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Chapter

Electrochemical Exfoliation of 2D 
Advanced Carbon Derivatives
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Abstract

Advanced 2D carbon materials such as graphene and derivatives are basic 
building blocks for future nanostructured generation in electronics and energy 
horizons owing to their remarkable physical and chemical properties. In this con-
text, production scalability of 2D materials having high purity with distinctive and 
multi-functionalities, that facilitate in fundamental research and advanced studies 
as well as in industrial applications. A variety of techniques have been employed 
to develop 2D advanced carbon materials, amongst state-of-the-art synthetic 
protocols, electrochemical is deliberated as a promising approach that provides 
high yield, great performance, low cost, and excellent up-scalability. Notably, play-
ing with electrochemical parameters not only allows tunable properties but also 
enhances the content variety from graphene to a wide spectrum of 2D semicon-
ductors. In this chapter, a succinct and comprehensive survey of recent progress in 
electrochemical exfoliation routes and presents the processing techniques, strate-
gic design for exfoliations, mechanisms, and electrochemistry of graphene.

Keywords: 2D materials, electrochemistry, exfoliation, anodic exfoliation,  
cathodic exfoliation

1. Introduction

Two-dimensional (2D) materials motivated scientific society owing to inspired 
decisive passion in electrical, mechanical, and optical disciplines, showing extra-
ordinary properties comparatively layered bulky counterpart. 2D pioneer carbon 
material, graphene, previously presented advanced studies in the fields, particu-
larly, [1] membranes, [2] bio-sensors, [3] energy storage technologies, [4, 5] and 
topographic spintronics devices, [6] despite last decade advancement in graphene 
literature approach, still alarming goal from its targets, as is the condensed mat-
ter physics, [7, 8] towards the aforesaid trend, a series of ultrathin materials were 
isolated via exfoliation process, as synthesized incorporating metal chalcogenides, 
[9, 10] double-layered-hydroxide, [11] boron nitride, [12] preliminary investigation 
regarding 2D nano-materials was attractively oriented by fundamental research 
approaches inheriting novelty properties, new channels have certainly opened and 
encouraged recently towards high application inspired studies [13, 14]. Evidently, 
2D materials frequently contributed active counterpart as a promising one in 
functional devices and versatile electronics. Eventually, they prove themselves as 
attracting candidates, revolutionizing the current technologies, further as, seawater 
desalination, quantum computing, and renewable energy resources [15–17].
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Harvesting applications regarding 2D materials are expected to realize high 
efficiency with low-cost industrial-scale technologies should be appreciated in the 
development of high-quality 2D materials. Updates now reveal various top-down 
adopted methods, likewise, scotch-tape. Chemical and liquid-based exfoliation was 
followed, fabricating layered 2D materials successfully [18]. Recent investigations 
have shown remarkable information about top-down approach, regarding time-con-
suming, hazardous chemical nature, and more defects generation. Comparatively, 
epitaxial growth, and chemical vapor deposition (CVD), bottom-up approaches 
have considerable capability of fabricating ultrathin 2D materials containing large 
surface- area [19]. Nevertheless, aforesaid bottom-up methods are so complex that 
they show costly high temperature and pressure, rather, more need to transfer the 
2D materials fabricated products from metal surface to targeted substrate, making 
difficult for controlling the synthesis process, and may incorporation of defects and 
impurities into the products. Electrochemical technologies are usually carried out 
under mild conditions, in comparison with, other synthesis technologies, as they 
proven convenient and controllable conditions [20, 21]. Electrochemical exfoliation, 
for the layered bulk-material, likewise, anodic-oxidation cationic-intercalation and 
cathodic-exfoliation, using liquid-electrolyte, applying potential driven structural 
expansion, is a potential method, exfoliating 2D materials in a remarkable novelty 
fashion [22, 23]. The electrochemical technique is also employed as a quick and con-
trollable tool for lithium/non-lithium intercalations [15, 16, 24–31] and considered 
as an effective technique for exfoliating and/or intercalates layered carbon materials 
to single or multi-layered 2D nanosheets [32–35].

Electrochemical reactions occur on electrode with layered structure will yield 
as intercalation and/or exfoliation of electrode [36–38]. There are some desirable 
features for electrochemical exfoliation such as simplicity, fast cycle time, ease of 
activity, control, and potential for scaling up. The applied potential and electrolyte 
quality highly influenced on consistency of exfoliated nanosheets [39]. For this 
purpose, a set-up similar to the battery test system in a galvanostatic discharge mode 
with a constant current is used. In this context, a metallic lithium foil is used as 
anode and bulk Graphite powder is serves as cathode with LiPF6 in a combination of 
ethylene carbonate and diethyl carbonate acting as electrolyte [16, 40]. Li+ ions are 
introduced into graphene interlayer van der Waals gap during intercalation cycle and 
reduced by incoming electrons from the external circuit to Li atoms during insertion 
(Figure 1) [41]. Strongly in-plane covalently bonded bulk materials with weakly 
out-of-plane bonds, coupled by weak intermolecular forces, may easily be exfoliated 
in the form of thin-atomic layered structure of the 2D materials, by breaking weak 
van der Waals interactions under ultra-high cationic or anionic media [42, 43].

Figure 1. 
Schematic illustration of electrochemical exfoliation [42].
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The desired oxygen content, defect density, electrical conductivity, and thick-
ness associated with exfoliated 2D materials, to be tuned, may be adjusted through 
voltage/current electrochemical parameters. Both cationic and anionic exfoliation, 
also intercalations, have been applied schematically in the exfoliation process of 
the graphite itself [44, 45], phosphorous black [46, 47] iv A and vA group metals 
[48, 49], transition-metal-dichalcogenides [32, 50, 51], graphitic-carbon-nitride, 
transition-metal-oxide [52], metal–organic-framework sheets [53] and MXene [54]. 
Based upon the type of potential used; electrochemical processes are mainly divided 
into two forms one is (i) cathodic exfoliation, performed in organic solvents such 
as Dimethyl sulfoxide (DMSO) and propylene carbonate comprising alkylammo-
nium/lithium salts as electrolyte [16, 44, 55–59]. Other is (ii) anodic exfoliation, 
processed in ionic liquid or water mixtures or acids aqueous solutions such as H2SO4, 
HClO4, H3PO4, and H2C2O4; both exfoliations are described in Figure 2 [22, 60–62].

2. History prospective of graphite intercalation chemistry

Graphite intercalation chemistry [63, 64] paves historical background path for 
the graphene, produced by electrochemically roots, the first step involves, typi-
cally, intercalation of ions in this respect. Scientists and engineers studied graphite 
intercalation compounds (GICs) over many decades, but exfoliation study of GIC 
was intensively increased to produce graphene/graphene-derivatives via charac-
terization of graphene, employed by Geim and Novoselov [65]. A briefly reviewed 
of pre-graphene era work has been described here, included with the latest 
electrochemically produced graphene. GICs are identified, as numerous graphitic 
molecules resided between basic graphene sheets.. The intercalating molecules may 
play donor role in the graphitic network, otherwise, accept electrons (acting as 
accepters) to form chemically ionic-bond with graphite. Contrarily, a ternary GIC 
possibility prevails in the form of co-intercalated, acceptors and donors as well. 
GICs have interestingly presented considerable research study, owing to improved 
charming (electrical and electronic) properties relative to pure graphite. The very 
first reported literature on GIC was presented by Schafhäutl, in 1841 [66]. While, 
Various GICs methods have been promoted, producing the material under study, 
likewise, chemical photochemical and electrochemical synthetic approaches.

Figure 2. 
Illustration of cathodic and anodic exfoliations.
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In addition, a homogeneous series of intercalating molecules were involved 
in various graphitic nature host materials [67], fabricating various GICs. GICs 
(amongst many species), including halogens, metal halides, alkali metals, and 
various acidic nature compounds are successfully incorporated into graphite. 
Electrochemical-intercalation-approaches have been studied since 1938, as Rüdorff 
and Hoffman employed electro-intercalation, to prepare acidic nature GICs 
[68]. However, until 1970s and 1980s, no interest has been taken in intensified 
electrochemically produced GICs. Moreover, in 1974, the Lithium/(CF) primary 
battery has been introduced by Fukuda while the 1970s presented the first lithium/
graphite/fluoride battery-system on commercial basis, successfully [69, 70]. While 
electrochemical-intercalation approach was employed, here, a voltage is applied to 
graphitic working-electrode. In case the potential becomes positive, the graphite is 
identified as positively-charged anode, attracting anionic intercalating-species. In 
contrast, if the potential is opposite, then graphite acts as a negatively-charged cath-
ode, which attracts cationic nature species. As a result, accordingly, both anionic-
cationic intercalating-agents may be involved in the desired GICs. An anionic 
intercalating-species, which have been successfully incorporated, contained obvi-
ously sulfate- anions, fluoride-anions [71–73], and metal-halides respectively [74].

Cationic intercalating-species, including metals such as magnesium [34] and 
lithium have been reported [75, 76]. Lithium-ion GICs successfully exemplify the 
application of GICs towards the production of batteries, an area, where maximum 
research has been reproduced. GICs proved to be a successful battery cathode, or 
anode, or both alternatively. In the 1980s, lithium-ion GICs were progressed as 
anode-materials in secondary-batteries, associated with metal-oxide cathodes. 
Research into lithium-ion batteries progressively continues, currently, with due 
widespread commercial use this economical system. Furthermore, alternative 
GICs battery systems, such as metal-hydroxide-based systems [77], have also been 
adopted advanced steps and exhibited commercial based success. Various early 
electrochemically synthesized GICs products, based on the contemporary electro-
chemical-products of exfoliated-graphene and functionalized-graphene, i.e. early 
work on lithium/GICs advanced materials, which would be exfoliated to graphene, 
later on, were also appreciated [78]. Stage-I, earlier GIC literature on GICs, is 
considered the most relevant current-work on graphene exfoliation approach. As 
far as Stage I is concerned, compound is formed during the process of one layer of 
graphene resided between every layer of intercalating-molecules, whereas Stage-II 
GIC shows two-layers of graphene intercalated between each layer of guest-
molecules. Stage-III GIC contains three-layered groups of graphene residing guest 
molecules, and continue simultaneously. Since Stage-I GICs, the guest species, 
enlarge the inter-layer spacing between graphene layers, following basic principle, 
each layer may easily be separated from its neighbor one, so becoming able to be 
exfoliated into single-layered graphitic nature. Much electrochemical-graphene 
work, decisively first creates Stage-I GICs, which are, later on, exfoliated in the 
form of monolayers. Earlier study reveals that electrochemically produced Stage-I 
GICs have been announced more informative in many studies, clearly described 
in the forthcoming sections. It is very likely, and innovatively, that this literature 
study will continue to be made a foundation for future work, successfully [79].

3. Electrochemical setup and exfoliation mechanisms

3.1 Experimental setup

The electrochemical setup, used for graphene exfoliation, usually incor-
porates the elements such as graphite working-electrode, counter-electrode, 
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reference-electrode, electrolyte, and voltage-supply. Systematically, highly-orien-
tated pyrolytic-graphite (HOPG), graphite-powders, graphite-rods, graphite-foil, 
or graphite-flakes has been used as the working-electrode [22, 44, 80]. To provide 
the conducting surface, graphite flakes were choosed as the best, amongst available 
electrodes, that may be adhered to conductive carbon-tapes, forming the working-
electrode [22, 45], and they may also adhere to tungsten-wire via silver-pad [81] or 
to be formed into graphite-plates through compression directly [82]. Being counter 
electrodes mesh, platinum-wire, plates or rods, and graphite were more frequently 
used. The arranged experimental setup is often illustrated as depicted in Figure 3a. 
Keeping a certain distance between working and counter electrodes respectively, 
they are simultaneously immersed into electrolyte. A voltage (positive or negative) 
is applied to the graphite (a working electrode), depending upon adopted desired 
exfoliation mechanism.

In addition to the aforesaid common setup, Liu et al. employed two pencil 
cores, as graphitic anode and cathode sources alternatively [80]. An alternating 
bias-voltage (between +7 V and − 7 V) was applied across the ends of pencil-
electrodes, exfoliating them properly. Though the setup was highly efficient with 
higher exfoliation rate than graphite electrode, yet the product so obtained may be 
expected more inhomogeneous, with wide thickness and suitable size distribution. 
Abdelkader et al. reported, recently, a versatile setup in Figure 3b, showing contin-
uous electrochemical-exfoliation-process, producing 0.5–2 g (few-layer graphene) 
per hour [83]. Moreover, in the setup, the graphitic electrode was injected steadily 
from the bottom of the electrolytic cell with graphitic contact with the electrolyte, 
being so exfoliated. Well- immersed-exfoliated (few-layer graphene sheets) was 
located on upper surface of the electrolyte, thereby, flowed out of the cell, while 
the partially-exfoliated-graphite retained at the bottom, so that further exfoliation 
may be carried out [83]. In another study, Motta and coworkers have presented 
ultra-sonication, assisting the electrochemical-exfoliation process, and placing the 
graphite electrode in a sonicated-exfoliated process [84].

Sorokina et al. introduced a patent experimental setup, comparatively, produc-
ing GICs in the past of the graphene era indicating a load (20 kPa) was applied 
across graphite-flakes over a platinum-disk (electrode), so to achieve fine electrical-
contacts between the graphite-flakes as well [85]. Recently, the main challenging 
issue lies between (the effective and uninterrupted) electrical-delivery, to each 
graphene layer, in the graphite, presenting the immense need for the development 
of commercially scalable, and further controllable-setup.

3.2 Electrode preparation

Various bulk-layered materials exhibit strong in-plane bonds while electrostatic 
interactions with weak interlayer bonding i.e., interlayer-cohesive-energies (less 
than 200 meV/atom) [18]. So, exfoliation or delamination occurred in the form 
of atomically thin-layered nanosheets, thereby, van der Waals forces amongst 2D 
binding layers reduce to a minimum level. Mechanical exfoliation/chemical exfolia-
tion as compared with ultrasonic treated exfoliation was extensively carried out 
fallowed by two-electrode or three-electrode electrolysis of electrochemical exfolia-
tion (using bulk-material as working-electrode). Plasma state as well as cations 
or anions accumulated between layers owing to a strong electric field, resulting 
in layered-structure electrodes expansion with the interlayer-bonding cleavage 
simultaneously. Hence, bulk-layered-structured material may prove to be a good 
conductor of electricity, thereby, could be made electrode. It has been reported 
that bulk layered materials are semiconductive as well as non-conductive in nature 
[86] caused by difficult to be electrochemically exfoliated, as in this case, the 
most applied potential causes overwhelming large resistance. To overcome issue, a 
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conductive additive is suggested to be more appropriate strategy [61], resulting in 
exfoliation of 2D layered materials in an extensive range of possibility while ignor-
ing conductivity of the bulked layered materials.

During the exfoliation mechanism, expansion of bulk material electrode occurs 
under the intercalation of ions, leading to disintegration of bulk material electrodes. 
Resultantly, some disintegrated sheets were still not exfoliated, reducing the yield 
strength and preventing electrochemical exfoliation process from the possibility of 
feasible production route. During the intercalation process, chances of breaking of 
bulk material electrodes, they are wrapped up in confined space with plastic tube 
and platinum gauze or carbon cloth, suggesting reasonable method for laboratory 
preparation method [87, 88]. Currently, Achee et al. framed a new route, yielding 
highly scalable 2D graphene by employing graphite flakes, without binder as the 
working electrode [89]. Graphite flakes remained in electrical contact under the 
compressed expandable electrode system, expanded by gas evolution. Therefore, 
graphene powders accumulated continuously expanded largely, and exfoliated 
extensively to produce carbon materials (graphene), 2D in nature.

3.3 Electrochemistry of exfoliated graphene and mechanism

The electrochemical exfoliation Mechanism depends on the type of applied 
potentials (anodic or Cathodic, Figure 4). Amongst the going mechanisms, 
anodic-exfoliation contains an anionic-intercalation with any co-intercalating-
species (in the reaction mixture) into graphitic nature material. A positive current 
extracts electrons from the graphite (a working anode), thereby producing a posi-
tive charge. The charge, so produced, proceeds of bulky negative ion’s intercalation 
like sulfate anions, that have increased the interlayer-spacing between graphene-
sheets, and further supported during the exfoliation of the sheets, subsequently. 
A negative biased graphitic working-electrode in cathodic exfoliation attracts 
positively-charged-ions (e.g. Li+) in the electrolytic solution, involving any co-
intercalating molecules. Furthermore, the intercalating species create a location 
where they open the graphene sheets, depending upon expansion and exfoliation 
processes [16, 90, 91].

After completion of electrochemical intercalation along with expansion of 
graphite, further need is required to some form of exfoliation. In some cases, where 
exfoliation-process may occur during which intercalates (more typically), or the 
co-intercalating species, such as water, that was rapidly transformed to expanded-
species (e.g. oxygen gas) [81]. On the other hand, electrochemically expanded 
graphitic sheets requires, to be mechanically-exfoliated likewise sonication pro-
cess [78]. The exact mechanism related to electrochemical-graphene-exfoliation 

Figure 3. 
(a) Schematic illustration of a typical setup for electrochemical exfoliation of graphite [81], (b) schematic of 
the electrochemical cell for continuous process [83].
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depends upon the potential polarity, along with other experimental conditions, 
caused by the electrolyte as well as co-intercalating agents already incorporated in 
the mechanism, to be further discussable (vide infra) [15].

An anodic exfoliation mechanism in ammonium sulfate ((NH4)2SO4) aqueous 
solution, outlined by Parvez et al. [22]. In (Figure 5a), Hydroxyl ions (OH−), firstly 
produced from the water electrolysis, and this strong nucleophile may interact the 
sp2 carbons graphitic- edges with grain boundaries, thus producing two vicinal 
hydroxyls (OH) groups. Subsequently, they interact with each other, exploring 
epoxide group rings. Alternatively, dissociating them forming of two carbonyl-
groups via further additional oxidation, as illustrated in Figure 5b, reaction (3). 
Resultantly, this leads to depolarization with an expansion of graphitic-layers at the 
corners, which in turn opened up the lattice, for intercalation, by sulfate ions 2

4
SO

− , 
providing opportunity towards possibly more water molecules. In addition, along 
with the oxidation of graphite, further reactions are certainly expected to occur, 
such as involvement of evolution of (CO2 and O2 gases respectively) by performing 
reactions 4 and 5 in Figure 5. CO2 and O2 gases also assisted reasonably during the 
exfoliation of the graphitic layers [22].

Similarly, anodic process was also described by Rao et al. [92]. Hydroxyl ions 
(i.e. OH− ions) from aqueous NaOH electrolytic solution reacted with more added 
H2O2 to form 2

2
O

−  ions that have proved to be more nucleophile than OH− ions. That 
is why, they may be easily intercalated into graphene-sheets, with the aid of (a 
positive) electrochemical-potential. As an example of a cathodic exfoliation mecha-
nism, Li+ (positive ions) in organic solvent PC (propylene carbonate) may be 
systematically used as intercalating-agents [44, 78]. Electrochemical process was 
achieved by the co-intercalation of PC and Li+ ions in the form of negatively 
charged graphitic layers, as illustrated in Figure 6.

By supplying sufficiently high voltage, the organic solvent will be decomposed, 
producing propylene gas which added the graphitic expansion [44].

Alkaline situations along with 1 M of sodium hydroxide (NaOH) and father 
explore the impact of adding hydrogen peroxide (H2O2) on exfoliation efficacy, 
experimental setup with mechanism as shown in Figure 7a, bi-ii. The existence of 
H2O2 considerably improves the exfoliation due to formation of extremely nucleo-
philic ions ( 2

2
O

− ) that causes to intercalate and magnify graphene layers. This 
corresponds to the extremely reactive radicals (i.e. O and OH) produced by firstly, 
anodic oxidation of water and secondly, opened and oxidized the edge sheets 
assisting intercalations of the peroxide ions (Figure 7f-g). The exfoliation route 
happens tremendously fast and obtained graphene sheets attaining a low density of 
defects and low oxygen group content (Figure 7c-e). Further, exfoliation 
approaches for graphite using anodic mechanism were projected using phosphate, 
nitrate, carboxylate, and perchloride [16, 93]. Likewise, Abdelkader et al. used Li+ 
and alkylammonium ions (Et3NH+), in dimethyl sulfoxide (DMSO), intercalating 
into graphitic-layers, while weakening the van der Waals interactions between the 

Figure 4. 
Proposed mechanism for exfoliation process at both anode and cathode.
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layers [83]. Simultaneously, Et3NH+ was likely reduced electrochemically to Et3N 
gas, supported by graphitic exfoliation successfully.

3.4 Anodic exfoliation

Amongst many electrochemical exfoliation methods, anodic graphite exfolia-
tion is that one, showing high exfoliation efficiency. Various diversified graphene 
production approaches were adopted, based on anodic exfoliation, which has 
already been reported [22, 60, 94–96]. Su et al. presented the best one approach 
(as the first reported) of anodic exfoliation, via adopting the most simple and fast 
method, while preparing electrolyte solution containing H2SO4 + KOH [81]. An 
optimized procedure that was followed here, for the exfoliated graphene produc-
tion was the setup, similar to what is shown in Figure 3a, using the electrolyte with 
value (pH = 1.2). A low-biased +2.5 V has been first applied for 1 min, yet with 

Figure 5. 
(a) Schematic illustration of mechanism of electrochemical exfoliation in (NH4)2SO4 aqueous solution [22], 
(b) electrochemical oxidation reactions occurs at anode for graphite exfoliation [56].

Figure 6. 
Exfoliation of graphite into few-layer graphene flakes via intercalation of Li+ complexes [44].
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subsequent alternating-voltage between +10 V and − 10 V. In first step, low-voltage, 
aided for forming the wetting electrode surface, helping intercalation of anions into 
the graphite. Subsequently, the +10 V potential was used, for activating and oxidiz-
ing the graphitic sheets, which caused the graphite to become quickly in the form 
of dissociated small pieces. The ensuing (−10 V) potential was used as reductants 
towards functional groups. Very impressively, the so produced graphene sheets 
show a lateral size of several to 30 μm. Above 60% of the sheets were observed as 
bilayer-graphene with A–B stacking as illustrated in (Figure 8). Oxygen functional 
groups along with some decisive defects have been detected in the graphene sheets 
attributing to unavoidable oxidation. Moreover, the concentration level of graphitic 
defects produced in graphene sheets was less than reduced graphene oxide, which 
was produced by traditional chemical methods.

A similar study was presented by Su and colleagues [81], showing optimized 
multiple parameters, involving pH as well as applied voltage. While at extremely 
low pH, with high oxidation levels including H2SO4, produced a maximum level of 
defects on the graphene sheets. Consequently, KOH was added along with H2SO4, to 
increasing the pH value of the electrolyte, exhibiting the exfoliation at lower rate. 
Resultantly, it was observed that higher concentrated pH showed large percentage 
of bilayer-sheets, but the non-uniform defect level was still maintained between the 
graphene sheets. Subsequently, at less than 10 V potential (in terms of the working 
biased potential), the exfoliation process was slowed down and more inefficient, 
whereas voltages (greater than 10 V) accelerated the exfoliation rate very fast so 
that density of graphitic-particles, as well as, thickest graphene sheets were clearly 
observed and largely produced. Obviously, the effects of various electrolytic 

Figure 7. 
(a) Schematics of proposed mechanism of anodic exfoliation (bi, ii) experimental setup and exfoliation 
efficiency against H2O2 molarity with photograph of dispersed nanosheets in C3H7NO. (c, and d) low 
magnification (0.5 μm) and HR-TEM images of exfoliated nanosheets, respectively, (e) image reveals some 
defects in nanosheets (f) SAED image (g) HR-TEM image, exposing tri-layer formation, (h) distribution of 
exfoliated nanosheets before centrifugation [92].
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solutions were greatly explored, involving some acids, such as HBr, HNO3, HCl, and 
H2SO4, however, amongst the aforesaid solutions, H2SO4 was found only to be more 
effective in the performed experiments.

In 2013, Parvez et al. contributed and demonstrated their work in the form of 
exfoliation process of graphite in H2SO4 aqueous solution, further proceeding and 
elucidating, the exfoliation mechanism as well [45]. In this respected end, they have 
been explored the influence of H2SO4 concentration more clearly on exfoliation 
performance, by using (+10 V voltage), for 2 minutes subsequently. It was, more 
certainly, found that 1 M and 5 M H2SO4 explored slow exfoliation efficiency and 
yielded 0.1 M H2SO4, presumably, because of (more concentrated H2SO4 solutions), 
generated larger fragments of graphitic-particles. Likewise, in case of sulfuric acid, 
was too low, the exfoliation efficiency was more frequently reduced, caused by a 
reduced number of anions. The worthy authors have deeply studied while examin-
ing pure H2SO4 with 1:1 H2SO4/CH3COOH reaction mixture, however, in these cases, 
slight expansion with almost no exfoliation was prominently observed so far. This 
scheme has suggested the durability of water in the electrochemical process, as it 
clearly may produce (oxygen and hydroxyl radicals), which arises as aiding agents 
in intercalation and exfoliation processes. High-quality graphene was exfoliated via 
0.1 M sulfuric acid solution, with a large sheet, containing a size of ~10 μm, with low 
oxygen concentration 7.5 wt.% along with low sheet-resistance (of 4.8 kΩ/square), 
for a single sheet as in Figure 9a-f.

Liu et al. presented electrochemically exfoliation of two graphitic-electrodes, 
through applied alternating potentials (+7 V and − 7 V) in aqueous electrolytes, 
containing H2SO4 or H3PO4, thereby, resulting in anodic-exfoliation using both 
electrodes alternately [80]. Depending upon Characterization results, graphene 
flakes with thick multilayered structure (3–9 nm), lateral size (1–5 μm) with 
comparatively low oxidation level, were produced (see Figure 10).

Xia et al. keenly observed, the swallowed and expanded graphitic surface, 
caused by the intercalation along with gas formation at early stage level [74]. 
Apparently, opening of graphitic edges is caused by a key-step towards the subse-
quent exfoliation. Furthermore, the radical attack was observed as nonselective, 
in this case, occurring randomly at the exposed graphitic surfaces, necessarily 
leading to increased oxidation level of the graphene sheets. Partial removal of the 
radicals indicates a sound solution, preventing the side reaction, so occurred. Yang 

Figure 8. 
STM image of bilayer graphene produced by Su et al. hexagons represent atom configuration of two layers [81].
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et al. [97] have examined an antioxidants group, based on a standard ammonium 
sulfate (NH4)2SO4 electrolyte, and with radical scavengers containing sodium 
borohydrides, ascorbic acid, (2,2,6,6,tetramethyl-piperidinyl)oxyl (TEMPO) 
acting as additives candidates during the exfoliation process. Consequently, the 
more addition of TEMPO causes greatly suppressed oxidation state, yet not com-
promised the exfoliation efficiency, with production of 15 g h − 1 showing high 
quality graphene, exploring large dimensions (5–10 μm), but only few defects were 
observed in the form of C/O ratio equal to 25.3. Figure 11 showed that TEMPO 
initially reacted with the (HO• radicals) at anodic end, generating metastable 
TEMPOOH along with oxo-ammonium cations. At the Cathodic end, the aforesaid 
intermediates (compounds) were largely reduced to TEMPO radicals in again turn. 
In the system discussed here, single graphene sheets appeared to be an ultrahigh 
hole-mobility upto 405 cm2 V−1 s−1, owing to be still an excellent processibility in 
N,Ndimethylformamide (DMF) (6.0 mg mL−1), preparing graphene ink as well.

3.5 Cathodic exfoliation

For decades, a graphitic negative electrode has been extensively used in lithium-
ion battery-technology, owing to its high electrical conductivity and ability, 

Figure 9. 
(a) AFM image of electrochemically exfoliated graphene on substrate (SiO2), (b) statistical thickness analysis 
of the graphene sheets by AFM, (c, d, and e) HR-TEM images of single-, bi-, and four-layer graphene; inset in 
(c) is the low magnification image of exfoliated graphene, and (f) SAED pattern of bilayer graphene [45].
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for hosting lithium between the graphitic layers (Figure 12). In this way, the 
lithium-graphitic intercalation-compounds decomposed into water at a very fast 
rate, giving rise to lithium hydroxide along with free-standing graphene sheets. 
The aforesaid principle has been recently introduced, as a durable route towards 
scalable production of graphene [107]. However, depending on slow kinetics of 
the intercalation-process, the lithium was bounded to those areas closed to the 
edges. Upon exfoliation into water, graphitic expanded edges were clearly produced 

Figure 10. 
(a) TEM image and (b) SEM image of exfoliated GO flakes, (c) AFM image of exfoliated GO flakes. The 
thickness is 5.45 nm with lateral size around 2 μm, (d) thickness distribution histograms for exfoliated GO 
sheets, as estimated from corresponding AFM analysis. The graphene flakes are mainly distributed in the range 
of 3–9 nm thickness (69%) with lateral size about 1 to few μm, (e) Raman spectra, and (f) XRD patterns for 
both pencil core and exfoliated GO flakes, respectively [80].

Figure 11. 
Anodic exfoliation of graphite in an aqueous electrolyte with sulfate anions and TEMPO. TEMPO is a radical 
scavenger that partially eliminates the hydroxyl radicals from water oxidation [97].
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Bulk materials Electrolytes Working potentials Yield Thickness ID/IG Ref.

HOPG/natural graphite 0.5 M H2SO4 + KOH (pH ≈ 1.2) 1) +2.5 V, 1 min; 2) Switching +10 V, 2 s; 
−10 V, 5 s

5–8 wt% ≤2 nm 0.5–1.0 [81]

Graphite foil 0.1 M
H2SO4

+10 V, 10 min 60 wt%;
4.2 g h−1

1–3 layers 0.4 [45]

Graphite foil 0.1 M
(NH4)2SO4

+10 V, 10 min 75 wt%;
16.3 g h−1

1–3 layers 0.25 [22]

Graphite foil 0.05 M NaCl +10 V, 60 min — 2–3 nm 0.8 [98]

Expanded graphite foil 0.1 M NaOH + Na2SO4 1) +3 V, 3 min
2) +10 V, 30 min

— 2–3 nm 1.3 [99]

Expanded graphite foils 0.1 M (NH4)2SO4 + 1 mg mL−1 
TEMPO

+10 V, 10 min 75 wt%; 15.1 g h−1 1–3 layers 0.1 [97]

Expanded graphite foil 0.5 M Na2SO4 + 0.05 M CoSO4 +20 V, 120 min — Monolayer and 
few layers

0.05 [100]

Bulk graphite/ graphite 
powder

0.1 M H2SO4 + 1 mg mL−1 
melamine

±20 V, 10 min 1.5 g h−1 1–3 layers <0.45 [101]

Graphite foil 0.2 M SNDS in water +10 V, 60 min — 2.5 nm 0.2 [36]

Graphite foil 30 mg mL−1 LiClO4 in PC −15 ± 5 V >70 wt%; 0.12 g h−1 <5 layers <0.1 [44]

Graphite foils 0.1 M TBA HSO4 + NaOH ±10 V, 0.1 Hz 75 wt%; 20 g h−1 1–3 layers 0.15 [102]

Graphite foils 0.1 M (NH4)2SO4 + 1% thiourea ±10 V, 0.1 Hz, 60 min — — 0.06–0.14 [103]

HOPG/graphite rod 0.1 M (NH4)2SO4 switching +7 V or + 10 V, 1 s; −0.5 V, 3 s 77 wt% <5 layers 0.29 [34]

Graphite foil 0.5 M LiClO4 in water 1) +2.0 V, 2 min 2) +10 V – (graphene oxide) 6–8 layers 1.0 [104]

Graphite flakes 1.0 M H2SO4 in saturated 
(NH4)2SO4

anodic, 0.6 A, 24 h 40 wt% (graphene 
oxide)

1.5 nm 1.0 [55]

Graphite foil 1) 95% H2SO4 2) 0.1 m (NH4)2SO4 1) +2.2 V, 10 min 2) +10 V 71 wt% (graphene 
oxide)

monolayers 1.48 ± 0.01 [105]

Graphite foil 1) 98% H2SO4 2) 50% H2SO4 1) +1.6 V, 20 min 2) +5 V 96 wt%; 12 g h−1 1–3 layers >1.0 [106]

Table 1. 
A summary of electrochemical exfoliation and anodic oxidation of graphite.



Sol Gel and other Fabrication Methods of Advanced Carbon Materials

14

and further intercalation also occurred positively, thereby, also water decomposi-
tion and sonication steps were necessarily taken, achieving complete exfoliation 
(Figure 13) [44]. Liu et al. and Huang et al. [108, 109] have presented much 
effort, for accelerating the intercalation kinetics, by using molten (LiOH or LiCl) 
at 600°C. However, the intercalation was considered there so insufficient to be 
achieved perfect graphitic exfoliation, but sonication steps thus fallowed were still 
required to achieve remarkable production of graphene-based materials.

Swager and Zhong [78] suggested a synergetic method to be intercalated the 
graphite primarily with Li+, by following tetra-alkyl-ammonium cations into two 
steps separately. Moreover, due to expanded nature of the cathode, the distance 
between electrodes was kept initially very large, exploring the high potential differ-
ence required to apply, to dominate the high Ohmic-drop, created by the electro-
lytic cell configuration. Resultantly, the organic electrolytic solvent was dissociated 
in that state, occurring later on, at all the stages of the procedure by disappearing 
slowly during intercalation process. That is why, additional steps were rendered 
through sonication mechanism again, need to be sufficient for achieving reasonable 
exfoliation proceedings.

Dimethylsulfoxide (DMSO) has shown a wide electrochemical window that is 
highly efficient solvent during the graphene solvent dispersion, reflecting typical 
dispersive qualities, by comparing those of NMP [110]. As a result; DMSO forms 
various solvated ions, containing both lithium and alkylammonium ions reason-
ably. The observed solvated ions are expected to be able to intercalate with graphite, 
via decomposition between the graphene layers making SO2 and/or along with 
amine-based apparent gases. The stress applied properly on the graphene sheets 
through the gaseous expulsion so occurred is evaluated enough to overcome the 
forces (van der Waals) that attracting the neighboring sheets, allowing separation 
of graphene sheets formed by the graphitic cathode, thereby, allowing dispersal 
occurring in the electrolytic solution. The authors of the literature [83] have 
applied the said principle to make many flakes, showing lateral dimension (upto 
20 μm) of few-layer graphene towards DMSO-based electrolytic solution, con-
taining triethylammonium and Lithium ions. Authors have adopted fashioned of 
electrochemical program, by applying a controlled Cathodic-potential towards the 
graphitic electrode, which presents complete intercalation prior to flakes formation 
spontaneously, so that exfoliation from the Cathodic end because of partial expan-
sion occur consequently. It was greatly suggested that the triethylammonium ions, 
dissociated between the layers, give rise to triethylamine along with hydrogen gases, 
highly encouraging the exfoliation of flakes more prominently.

Figure 12. 
Schematic and images of cathodic electrochemical expansion of graphite.
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Figure 13. 
(a) TEM images and electron diffraction pattern of cathodic exfoliated graphene, (b) electron diffraction 
patterns of (i) single and (ii) bilayer sheets, (c) AFM image of exfoliated graphene spin-coated onto a Si 
substrate. The thickness is ∼1.5 nm, corresponding to a bilayer. (d) (left) Raman spectra (532 nm laser) on 
Si substrates compared with the spectrum of graphite; (right) Lorentzian peak fitting of the 2D bands of the 
bilayer and trilayer [44].

Figure 14. 
(a) SEM image, (b) AFM image of graphene flakes deposited on Si substrate, (c) TEM image, and (d) 
HR-TEM image of a graphene flake. The inset is an electron diffraction pattern and magnified portion of the 
edge of the graphene flake [111].
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Zhou et al. [111] have efficiently presented, so far, the only familiar method 
followed to exfoliate graphitic cathodes into aqueous medium deliberately, using 
an electrolyte containing NaCl, DMSO, and thionin acetate salt. Sodium ions were 
chemically combined with (four or five) DMSO molecules, readily forming Na+/
DMSO complex-composite. Complexes so obtained were still intercalated in the 
form of graphene-galleries owing to graphite, clearly forming ternary graphitic-
intercalation compounds (Na+(DMSO)yCn−). Further, interlayer spacing was sys-
tematically reported to be 1.246 nm, accordingly. However, perfect exfoliation was 
rather not achieved through only electrochemical-treatment, therefore the sample 
was necessarily subjected to sonication process in order to achieve more stable 
graphene dispersions (Figure 14). In addition, however, samples were observed as 
heavily contaminated (with sulfur, oxygen, and nitrogen impurities).

Cooper et al. have deliberately shown tetraalkylammonium salts to be cathodic 
intercalation into HOPG by using relatively low potentials (ca. −2 V) [112] and 
maybe systematically employed to produce purely cathodic-exfoliated materials, 
consisting clearly (2 or 5 layers) of graphenes (see Figure 15) [57]. More signifi-
cantly, the materials were certainly found containing (no functionality or oxida-
tion), rather inclusion of slightly 1% in atomic form oxygen, probably induced from 
the atmospheric exposure of the so obtained isolated materials.

Figure 15. 
(a) Photographs of as prepared HOPG, (b) HOPG expansion after 1000 s tetraethylammonium cation 
intercalation, (c) HOPG expansion after 1000 s tetrabutylammonium cation (TBA+) intercalation, (a–c scale 
in mm) (d) HOPG expansion after 10,000 s TBA+ intercalation, (e) SEM image of HOPG expansion after 
6000 s TBA+ intercalation, (f) SEM image showing micron-sized pores in HOPG after TBA+ intercalation, 
(g) SEM image showing selective exfoliation of HOPG electrode: The point on a HOPG electrode that was held 
by tweezers (left-hand side) whilst the rest of the electrode (right-hand side) was submerged [57].
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Further, Yang et al. [113] employed a pure ionic-liquid, N-butyl, methylpyrro-
lidinium bis (trifluoromethylsulfonyl)-imide (BMP TF2N) towards cathodic-graphitic 
intercalation/exfoliation mechanism. In authors’ view, [BMP]+ cations chemically 
intercalated between the highly negatively charged (graphene layers), causing the 
expanded interlayer spacing. The aforesaid expansion facilitates the bigger molecules 
insertion, such as the BMPTF2N ion-pair, subsequently, caused by higher expansion 
in graphite as well. The authors have certainly claimed that formation of graphene 
sheets was consisted of between (two and five layers), with 2.5% atomic-oxygen yet 
free defected materials. However, the authors, not suggested a reasonable explana-
tion for the gel-like-phase, probably formed from the ionic- liquid during which (the 
cations or anions) are expected to be consumed in all irreversible reactions [114, 115].

4. Conclusions

The process of electrochemical exfoliation has been confirmed to operate in a 
wide variety of layered materials; the majority of studies are conducted on large-
sized bulk single-crystals, which are costly and inefficient for industrial applica-
tions. Small-sized powders or flakes are readily produced from natural materials 
or industrial synthesis should be considered as an alternative for efficient and 
successive exfoliation. Both aqueous and non-aqueous electrolytes are employed 
to exfoliate layered materials, but the procedure is more often used in aqueous 
solutions and under anodic conditions for the exfoliation of graphite owing to 
better performance relative to cathodic scheme, in this technique most reliable and 
effective way is Li-ion insertion. Around the same time, a deeper understanding of 
process/mechanism of intercalation and exfoliation of powered by application of 
current is desperately required, which may encourage the use of electrochemical 
means to exfoliate more effectively a large number of layered materials.
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