8320406.html 

35 https://www.theguardian.com/business/2013/nov/03/privacy-tesco-scan-customers-faces 

36 https://findface.pro/en/solution/finance/ 

37 https://www.airportveriscan.com/ 

38 https://labs.everypixel.com/api/demo 

39 https://paperswithcode.com/task/face-recognition 

40 https://neurosciencenews.com/man-machine-facial-recognition-120191/  

https://www.interpol.int/How-we-work/Forensics/Facial-Recognition
https://www.independent.co.uk/life-style/gadgets-and-tech/news/india-police-missing-children-facial-recognition-tech-trace-find-reunite-a8320406.html
https://www.theguardian.com/business/2013/nov/03/privacy-tesco-scan-customers-faces
https://findface.pro/en/solution/finance/
https://www.airportveriscan.com/
https://labs.everypixel.com/api/demo
https://paperswithcode.com/task/face-recognition
https://neurosciencenews.com/man-machine-facial-recognition-120191/
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e.g., Park et al., 2010). Also, there are currently a number of initiatives testing and demonstrating their 
capabilities in different operational and real-world scenarios (TRL 7 - 8) such as railway stations, airports, 
stadiums, etc., with different goals (e.g., security, control, etc.) (Galbally et al. 2019). However, at this level of 
generality, the technology is having two major drawbacks: (1) performance: facial recognition is still much 
more effective in “constrained situations” than for more general and uncontrolled scenarios where 
illumination, pose/angle/position and expression are the three major uncontrolled parameters that makes 
facial recognition a hard task; and (2) restrictions: current plans to install facial recognition systems in crowded 
public places for, e.g., surveillance reasons, are suffering from criticisms from civil society organisations as well 
as bans from the authorities 41 (approval is needed for TRL 8), although there are some surveillance and security 
systems currently operating (TRL 9) in less privacy-concerned countries such as China (see, for instance, the 
YITU Dragon Eye products used in Shanghai Metro 42). 

A further step in generality, corresponding with the third level in Figure 8, involves addressing more complex 
factors (in uncontrolled scenarios) such as inadequate illumination, partial or low quality image or video (e.g., 
only one eye is visible), multiple camera angles, poses or image variations (e.g., the subject is not looking 
straight into the camera), obstructions (e.g., people wearing hats, scarfs, sunglasses), etc. Furthermore, a drop 
in performance is obtained for facial recognition systems when trying to recognise people of different race or 
sex (Grother et al., 2019), this being a challenge for these systems. In terms of development, there are 
currently some research initiatives producing new methods for partial and unconstrained face recognition, 
although it is still work in progress (TRL 1 to TRL 3) and recognition accuracy can be as low as 30% - 50% in 
some cases (Elmahmudi, at al., 2019). 

4.4.2 Technology: Text Recognition  

Text Recognition is the process of digitising text by automatically identifying symbols or characters from an 
image belonging to a certain alphabet, making them accessible in a computer-friendly form for text processing 
programmes or similar. Text recognition involves both offline recognition (e.g., input scanned from images, 
documents, etc.) and online recognition (i.e., input is provided in real time from devices such as tablets, 
smartphones, digitisers, etc.). Here we will focus on the former. Large amounts of written, typographical, or 
handwritten information exist and is continuously generated in all types of media. In this context, being able to 
automate the conversion (or reconversion) into a symbolic format implies a significant saving in human 
resources and an increase in productivity, while maintaining or even improving the quality of many services. 
Optical character recognition (OCR) has been in regular use since the 1990s, developed significantly with the 
widespread use of the fax by the end of the 20th century. Today, they are already in wide use, but the 
possibilities and requirements have evolved with a more digital society. 

Figure 9 tries to model the evolution of expectations in terms of the different capabilities of text recognition 
technology through the following levels of generality: 

 

— Level 1 - Template-based typewritten and handwritten character recognition:  recognition of typewritten 
and handwritten character in structured documents (e.g., postal systems, bank-check processing, 
passports, invoices, etc.). 

— Level 2 - Free-form handwritten character recognition: recognition of (non-)separable/segmentable 
handwritten characters with automatic layout analysis in unstructured documents. 

— Level 3 - Free-form unconstrained handwritten word recognition:  recognition of unconstrained  (non-
)separable/segmentable  handwritten words  in unstructured documents. 

— Level 4 - Complex non-pundit-readable text recognition: recognition, interpretation and deciphering of 
non-pundit-readable media (e.g., ancient or badly damaged) unconstrained texts in any format. 

 
41 Some examples include: https://www.euractiv.com/section/data-protection/news/german-ministers-plan-to-expand-automatic-facial-recognition-meets-fierce-

criticism/, https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-francisco.html or https://sciencebusiness.net/news/eu-makes-move-ban-use-facial-

recognition-systems  

42 https://www.yitutech.com/en   

https://www.euractiv.com/section/data-protection/news/german-ministers-plan-to-expand-automatic-facial-recognition-meets-fierce-criticism/
https://www.euractiv.com/section/data-protection/news/german-ministers-plan-to-expand-automatic-facial-recognition-meets-fierce-criticism/
https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-francisco.html
https://sciencebusiness.net/news/eu-makes-move-ban-use-facial-recognition-systems
https://sciencebusiness.net/news/eu-makes-move-ban-use-facial-recognition-systems
https://www.yitutech.com/en
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Figure 9. Readiness-vs-generality chart for text recognition technology. TRL 9 has been clearly reached by OCR systems. For 
free-form character recognition, current developments in machine learning and computer vision are improving the 
performance of these systems, where we may find prototypes for testing and demonstrating new capabilities as well as 
market-ready products (TRL 5 to TRL 9). More advanced capabilities in terms of unconstrained, free-form recognition of 
handwritten text is still a matter of research and development (TRL 2 to TRL 6). Very low TRLs are estimated for text 
recognition systems addressing the interpretation and deciphering of non-human-readable media.  

 

For the first level we find the simplest (and common) form of character recognition: template-based optical 
character recognition (OCR). OCR as a technology has been instrumental in automating the processing of 
managing physical typewritten documents. For instance, enterprises using OCR software can create digital 
copies of structured documents such as invoices, receipts, bank statements and any type of accounting 
documents that needs to be managed. Passports, , and other forms of structured documentation that need to 
be managed are also the target of OCR software. The accuracy of these systems is dependent on the quality of 
the original document, but levels are usually around 98% or 99% for printed text (Holley 2009), which is good 
enough for most applications, or 95% when addressing, for instance, very specific handwritten recognition task 
such as postal address interpretation (see, e.g., (Srihari et al 1997)). Most commercial products and software 
are of this type (TRL 9) 43.   

Currently, OCR technology has been improved by using a combination of machine learning and computer vision 
algorithms to analyse document layout during pre-processing to pinpoint what information has to be extracted. 
This technology is usually called “Intelligent Character Recognition” (ICR) and targets both unconstrained 
typewritten and handwritten text, imposing new challenges to the technology. This represents thus the second 
level of capabilities in Figure 9. Because this process is involved in recognising handwriting text, accuracy levels 
may, in some circumstances, not be very good but can achieve 97-99% accuracy rates in structured forms when 
handling capital letters and numbers (Ptucha et al., 2019) which are easily separable/segmentable, but it fails 
when addressing more complex scenarios such as unconstrained texts or non-separable (e.g., cursive) 
handwriting. However, these error rates do not preclude these systems from massive use, with plenty of ICR 
products and software currently in the market 44 (TRL 9). It is also an active area of research (see, e.g., Bai et al., 
2014; Oyedotun et al., 2015; Yang et al.,2016; Ptucha et al., 2019;) where new alternatives (e.g., neural 
approaches) are being developed and assessed. 

The third level of capabilities represents further advancements in this sort of technology involving recognition 
of unconstrained (i.e., non-easily separable/segmentable) and free-form handwritten word (instead of 

 
43 https://en.wikipedia.org/wiki/Comparison_of_optical_character_recognition_software  

44 See http://www.cvisiontech.com/library/ocr/text-ocr/intelligent-character-recognition-software.html, https://abbyy.technology/en:features:ocr:icr or 

https://www.scanstore.com/Forms_Processing_Software/ICR_Software/ 

https://en.wikipedia.org/wiki/Comparison_of_optical_character_recognition_software
http://www.cvisiontech.com/library/ocr/text-ocr/intelligent-character-recognition-software.html
https://abbyy.technology/en:features:ocr:icr
https://www.scanstore.com/Forms_Processing_Software/ICR_Software/
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“character”) recognition 45. “Intelligent word recognition” (IWR) technologies 46 may fall into this level. IWR is 
optimised for processing real-world documents that contain mostly free-form, hard-to-recognise data fields 
that are inherently unsuitable for ICR. While ICR recognizes on the character-level, IWR works with 
unstructured information (e.g., full words or phrases) from documents. Although IWR is said to be more 
evolved than hand print ICR, it is still an emerging technology (TRL 5 to TRL 9) with some products performing 
capabilities to decode (scanned) printed or handwritten text (see, e.g., Google Vision API 47 used in Google 
Docs 48 and Google Lens app 49), as well as number of  prototypes being tested and validated in relevant 
environments (Yuan et al., 2012; Acharyya et al., 2013). 

Finally, much more advanced uses of text recognition systems would be, for instance, to interpret ancient or 
badly damaged texts that can only be deciphered by pundits or even not deciphered by humans. In this line 
there we nowadays find some efforts in terms of research and projects (see, e.g., Lavrenko et al. 2004, Sánchez 
at al. 2013, Granell et al. 2018, Toselli et al. 2019), but without going beyond successful validations and 
demonstrations from laboratory to relevant scenarios (TRL-2 to TRL-6).  

 

4.5 Planning 
In this AI category, planning usually deals with choosing the best sequence of actions according to some utility 
function, and scheduling is about arranging a set of actions (or a plan) in a timeline subject to some constraints. 
Not surprisingly, this is one of the areas in AI that had early successful applications in different domains. We 
choose transport scheduling systems as a well-delineated example of an AI technology that represents systems 
that plan.  

4.5.1 Technology: Transport Scheduling Systems 

Transport scheduling refers to those tactical decisions associated with the creation of vehicle service schedules 
(also called “timetabling”) aiming at minimising the net operating costs (Boyle 2009). In order to determine an 
appropriate vehicle schedule, there are also other factors having a direct effect on the operating costs: the 
number of vehicles required, the total mileage and hours for the vehicle fleet as well as the crew schedule. 
These activities are usually assisted by software systems with or without direct interaction with the planner in 
charge. This sort of systems take as input several parameters, including the frequency of service in different 
routes, the expected travel times, etc., as well as different operating conditions and constraints (e.g., 
“clockface” values, vehicle reutilisation/repositions, layovers, coordination of passenger transfers, number of 
vehicles, etc.), to  generate high-quality solutions (e.g., departure times).  

Because of the evolution of the expectations and capabilities of transport scheduling technology, the x-axis of 
Figure 10 uses three different generality levels described as follows:  

 

— Level 1 - Specific-purpose offline scheduling: all the information is available beforehand with no 
uncertainty, which can be used as an input and an optimised schedule is output. The particularities of the 
domain are embedded into the system and only the data is given as an input. 

— Level 2 - Specific-purpose online scheduling/rescheduling: all or part of the input information comes in 
real time, with uncertainty in measurements or in the information (e.g., a train that should arrive at 3:30 
but arrives at 3:40). Still, the particularities of the domain are embedded into the system.  

 
45 Note that the transcription at further levels (e.g., line or paragraph) goes beyond this technology as it involves other technologies such as (joint) line segmentation 

(Bluche 2016) 

46 https://www.efilecabinet.com/what-is-iwr-intelligent-word-recognition-how-is-it-related-to-document-management/, https://content.infrrd.ai/case-studies/global-

investment-firm-uses-infrrds-intelligent-data-processing 

47 https://cloud.google.com/vision/docs/handwriting 

48 https://docs.google.com/ 

49 https://lens.google.com/ 

https://www.efilecabinet.com/what-is-iwr-intelligent-word-recognition-how-is-it-related-to-document-management/
https://content.infrrd.ai/case-studies/global-investment-firm-uses-infrrds-intelligent-data-processing
https://content.infrrd.ai/case-studies/global-investment-firm-uses-infrrds-intelligent-data-processing
https://cloud.google.com/vision/docs/handwriting
https://docs.google.com/
https://lens.google.com/
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— Level 3 - General-purpose online scheduling/rescheduling: the information also comes in real time and 
with uncertainty, but the system is now designed to be extended with new subsystems that have different 
specific behaviours. For instance, a train station scheduling system can include the behaviour, utilities and 
constraints of bus and metro subsystems connecting with the station, as well as events in the city, and 
optimise globally.  

 
Figure 10: Readiness-vs-generality chart for transport scheduling system technology. The range of software systems that 
are able to perform offline and online scheduling for particular domains implies a TRL 9 for the first two levels. More 
general-purpose scheduling systems have a lower TRL, between 3 and 7. 

 

 

Although, traditionally, transport timetables have been manually generated (e.g., using time-distance diagrams 
(Chakroborty et al., 2017) where schedules are manually adjusted to meet all the constraints), this process can 
take a long time and it is unfeasible when dealing with high-loaded transport networks. At the first level of 
generality, computer-based scheduling and planner systems have appeared over the last decades to provide 
automated and optimised transport scheduling for vehicles and drivers. These systems have been launched, 
after years of research, for different areas of application (TRL 9) including, among others, (a) trains (Ghoseiri  et 
al., 2004, Ingolotti et al., 2004, Abril et al. 2006) with a huge number of commercial products such as RAILSYS50, 
OTT51 or MULTIRAIL52; (b) flights (Feo et al, 2009), also with a myriad of commercial applications such as 
FLIGHTMANAGER53, OASIS54 or TAKEFLIGHT55; (c) buses and shuttles (Gavish et al., 1978), with software 
platforms as GOALBUS56, TRIPSPARK57 or REVEAL58; (d) maritime transport (Meng et al., 2014) with commercial 
software such as MJC259, or MES60: or (e) road transport (Törnquist 2006), with software products such as 

 
50 https://www.rmcon-int.de/railsys-en/ 

51 https://www.via-con.de/en/development/opentimetable/ 

52 https://www.oliverwyman.com/our-expertise/insights/2013/jan/multirail-pax-_-integrated-passenger-rail-planning-.html 

53 https://www.topsystem.de/en/flight-scheduling-1033.html 

54 http://www.osched.com/ 

55 https://tflite.com/airline-software/Passenger-Service-System/flight-schedule/ 

56 https://www.goalsystems.com/en/goalbus/ 

57 https://www.tripspark.com/fixed-route-software/scheduling-and-routing 

58 http://reveal-solutions.net/bus-routing-scheduling-software/bus-scheduling-software-101/ 

59 https://www.mjc2.com/transport-logistics-management.htm  

https://www.rmcon-int.de/railsys-en/
https://www.via-con.de/en/development/opentimetable/
https://www.oliverwyman.com/our-expertise/insights/2013/jan/multirail-pax-_-integrated-passenger-rail-planning-.html
https://www.topsystem.de/en/flight-scheduling-1033.html
http://www.osched.com/
https://tflite.com/airline-software/Passenger-Service-System/flight-schedule/
https://www.goalsystems.com/en/goalbus/
https://www.tripspark.com/fixed-route-software/scheduling-and-routing
http://reveal-solutions.net/bus-routing-scheduling-software/bus-scheduling-software-101/
https://www.mjc2.com/transport-logistics-management.htm
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PARAGON61 or PARADOX62. Note that all these systems are specialised (or adapted) for performing in very 
particular scenarios, and there is no general-purpose tool. 

For the second degree, we consider that the input information can be provided online so an automated 
scheduling system needs to process it in real time. The systems should have then two parts: off-line scheduling 
(for known information) and on-line re-scheduling. While the former oversees scheduling vehicles and crews 
from known information, the latter has to be applied in response to the new specific needs and/or incidents 
that may appear. The schedules have to be dynamically updated balancing the resources (vehicles, timeslots, 
crew, etc.) available. Examples of real-time requirements or incidents may be, for instance, to meet specific 
travel demands or requests of passengers (e.g., new stops), to adapt to perturbations or problems regarding 
resources/demand (e.g., failures in vehicles), or manage new schedule intervals between new events (e.g., as 
volcano eruptions or heavy weather-related issues), etc. Dealing with real-time needs also entails that 
scheduling systems have to be able to confront different levels of uncertainty in terms of measurements or in 
the information they are provided (e.g., a train will arrive at 3:30 but it arrives at 3:40). Like in the first level, we 
are able to find plenty of research in this regard (see, e.g., Eberlein et al., 1998; Fu et al., 2002; D’Ariano et al., 
2008, Verderame et al., 2010; Wegele et al., 2010; Reiners et al., 2012) as well as market-ready applications 
(e.g., MJC263 for road traffic, TPS64 for trains, OPTIBUS65 for bus/shuttles) applied to different transport 
scenarios, this implying a TRL 9 for this sort of more capable scheduling systems.  

Finally, for the third level, we introduce a further level of generality in terms of these systems being able to be 
extended to any sort of transport scheduling problem with a combination of other transportation systems and 
other constraints and utility functions (e.g., a coach service combined with a train service). However, having 
general-purpose scheduling software systems is more difficult due to the varietal intrinsic characteristics of 
each scenario (it is not the same scheduling a fleet of trucks based on road-traffic characteristics as scheduling 
flights based on airflows, hub bankings and other flight characteristics). However, although the previously 
introduced products and software platforms are all domain-specific systems, the task of automating scheduling 
or timetabling (as a multi-objective constrained optimisation problem) is a general problem creating a 
feasible/optimised schedule for any kind of service or a combination of them. In (Hassold et al., 2014; Liu et al., 
2016) we can see some general-purpose solutions (at the research level), but they are still being tested and 
demonstrated in particular domains. That is why we give a TRL value between 3 and 7.  

 

4.6 Physical interaction (robotics) 
Many people have a paradigmatic view of intelligent systems as robots that physically interact with the world. 
While a great part of AI applications are digital, it is those tasks that require physical interaction with the world 
and with humans in particular that usually shape people’s imagination about AI. When asking people about AI 
systems, navigation (e.g., going from one place to another safely) is an important subgoal of many of these 
systems. We have selected two very relevant and different technologies in this category, self-driving cars and 
home cleaning robots. Again, when robotics is combined with AI we expect these physical systems not to be 
controlled by humans (locally or remotely) but be given instructions (e.g., where to go and what to clean) and 
follow them autonomously. The following two examples are good examples of AI technologies that represent 
systems that interact physically.  

4.6.1 Technology: Self-Driving Cars  

AI is changing the act of driving itself: automated technologies already assist drivers and help prevent 
accidents. As vehicle automation is progressively reaching new levels, these technologies are becoming one of 

 
60 https://cirruslogistics.com/products/marine-enterprise-suite/  

61 https://www.paragonrouting.com/en-gb/our-products/routing-and-scheduling/integrated-fleets/ 

62 https://www.paradoxsci.com/transportation-logistics-software-rst 

63 https://www.mjc2.com/transport-logistics-management.htm  

64 https://www.hacon.de/en/solutions/train-capacity-planning/ 

65 https://www.optibus.com/ 

https://cirruslogistics.com/products/marine-enterprise-suite/
https://www.paragonrouting.com/en-gb/our-products/routing-and-scheduling/integrated-fleets/
https://www.paradoxsci.com/transportation-logistics-software-rst
https://www.mjc2.com/transport-logistics-management.htm
https://www.hacon.de/en/solutions/train-capacity-planning/
https://www.optibus.com/
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the greatest forces transforming modern transportation systems. However, and despite extraordinary efforts 
from many of the leading names in tech and in automaking, fully-autonomous66 cars are still out of reach 
except in special trial programmes67, and their potential impact with respect to timing, uptake, and penetration 
remains uncertain68.  

 
Figure 11. Readiness-vs-generality chart for self-driving cars technology. TRL 9 has been clearly reached by many cars in our 
roads in the levels between NHTSA levels 0 and 2 of automation. For NHTSA levels 3 and 4, current developments from 
automobile companies are currently performing research, prototyping and testing with self-driving cars (so TRLs are 
between 5 and 7). However, very low TRLs are still estimated for fully self-driving cars requiring no human attention at all. 

 

While a generality scale could be developed in terms of the scenarios a fully-automated car could manage (e.g., 
from simple trips to complex situations), the discussion is usually set at identifying several levels of driving 
automation based on the amount of driver intervention and attentiveness required. In particular we use the US 
National Highway Traffic Safety Administration (NHTSA) definition of six levels of car autonomy to evaluate the 
self-driving capabilities of cars69. They released this guidance to both push forward and standardise 
autonomous vehicle testing. The ‘NHTSA levels’ (which we use here as levels of generality) are the following: 

 

— Level 1 (NHTSA Level 0) - No Automation: A Level 0 car has no self-driving capabilities at all. 

— Level 2 (NHTSA Level 1) - Driver Assistance: A Level 1 vehicle can assist with either steering or braking, but 
not both at the same time.  

— Level 3 (NHTSA Level 2) - Partial Automation: A Level 2 vehicle can assist with both steering and braking at 
the same time.  

— Level 4 (NHTSA Level 3) - Conditional Automation: The vehicle itself controls all monitoring of the 
environment (using sensors like LiDAR).  

— Level 5 (NHTSA Level 4) - High Automation: At Levels 4 and 5, the vehicle is capable of steering, braking, 
accelerating, monitoring the vehicle and roadway as well as responding to events, determining when to 
change lanes, turn, and use signals. 

 
66 We do not want completely-autonomous vehicles choosing where to go. By autonomous, we usually mean a vehicle that is capable of sensing its environment and 

moving safely with little or no human input, apart from the destination and preferences commands. 

67 https://www.vox.com/future-perfect/2020/2/14/21063487/self-driving-cars-autonomous-vehicles-waymo-cruise-uber 

68 https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-ways-autonomous-driving-could-redefine-the-automotive-world 

69 https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-

standard-for-self-driving-vehicles 

https://www.vox.com/future-perfect/2020/2/14/21063487/self-driving-cars-autonomous-vehicles-waymo-cruise-uber
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-ways-autonomous-driving-could-redefine-the-automotive-world
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
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— Level 6 (NHTSA Level 5) - Full Automation: This level of autonomous driving requires absolutely no human 
attention.  

 

For the first level (level 0), there is no automation at all as the human does all the driving at all times. 
Realistically, until recently, most vehicles were Level 0 (TRL 9). In turn, in the second level (level 1) we find 
some assistance systems for driving and maintenance such as  the Adaptive Cruise Control (ACC) that is in 
charge of handling the braking systems to, for instance,  keep a specified distance from the car in front of you, 
but it has no other control over the car (e.g., steering). In this regard, most, if not all, brands and automobile 
groups (e.g., PSA, VAG, General Motors, Daimler, etc.) incorporate ACC to their models nowadays (TRL 9). 

Moving to the third level (level 2), the vehicle may assist with both steering and braking at the same time but it 
still requires full driver attention, and the driver must be ready to take over at any time. Combining adaptive 
cruise control (from Level 1) with lane centering (or auto steer, a mechanism that keeps a car centered in the 
lane) capabilities met the definition of Level 2. Tesla’s Auto-Pilot70 feature, as seen on the Model S, X, and 3, 
currently falls into the Level 2 category (TRL 9). 

As for the fourth level (level 3), the driver’s attention is still critical but they can leave the handling of some 
(critical) functions such as braking, and delegate them to the autonomous system in the vehicle when 
conditions are safe. Many current Level 3 vehicles require no human attention to the road at speeds under 37 
miles per hour. Audi and others have already announced Level 3 autonomous cars to launch in 2018, but it has 
not actually happened due to the restrictive regulatory, technical, safety, behavioral, legal and business-related 
complications (TRL 8). 

At the fifth level (level 4), although the vehicle is capable of steering, braking, accelerating, it would first notify 
the driver when there are safe conditions to take over the driving task, and only then does the driver may 
decide to switch the vehicle into autonomous  mode. However, vehicles reaching this level of autonomy cannot 
determine between more complex and dynamic driving scenarios (e.g., traffic jams). In terms of developments, 
Honda has announced it is working towards a Level 4 vehicle by 202671. Uber and Google’s Waymo have also 
announced they have been working on Level 4 vehicles, but the reality is all their cars require safety drivers and 
they are currently testing their vehicles at Level 2 and 3 standards. Waymo is the exception as they are testing 
their prototypes at Level 4 conditions in the Early Access programme72, but they are limiting the conditions in 
which the vehicles are allowed to drive (e.g., in dry weather areas). 

Finally, for the sixth level (level 5), human attention should not be required at all and, therefore, there would 
be no need for pedals, brakes, or a steering wheel. The autonomous vehicle system would control all critical 
tasks, monitoring of the environment and identification of unique driving conditions like traffic jams. In this 
regard, although no commercial production of a level 5 vehicle exists, some of the aforementioned companies 
such as Waymo, Tesla or Uber are currently working towards this goal. As successful proof-of-concept we find 
Nuro73 has been partnering with Krogers to test small cars that handle deliveries (within a short distance in a 
small, controlled area). Also, Waymo cars are navigating the streets of Arizona with no one behind the wheel74, 
but fully self-driving cars are not here yet (TRL 1 to 3).  

In general terms, and even if the technology is ready, most cars still sit between levels 1 and 3, typically with 
few or limited automated functions. There are some exceptions, such as certain Tesla models and Google’s 
Waymo featuring a limited set of self-driving capabilities (e.g., enabling the car to steer, accelerate and brake 
on behalf of the driver), but still these are research projects in initial or testing/trial programmes75. Indeed, 
note that almost every major car manufacturer is currently performing research and testing with self-driving 
cars. This is yet another indication that manufactures have not even met the expectations (Narla et al. 2013) or 

 
70 https://www.tesla.com/autopilot 

71 https://hondanews.com/releases/honda-targeting-introduction-of-level-4-automated-driving-capability-by-2025  

72 https://waymo.com/apply/  

73 https://www.reviewgeek.com/1717/two-ex-googlers-want-nuro-a-new-self-driving-car-to-handle-your-deliveries/  

74 https://www.theverge.com/2019/12/9/21000085/waymo-fully-driverless-car-self-driving-ride-hail-service-phoenix-arizona 

75 https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/  

https://www.tesla.com/autopilot
https://hondanews.com/releases/honda-targeting-introduction-of-level-4-automated-driving-capability-by-2025
https://waymo.com/apply/
https://www.reviewgeek.com/1717/two-ex-googlers-want-nuro-a-new-self-driving-car-to-handle-your-deliveries/
https://www.theverge.com/2019/12/9/21000085/waymo-fully-driverless-car-self-driving-ride-hail-service-phoenix-arizona
https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/


 

39 
 

the media announcements made just a few years ago76 77 78 79 claiming that by 2020 we all would be 
permanent backseat drivers80. This provides very gloomy evidence of the complexity and difficulty of the 
driving tasks (with the high level of reliability required (König et al. 2017)), and that even those simplest 
subtasks (e.g., tracking other vehicles and objects around a car on the road) are actually much trickier than they 
were thought to be. 

4.6.2 Technology: Home cleaning robots 

Home cleaning robots were one of the expectations of early AI and robotics. Home chores are at the same time 
considered to require low qualification and seen as a nuisance for which automation would represent a 
liberation. Many partial (non-AI) solutions have gone in this direction during the 20th century such as washing 
machines, non-robotic vacuum cleaners, and dish washers. However, robotic cleaners started to flourish as late 
as the 1990s81. They are currently used for helping humans with many kinds of simple domestic chores such as 
vacuum cleaning, floor cleaning, lawn mowing, pool cleaning or window cleaning.  

 Figure 12. Readiness-vs-generality chart for home cleaning robot technology. While TRL 9 has been clearly reached by 
those specialised robots for dusting, vacuuming, mopping etc., lower TRLs are estimated when considering more complex 
house-cleaning tasks involving manipulation, flexibility, interaction, or coordination at any level. 

 

However, despite their popularity, we can analyse how far we are from reaching the original goals if we analyse 
these technologies by their level of generality. We identify the following three levels: 

 

— Level 1 - Specialised cleaning tasks: In this level we consider a robot that is able to do a particular cleaning 
task in a very specific way, such as dusting, vacuuming, mopping, doing the windows or cleaning the 
swimming pool, and other tasks that do not require manipulating new and diverse sets of objects (just 

 
76 https://www.wired.com/story/gms-cruise-rolls-back-target-self-driving-cars/ 

77 https://www.theatlantic.com/technology/archive/2018/03/the-most-important-self-driving-car-announcement-yet/556712/ 

78 https://www.wsj.com/articles/toyota-aims-to-make-self-driving-cars-by-2020-1444136396 

79 https://www.autotrader.com/car-shopping/self-driving-cars-honda-sets-2020-as-target-for-highly-automated-freeway-driving-266836 

80 https://www.theguardian.com/technology/2015/sep/13/self-driving-cars-bmw-google-2020-driving 

81 An early example of this is the 2001 Electrolux robot vacuum cleaner https://www.electroluxgroup.com/en/trilobite-advert-elubok115-2/ 

https://www.wired.com/story/gms-cruise-rolls-back-target-self-driving-cars/
https://www.theatlantic.com/technology/archive/2018/03/the-most-important-self-driving-car-announcement-yet/556712/
https://www.wsj.com/articles/toyota-aims-to-make-self-driving-cars-by-2020-1444136396
https://www.autotrader.com/car-shopping/self-driving-cars-honda-sets-2020-as-target-for-highly-automated-freeway-driving-266836
https://www.theguardian.com/technology/2015/sep/13/self-driving-cars-bmw-google-2020-driving
https://www.electroluxgroup.com/en/trilobite-advert-elubok115-2/
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well-defined objects such as walls and windows, and avoiding obstacles). In this case, the robot has a 
physical configuration that exploits the particularities of the task, either as a roundish device moving on 
the floor or a small autonomous drone doing the windows.  

— Level 2 - Specialised cleaning tasks manipulating objects: Here we consider that the task is still specific but 
involves the manipulation of a variability of household objects, including removing and putting back 
decorations and many other items, fold laundry, iron clothes, etc. (beds do not have a predefined size or 
location, clothes are very different, etc.). The robots, still purposed for a single task, may have different 
shapes and sizes for each application. 

— Level 3 - General cleaning: in this final level of generality we expect the same robot to do many home 
chores. This means that the robot may have a more flexible physical configuration (probably with some 
type of robotic limbs) and a sophisticated interplay between perceptors and actuators. At this level we are 
not implying that these robots must be humanoid, clean exactly as humans do or use the same 
instruments (broom, vacuum cleaners, etc.). 

 

Looking at Figure 12, for level 1, a clear evidence of TRL 9 can be found in the roundish robotic cleaners that 
roam around our houses vacuuming and sometimes mopping the floor. Many models exist, with some simple 
perception and navigation capabilities.  Most of the innovations in the last decade have been towards better 
identifying walls and avoiding stairs using built-in sensors for autonomous navigation, mapping, decision 
making and planning. For instance, they are able to scan the room size, identify obstacles and perform the 
most efficient routes and methods. Some of them include capabilities from other categories (such as, speech 
recognition for voice commands or even basic conversation capabilities). However, they are still at this level, as 
they are not able to manipulate objects. A similar situation happens with other specific tasks such as windows 
cleaning82, pool cleaning, lawn mowing or car washing. 

The second level involves the manipulation of objects, which requires more advanced recognition of the 
environment and dexterity. There are current prototypes83 to fold laundry (Bersch et al, 2011; Miller et al., 
2012) or iron clothes84 (Estevez et al., 2020). More complex tasks such as making the bed or clean the 
bathroom85 are still a bit below working prototypes. Nevertheless, considering the best situation of all these 
specific cases, we have evidence of a TRL 3.  

Finally, the third level is still in very early stages, and we do not have evidence to assign a value beyond TRL 1. 
About the near future, innovations are required at level 2, before moving to significant progress at level 3, with 
general-purpose service robots (Walker et al., 2019), which would become the real transformation drivers. 
Nevertheless, technology companies working on home robots (e.g., iRobot, Amazon, Samsung, Xiaomi, etc.) are 
still fighting for some other competitive advantages at level 1. For example, they add video conferencing and 
voice assistants to their devices rather than the ability to actually manipulate objects or diversify the physical 
tasks they can do. While some specialisation may be positive in the long term for cleaning (as any other 
activity), and there are some marketing and economic interests for going in this direction, having dozens of 
different gadgets at home has some limitations in terms of maintenance, sustainability and adoption. In the 
end, we could even envision the possibility that a robot at level 3 could replace dishwashing machines, vacuum 
cleaners and other specialised devices towards a more general home cleaner, especially in small apartments. 

 

4.7 Social and collaborative intelligence 
One of the key characteristics for the success of some species and human collectives is that they act as swarms, 
herds or social communities. Being able to interact successfully and collaborate with a diversity of other agents 
is an important capability that AI has focused on quite intensively, particularly in the area of multi-agent 

 
82 https://www.digitaltrends.com/home/best-window-cleaning-robots/ 

83 https://www.calcalistech.com/ctech/articles/0,7340,L-3768535,00.html  

84 https://helloeffie.com/ 

85 Some simple products (https://www.digitaltrends.com/home/giddel-toilet-cleaning-robot/) and incipient prototypes already exist 

(https://techcrunch.com/2020/03/04/this-bathroom-cleaning-robot-is-trained-in-vr-to-clean-up-after-you/). 

https://www.digitaltrends.com/home/best-window-cleaning-robots/
https://www.calcalistech.com/ctech/articles/0,7340,L-3768535,00.html
https://helloeffie.com/
https://www.digitaltrends.com/home/giddel-toilet-cleaning-robot/
https://techcrunch.com/2020/03/04/this-bathroom-cleaning-robot-is-trained-in-vr-to-clean-up-after-you/


 

41 
 

systems (Wooldridge 2009). In the last category of this section, we again look for a technology that has limited 
overlap with some other categories (e.g., a robotic swarm would belong to this category and the previous one). 
Accordingly, we choose a paradigmatic case of this kind of social and collaborative agents, the technology 
about negotiation agents. This AI technology is representative of systems that collaborate socially.  

4.7.1 Technology: Negotiation Agents 

Negotiation is a complex decision-making between two or more peers to reach an agreement, such as an 
exchange of goods or services (Jonker et al. 2012). Even if decision theory (Steele et al. 2016), game theory 
(Myerson 2013) and multi-agent theories (Janssen 2002) are consolidated disciplines, many promises for the 
technology of negotiation agents are usually expressed as partial automation, i.e., as assistants for a 
negotiation. Here, we do not want to consider a third dimension about the level of automation, so we will 
cover the levels of generality and the levels of readiness assuming full autonomy: agents that negotiate 
autonomously (Jennings et al. 2001). Of course, guidelines and supervision may be given by humans (apart 
from the objective functions), but these agents should operate autonomously —the typical example is a stock 
market agent doing transactions in the night. For instance, this was  the assumption of the automated 
negotiating agents competition (Baarlag et al. 2015), although the latter has incorporated new challenges over 
the years86 (e.g., preference elicitation, human-agent negotiation; supply chain management, etc.). 

By negotiation we also consider trading agents (Rodríguez-Aguilar et al. 1998, Wellman 2011) and we are 
transparent on the techniques that are used (argumentation techniques87 or others), but we are a bit more 
specific than some umbrella terms such as “agreement technologies” (Ossowski 2012, Heras et al. 2012). In the 
end, the history of this area dates back to decision theory and game theory, which can find optimal policies 
when the protocol is known as well as the behaviour of other agents (Parsons et al. 2012). Things become more 
complicated in situations where agents can reach local optima instead of more desirable equilibria, or the rules 
of the game change during operation. In more general multi-agent systems, especially heterogeneous multi-
agent systems (Perez et al. 2014), things become even more complicated as one has to consider that other 
agents may have different functions (proactiveness, involving different goal-directed behaviours) or they may 
even change. Finally, a more open-ended situation happens when there is bounded rationality, usually given by 
resources or by constraints imposed by real-time scenarios (Rosenfeld and Kraus 2009) and cases where theory 
of mind is needed for negotiation or coalitions (Von Der Osten et al. 2017). 

 
Figure 13: Readiness-vs-generality chart for negotiation agents technology. Level 1 reaches TRL 9, with some negotiation 
bots running in simple scenarios. Level 2 is more challenging, and TRL ranges between 3 and 5. Finally, level 3 is still far 
ahead in the future, with an estimated TRL between 1 and 3.  

 
86 https://web.tuat.ac.jp/~katfuji/ANAC2020/  

87 Note that considering “argumentation” as a negotiation technique is debatable; different views can be found from the area of computational argumentation, where 

negotiation is considered one of the multiple types of argumentative dialogues (see McBurney et al. 2002) 

https://web.tuat.ac.jp/%7Ekatfuji/ANAC2020/
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The levels we will use for negotiation agents are as follows: 

 

— Level 1 - Homogeneous agents with stable trading rules: agents can get good trading and negotiation 
results if they maximise their utility and choose the immediate best action, independently of the other 
agents, or assuming all agents behave equally (homogeneous multi-agent system, with similar utility 
functions but possibly different parameters). The market rules are fixed and specific (e.g., a stock market 
trader), with no (frequent) local maxima and deadlocks.  

— Level 2 - Homogeneous agents with complex trading rules: the trading rules become more complex and 
the global regulations can change. Local maxima and deadlocks are frequent and agents should act or 
coordinate to avoid them. Here we still assume all agents behave equally (i.e., homogeneous multi-agent 
system, with similar utility functions but possibly different parameters). There is no need to model 
different capacities as all the other agents are assumed to work under perfect rationality wrt. their 
functions.  

— Level 3 - Heterogeneous behaviour with complex trading rules: Here we can now have agents with 
bounded rationality, changing goals and erratic behaviour, adversarial or malicious agents, including 
humans with very different motivations. At this level, we expect agents could benefit from a diversity of 
social strategies for negotiation such as persuasion, alliance-building, decoys, lying, manipulation, etc. This 
requires modelling the capabilities, goals and mind states of other agents, possibly in terms of BDI (beliefs, 
desires and intentions). 

 

Note that the generality increases mostly because of the complexity and diversity of the trading rules and the 
other agents. 

Early negotiation agents can be found at level 1 using the basics of decision theory (Parsons et al. 2012), and at 
this level many negotiating agents do not even need AI (Lin and Kraus 2012) but are coded manually with a few 
rules. Many of these systems populate restricted scenarios, such as the electricity grid, where participants must 
follow some strict regulations (which try to avoid deadlocks and shortages), but still leave enough flexibility for 
trading and rewarding those agents that behave more intelligently in the “smart grid” (Ramchurn et a. 2012). 
Still today, some systems exist at the macro-level, i.e., companies in electricity markets (Pereira et al. 2014), 
illustrated with real-data simulations, but the generalised use of smart agents at homes is still very incipient. 
Clearly, the area where trading agents are a developed product is in the stock and the currency markets, and 
more recently in cryptocurrencies. While they reach high TRLs at this level, there is the question of whether 
they really help their users (or owners) make profits88. Another common case both in research and with 
commercial applications is auction sniping as happens with online platforms such as ebay (Hu and Bolivar 
2008). According to all this, we can assign TRL 9 to this level. 

Level 2 expects the global regulations to change and the utility functions to have different values. These two 
aspects are sometimes referred together as “domain knowledge and preference elicitation” and, per 2017, is 
considered a “challenge” (Baarslag et al 2017), with some research in terms of on-line or incremental 
preference extraction (Baarslag et al. 2015b, Baarslag et al. 2017b), as well as in domain modeling (Hindriks et 
al. 2008, Sanders et al. 2008, Simonsen et al 2012). However, in some scenarios such as e-commerce between 
companies, there have been some patents being filed89 (Krasadakis 2016). Furthermore, in (Fatima et al. 2014) 
[chapter 12] a number of applications (e.g., grid computing, load balancing, resource allocation, etc.) can be 
found regarding trading agents with bounded rationality and limited knowledge about the domain. Given all 
the above, we consider a range between TRL 3 and TRL 5 for this level as all the activity is still in the research 
and prototyping phases.  

When it comes to level 3, we have seen much activity at the research levels, with methods with bounded 
rationality and heterogeneous utility functions, working for simulations, with specific contexts (Rosenfeld and 
Kraus 2009) or theoretically (Sofy and Sarne 2014), or considering volatility of information or partial knowledge 
(Adam et al. 2014). Only a few are trying to use mind modelling in a general way (Von Der Osten et al. 2017), 

 
88 https://medium.com/@victorhogrefe/how-effective-are-trading-bots-really-1684acc1f496, https://3commas.io/blog/best-crypto-trading-bot 

89 https://medium.com/innovation-machine/a-buyer-bot-negotiating-with-a-seller-bot-7026f79ac51e 

https://medium.com/@victorhogrefe/how-effective-are-trading-bots-really-1684acc1f496
https://3commas.io/blog/best-crypto-trading-bot
https://medium.com/innovation-machine/a-buyer-bot-negotiating-with-a-seller-bot-7026f79ac51e
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but still in restricted scenarios (games). Because of the lack of working evidence in general settings we assume 
a value of TRL between 1 and 3 for this level.  

Level 3 captures a wide spectrum of possibilities and could be refined in the future as agents start to have 
better mind modelling capabilities. However, if we take the high edge of this level, such as understanding and 
performing well in complex machine-human environments, even if only restricted to trading, these are clearly 
challenging scenarios even for human scientists (Rahwan et al. 2019), so we expect a long time to reach high 
levels at this level. 
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5 Discussion: Rearranging the Generality 
After the series of examples of AI technologies seen in the previous section, organised into one of the seven AI 
categories, we can extract general insights from what we observe in the readiness-vs-generality plots more 
globally.  

Methodologically, the examples serve to illustrate the challenges of estimating the TRLs, a problem that is not 
specific to AI. The use of levels of generality on the x-axis, however, has helped us be more precise with the 
TRLs than would be otherwise. In fact, there is no such a thing as TRL 3 or TRL 7 for machine translation, unless 
we also specify the level of generality (scope of functionality) for the technology. This is the first take-away of 
this methodology. Of course, the levels in these examples could be refined and made even more granular, 
possibly reducing the error bars in some cases. In those cases where there is no standardised scale for the 
generality axis (as for self-driving cars or machine translation), an open discussion in the particular community 
to find a consensus would be very welcome. 

The shapes of the curves seen in the charts of the previous section are informative about where the real 
challenges are for some technologies. Going from 70% to 80% in a benchmark is usually a matter of time and 
can be circumvented without a radical new innovation, but in many cases going from TRL 1 to TRL 7, for 
instance, needs something more profound than incremental research and development. Consequently, it 
seems that those curves that are flatter (see Figures 4 - recommendation engines, 8 - facial recognition, 10 - 
transport scheduling systems and 11 - self-driving cars) look more promising than those for which there is a 
steep step at some level on the x-axis (see Figures 3 - expert systems, 5 - apprentice by demonstration, 9 - text 
recognition, 12 - home cleaning robots and 13 - negotiation agents). Importantly, the shape of the curves 
depends on the definition of levels in the x-axis (all charts are summarised in the following subsection, see 
Figure 15).  

Refining one level into two or three more granular levels may produce a flatter curve (e.g., smoothing the step 
curves). This is also a good indication of a way in which an insurmountable level of generality can be 
disaggregated into more gradual steps, which may lead to new research and development tracks taking AI to 
high TRLs. This is also what happened in the past with some technologies. For instance, robotic vacuum 
cleaners added a small, yet relevant, intermediate step that took the technology to TRL 9, created an 
ecosystem of companies and users, which in the end paves the way for more research effort and investment in 
the following steps or refinements on the x-axis. 

In the opposite direction to disaggregation, there is also a unifying trend to consider technologies that, by 
definition, are expected to integrate many capabilities. A very good example of these integrating AI 
technologies is represented by virtual assistants, because they are expected to cover a wide range of tasks that 
integrate capabilities that are associated with many categories in AI, including knowledge representation and 
reasoning, learning, perception, communication, etc. Let us explore this technology in particular and derive its 
readiness-vs-generality charts. 

 

5.1 An integrative AI technology: virtual assistants 
Virtual Assistants (VA), also known as intelligent personal assistants or digital assistants, are applications or 
devices meant to interact with an end user in a natural way, to answer questions, follow a conversation or 
accomplish other tasks. VAs have expanded rapidly over the last decade with many new products and 
capabilities (EC Report 2018, Hoy 2018). Alexa, Siri, Cortana or Google Assistant are very well-known examples 
of this technology. The idea of a computer humans could meaningfully and purposely dialogue with is also one 
of the early visions of AI (Turing 1950), but as with many early visions, it is taking decades to materialise. Having 
a meaningful conversation is not always easy with humans of different backgrounds, culture, and knowledge, 
and making it purposeful (so that the speaker gets things done) is also a challenge in human communication. It 
is no surprise then that these are two important hurdles to overcome when trying to get something similar 
with machines.  

As said above, domain generality is very important, because we want these systems to do a wide range of 
tasks. However, this is more a desideratum than a reality, or even a necessity for some applications. This is 
similar to the cases with other AI technologies analysed in the previous section, such as expert systems. In 
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particular, making an assistant for a narrow domain (a telecommunication company assistant or a ticket-
purchasing service avatar) is easier than a more general assistant (an executive assistant in the workplace).  

Given these considerations, we introduce a tentative three-level scale for generality of virtual assistants as 
shown in Figure 14, which may of course be refined in the future.  

 
Figure 14. Readiness-vs-generality chart for virtual assistant technology. TRL 9 has been reached for systems that work with 
predetermined written queries (generality level 1), high TRL are more diverse with open-ended spoken queries (generality 
level 2). Finally, the most advanced level requires generality in terms of domains, types of interactions and queries from the 
user (generality level 3). Error bars show some uncertainty in the assessment.   

 

The x-axis of Figure 14 reflects three generality levels of virtual assistants:  

 

— Level 1 - predetermined written queries in one domain: queries are restricted or should contain some 
keywords the system recognises to find the topic and some related information. Answers are either 
template-based or pre-recorded as text (possibly read by synthesisers). 

— Level 2 - multi-domain spoken queries: text and voice commands can be received with an unrestricted 
language, the answers are constructed and not stored. Questions and queries may cover a diverse range of 
domains.  

— Level 3 - fully open-ended, with user modelling, routine learning and anticipation: the most advanced 
level requires generality in terms of domains, types of interactions and queries from the user. The system 
may be proactive rather than just reactive. 

 

In terms of capabilities, and as shown in Figure 14, the simplest VAs (generality level 1) are conceived as 
straightforward software agents able to perform simple tasks or give straight answers based on templates or 
predefined commands or questions. We can find examples of this type of VAs in commercial products, in the 
form of simple chatbots in customer-service applications on websites and other apps for restricted (simple) 
domains (e.g., ticket purchase assistants, VAs for QA of Coronavirus-related content90 91, etc.). Consequently, 
we could assign TRL 9 to these assistants. 

Focusing on level 2, these VAs should be able to interpret human speech and respond via constructed complex 
answers using synthesised voices, sometimes emulating simple dialogues and conversations. Users may be able 

 
90 https://avaamo.ai/projectcovid/ 

91 https://www.hyro.ai/covid-19 

https://avaamo.ai/projectcovid/
https://www.hyro.ai/covid-19
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to ask their assistants (open) questions (with limited proactivity), control home automation devices and media 
playback via voice, and manage other basic tasks such as email, to-do lists, and calendars with verbal 
commands. It seems that TRLs are high in this case too. However, although VAs are seen (and marketed) as 
intelligent assistants capable not just of understanding but of taking decisions and fully supporting humans, this 
vision has not fully materialised yet. Currently, there are a number of VAs in the market, with Google Home, 
Amazon Echo, Apple Siri and Microsoft Cortana (Hoy 2018) being the main examples. These companies are 
constantly developing, testing, and demonstrating new features and capabilities for their VAs, and we can see 
this evolution and improvements as new versions are launched on the market. Because of this, we plot a range 
of values between TRL 7 and 9, as shown in the figure. 

Finally, VAs with level 3 of generality are envisaged to have more advanced capabilities, including background 
knowledge so humans will be able to have (professional) conversations and discussions on any topic, more 
advanced dialogue management, or improved reasoning about the world, among other things92. In this level, 
VAs are assumed to understand context-based language complexities such as irony, prosody, emotions, 
meaningful pauses, etc. We think this is at a research stage today (TRLs 1 to 3). Note that, even in level 3, VAs 
are not expected to perform complex rationales or make sophisticated decisions. This is covered by 
technologies such as expert systems or planning. Of course, once high TRLs are obtained in these technologies 
they may end up being incorporated in VAs, as they are usually shipped as integrators of AI services. 

 

5.2 Delineating technologies more precisely 
From the previous discussion we see how important it is to refine the levels of generality such that levels are 
sufficiently crisp for a more accurate assessment of TRLs. This becomes more difficult as the technology is 
broader, especially those that are defined by integrating capabilities from different categories of AI, such as the 
VA in the previous section. Precisely because of this difficulty, we have to be wary of the bias and 
misconceptions our explicit or implicit assumptions of generality can create. 

For instance, many funding calls, especially after the H2020 programme, ask for a particular TRL. While this is 
relevant in calls that are oriented towards products that can be distributed in the market as the project is 
completed, it is important to look at the dynamics of readiness-vs-generality charts and the pressure for 
avoiding generality. For the purpose of high TRLs, some research projects may be tempted to solve simplified 
versions of the problems or solutions for very narrow domains, with many ad-hoc tweaks, rather than solving 
the general problem. These calls even encourage that the technology is illustrated in one domain, which is 
carefully chosen by the researchers as one in which a very specific set of techniques can really work. But, in the 
end, the technology may not extrapolate to other domains, and its transformative effect may be very limited. 
This is particularly important in calls such as FET (Future and Emerging Technologies93). Of course, some 
bottom-up approaches that work in a particular domain end up being generalisable to other domains, but this 
should be explicit for evaluation purposes. 

This generality issue is also critical in early stages of research. Research papers and benchmarks should 
consider a wide range of domains, especially when new principles and techniques are introduced. Otherwise, 
their purported performance should be scrutinised very carefully. Media and the scientific community itself are 
usually more amazed by the first time something is achieved (e.g., beating a human master in Go) than how it 
is achieved. For instance, the first publications about AlphaGo (Silver et al, 2016) had more public repercussions 
than other research papers that followed generalising the techniques for any board game, and without 
precoded human knowledge (Silver et al., 2017; Silver et al., 2017b; Schrittwieser et al., 2019). 

Figure 15 includes a summarised view of all readiness-vs-generality charts. Note that, there are many other 
ways in which we can look at these plots to compare the twelve AI technologies we have analysed. We can see, 
for instance, the highest level with TRL-9 as a simple way of comparing the technologies. Alternatively, we can 
just focus on the narrowest (leftmost) level. Although, this would give a much promising view of the state of 
the art of AI technologies, it has sometimes been the case that specialised early stages have paved the way for 
more general versions of the technology. 

 
92 https://www.cnet.com/news/facebook-ai-chief-we-want-to-make-smart-assistants-that-have-common-sense/ 

93 https://ec.europa.eu/programmes/horizon2020/en/h2020-section/future-and-emerging-technologies 

https://www.cnet.com/news/facebook-ai-chief-we-want-to-make-smart-assistants-that-have-common-sense/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/future-and-emerging-technologies
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Figure 15. A composition of all readiness-vs-generality charts from Figures 3 to 14.   

 

On the other hand, asking for too much generality has the risk of entering an area that is not well understood 
yet (Bhatnagar et al, 2017, Martínez-Plumed et al. 2020a, 2020b), and a project or a paper may end up aiming 
at some vague understanding of “artificial general intelligence” or slip into dubious terms such as “human-level 
machine intelligence”, which cannot be properly evaluated (Hernández-Orallo 2020). In contrast, we think that 
the use of TRLs, while at the same time being precise and ambitious on how to certify the position on these 
readiness-vs-generality charts, may be of utmost importance to track the impact (Makridakis 2017) of AI and 
anticipate the key transformations of the future. We explore this in more detail in the following subsection.  

5.3 Assessing TRLs more precisely: the AIcollaboratory 
In this report, we have assessed the TRL of each technology (at a particular level) by asking experts (including 
ourselves) to follow the guideline in the Appendix to estimate the particular readiness level in the scale. A 
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wider group of experts, using more extensive training on the TRLs and usual methods for aggregation or 
consensus of opinions (such as Delphi) would bring more robustness to these estimates, including a systematic 
way of deriving the error bars. However, the estimates would still be based on expert evidence but not 
quantitative evidence.  

There are some sources of information that allow us to assess TRLs such as the number of patents or the sales 
of particular AI-related products. However, we do not think that this information would be sufficient on its own 
to understand or quantify the TRL for many AI technologies, especially considering such data is historical (i.e. 
analysing the past), and therefore not ideal to address the future-oriented concerns of this report. Coverage on 
the media could also be a relevant source, and we could use relevant sources such as AI topics94 (Martínez-
Plumed et al. 2018b, Hernández-Orallo 2020). However, there is an important source of quantitative 
information on the progress in AI: benchmarks and competitions (Hernández-Orallo et al. 2017). 

The relation between benchmarks and TRLs is more complex than it may seem. Some AI benchmarks (e.g., 
Atari games) would qualify as “simulated environments'' mentioned in the description of TRL 5 or TRL 6, 
depending on whether only some components or a complete autonomous system are being assessed through 
them. Other benchmarks, such as those used for self-driving cars would qualify as "operational testing 
platforms" for TRL 7. Other benchmarks, e.g., some Kaggle competitions, are about real cases and their models 
could be applied directly, showing evidence for TRL 8. Benchmarks sometimes contain standardized 
information regarding elements that map onto different TRLs, and therefore can be useful in a TRL assessment. 
We have used these connections in some of the assessments in the previous sections. Doing a more systematic 
analysis of all benchmarks in AI, its corresponding technology and what kind of technology readiness level they 
could be associated with, would enable a more quantitative approach to estimating TRLs.  

In this regard, we could use the AIcollaboratory95 (Martínez-Plumed et al. 2020a, 2020b, 2020c) to collect 
intrinsic information characterising benchmarks and map out the relationships between them and TRLs. This 
initiative was conceived for the analysis, evaluation, comparison, and classification of AI systems, creating a 
unifying setting that incorporates data, knowledge and measurements to characterise them. The 
AIcollaboratory is designed to enable this kind of mapping. For the moment, we leave such mapping and 
quantitative analysis for future work and out of the scope of this report. It is not just the sheer volume of the 
endeavour but also because there are some issues to discuss and solve first in order to do this meaningfully 
and reliably. For instance, most benchmarks are not just pass or fail but are accompanied by one or more 
metrics, such as the performance level, which depend on the application domain and may even be opposed to 
each other for particular tasks. We should determine the minimum level of accuracy in a given benchmark that 
would be considered sufficient evidence for the associated TRL to be met.  

Defining benchmarks to map onto TRLs could generate tension with assessments of the technology's 
generality. For instance, 70% performance on a face recognition benchmark could be considered useful for 
some applications and a proof of TRL7 but it may well happen that most of the remaining 30% errors would 
focus on a particular niche of the technology (e.g., noisy pictures). Would this be evidence of TRL7 at that 
particular level of generality or, rather, would it indicate the technology belongs to a lower level? We believe 
that performance thresholds to assign a TRL should be much higher (e.g., 99%) to avoid this kind of 
specialisation problem. Nevertheless, there are other issues, such as systems being specialised to the 
benchmark but not to the real problem (so that a TRL7 would never translate into a TRL9). Despite these 
challenges, we do think that clarifying and utilising the relationship between benchmark results and TRLs is a 
promising avenue of research, which we hope to develop in future work. 

 
94 https://aitopics.org/ 
95 http://www.aicollaboratory.org/ 
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6 AI progress through TRLs: the future 
The analysis of a readiness-vs-generality chart may constitute a useful tool to understand the state of the art of 
a particular technology. However, can it be useful for anticipating the future?  

In the first place, as we already mentioned, a static picture can give us hints about what is expected in the near 
future. A very steep curve (such as in Figure 4 - apprentice by demonstration) suggests that there may be a long 
way to go from one generality level to the next in the technology to the next one. The gap may include 
significant discoveries, results, or inventions at some low TRLs, which may involve fundamental research, 
usually linked to slower progress. A flatter curve (such as in Figure 7 - facial recognition) may correspond to 
situations where the fundamental ideas are already there, and progress could be smoother. But this has 
another reading, a flatter curve with no level reaching TRL 9 means that the technology has not reached the 
market successfully and the industry ecosystem is non-existent, which would otherwise invest money and 
research teams on the problem. Yet, at the same time, this is only partially true, as some sectors already exist 
before automation. For self-driving cars, there is an ecosystem of very powerful automobile multinationals, 
with no self-driving car technology until very recently. These companies have invested huge amounts of money 
in this technology. Also, some tech giants can go from low TRLs emerging from new techniques to working 
products in less than a year, as happened, for instance, with the language model BERT (Devlin et al., 2018) 
being applied to Google’s search engine96. 

To better understand the speed of progress, we also need to consider the notion of technology "hyper 
adoption", which is related to Gartner’s Hype Cycle from Gartner (Linden et al. 2003). This theory states that 
people adapt to and adopt new technologies much faster than they used to in the past. This may be partially 
caused by the so-called “democratisation” of new technology innovations, as they become available to large 
parts of the population as soon as they enter the market. For instance, electricity took 70 years for mass 
adoption, but the Internet took just 20 years. The same is happening with AI technologies. A clear example is 
the current hyper-adoption of voice-related technology97, with all the tech giants such as Amazon, Google and 
Microsoft launching new products every few months. It may be the case that developments in this sort of 
technology has enhanced the adoption rates of voice assistants, and vice versa. The trend may even stop 
because of ageing populations in many countries, which are more reluctant towards technological innovations. 

In order to have more ground for extrapolations we would need a less static picture of the evolution of AI 
technologies. Having information about the charts in past years would give us data about how curves evolve, 
and how some TRL transitions are faster than others. Of course there may be no clear trends or trends that 
cease to hold because of some changes in the AI playground or in society (e.g., a financial crisis, a pandemic or I 
the lack of market enthusiasm and/or low investment). We can do a simple exercise with the VA technology 
seen in the previous section. Can we compare the “picture” (i.e., the readiness-vs-generality charts) with a 
historical perspective? 

6.1 Readiness trends 
Figure 14 shows that, in the case of virtual assistants, there has been important progress at level 2 of generality 
in recent years, and level 3 may be changing rapidly to higher TRLs because of high investment and the ubiquity 
of VAs of level 2 of generality. We see this evolution from the 1990s, where digital speech recognition 
technology became a feature of personal computers of brands such as Microsoft, IBM or Philips, but without 
conversational or Question and Answering (QA) capabilities. In 1994, IBM launched the very first smartphone 
(IBM Simon) with some assistant-like capabilities: sending emails, setting up calendars and agenda, taking 
notes (with a primitive predictive text system installed) or even downloading programmes! However, it was a 
menu-based interaction, very different from the assistants we know today. In this regard we may estimate that 
some research on this was being performed (TRL 1 to TRL 3), mostly focused on the field of speech recognition. 
This went in parallel with advances during the 1970s and 1980s in computational linguistics leading to the 
development of text comprehension and question answering projects for restricted scenarios such as the Unix 
Consultant (Wilensky 1987) for answering questions about Unix OS or LILOG (Rollinger 1991) in the domain of 
tourist information. These projects never went past the stage of successful demonstrations in relevant 
scenarios (TRL 7). 

 
96 https://www.blog.google/products/search/search-language-understanding-bert/ 

97 https://www.forbes.com/sites/forbestechcouncil/2018/06/08/the-hyper-adoption-of-voice-technology 

https://www.blog.google/products/search/search-language-understanding-bert/
https://www.forbes.com/sites/forbestechcouncil/2018/06/08/the-hyper-adoption-of-voice-technology
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By the decade of the 2000s, not only were there relevant advances in speech recognition technology, but also 
in QA (with market-ready products such as Wolfram Alpha (Wolfram 2009)), Information Retrieval and 
knowledge-Based Systems that paved the way for future VA systems. One important milestone in this decade 
was the launch of Google Voice Search in 2002 (Franz et al., 2002). The system allowed users to request 
information by speaking to a phone or computer rather than typing in the search box. This can be considered 
as the first step in launching Google’s VA. This is a significant milestone not only due to the change in the 
power-efficient computing paradigm (they offload the processing power to its data centres), but because 
Google was able to collect gigantic amounts of data from billions of searches, which could help the company 
improve its prediction models of what a person is actually saying. At the same time, IBM also pushed its 
research in QA and information retrieval during this decade (from 2005 onwards) with a specific goal in mind: 
to be able to compete successfully on Jeopardy! The first prototypes and demonstrations of their system, 
Watson (Ferrucci 2012), were developed and tested between 2007 and 2010, prior to their success in 2011. 
From all the above, we may extract that much research, testing and development was being performed in 
those areas related to the VA (TRL 3 to 7) even without market-ready products being launched. 

Finally, VAs have witnessed a quick growth in terms of development, products and adoption by consumers 
during the last decade. The very first modern digital virtual assistant with voice-based communication 
capabilities installed on a smartphone was Siri98, specifically on the iPhone 4S in 2011. Apple hit the market first 
but was soon followed by some big players’ developments and products including Google Now (2012) 
Microsoft Cortana (2013) or Amazon Echo (2014) (Hoy 2018). As already explained, all these VAs have been 
further developed and improved during the last few years, where manufacturers are constantly testing and 
including new and more powerful capabilities (TRL 7 to TRL 9) in terms of interpreting human speech (via open 
questions), answering via constructed complex outputs, simple dialogue and conversational capabilities, and 
further advanced control over basic tasks (email, calendar, etc.) as well as home automation devices and media 
playback via verbal commands.  

For level 3 of generality, VAs are foreseen to have much more advanced capabilities (e.g., background 
knowledge, open-domain conversations, common-sense reasoning, etc.) that were not found in the research 
agenda (TRL 1 to TRL 3) of natural language processing, planning, learning or reasoning until high TRLs have 
been obtained for the second level of generality. Note that the high TRLs of the latter were largely due to the 
huge advancements in hardware (e.g., computing infrastructure), software (e.g., powerful neural-based 
approaches) and data (e.g., people's behaviour, language corpus, etc.).  

Figure 14. Readiness-vs-generality chart for virtual assistant technology at different moments in time (yellow: 2020, green: 
2010, blue: 2000). We see how the “curve” has evolved from a steep one in the year 2000 located on the first level to 
another, also steep, from the second in 2020.   

 
98 https://www.apple.com/siri/ 

https://www.apple.com/siri/
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Even if there are many uncertainties when assessing and inspecting these curves, with time we think that the 
juxtaposed historical view of TRL evolution for a given AI technology is more robust than the evolution of a 
single point (the technology at the same level). And it is much better than the analysis of the evolution of the 
technology mixing levels on the x-axis, because each period has a potential horizon for the technology. With 
this usual mistake we could have said that there has been no progress in smart phones in the past ten years 
once the penetration of devices reached near 100%. The percentage of time we use them has increased, 
because they have increased the generality of tasks and activities they can do, so their transformation goes on. 

 

6.2 AI futures 
There are many ways in which AI futures can be extrapolated, from expert panels (Müller and Bostrom 2016, 
Betz et al. 2018) to role-play scenarios (Avin 2019). There are also many visions about what will be possible in 
the future, with mixed success (Kurzweil 2005), poor specification99 or not meeting any AI forecasting 
desiderata100 (Dafoe 2018, Ap. A). Be relying on measurable indicators, it is possible to connect the progress in 
AI with some economic indicators (such as the PREDICT dataset101). In this paper, however, we have adopted 
an approach based on TRLs, to describe the state of the art of a discipline (which may be of use in applications 
such as project assessment or product development). For this reason, we have outlined some ideas on how to 
use this methodology for forecasting purposes. 

The truth is that we are still terribly bad at predicting what capabilities and products will become a reality even 
in the short term, a problem that is not specific to AI but all technology, and particularly digital technologies. 
We are not always successful, even with hindsight (Martínez-Plumed et al. 2018b), in understanding why some 
potentials are not fulfilled, and why some technologies have limitations, and what kind of new technologies 
may replace them (Marcus 2020). While some criticisms in the early days of AI were related to scalability (the 
ideas worked for toy problems but were intractable in general), more recently most criticisms of AI are related 
to the lack of generality of current AI technologies. This is one reason for expressing generality as a dimension 
in our representations and measurements and is key to determine the maturity of a technology and forecast its 
transformative power. 

Generality is also a key element when related to mass production and hence society's digital transformation. If 
a system is specialised for one particular domain, the return on investment —R&D investment— would be 
smaller than if the technology is applicable to a wide range of areas. Even a minor gain that takes place in many 
devices usually represents more money than a major gain in a few devices. Of course, many of these devices or 
apps can still be very specific (e.g., a watch), so this does not necessarily go in the direction of full generality 
but can still achieve massive penetration. When a widespread system becomes more general (e.g., a mobile 
phone, useful for calls and SMSs, turns into a smart phone, with apps), the transformation becomes huge. It is 
no wonder that virtual assistants, which can be distributed on every device (from phones to smart homes), if 
combined with a highly-general of tasks, may represent a major transformation in the years to come. Hence 
the interest by tech giants in investing in this technology. 

If the dimensions are right, high TRLs for high-level (i.e., broad) generalities should indicate potential short-
term or mid-term massive transformative power (see, for instance, Figures 6 - speech recognition, 7 - facial 
recognition, 8 - text recognition or 10 - self-driving cars). However, generality requires effort, and has 
associated costs. There are some internalities and externalities about a technology (e.g., environmental 
footprints, user privacy, skill atrophy, etc.) that should be considered refining these predictions. For instance, a 
given technology can be ready but the costs of deployment may not be affordable for the consumers (these 
costs can include data, expert knowledge, human oversight, software resources, computing cycles, hardware 
and network facilities, development time, etc., apart from monetary costs for research and development) 
(Martínez-Plumed et al. 2018a, Spelda et al., 2020). For instance, self-driving car technology can be based on 

 
99 https://www.lesswrong.com/posts/yy3FCmdAbgSLePD7H/how-to-write-good-ai-forecasting-questions-question-database  

100 Indicators for relevant AI-related achievements (e.g., a new capability that would pose a substantial employment threat to a large group of people) 
101 https://ec.europa.eu/jrc/en/publication/2018-predict-dataset 

https://www.lesswrong.com/posts/yy3FCmdAbgSLePD7H/how-to-write-good-ai-forecasting-questions-question-database
https://ec.europa.eu/jrc/en/publication/2018-predict-dataset
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radar or cheap cameras. While mass production can reduce the cost of radars, having self-driving capabilities 
for cheap cars (those most people have) may give advantage to technologies that rely on computer vision 
rather than radar tracking102. Even if a device is flooding the market, that does not mean it will be used 
extensively: if the novelty just wears off, it will be forgotten shortly after (as happens with many gadgets). 
Sometimes products are sold before they are effectively ready, just to make a positioning in the market, or 
because of some other commercial reasons such as meeting customers’ expectations. The success of a 
technology is therefore an even more difficult variable to estimate, as many social and economic factors may 
interplay (Schilling 1998). For instance, if a technology is deployed too early, it may rebound with a backlash 
from consumers (e.g., Microsoft Clippy created aversion against assistants (Veletsianos 2007, PCMagazine 
2001)), or human labour costs may fluctuate, accelerating or slowing the adoption of certain technology (e.g., 
mechanisation and automation have facilitated an increase in the speed of production (Miozzo et al. 2005, 
Borghans et al. 2006, Suri 2011))). In other words, technological readiness does not mean technological 
success. Analysing all the factors contributing to such success is out of the scope of this paper, and in the case 
of AI may require a particular analysis in the same way we have done here for the TRLs, but in terms of 
technology success rather than maturity. 

What we have covered in this paper is an example-based methodology where (1) we identify the technology, 
its category and its scope, (2) we recognise and define the levels of generality that are most meaningful for the 
technology and appropriate to estimate the TRLs accurately, (3) we find evidence in the scientific literature and 
industry to identify the points on the readiness-vs-generality chart, and (4) we use the chart to understand the 
state of the art of the technology and extrapolate its future trends. The examples selected in this paper are also 
sufficiently representative for a discussion about the future of AI and how these charts can be used for short-
term and mid-term forecasting. 

As future work, there are many avenues we would like to see explored. First, the reliability of the assessments 
could be increased by using external experts for each chart. There is an opportunity for a consultation with the 
AI community asking for their views, suggestions, and evidence of the TRL levels. With a larger and wider group 
of experts methods such as Delphi could be used. Furthermore, we could develop new scales based on 
generality, autonomy, intelligence, etc., better understanding the different AI technologies and their evolution. 
We could also derive the TRLs from the results of the related benchmarks for each technology, as discussed at 
the end of the previous section. Second, covering many more AI technologies and their evolution would give a 
more complete picture than what we portray here, with a choice of representative AI technologies. Third, for 
many technologies there is an important discussion about the “right” levels of generality. In some cases there 
may be different scales or even multidimensional (e.g., hierarchical) scales to explore. Finally, there is also an 
opportunity to use the proposed methodology and results to generate an agenda of challenges for AI, 
particularly for those higher levels of generality which are currently acting as constraints to higher TRLs. 

There is an enormous interest in the futures of AI and its impact. But massive impact can only be reached when 
the technology is really transformative. This only happens when new ideas, expertise and innovation reach 
maturity and they are widely applicable. Using the technology readiness levels and combining them with levels 
of generality, as we have done in this paper, can allow for the exploration of fresh perspectives on the state of 
the art of artificial intelligence, and how it may come to affect our society in the near future. 

 

 
102 It has been argued that episodes of acceleration in technological progress were driven by particular General Purpose Technologies (GPTs) as this sort of technologies 

have the power to change the pace and direction of economic progress. Illustratively, in (Petralia 2017) the case of electrical and electronic technologies is discussed. 
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Appendix A: Technology Readiness Levels Rubric 
In this appendix, we include more detail about each TRL in the form of a rubric, as has been used to assign the 
TRLs in this document. These extended descriptions have been adapted from some “TRL calculators”103 104, 
developed by the US Air Force Research Laboratory developed for assisting in the process of evaluating the TRL 
of project or product. Each entry below includes level, title, rubric question, description, and main 
characteristics. 

TRL - 1 Basic principles observed - Have basic principles been observed and reported? 

Lowest level of technology readiness. Research begins to be translated into applied research and development. 
Examples might include paper studies with the basic properties of a technology.  

— "Back of envelope" environment 

— Basic scientific principles observed 

— Research hypothesis formulated 

— Mathematical formulations of concepts that might be realisable in software 

— Initial scientific observations reported in scientific journals, conference proceedings and technical reports

TRL - 2 Technology concept formulated - Has a concept or application been formulated? 

Invention begins. Once basic principles are observed, practical applications can be invented. Applications are 
speculative and there may be no proof or detailed analysis to support the assumptions. Examples are limited to 
analytic studies.  

— Desktop environment  

— Paper studies show that application is feasible  

— An apparent theoretical or empirical design solution identified  

— Basic elements of technology have been identified 

— Experiments performed with synthetic data 

— Individual parts of the technology work (no real attempt at integration)  

— Know what experiments you need to do (research approach) 

— Analytical studies reported in scientific journals, conference proceedings and technical reports 

TRL - 3 Experimental proof of concept - Have analytical and experimental proof of concepts been 
demonstrated? 

Continued research and development efforts. This includes analytical studies and laboratory studies to 
physically validate analytical predictions of separate elements of the technology. Examples include components 
that are not yet integrated or representative. 

— Academic environment 

103 https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2003/systems/nolte2.pdf, https://faaco.faa.gov/index.cfm/attachment/download/100020.  

104 US Air Force Research Laboratory “TRL Calculator” (for Excel):  (http://aries.ucsd.edu/ARIES/MEETINGS/0712/Waganer/TRL%20Calc%20Ver%202_2.xls)

https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2003/systems/nolte2.pdf
https://faaco.faa.gov/index.cfm/attachment/download/100020
http://aries.ucsd.edu/ARIES/MEETINGS/0712/Waganer/TRL%20Calc%20Ver%202_2.xls
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— Preliminary system performance characteristics and measures have been identified and estimate 

— Outline of software algorithms available 

— Laboratory experiments verify feasibility of application  

— Metrics established  

— Experiments carried out with small representative data sets 

— Algorithms run on surrogate processor in a laboratory environment 

— Existing software examined for possible reuse  

— Limitations of presently available software assessed (analysis of current software completed)  

— Scientific feasibility fully demonstrated  

— Analysis of present state of the art shows that technology fills a need 

TRL - 4 Technology validated in the laboratory - Has a breadboard unit been demonstrated in a laboratory 
(controlled) environment? 

Basic technological components are integrated to establish that they will work together. This is relatively "low 
fidelity" compared to the eventual system. Examples include integration of “ad hoc” software and/or hardware 
in the laboratory.  

— Controlled laboratory environment 

— Individual components tested in laboratory or by supplier  

— Formal system architecture development begins  

— Overall system requirements for end user's application are known  

— Analysis provides detailed knowledge of specific functions software needs to perform 

— Technology demonstrates basic functionality in simplified environment 

— Analysis of data requirements and formats completed  

— Experiments with full scale problems and representative data sets  

— Individual functions or modules demonstrated in a laboratory environment  

— Some ad hoc integration of functions or modules demonstrates that they will work together  

— Low fidelity technology “system” integration and engineering completed in a lab environment 

— Functional work breakdown structure developed 

TRL - 5 Technology validated in a relevant environment - Has a breadboard unit been demonstrated in a 
relevant (typical; not necessarily stressing) environment? 

Fidelity and reliability is significantly increased. The basic technological components are integrated with 
reasonably realistic supporting elements so it can be tested in a simulated environment. Examples include 
“high fidelity” laboratory integration of components. 

— Laboratory environment modified to approximate operational environment 

— System interface requirements known  

— System software architecture established 

— Coding of individual functions/modules completed  
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— High fidelity lab integration of system completed, ready for test in realistic or simulated environment 

— Individual functions tested to verify that they work 

— Individual modules and functions tested for bugs 

— Integration of modules/functions demonstrated in a laboratory environment 

TRL - 6 Technology demonstrated in a relevant environment - Has a prototype been demonstrated in a 
relevant environment, on the target or surrogate platform? 

Representative model or prototype system, which is well beyond that of TRL 5, is tested in a relevant 
environment. This represents a major step up in the demonstrated readiness of a technology. Examples include 
testing a prototype in a high fidelity laboratory environment or in a simulated operational environment. 

— Operating environment for eventual system known 

— Representative model / prototype tested in high-fidelity lab / simulated operational environment 

— Realistic environment outside the lab, but not the eventual operating environment  

— Prototype implementation includes functionality to handle large scale realistic problems 

— Algorithms partially integrated with existing hardware / software systems  

— Individual modules tested to verify that the module components (functions) work together  

— Representative software system or prototype demonstrated in a laboratory environment  

— Laboratory system is high-fidelity functional prototype of operational system 

— Limited software documentation available 

— Engineering feasibility fully demonstrated 

TRL - 7 System prototype demonstration in operational environment - Has a prototype unit been 
demonstrated in the operational environment? 

Represents a major step up from TRL 6, requiring demonstration of an actual system prototype in an 
operational environment. Examples include testing the prototype in operational testing platforms (e.g., a real-
world clinical setting, a vehicle, etc.) .  

— Each system/software interface tested individually under stressed and anomalous conditions 

— Algorithms run on processor(s) in operating environment  

— Operational environment, but not the eventual platform  

— Most functionality available for demonstration in simulated operational environment 

— Operational/flight testing of laboratory system in representational environment 

— Fully integrated prototype demonstrated in actual or simulated operational environment  

— System prototype successfully tested in a field environment 

TRL - 8 System complete and qualified - Has the system/development unit been qualified but not operationally 
demonstrated? 

Technology proved to work in its final form and under expected conditions. In most cases, this TRL represents 
the end of true system development. Examples include developmental test and evaluation of the system to 
determine if the requirements and specifications are fulfilled. 
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— Final architecture diagrams have been submitted 

— Software thoroughly debugged 

— All functionality demonstrated in simulated operational environment 

— Certifications and licenses given by regulators  

TRL - 9 Actual system proven in operational environment - Has the system/development unit been 
demonstrated on an operational environment? 

Actual application of the technology in its final form and under mission conditions, such as those encountered 
in operational test and evaluation. Examples include using the system under operational conditions. 

— Operational concept has been implemented successfully 

— System has been installed and deployed. 

— Actual system fully demonstrated 
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