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 A new architecture of Li-Ion battery charger with charge mode selection is 

presented in this work. To ensure high efficiency, good accuracy and 

complete protection mode, we propose an architecture based on variable 

current source, temperature detector and power control. To avoid the risk of 

damage, the Li- Ion batteries charging process must change between three 

modes of current (trickle current (TC), constant current (CC), and constant 

voltage (CV)) in order to charge the battery with degrading current. 

However, the interest of this study is to develop a fast battery charger with 

high accuracy that is able to switch between charging modes without 

reducing its power efficiency, and to guarantee a complete protection mode. 

The proposed charger circuit is designed to control the charging process in 

three modes using the charging mode selection. The obtained results show 

that the Li-ion batteries can be successfully charged in a short time without 

reducing their efficiency. The proposed charger is implemented in 180 nm 

CMOS technology with a maximum charging current equal to 1 A and a 

maximum battery voltage equal to 4.22 V, (with input range 2.7-4.5 V). The 

chip area is 1.5 mm2 and the power efficiency is 90.09 %. 
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1. INTRODUCTION  

Currently, the batteries production has encountered a revolution regarding its design, especially after 

the appearance of lithium-ion batteries. These batteries present a favourable choice for several devices such 

as phones, EDAS and electric vehicles. This is due to many reasons: weight ( Lithium-ion batteries are three 

times lighter than lead batteries for the same stored energy), high efficiency, the lithium batteries have a 

performance close to 100%, Life cycle over 1000 cycles, output voltage (ranges 2.5-4.2 V), environmental 

impact and cost of stored energy [1]. 

To this day, many Li-Ion battery charger architectures have been published in the literature using 

CMOS technology [2-14]. As already stated, with these high performances, li-ion battery chargers became 

the most used for mobile applications. Thereafter, there are two architectures of battery chargers, one based 

on the linear regulator and the other on the switching regulator. The battery charger is implemented with 

CMOS technology and is integrated in a System on Chip to reduce the effect of noise and ripple. The linear 
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regulator architecture represents a good choice for mobile applications compared to the switching regulator 

and that is due to several factors: Low cost, small size, high integration, accuracy and high power efficiency. 

To improve the behaviour of linear regulator battery chargers, many studies have been proposed. 

The approach proposed by Ziadi and Qjidaa in [2], describes how the mode charging is accomplished using a 

power transistor control made by two current sources Iref1 and Iref2 passed through a level shifter. The 

transistor provides a constant current to order the trickle constant current and the fast-constant current modes. 

However, this architecture suffers from low power efficiency due to the time lag between the power supply 

and the battery voltage VBAT. Another architecture is proposed in [7, 11], it is based on the DC/DC converter. 

This kind of architecture is characterized by high power efficiency; however, it is not suitable for single chip 

integration because of its low accuracy and big area. A battery charger based on charge pump is introduced in 

[12-14], in spite of its low power consumption, the efficiency and accuracy of this architecture are not high 

enough for battery charging. If we look at the design of all of these architectures, we notice that a very 

important safety factor is missing which is temperature monitoring. During the charging process, the circuit 

temperature varies according to the state of charge or to the variation of the power supply. Thus, it is 

necessary to control the circuit temperature. According to the analysis of the different architectures cited in 

the literature regarding Li-ion battery charger, the major problems occur are low efficiency and accuracy, 

large surface area and temperature control.   

In this study, we propose high efficiency, low power consumption and high maximum current linear 

for the battery charger architecture. Therefore, to extend the run time and reduce the risk of battery damage, 

it is necessary to control the operation of charging in the three modes of charging with degrading current  

[15-17]. The proposed architecture is based on variable current source and power control to keep the 

difference between the power and the battery voltage small and constant. In addition, a charging mode 

selection is proposed using a logic circuit to control each mode of charging in order to reduce power 

dissipation and achieve high power efficiency. A temperature detector is proposed to guarantee the safety of 

all circuits from temperature damage during the charging process. 

 

 

2. DESCRIPTION OF CHARGING CIRCUIT 

The proposed charging mode of a Li-ion battery charger is shown in Figure 1, the charging process 

of a Li-ion battery is processed into three charging states, TC, LC and CV, with temperature detector in each 

state. To avoid risks due to high charging current on the battery, the charging process is treated as follows: 

- If the voltage VBAT is lower than the defined voltage VL (normally 2.9 V), the charger starts from the 

TC state with a low charging current (200 mA). 

- If the voltage value of VBAT is between the higher voltage VH and the lower voltage VL, the charger 

operates at the LC state with a constant and large driving current until the value of VBAT becomes 

higher than VH (normally 4.2 V), which is a predefined transition voltage. 

- If the voltage value VBAT is higher than the voltage VH, the charging process switches from the LC 

phase to the CV state. The charger then charges the battery by degrading the current to full capacity 

until the process stops. 

Finally, to stop the charging, there are many ways: The charger stops the charging process once it 

detects the minimum charging current at the CV phase (charging current is reduced to the specified range). 

Or by the definition of the maximum charging time [18, 19]. In our work, we used two methods at the same 

time to respect all charge procedures and guarantee battery protection. The charge stops when the charging 

current is reduced to 0.05 C, or if the temperature detected by the PTAT circuit detects 115 degrees.  
               

 

 
 

Figure 1. The proposed charging mode of a Li-ion battery charger 
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The architecture of the Li-Ion battery charger system consists mainly of two blocks: The charging 

block and the Power supply block. For the conventional Li-Ion battery chargers, the power supply block is an 

AC-DC converter, which is independent of load circuitry, usually the SC or LDO. The efficiency of the 

conventional Li-Ion battery charger is presented in (1) [20]: 

 

 1

BAT CH BAT
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
                                (1) 

 

However, if we compare the quiescent current (Iq) and the charging current (Ich), we can 

distinguish that Iq is much smaller than Ich. Consequently, the efficiency is equal to VBAT, VDD ratio. The η1 

is quite weak in the initial process (VDD constant), which represents a major disadvantage. However, the 

variable current source circuit shown in Figure 2 can produce an adaptive reference voltage in order to retain 

the charger at high power throughout the charging process. The energy efficiency of the variable current 

source battery charger is shown in (2), it is optimized using variable current source While VDC follows the 

VBAT with a fixed voltage. The proposed charger can also work in constant-voltage and constant-current 

modes for charging a Li-Ion battery [21, 22]. 
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The dissipated power plays an important role in the performance of the battery charger. This power can be 

calculated by subtracting the power output and the input power is shown in (3): 

 

   *diss DC BAT q DC BAT CH qP P P P V V I P                          (3) 

 

 

 
 

Figure 2. General architecture of the battery charger with a variable power source and a power control 

 

 

3. ARCHITECTURE OF THE PROPOSED BATTERY CHARGER 

3.1.  The Proposed Charge Mode Selection 

The charge mode selection is designed by a logic circuit, it is made by two analog comparators, 

logical ports such as NAND, OR, inverters and temperature detector circuit PTAT. First, the battery voltage 

is compared through comparators with the predefined references voltage (VL, VH), in order to generate three 

control signals (VTC, VCC and VCV) ; their main role is to provide currents (ITC, ILC and ICV) via the reference 

current generator as shown in Figure 3. VC represents the control signal that provides a charging current to 

each state of charge. The output of the port OR is used to stop the charge if the charging current is reduced to 

0.05 C or if PTAT circuit detects 115 degrees. The charge mode-selection function is presented in Table 1. 
 

 

 
 

Figure 3. Schematic of the proposed charge mode selection 
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Table 1. Charging mode control function 
Condition VTC VCC VCV VC VEND PTAT 

Constant Trickle Current Hi Lo Lo Hi Lo Lo 
Constant large Current Lo Hi Lo Hi Lo Lo 

Constant Voltage Lo Lo Hi Hi Lo Lo 
End of charging Lo Lo Hi Lo Hi Hi 

 

 

3.2.  Temperature detector PTAT 

Generally, all the techniques used in literature focus on rapidity, efficiency and life cycle of the  

Li-Ion batteries during the charging process. However, the major missed safety factor is the risk that can 

occur because of temperature, i.e. transistors temperature reaches a level that can damage the entire circuit. 

Therefore, we proposed a temperature detector PTAT circuit show in Figure 4 to control the charger 

temperature [23, 24].  

 

 

 
 

Figure 4. Schematic of the proposed temperature detector PTAT 

 

 

The proposed PTAT based on current mirror structure is designed to stop the charging in any mode 

of charging once the temperature reaches 115°C. The transistors M4 and M5 have a size ratio of 1: N, and for 

M1 and M2 the same size. The current through the transistors M4 and M5 is given by (4): 

 

                      (4) 

 

where VT, VGS, and VTH represent the thermal voltage, gate–source voltage and threshold voltage 

respectively. W/L is the width and length ratio, Cox represents the gate-oxide capacitance, η is the substrate 

factor and μ is the carrier mobility. The PTAT voltage is the voltage over R1 which can be copied to the 

output and is given by (5): 

 

                          (5) 

 

3.3.  Reference Current Generator 

The reference current generator is represented in Figure 5. This circuit is composed of a current 

block and a voltage block. 

a. Current block 

This block is used to produce the CC charging mode reference currents and the charge end current: 

The amplifier OP, the resistor RREF and the transistor M10 are used to generate a constant reference current 

IREF, which is given by: 
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M1, M2, M3 and M4 represent the current mirror system in order to generate currents corresponding to each 

constant current (ITC, ILC and IOFF), which are proportional to IREF as follow (7-9):   

 

 
 

2

1

TC REF

W
L

I I
W

L

                             (7) 

 

 
 

3

1

LC REF

W
L

I I
W

L

                                 (8) 

 

 
 

4

1

OFF REF

W
L

I I
W

L

                              (9) 

 

b. Voltage block 

             The voltage block is used to produce the CV charge mode reference current. It is composed of 

current mirror (M5, M6) and a comparator, the charging current ICV is created as follows: As showing in 

Figure 5, when the battery voltage attains 4.2 V value, the current ICV is generated by the comparator in order 

to switch from ILC to IOFF (high level to low level). As already mentioned, each mode of charge has a 

corresponding current, which is generated by three transistors M9, M8 and M7 (controlled by VTC, VLC, 

VCV). 

 

 

 
 

Figure 5. Schematic of reference current generator 

 

 

3.4.  Charging current controller 

The purpose of the operating of charge current controller show in Figure 6 is to provide a driving 

voltage VD of the current source to each charging mode. The output current IS is measured by the current 

sensor in order to be compared with the three charging currents (ITC, ILC and ICV) through the comparator 

M12-M15, the output voltage VD is changed with these input currents. In addition, it represents the lowest 

voltage level of the signal selector circuit (composed of the transistors M18 and M19). 

As mentioned in section II, the stop procedure is activated by two method: 

a. By the comparison of output current IS and reference current IOFF: 

- If IS> IOFF so VEND is at the low level, which implies that the current voltage VC is at the high level. 

- If IS< IOFF than VEND is at the higher level, which implies that the current voltage VC is at the low level. 

Knowing that the driving voltage VD is ordered by VC, the current source is deactivated and the charging 

stops. 
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b. By the temperature detected PTAT circuit:  

The temperature of the charger is monitored throughout the charging period by a temperature 

detector. A reference voltage VTEP equivalent to 115 degrees is compared with the voltage of the state. The 

charging can be stopped in any state of charging according to the temperature of the circuit. 

 

 

 
 

Figure 6. Schematic of charge current controller 

 

 

3.5.  The proposed battery charger 

The proposed charging circuit with all blocks: Charging mode controller, reference current 

generator, charging current controller, temperature detector (PTAT) and finally current sensor circuit is 

represented in Figure 7. For the current sensor, the MS transistor plays the role of charging current sensor, 

and the current source represented by the power transistor MP which is used as a current source variable in 

order to generate a charge current to each charging mode. 

 

 

 
 

Figure 7. Circuit diagram of the proposed battery charger 

 

 

4. RESULTS AND DISCUSSIONS 

The proposed battery charger LDO-based is implemented in 180 nm CMOS TSMC technology. In 

order to study characteristics of our proposed charger, a testbench is showing in Figure 7 with an equivalent 

model of Li-ion battery. Based on the Li-ion battery model, the transient simulation of LDO-based battery 

charger is simulated with 2.7-4.5 V input voltage. The measurement results of our battery charger are shown 

in Figure 8, where the maximum current is respectively 280.5 mA and 1A for trickle current mode and 

constant current mode. On the other hand, the maximum voltage is respectively 2.9 V and 4.22 V for trickle 

current mode and constant voltage mode. 
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Figure 8. Simulation results of outputs the battery voltage Vbat and the charging current Ichg, respectively 

 

 

Figure 9 presents the output voltages of the proposed charge mode selection. However, three signals 

VTC, VLC and VCV are provided to control respectively trickle current, large current and constant voltage 

mode. As already mentioned in section 3, to have a complete protection system, it is necessary to integrate a 

temperature detector in order to protect the charger from any temperature damage. Figure 10 presents the 

simulation results of the proposed temperature detector PTAT. The charging process is done normally, once 

PTAT detects 115°C value the charging stops. 

 

 

 
 

Figure 9. The outputs voltage of the proposed charge mode selection 

 

 

 

 
 

Figure 10. The simulation results of the proposed temperature detector PTAT 

 

 

The power conversion efficiency of the proposed battery charger LDO-based is presented in  

Figure 11. The maximum efficiency of our charger is higher than the stated architectures [2, 3, 25]. As 

expected, the obtained results are much better compared to other works. However, the proposed techniques of 

charge modes-selection and temperature detector present excellent solutions:  
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- To control the transition between the three modes of charge in order to reduce power dissipation and 

achieve high power efficiency (1A). 

- To protect the battery from temperature damage. 

Table 2 represents a performance comparison between our proposed work and others architecture of battery 

charger.  

 

 

 
 

Figure 11. Power efficiency of the proposed battery charger 

 

 

Table 2. Comparison of performances with other work 
Parameters [2] [25] [3] This work 

Technology (um) 0.18 CMOS 0.35 CMOS 0.35   CMOS 0.18   CMOS 

Power Supply (V) 4.8-5 4.4 4.5 2.7-4.5 

Output voltage (V) 4.2 4.1 4.2 4.2 

Maximum current (mA) 448 1000 700 1000 

Efficiency (%) 87 68.3 70.9 90.9 

 

 

5. CONCLUSION  

To conclude, the proposed architecture presents a good choice for phone applications as power 

management systems. Therefore, the proposed charger is able to switch from a charging mode to another 

without reducing its efficiency using the proposed charge selection, and also it can reach a high value of 

maximum charging current (1000 mA) in a short time, and with high power efficiency which can reach 

90.9% . The result of simulation of the proposed battery charger LDO-based confirms the high performance 

and high power efficiency of our architecture. The proposed charger is designed in 0.18 μm CMOS TSMC 

technology, with a small area equal to 1.5mm2. 
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